最新初中数学多边形内角和的教案
优秀数学教案:多边形的内角和
优秀数学教案:多边形的内角和教学目标:1. 理解多边形的内角和的概念。
2. 学会计算多边形的内角和。
3. 能够应用多边形的内角和解决实际问题。
教学重点:1. 多边形的内角和的概念。
2. 计算多边形的内角和的方法。
教学难点:1. 理解多边形内角和的推导过程。
2. 应用多边形的内角和解决实际问题。
教学准备:1. 教学课件或黑板。
2. 多边形的模型或图片。
3. 练习题。
教学过程:一、导入(5分钟)1. 引入多边形的概念,让学生回顾多边形的特征。
2. 提问:多边形有多少个内角?引导学生思考多边形的内角和。
二、探究多边形的内角和(15分钟)1. 介绍多边形的内角和的概念。
2. 通过实物展示或模型演示,让学生直观地理解多边形的内角和。
3. 引导学生探究多边形的内角和的计算方法。
4. 讲解多边形内角和的推导过程,让学生理解并掌握计算方法。
三、练习计算多边形的内角和(10分钟)1. 给学生发放一些多边形的模型或图片,让学生计算它们的内角和。
2. 引导学生运用所学的方法,进行计算并得出答案。
3. 检查学生的计算结果,给予及时的反馈和指导。
四、应用多边形的内角和解决实际问题(10分钟)1. 给学生发放一些实际问题题目,让学生运用多边形的内角和来解决问题。
2. 引导学生理解问题的背景,应用所学的方法进行解答。
3. 检查学生的解答结果,给予及时的反馈和指导。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结多边形的内角和的概念和计算方法。
2. 引导学生反思自己在学习过程中的收获和不足,提出改进的方法。
3. 结束本节课的教学。
教学延伸:1. 让学生进一步研究多边形的内角和与边数的关系,探究多边形内角和的规律。
2. 让学生应用多边形的内角和解决更复杂的实际问题,提高学生的应用能力。
教学反思:本节课通过导入、探究、练习、应用和总结的过程,让学生掌握了多边形的内角和的概念和计算方法。
在教学过程中,要注意引导学生积极参与,培养学生的观察能力和思维能力。
多边形的内角和教案(优秀范文5篇)[修改版]
第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
这(n-2)个三角形的内角和正好是这个n边形的内角和。
由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。
例2:如果一个多边形的内角和是2160度,求这个多边形的边数。
五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。
多边形内角和教学设计3篇
多边形内角和教学设计3篇多边形内角和教学设计1《多边形内角和》教学设计一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标1、知识目标:(1)使学生了解多边形的有关概念。
(2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。
2、能力目标(1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。
(2)通过变式练习,培养学生动手、动脑的实践能力。
3、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法五、教具、学具及辅助教学媒体教具:多媒体课件学具:三角板、量角器教学媒体:大屏幕、实物投影六、教学过程:(一)创设情境,设疑激思1、以疑导入,引发求知欲。
先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。
由此激发学生自己要设计,怎样设计的求知欲。
然后提出具体问题。
2、复习提问,知识巩固。
(1)三角形内角和等于多少度?(2)四边形内角和定理以及推导方法。
3、引入新课上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180o的和是540o。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。
结果得540o。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。
人教版初中数学八年级上册11.3多边形与其内角和(教案)
(2)运用多边形内角和解决实际问题:将理论知识应用于实际问题,需要学生具备一定的分析能力和运算技巧。
举例:针对多边形分割、组合等情形,指导学生运用内角和定理进行求解。
(3)多边形内角和与外角和的关系:理解多边形内角和与外角和的关系,有助于提高学生对几何图形的深入理解。
人教版初中数学八年级上册11.3多边形与其内角和(教案)
一、教学内容
人教版初中数学八年级上册11.3节,本节课将围绕多边形及其内角和展开教学。主要内容包括:
1.多边形的定义与性质,例如三角形的内角和定理。
2.多边形内角和的计算公式,即(n-2)×180°,其中n为多边形的边数。
3.通过实际操作,让学生理解并掌握多边形内角和的概念和计算方法。
4.解决与多边形内角和相关的实际问题,例如多边形分割、组合等情形。
5.培养学生运用多边形内角和定理进行几何推理和计算的能力。
本节课将结合教材内容,注重理论与实践相结合,提高学生对多边形内角和知识点的掌握和应用。
二、核心素养目标
本节课的核心素养目标主要包括以下方:1.培养学生的逻辑推理能力:通过多边形内角和定理的推导与应用,让学生理解几何图形之间的内在联系,提高逻辑推理和论证能力。
本节课将紧扣新教材要求,注重培养学生的学科核心素养,提高学生的综合素质。
三、教学难点与重点
1.教学重点
(1)多边形的定义及性质:理解多边形的组成要素,掌握多边形的基本性质,如三角形的内角和定理。
举例:强调三角形内角和为180°,四边形内角和为360°,引导学生发现多边形内角和与边数的关系。
(2)多边形内角和的计算公式:(n-2)×180°,其中n为多边形的边数。
多边形内角和教案
多边形内角和教案一、教学目标:1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、推理、归纳等方法探究多边形内角和的计算公式。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 多边形内角和的概念。
2. 多边形内角和的计算公式。
三、教学重点与难点:1. 教学重点:多边形内角和的概念,多边形内角和的计算公式的推导与应用。
2. 教学难点:多边形内角和的计算公式的推导过程。
四、教学方法:1. 采用问题驱动法,引导学生观察、思考、推理、归纳。
2. 利用图形演示,帮助学生直观理解多边形内角和的概念。
3. 小组合作探究,培养学生合作学习的能力。
五、教学过程:1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角。
2. 新课导入:介绍多边形内角和的概念,引导学生理解多边形内角和的意义。
3. 教学活动:a. 让学生观察多边形,尝试计算多边形的内角和。
b. 引导学生通过实际操作,发现多边形内角和的计算规律。
c. 组织学生进行小组讨论,总结多边形内角和的计算公式。
4. 知识拓展:引导学生运用多边形内角和的计算公式解决实际问题。
5. 课堂小结:总结本节课所学内容,强调多边形内角和的概念及计算公式的应用。
6. 作业布置:布置一些有关多边形内角和的练习题,巩固所学知识。
7. 课后反思:对本节课的教学过程进行总结,反思教学方法的运用,为下一步教学做好准备。
六、教学评价:1. 通过课堂提问、练习和小测验,评估学生对多边形内角和概念的理解程度。
2. 观察学生在小组合作探究中的表现,评估其合作能力和问题解决能力。
3. 收集学生完成的作业,评估其对多边形内角和计算公式的掌握及应用能力。
七、教学资源:1. 多边形内角和的概念介绍PPT。
2. 多边形图形示例和练习题。
3. 计算器或纸笔计算工具。
4. 小组讨论活动所需材料。
八、教学进度安排:1. 第一课时:介绍多边形内角和的概念,引导学生观察和思考。
2. 第二课时:学生通过实际操作和小组讨论,发现多边形内角和的计算规律。
八年级上册《多边形的内角和》教学设计(精选8篇)
八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。
我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。
八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。
教学重、难点:教学重点:1、多边形内角和公式。
2、计算多边形的内角和及依据内角和确定多边形边数。
教学难点:多边形内角和公式的推导。
一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。
(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。
)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。
5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。
(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。
)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。
多边形内角和公式教案
多边形内角和公式教案一、教学目标1. 让学生理解多边形的概念,能够识别和分类多边形。
2. 引导学生通过观察和推理得出多边形内角和公式。
3. 培养学生运用多边形内角和公式解决实际问题的能力。
二、教学重点与难点1. 教学重点:引导学生通过观察和推理得出多边形内角和公式。
2. 教学难点:理解并运用多边形内角和公式解决实际问题。
三、教学准备1. 教师准备:多边形的图片、PPT、练习题等教学资源。
2. 学生准备:了解多边形的基本概念,具备一定的观察和推理能力。
四、教学过程1. 导入:通过展示多边形的图片,引导学生回顾多边形的基本概念,激发学生的学习兴趣。
2. 新课导入:讲解多边形的内角和公式,引导学生通过观察和推理得出公式。
3. 实例讲解:通过具体的例子,解释多边形内角和公式的应用,帮助学生理解并掌握公式。
4. 练习巩固:布置一些练习题,让学生运用多边形内角和公式解决问题,巩固所学知识。
5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的思考。
五、课后作业1. 请学生总结本节课所学的内容,包括多边形的概念和内角和公式。
2. 布置一些相关的练习题,让学生运用内角和公式解决实际问题。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 练习题评价:检查学生完成的练习题,评估学生对多边形内角和公式的理解和应用能力。
3. 课后作业评价:审阅学生的课后作业,评估学生对课堂内容的掌握程度和实际应用能力。
七、教学反思1. 教师反思:思考课堂教学中的优点和不足,如教学方法、课堂组织等,以便改进教学效果。
2. 学生反馈:听取学生的意见和建议,了解他们对多边形内角和公式的掌握情况,以便更好地指导学生。
八、教学拓展1. 引导学生思考:除了多边形,还有哪些图形的内角和有特定的公式?2. 探索其他几何问题:引导学生思考多边形的其他性质和规律,如对角线数量、面积等。
九、教学资源1. 图片:用于展示多边形的形状,帮助学生直观地理解多边形。
多边形内角和教案
多边形内角和教案一、教学目标1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、操作、推理等方法探索多边形的内角和定理。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 多边形的内角和的概念。
2. 多边形的内角和定理的探索。
三、教学重点与难点1. 教学重点:多边形的内角和的概念,多边形的内角和定理的探索。
2. 教学难点:多边形的内角和定理的理解和应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、操作、推理等方法探索多边形的内角和定理。
2. 利用多媒体辅助教学,直观展示多边形的内角和的概念和定理。
五、教学准备1. 多边形的模型或图片。
2. 多边形的内角和定理的PPT课件。
【教学活动】1. 引入:通过展示多边形的模型或图片,引导学生观察多边形的内角,并提出问题:“你们认为多边形的内角和是什么?”2. 讲解:讲解多边形的内角和的概念,并给出定义。
3. 探索:引导学生通过观察、操作、推理等方法探索多边形的内角和定理。
可以分组讨论,每组尝试找出一种方法来计算多边形的内角和。
4. 展示:每组展示他们的探索结果,并解释他们的方法。
5. 总结:总结多边形的内角和定理,并给出证明。
6. 练习:给出一些多边形的内角和的问题,让学生独立解决。
7. 作业:布置一些相关的练习题,让学生回家后巩固所学内容。
六、教学活动1. 巩固:通过PPT课件复习上节课所学的多边形的内角和定理。
2. 实践:让学生分组,每组选择一个多边形,使用工具(如剪刀、纸张)制作该多边形的模型,并测量其内角和。
3. 分享:每组将测量结果和制作过程进行分享,讨论在实践过程中遇到的问题和解决方法。
4. 讲解:针对学生分享的内容,进行点评和讲解,纠正可能的错误理解,加深学生对多边形内角和定理的理解。
七、教学活动1. 拓展:引导学生思考,除了正多边形,其他类型的多边形内角和是否有规律可循。
2. 探索:学生分组讨论,尝试找出不同类型多边形内角和的规律。
多边形的内角和数学教案
多边形的内角和数学教案一、教学目标1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、操作、推理等方法探究多边形的内角和定理。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 多边形的内角和概念:多边形内角和指的是多边形所有内角的总和。
2. 多边形的内角和定理:n边形的内角和等于(n-2)×180°。
三、教学重点与难点1. 教学重点:多边形的内角和定理的推导和应用。
2. 教学难点:多边形内角和定理的理解和运用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、操作、推理等方法探究多边形的内角和定理。
2. 利用多媒体课件辅助教学,直观展示多边形的内角和定理。
3. 分组讨论,合作学习,提高学生的参与度和积极性。
五、教学过程1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角和。
2. 新课导入:介绍多边形的内角和概念,引导学生理解多边形的内角和。
3. 探究活动:引导学生通过观察、操作、推理等方法探究多边形的内角和定理。
4. 讲解与演示:利用多媒体课件,讲解多边形的内角和定理,并展示定理的推导过程。
5. 练习与巩固:布置一些练习题,让学生运用内角和定理解决问题,巩固所学知识。
6. 课堂小结:对本节课的内容进行总结,强调多边形的内角和定理的应用。
7. 课后作业:布置一些课后作业,让学生进一步巩固多边形的内角和定理。
六、教学评估1. 课堂提问:通过提问了解学生对多边形内角和概念的理解程度。
2. 练习反馈:收集学生的练习题答案,分析其对多边形内角和定理的掌握情况。
3. 课后作业:检查课后作业的完成质量,评估学生对课堂所学知识的巩固程度。
七、教学反思1. 针对课堂提问和练习反馈,反思教学过程中的不足之处,如讲解不清、学生理解困难等问题。
2. 根据课后作业的完成情况,分析学生的学习效果,调整教学方法和策略。
3. 针对教学反思的结果,制定改进措施,提高教学质量。
初中数学多边形的内角和与外角和教案
初中数学多边形的内角和与外角和教案一、教学目标:知识与技能:1. 让学生掌握多边形的内角和定理,能够运用该定理计算任意多边形的内角和。
2. 让学生理解多边形的外角和定理,能够运用该定理计算任意多边形的外角和。
过程与方法:1. 通过观察、操作、推理等过程,让学生发现多边形的内角和与外角和的规律。
2. 培养学生运用数学知识解决实际问题的能力。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。
2. 让学生感受数学在生活中的应用,培养学生的应用意识。
二、教学重点与难点:重点:1. 多边形的内角和定理。
2. 多边形的外角和定理。
难点:1. 理解并运用多边形的内角和定理计算任意多边形的内角和。
2. 理解并运用多边形的外角和定理计算任意多边形的外角和。
三、教学过程:1. 导入:通过展示一些多边形的图片,让学生观察并思考:多边形有什么特点?你能总结出多边形的内角和与外角和的规律吗?2. 新课讲解:(1)讲解多边形的内角和定理:n边形的内角和为(n-2)×180°。
(2)讲解多边形的外角和定理:n边形的外角和为360°。
3. 实例演示:教师展示几个简单多边形的内角和与外角和的计算过程,让学生跟随教师一起动手操作,加深对定理的理解。
4. 练习巩固:学生独立完成一些多边形的内角和与外角和的计算题目,教师巡回指导,解答学生的疑问。
5. 课堂小结:教师引导学生总结本节课所学内容,巩固多边形的内角和与外角和的定理。
四、课后作业:3. 请学生结合生活实际,找出一些多边形,并计算其内角和与外角和。
五、教学反思:本节课通过观察、操作、推理等过程,让学生掌握了多边形的内角和与外角和的定理,并能运用定理计算任意多边形的内角和与外角和。
在教学过程中,要注意引导学生积极参与,培养学生的动手操作能力和思维能力。
结合生活实际,让学生感受数学的应用,激发学生的学习兴趣。
六、教学评价:1. 学生能够熟练掌握多边形的内角和定理和外角和定理,并能够运用定理计算任意多边形的内角和与外角和。
多边形的内角和教学教案【优秀4篇】
多边形的内角和教学教案【优秀4篇】多边形的内角和教案篇一[教学目标]知识与技能:1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。
情感态度与价值观:让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点与关键]教学重点:多边形的内角和。
的应用。
教学难点:探索多边形的内角和与外角和公式过程。
教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。
[教学方法]本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
[教学过程:](一)探索多边形的内角和活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?多边形边数分成三角形的个数图形内角和计算规律三角形31180°(3-2)·180°四边形4五边形5六边形6七边形7。
n边形n活动3:把一个五边形分成几个三角形,还有其他的分法吗?总结多边形的内角和公式一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。
巩固练习:看谁求得又快又准!(抢答)例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?(点评:四边形的一组对角互补,另一组对角也互补。
)(二)探索多边形的外角和活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的'和叫做五边形的外角和。
五边形的外角和等于多少?分析:(1)任何一个外角同于他相邻的内角有什系?(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?(3)上述总和与五边形的内角和、外角和有什么关系?解:五边形的外角和=______________-五边形的内角和活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。
七年级数学下册《多边形的内角和》教案、教学设计
(三)情感态度与价值观
1.培养学生积极探究、主动学习的态度,激发学生对数学知识的热爱和追求。
2.培养学生的团队合作意识,学会倾听、表达、沟通,提高人际交往能力。
3.使学生认识到数学在现实生活中的重要作用,增强学生的应用意识和实践能力。
2.教师对学生的解答进行点评,指出错误原因,引导学生总结经验。
3.对学生在练习中遇到的问题进行个别辅导,帮助学生巩固知识。
4.针对不同水平的学生,布置难易适度的课后作业,提高学生的运算能力和解决问题的能力。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结多边形内角和的计算方法和应用。
2.强调多边形内角和与三角形内角和之间的联系,加深学生对几何图形的认识。
b.一个多边形的内角和是1080°,且每个内角都小于150°,请问这个多边形可能的边数是多少?
5.完成课后探究活动:用纸板制作一个七边形,并计算出它的内角和。尝试将七边形分割成若干个三角形,验证内角和的计算结果。
3.小组合作,交流探讨
将学生分成小组,针对不同形状的多边形,进行内角和的计算和讨论。鼓励学生相互交流、质疑、解惑,提高学生的合作能力和解决问题的能力。
4.设计典型例题,巩固知识
精选典型例题,涵盖多边形内角和的各种应用场景,让学生在实际问题中运用所学知识。同时,注重对错误思路的剖析,帮助学生理清思路,巩固知识。
7.课后延伸,提高素养
布置适量的课后作业,让学生在课后进行巩固和拓展。同时,鼓励学生参加数学竞赛、研究性学习等活动,提高学生的数学素养。
四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示生活中常见的多边形物体,如五角星、六边形的地砖、七巧板等,引导学生观察这些多边形的共同特点。
2023年最新-多边形的内角和与外角和教案 初中数学多边形内角和教案(3篇)
多边形的内角和与外角和教案初中数学多边形内角和教案(3篇)多边形的内角和与外角和教案初中数学多边形内角和教案篇一使学生能熟练灵活地利用三角形内角和,外角和以及外角的两条性质进行有关计算。
重点:利用三角形的内角和与外角的两条性质来求三角形的内角或外角。
难点:比较复杂图形,灵活应用三角形外角的性质。
一、复习提问1.三角形的内角和与外角和各是多少?2.三角形的外角有哪些性质?二、新授例1.在△abc中,△a=12△b=13△c,求△abc各内角的度数。
分析:由已知条件可得△b=2△a,△c=3△a所以可以根据三角形的内角和等于180°来解决。
做一做:如图,在△abc中,ad△bc,ae平分△bac,△b=80°,△c=46°abdea(1)你会求△dae的度数吗?与你的同伴交流。
(2)你能发现△dae与△b、△c之间的关系吗?(2)若只知道△b-△c=20°,你能求出△dae的度数吗?分析:(1)△dae是哪个三角形的内角或外角?(2)在△ade中,已知什么?要求△dae,必需先求什么?(3)△aed是哪个三角形的外角?(4)在△aec中已知什么?要求△aeb,只需求什么?(5)怎样求△eac的度数?三、巩固练习1.如图,△abc中,△bac=50°,△b=60°,ad是△abc的角平分线,求△adc,△adb的度数。
2.已知在△abc中,△a=2△b-10°,△b=△c+20°。
求三角形的各内角的度数。
四、小结三角形的内角和,外角的性质反映了三角形的三个内角外角是互相联系与制约的,我们可以用它来求三角形的内角或外角,解题时,有时还需添加辅助线,有时结合代数,用方程来解比较方便。
多边形的内角和与外角和教案初中数学多边形内角和教案篇二知识与技能目标:能够说出多边形的内角和公式并会运用过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。
多边形的内角和数学教案
多边形的内角和数学教案一、教学目标1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、思考、探究,总结出多边形内角和的计算公式。
3. 培养学生的观察能力、思考能力和数学推理能力。
二、教学重点1. 多边形内角和的概念。
2. 多边形内角和的计算公式。
三、教学难点1. 理解并推导多边形内角和的计算公式。
2. 应用多边形内角和的知识解决实际问题。
四、教学准备1. 教师准备多媒体教学课件。
2. 学生准备笔记本、笔。
五、教学过程1. 导入:教师通过多媒体课件展示各种多边形,引导学生观察多边形的特征。
2. 新课导入:教师提出问题:“大家知道多边形的内角和是多少吗?”引导学生思考并回答。
3. 探究活动:教师引导学生分组进行探究,观察多边形的特征,尝试总结多边形内角和的计算公式。
4. 总结公式:教师引导学生汇报探究成果,总结出多边形内角和的计算公式为:(n-2)×180°,其中n为多边形的边数。
5. 例题讲解:教师通过PPT展示例题,引导学生一起解答,巩固多边形内角和的计算方法。
6. 课堂练习:教师布置课堂练习题,学生独立完成,巩固所学知识。
7. 总结与拓展:教师对本节课的内容进行总结,并提出拓展问题,引导学生思考。
8. 课后作业:教师布置课后作业,让学生进一步巩固多边形内角和的知识。
9. 教学反思:教师在课后对自己的教学进行反思,了解学生的学习情况,为下一步的教学做好准备。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、思考问题和回答问题的积极性。
2. 练习题评价:检查学生完成练习题的情况,了解学生对多边形内角和计算公式的掌握程度。
3. 课后作业评价:审阅学生课后作业,评估学生对课堂所学知识的巩固情况。
七、教学拓展1. 引导学生思考:多边形的内角和与边数之间的关系。
2. 探讨多边形内角和在实际问题中的应用,如计算多边形的角度、设计图形等。
八、教学策略1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究,自主总结多边形内角和的计算公式。
人教版八年级上册11.3.2多边形的内角和(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与多边形内角和相关的实际问题,如如何根据部分角度求解多边形的未知角度。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《多边形的内角和》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多边形内角和的情况?”比如,在设计多边形图案时,我们可能需要知道所有内角的总和。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索多边形内角和的奥秘。
2.提升空间观念:通过实际操作,让学生感知多边形的内角和与外角和的关系,培养学生的空间想象力和直觉思维能力。
3.增强数学应用意识:将多边形内角和定理应用于解决实际问题,提高学生运用数学知识解决实际问题的能力。
4.培养合作交流能力:在小组讨论和分享中,促进学生之间的沟通与合作,增强团队协作能力。
5.激发创新意识:鼓励学生尝试不同的解题方法,培养学生的创新思维和解决问题的多元化策略。
2.教学难点
-理解多边形内角和定理的推导过程,尤其是从三角形的内角和推导到一般多边形的内角和。
-解决与多边形内角和相关的综合应用问题,如已知多边形的部分角度,求其他角度或边数。
-掌握多边形内角和与外角和的关系,并能在实际问题中灵活运用。
举例:
a.难点一:通过动态演示或教具模型,帮助学生理解多边形内角和定理的推导过程,使学生明白从特殊到一般的多边形内角和规律。
多边形的内角和教学设计【优秀15篇】
多边形的内角和教学设计【优秀15篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!多边形的内角和教学设计【优秀15篇】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
多边形内角和教案
多边形内角和教案一、教学目标1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、思考、探究,发现多边形内角和的计算规律。
3. 培养学生的观察能力、思考能力和动手实践能力。
4. 让学生掌握多边形内角和的计算方法,并能应用于实际问题。
二、教学内容1. 多边形内角和的概念。
2. 多边形内角和的计算规律。
3. 多边形内角和的计算方法。
三、教学重点与难点1. 教学重点:多边形内角和的概念,多边形内角和的计算方法。
2. 教学难点:多边形内角和的计算规律的发现和证明。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究,发现多边形内角和的计算规律。
2. 使用多媒体辅助教学,展示多边形的内角和计算过程。
3. 组织学生进行小组讨论和实践,培养学生的合作意识和动手实践能力。
五、教学过程1. 导入:通过展示一些多边形的图片,引导学生关注多边形的内角和。
2. 新课导入:介绍多边形内角和的概念,引导学生理解多边形内角和的意义。
3. 探究活动:让学生通过观察、思考、探究,发现多边形内角和的计算规律。
4. 讲解:讲解多边形内角和的计算方法,并示例讲解。
5. 实践环节:组织学生进行小组讨论和实践,让学生自己动手计算多边形的内角和。
6. 总结:对本节课的内容进行总结,巩固学生对多边形内角和的理解。
7. 作业布置:布置一些有关多边形内角和的练习题,让学生巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对多边形内角和概念的理解程度,以及学生对多边形内角和计算方法的掌握情况。
2. 小组讨论:观察学生在小组讨论中的参与程度,以及他们的合作意识和解决问题的能力。
3. 作业批改:通过批改学生的练习题,了解学生对多边形内角和计算方法的掌握情况,以及他们在实际问题中的应用能力。
七、教学反思在课后,教师应认真反思本节课的教学效果,包括学生的学习兴趣、参与程度、知识掌握情况等。
教师还应根据学生的反馈,调整教学方法和策略,以提高教学效果。
初中数学多边形的内角和与外角和教案
初中数学多边形的内角和与外角和教案第一章:多边形的概念1.1 引入多边形的定义,让学生了解多边形是由直线段组成的封闭平面图形,其中每条线段称为边,相邻两边之间的角称为内角。
1.2 讲解多边形的种类,如三角形、四边形、五边形等,并让学生通过实物或图形进行观察和识别。
1.3 引导学生通过绘制不同种类的多边形,培养其观察和动手能力。
第二章:多边形的内角和2.1 引入多边形内角和的定义,让学生了解多边形内角和是指多边形所有内角的和。
2.2 讲解多边形内角和的计算公式:(n-2)×180°,其中n表示多边形的边数。
2.3 通过例题和练习,让学生掌握多边形内角和的计算方法,并能够应用到实际问题中。
第三章:多边形的外角和3.1 引入多边形外角和的定义,让学生了解多边形外角和是指多边形每个外角的和。
3.2 讲解多边形外角和的性质,即任何多边形的外角和都等于360°。
3.3 通过例题和练习,让学生掌握多边形外角和的计算方法,并能够应用到实际问题中。
第四章:多边形的内角与外角的关系4.1 讲解多边形内角与外角的关系,即一个内角与其相邻的外角互补,即内角+外角=180°。
4.2 通过例题和练习,让学生掌握多边形内角与外角的关系,并能够应用到实际问题中。
4.3 引导学生通过观察和绘制多边形,探索多边形内角与外角的其他性质。
第五章:多边形的内角和与外角和在实际问题中的应用5.1 引入实际问题,如建筑设计中多边形的内角和与外角和的应用,让学生了解多边形内角和与外角和在实际生活中的重要性。
5.2 通过例题和练习,让学生掌握多边形内角和与外角和在实际问题中的应用方法,并能够解决实际问题。
5.3 引导学生进行实际问题探究,培养其解决问题的能力和创新思维。
第六章:多边形的内角和与外角和的证明6.1 引入证明多边形内角和与外角和的概念,让学生了解证明的方法和过程。
6.2 讲解多边形内角和的证明方法,如通过将多边形划分成三角形,利用三角形的内角和定理进行证明。
《多边形的内角和》教案(通用7篇)
《多边形的内角和》教案(通用7篇)《多边形的内角和》篇1一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理.2.了解四边形的不稳定性及它在实际生产,生活中的应用.(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.2.通过推导四边形内角和定理,对学生渗透化归思想.3.会根据比较简单的条件画出指定的四边形.4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美.二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.第2课时七、教学步骤复习提问1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9, 求的度数(打出投影).引入新课前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.讲解新课1.四边形的外角与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.2.外角和定理例1 已知:如图4-11,四边形abcd的四个内角分别为,每一个顶点处有一个外角,设它们分别为 .求 .(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).(2)教给学生一组外角的画法——同向法.即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.证得:360°外角和定理:四边形的外角和等于360°3.四边形的不稳定性①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的外形和大小,已知一边一夹角,作三角形你会吗?(学生回答)②若以为边作四边形abcd.提示画法:①画任意小于平角的 .②在的两边上截取 .③分别以a,c为圆心,以12mm,18mm为半径画弧,两弧相交于d 点.④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.大家比较一下,所作出的图形的外形一样吗?这是为什么呢?因为的大小不固定,所以四边形的外形不确定.③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的外形改变了,这说明四边形没有稳定性.教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:①四边形改变外形时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的外形就固定了,如教材p125中2的第h问,为克服不稳定性提供了理论根据.(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.总结、扩展1.小结:(1)四边形外角概念、外角和定理.(2)四边形不稳定性的应用和克服不稳定性的理论根据.2.扩展:如图4-15,在四边形abcd中, ,求四边形abcd的面积八、布置作业教材p128中4.九、板书设计十、随堂练习教材p124中1、2补充:(1)在四边形abcd中, , 是四边形的外角,且 ,则度.(2)在四边形abcd中,若分别与相邻的外角的比是1:2:3:4,则度, 度, 度, 度(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.《多边形的内角和》教案篇2一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理.2.了解四边形的不稳定性及它在实际生产,生活中的应用.(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.2.通过推导四边形内角和定理,对学生渗透化归思想.3.会根据比较简单的条件画出指定的四边形.4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美.二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.第一课时七、教学步骤复习引入在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题.引入新课用投影仪打出课前画好的教材中p119的图.师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).讲解新课1.四边形的有关概念结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:(1)要结合图形.(2)要与三角形类比.(3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.(6)在判定一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.2.四边形内角和定理教师问:(1)在图4-3中对角线ac把四边形abcd分成几个三角形?(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形?(3)若在四边形abcd 如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形.我们知道,三角形内角和等于180°,那么四边形的内角和就等于:①2×180°=360°如图4—6;②4×180°-360°=360°如图4-7.例1 已知:如图4—8,直线于b、于c.求证:(1) ; (2) .本例题是四边形内角和定理的应用,实际上它证实了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,假如需要应用,作两三步推理就可以证出.总结、扩展1.四边形的有关概念.2.四边形对角线的作用.3.四边形内角和定理.八、布置作业教材p128中1(1)、2、 3.九、板书设计四边形(一)四边形有关概念四边形内角和例1十、随堂练习教材p122中1、2、3.《多边形的内角和》教案篇37.3.2 《多边形的内角和》教案教学任务分析教学目标知识目标了解多边形的内角和与外角和公式,进一步了解转化的数学思想能力目标1、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。
多边形的内角和数学教案
多边形的内角和数学教案一、教学目标1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、操作、推理等方法探索多边形的内角和定理。
3. 培养学生的逻辑思维能力和数学推理能力。
4. 让学生能够运用多边形的内角和定理解决实际问题。
二、教学重点与难点1. 教学重点:多边形的内角和定理及其应用。
2. 教学难点:多边形的内角和定理的证明。
三、教学方法1. 采用问题驱动法,引导学生主动探究多边形的内角和。
2. 运用几何画板等软件辅助教学,直观展示多边形的内角和。
3. 利用小组合作学习,培养学生的团队协作能力。
4. 采用启发式教学,引导学生进行逻辑推理和数学证明。
四、教学准备1. 多媒体教学设备。
2. 几何画板软件。
3. 纸板多边形模型。
4. 教学PPT。
五、教学过程1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角。
2. 探究多边形的内角和:让学生观察多边形,尝试用量角器测量多边形的内角,并记录结果。
引导学生发现多边形的内角和与边数之间的关系。
3. 总结多边形的内角和定理:引导学生通过观察、操作、推理等方法,总结出多边形的内角和定理。
4. 证明多边形的内角和定理:让学生运用已学的几何知识,尝试证明多边形的内角和定理。
在证明过程中,引导学生注意运用转化思想和归纳思想。
5. 应用多边形的内角和定理:让学生运用多边形的内角和定理解决实际问题,如计算多边形的内角和、判断多边形的类型等。
6. 课堂小结:对本节课的内容进行总结,强化学生对多边形的内角和定理的理解。
7. 作业布置:布置一些有关多边形内角和的练习题,巩固所学知识。
8. 课后反思:鼓励学生对自己的学习过程进行反思,提高学习效果。
六、教学拓展1. 引导学生思考:多边形的内角和定理是否适用于其他几何图形?2. 探讨多边形的内角和定理在实际生活中的应用,如建筑设计、电路板设计等。
3. 介绍多边形的内角和定理在数学发展史上的应用和演变。
七、课堂练习1. 设计一些有关多边形内角和的练习题,让学生在课堂上完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.3.2 多边形内角和
【教学目标】
1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些较简单的问题;
2、通过多边形内角和计算公式的指导,培养学生探索与归纳能力;
3、通过经历数学知识的形成过程,体验转化等重要的数学思想。
【重点难点】
重点:多边形的内角和公式。
难点:多边形内角和的推导。
【教学准备】
学生:直尺(三角尺);教师:多媒体演示三角形纸片(扇形)【教学过程】
一、创设情境,引入新课
1、师:学校生物兴趣小组为了激发同学们学习生物的兴趣,准备在一块三角形土地的各角上种植半径为r扇形鲜花,如图1,聪明的你能帮忙计算种植鲜花的面积吗?
2、(演示教具)
用三块大小符合要求的扇形拼成一个半圆,你能解释为什么会产
生这个效果吗?
生:三角形的内角和是180°
师:三角形的内角和是180°,四边形的内角和呢?五边形呢?n边形呢?大家想知道吗?这节课我们就一起来探讨这个问题。
二、合作探究解读新知
1、探索四边形的内角和
(1)我们知道,正方形的四个角都是90°,那么它的内角和为360°,同样长方形的内角和也是360°.
(2)正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?
(2)师:给定任意的一个四边形,你能有什么办法得到它的内角和吗?
(如:通过测量相加求内角和,通过画四边形对角线分成两个三角形来计算内角和等).
注意:①对于学生提出的不同方法加以及时肯定;
②对于通过“分割转化”来求内角和的方法加以强调,并提出是数学学习中的一种常用方法;(通过把多边形分成三角形,然后利用三角形的内角和是180°,进而求得多边形的内角和)
2、探索多边形的内角和
(1)那么,我们能不能同样的方法求五边形、六边形、七边形、n边形的内角和呢?
(2)学生动手操作,完成表格
(3)师生交流,得出结论
1°过一个顶点引对角线的条数:n一3
2°分成三角形的个数:n一2
3°多边形的内角和:(n一2)×180°
(4)练习巩固快速抢答
1、七边形的内角和等于_______,十边形的内角和等于
_________。
2、一个多边形的内角和等于1260°,那么它是______边形.
3、求下列图中x的值。
3、多边形内角和公式的再推导
师:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n 边形的内角和公式吗?
生:动手并推导,同伴交流后归纳:(以五边形为例)
分法一:在五边形ABCDE 内任取一点O ,连结OA 、OB 、OC 、OD 、OE ,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.
如果五边形变成n 边形,用同样方法也可以得到n 个三角形的内角和减去一个周角,即可得:n 边形内角和=n ×l80°一2×180°=(n 一2)×180°.
x。
140。
x 。
2x。
x。
120°°
150。
E
分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.
D
分发三:在多边形的外部取一点(证明略)
三、课堂小结总结反思D
A B
1、通过这节课的学习活动你有哪些收获(感受)?
2、对本节内容,你还有什么困惑吗? 四、拓展思维 应用升华
1、有一把锋利的“小刀”,把你的课桌(四边形)一个角削去,剩下的课桌是一个几边形?它的内角和是多少?
2、如图是一个五角星的每个角剪去一部分所生成,求∠M1+∠M2+∠M3……+∠M10的度数
3、想一想:下面的问题与今天学的知识有联系吗?
有一个家庭联谊会,参加的家庭全部是三口之家,在联谊会期间,每个人都要和别的家庭的每个成员握一次手。
(1)若参加会议的人数为15,则一共要握手多少次?
(2)若一共握手170次,则参加会议的人数是多少? 初中化学知识
点总结 完全版1
M 1 M 10
M 9
M 8
M 7 M 6 M 5
M 4
M 3
M 2
一、基本概念
1.物质的变化及性质
(1)物理变化:没有新物质生成的变化。
①宏观上没有新物质生成,微观上没有新分子生成。
②常指物质状态的变化、形状的改变、位置的移动等。
例如:水的三态变化、汽油挥发、干冰的升华、木材做成桌椅、玻璃碎了等等。
(2)化学变化:有新物质生成的变化,也叫化学反应。
①宏观上有新物质生成,微观上有新分子生成。
②化学变化常常伴随一些反应现象,例如:发光、发热、产生气体、改变颜色、生成沉淀等。
有时可通过反应现象来判断是否发生了化学变化或者产物是什么物质。
(3)物理性质:物质不需要发生化学变化就能表现出来的性质。
①物理性质也并不是只有物质发生物理变化时才表现出来的性质;例如:木材具有密度的性质,并不要求其改变形状时才表现出来。
②由感官感知的物理性质主要有:颜色、状态、气味等。
③需要借助仪器测定的物理性质有:熔点、沸点、密度、硬度、溶解性、导电性等。
(4)化学性质:物质只有在化学变化中才能表现出来的性质。
例如:物质的金属性、非金属性、氧化性、还原性、酸碱性、热稳定性等。
2.物质的组成
原子团:在许多化学反应里,作为一个整体参加反应,好像一个原子一样的原子集团。
离子:带电荷的原子或原子团。
元素:具有相同核电荷数(即质子数)的一类原子的总称。
3.物质的分类
(1)混合物和纯净物
混合物:组成中有两种或多种物质。
常见的混合物有:空气、海水、自来水、土壤、煤、石油、天然气、爆鸣气及各种溶液。
纯净物:组成中只有一种物质。
①宏观上看有一种成分,微观上看只有一种分子;
②纯净物具有固定的组成和特有的化学性质,能用化学式表示;
③纯净物可以是一种元素组成的(单质),也可以是多种元素组成的(化合物)。
(2)单质和化合物
单质:只由一种元素组成的纯净物。
可分为金属单质、非金属单质及稀有气体。
化合物:由两种或两种以上的元素组成的纯净物。
(3)氧化物、酸、碱和盐
氧化物:由两种元素组成的,其中有一种元素为氧元素的化合物。