高中数学-选修4-4参数方程讲义

合集下载

选修4-4 第五节几种常见的参数方程

选修4-4 第五节几种常见的参数方程

x=1+2cos t, (0≤t≤π),把它化为普通 y=-2+2sin t
方程,并判断该曲线表示什么图形.
所求的曲线的参数方程为 (x-1)2+(y+2)2=4(-2≤y≤0). 这是一个半圆,其圆心为(1,-2),半径为 2.
例2
已知圆的普通方程为
x2+y2+2x-6y+9=0, 将它化为参
轴上,所以椭圆的标准方程为 + =1, 25 16 x=4cos θ , 故参数方程为 (θ 为参数). y=5sin θ
y2
x2
(x-1)2 (y+2)2 1. 写出圆锥曲线 + =1 的 3 5
例1
x=5+3t, 设直线的参数方程为 y=10-4t.
(1)求直线的普通方程; (2)化参数方程为标准形式.
解析:(1) 4x+3y-50=0.
3 4 4 k tan (2) 3 cos α =- ,sin α = . 5 5 3 x=5- u, 5 则参数方程的标准形式为: 4 y=10+ u. 5
例 3 已知直线 l 的方程为 3x-4y+1=0,点 P(1,1)在 直线 l 上,写出直线 l 的参数方程,并求点 P 到点 M(5,4)和 点 N(-2,6)的距离.
3 解析:由直线方程 3x-4y+1=0 可知,直线的斜率为 ,设直线的 4 3 3 4 则 tan α = ,sin α = ,cos α = . 4 5 5
制作人:葛海泉
课前预习
1.பைடு நூலகம்线的参数方程
x=x0+tcosα , 1. 经过点 M0(x0, y0), 倾斜角为 α 的直线 l 的参数方程为 y=y0+tsinα
(t 为参数).
t0

高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件

高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件
[思路点拨] 此类问题关键是参数的选取.本例中由于 A、 B 的滑动而引起点 P 的运动,故可以 OB 的长为参数,或以角 为参数,不妨取 BP 与 x 轴正向夹角为参数来求解.
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ

(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.

人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程

人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程

x=sec θ,
解:把双曲线方程化为参数方程
(θ 为参
y=tan θ
数),
林老师网络编辑整理
18
设双曲线上点 Q(sec θ,tan θ),则
|PQ|2=sec2θ+(tan θ-2)2=
(tan2θ+1)+(tan2θ-4tan θ+4)=
2tan2θ-4tan θ+5=2(tan θ-1)2+3,
林老师网络编辑整理
5
2.抛物线的参数方程
如图,抛物线 y2=2px(p>0)的参数方程为
x=2pt2,
____y_=__2_p_t ____t为参数,t=tan1

α.
林老师网络编辑整理
6
温馨提示 t=sin1 α(α 是以射线 OM 为终边的角),即 参数 t 表示抛物线上除顶点之外的任意一点与原点连线的 斜率的倒数.
第二讲 参数方程
林老师网络编辑整理
1
二、圆锥曲线的参数方程 第 2 课时 双曲线的参数方程和
抛物线的参数方程
林老师网络编辑整理
2
[学习目标] 1.了解抛物线和双曲线的参数方程,了 解抛物线参数方程中参数的几何意义(重点). 2.利用抛 物线和双曲线的参数方程处理问题(重点、难点).
林老师网络编辑整理
当 tan θ-1=0,即 θ=π4时,
|PQ|2 取最小值 3,此时有|PQ|= 3.
即 P、Q 两点间的最小距离为 3.
林老师网络编辑整理
19
[迁移探究] (变换条件)已知圆 O1:x2+(y-2)2=1 上一点 P 与双曲线 x2-y2=1 上一点 Q,求 P,Q 两点间 距离的最小值.
解:设 Q(sec θ,tan θ), 由题意知|O1P|+|PQ|≥|O1Q|. |O1Q|2=sec2θ+(tan θ-2)2=

高中数学选修4-4 2.2.4 椭圆的参数方程 课件 (人教A版选修4-4)

高中数学选修4-4 2.2.4 椭圆的参数方程 课件 (人教A版选修4-4)
是OM的旋转角,参数是半径OM的旋转角。
例1、在椭圆 x2 y2 1上求一点M,使点M到 94
直线x 2y 10 0的距离最小,并求出最小距离
解:因为椭圆的参数方程为{x 3cos (为参数) y 2sin
所以可设点M (3cos,2sin)
由点到直线的距离公式,得到点M到直线的距离
x {
a
c
os
(为参数)
y b sin
这是中心在原点O,焦点在x轴上的椭圆。
在椭圆的参数方程中,通常规定参数的 范围是 [0,2 )
思考:
椭圆的参数方程中参数的意义与圆的参数方 程{x r cos (为参数)中参数的意义类似吗?
y r sin
由图可以看出,参数是点M所对应的圆的半
径OA(或OB)的旋转角(称为点M的离心角),不
3 c os0
9 ,2sin
5
2sin 0

8 5
所以,当点M位于(9 , 8)时,点M与直线 55
x 2 y 10 0的距离取最小值 5。
思考: 与简单的线性规划问题进行类比,你能在实数
x, y满足 x2 y2 1的前提下,求出z x 2 y的 25 16
最大值和最小值吗?由此可以提出哪些类似的 问题?
3cos 4sin 10
d 5
5(cos 3 sin 4) 10
5
5
5
1 5
5 c os (
0 ) 10
5(cos 3 sin 4) 10
5
5
5
1 5
5 cos(
0 ) 10
其中0满足 c os0
3 5
,
sin
0
4 5
由三角函数性质知,当-0=0时,d取最小值 5

选修4-4第二讲参数方程(文)

选修4-4第二讲参数方程(文)

一、学习目标1. 通过分析抛射体运动中时间与物体位置的关系,了解参数方程的概念,体会其意义。

2. 理解直线、圆、椭圆的参数方程及其参数的意义,掌握它们的参数方程与普通方程的互化,并能利用参数方程解决一些相关的应用问题(如求最值等)。

3. 了解抛物线、双曲线的参数方程,能将它们的参数方程化为普通方程。

4. 知道摆线、圆的渐开线的参数方程,体会参数在建立曲线方程中的作用。

二、重点、难点重点:直线、圆、椭圆的参数方程的建立,以及参数方程与普通方程的互化与应用。

难点:对上述三类重点参数方程中参数的意义的理解,以及熟练应用参数方程解决相关问题。

三、考点分析高考中对本讲的考查以直线、圆、椭圆的参数方程为主,有时会与极坐标方程相结合,多以选做题的形式出现在填空题或解答题中,难度不大,分值为5-10分,不同的省份在题型和分值的设定上略有差异,与普通方程的互化仍然是解决此类问题的常用策略,此外,参数方程也为解决解析几何中的最值、轨迹等问题提供了一条思路。

一、知识网络(1)圆的参数方程其中θ的几何意义为圆心角(参看图甲)(2)椭圆的参数方程其中θ为椭圆的离心角(参看图乙)乙(3)双曲线的参数方程(4)抛物线的参数方程知识点一:参数方程的建立例1 (1)经过点M (1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A. ⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C. ⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D. ⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 (2)已知椭圆1422=+yx ,点P 为椭圆上一动点,O 为坐标原点,设由x 轴逆时针旋转到OP 的角为α,则该椭圆的以α为参数的参数方程为 。

知识点一小结:参数方程的建立主要是指利用教材中的直线、圆、椭圆的参数方程的基本形式结合题中参数的意义直接写出参数方程,同时也是利用参数方程解决一些解析几何问题的知识基础。

人教版高中数学选修4-4课件:第二讲三直线的参数方程

人教版高中数学选修4-4课件:第二讲三直线的参数方程

解:由题意知 F(1,0),
x=1- 22t,
则直线的参数方程为
(t 为参数),
y=
2 2t
代入抛物线方程得( 22t)2=4(1- 22t), 整理得 t2+4 2t-8=0,由一元二次方程根与系数的 关系可得 t1+t2=-4 2,t1t2=-8,由参数 t 的几何意义 得 |AB|=|t1-t2|= (t1+t2)2-4t1t2= 64=8.
x=3+ 22t,
解:设直线的参数方程为
y=4+
2 2t
(t 为参数),
将它代入已知直线 3x+2y-6=0 得 3(3+ 22t)+ 24+ 22t=6,解得 t=-115 2,
则|MP0|=|t|=115 2.
[迁移探究] (变换条件,改变问法)过抛物线 y2=4x
的焦点 F 作倾斜角为34π的直线,它与抛物线交于 A,B 两点,求这两点之间的距离.
4.设直线 l 过点 A(2,-4),倾斜角为56π,则直线 l 的参数方程是________________.
x=2+tcos56π,
解析:直线
l
的参数方程为 y=-4+tsin
5 (t 6π
为参
x=2- 23t, 数),即y=-4+12t (t 为参数).
x=2- 23t,
答案: y=-4+12t
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”). (1)直线 y=2x+1 的参数方程是xy==2t-t-11,(t 为参 数).( )
x=-1+2t ,
(2)直线的参数方程为 y=2+
23t
(t 为参数),M0(-
1,2)和 M(x,y)是该直线上的定点和动点,则|t|的几何意

选修4-4 第2讲 参数方程

选修4-4 第2讲 参数方程

例1
(1)求直线xy= =2-+1t-,t
(t
为参数)与曲线xy= =33csions
α, α
(α 为
参数)的交点个数.
[解] 将xy= =- 2+1-t,t 消去参数 t 得直线 x+y-1=0;
将xy= =33csions
α, α
消去参数 α,得圆 x2+y2=9.
又圆心(0,0)到直线 x+y-1=0 的距离 d= 22<3. 因此直线与圆相交,故直线与曲线有 2 个交点.
[解] (1)消去参数 t 得 l1 的普通方程 l1:y=k(x-2);消去参数 m 得 l2 的普通方程 l2:y=1k(x+2).
y=kx-2 设 P(x,y),由题设得y=1kx+2 ,
消去 k 得 x2-y2=4(y≠0). 所以 C 的普通方程为 x2-y2=4(y≠0).
(2)C 的极坐标方程为 ρ2(cos2θ-sin2θ) =4(0<θ<2π,θ≠π). 联立ρρ2ccoossθ2θ+-sisninθ2θ-=42,=0 得 cos θ-sin θ=2(cos θ+sin θ). 故 tan θ=-13,从而 cos2θ=190,sin2θ=110. 代入 ρ2(cos2θ-sin2θ)=4 得 ρ2=5,所以交点 M 的极径为 5.
(t 为参数)

x2+y2=r2
x=rcos θ, y=rsin θ
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
x=acos φ, y=bsin φ
(φ 为参数)
抛物线 y2=2px(p>0)
x=2pt2, y=2pt
(t 为参数)
[知识感悟] 1.在参数方程与普通方程的互化中,必须使 x,y 的取值范围保 持一致.否则不等价. 2.直线的参数方程中,参数 t 的系数的平方和为 1 时,t 才有几 何意义且其几何意义为:|t|是直线上任一点 M(x,y)到 M0(x0,y0)的距 离,即|M0M|=|t|.

人教版高中数学选修4-4课件:第二讲一第2课时圆的参数方程

人教版高中数学选修4-4课件:第二讲一第2课时圆的参数方程
圆的参数方程知 D 正确. 答案:D
3.参数方程x=11-+tt22,(t 为参数),化为普通方程为 y=1+2tt2
() A.x2+(y-1)2=1
B.(x-1)2+y2=1
C.(x-1)2+(y-1)2=1 D.x2+y2=1
1-t2 1-x 解析:x=1+t2,1+x=t2
代入
y=1+2tt2,
|1-(-2)+m|

2
=2,解得 m=-3±2 2.
类型 2 利用圆的参数方程求轨迹
[典例 2] 如图,圆 O 的半径为 2,P 是圆上的动点, Q(6,0)是 x 轴上的定点,M 是 PQ 的中点.当点 P 绕点 O 作匀速圆周运动时,求点 M 的轨迹的参数方程.
解:设点 M 的坐标为(x,y),∠POQ=θ,取 θ 为参
(2)圆(x-x0)2+(y-y0)2=r2 的参数方程为 ___xy_==__yx_00++__rr_sc_ion_s_θθ_,__(_θ_为__参__数__)_.__
温馨提示 圆的参数方程不唯一,选取的参数不同,
相应的参数方程也不同.
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”).
(1)求圆 C 的普通方程及直线 l 的直角坐标方程; (2)设圆心 C 到直线 l 的距离等于 2,求 m 的值.
解:(1)消去参数 t,得到圆的标准方程为(x-1)2+(y
+2)2=9. 由 2ρsin(θ-π4)=m,得 ρsin θ-ρcos θ-m=0. 所以直线 l 的直角坐标方程为 x-y+m=0. (2)依题意,圆心 C 到直线 l 的距离等于 2,
2.利用圆的参数方程容易解决一些与圆有关的最值 和取值范围问题.
求最值问题时,利用圆的参数方程来将问题合理地转 化,常用的方法是建立代数与三角函数的联系,利用三角 函数的值域求解,解决此类问题还要注意数形结合思想的 应用.

高考数学冲刺讲义选修4-4坐标系与参数方程(选考)

高考数学冲刺讲义选修4-4坐标系与参数方程(选考)
解:把直线的参数方程代入圆的方程,得
(1 t ) (1 t ) 4,
2 2
因此t1 1, t2 1
t 1
2
x1 0 分别代入直线方程,得 y1 2 交点为A(0,2)和B(2,0)。
x2 2 y2 0
选修4-4
六.圆锥曲线的参数方程
x x0 lt ,t R y y0 mt
例10:直线过点A(1,3),且与向量(2,-4)共线: (1)求出直线的参数方程;(2)练习:求点P(-2,-1) 到此直线的距离。
x 1 2t y 3 4t
解:(1)
(2)解第二问的方法很多,最简单的方法就是把直线才 参数方程转换为直线的一般方程,然后利用点到直线 的距离公式求解。 答案: 2 2
又因为(t以s为单位),得参数方程
x 2 cos 60 t ,t 0 y 2 sin t 60

O
A 2 x
曲线的直角坐标方程常常可以转化为参数方程,转化的 关键是找到一个适当的参数。
曲线的普通方程和参数方程之间有些容易转化,有些则 较困难,有些无法转化。
由此可见,平面上的点与它的极坐标不是一一对应关系。这是极 坐标与直角坐标的 0 ,此时极坐标 ( , ) 对应的点M 的位置下面规则确定:点M在与极轴成 角的射线的反向 延长线上, 它到极点O的距离为 ,即规定当 0 时,点
M ( , ) 就是点M ( , ) 。
选修4-4
坐标系 与 参数方程
选修4-4
一.坐标系 在生产实践中,随着活动范围的扩大和对精度要 求的提高,为了更快,更准确的表述物体的位置, 我们通常要建立新的坐标系,叫做极坐标。

2.2 直线的参数方程 课件 (北师大选修4-4)

2.2 直线的参数方程 课件 (北师大选修4-4)
:1 x2 1,x1 x2 1 x
AB 1 k 2 ( x1 x 2 ) 2 4 x1 x 2 2 5 10
3 5 3 5 1 5 1 5 y1 ,y2 由(*)解得:x1 ,x 2 2 2 2 2 1 5 3 5 1 5 3 5 记直线与抛物线的交点 A( 坐标 , ),B( , ) 2 2 2 2
M M (x, y) ( x0 y0 ) ( x x0 , y y0 ) 0 y 设e是直线l的单位方向向量,则 M(x,y) e (cos ,sin ) 因为M 0 M // e, 所以存在实数t R, M0(x0,y0) 使M 0 M te,即 ( x x0 , y y0 ) t (cos ,sin ) e x 所以 x0 t cos , y y0 t sin 即,x x0 t cos , y y0 t sin (cos ,sin ) 所以,该直线的参数方程为 O
一、课题引入
我们学过的直线的普通方程都有哪些? 点斜式: y y0 k ( x x0 )
y y1 x x1 两点式: y2 y1 x2 x1
y kx b
x y 1 a b
一般式: Ax By C 0
y2 y1 k x2 x1
tan
程中参数t的几何意义吗?
y M M0
又 e是单位向量, e 1 这就是t的几何 M 0M t e t 意义,要牢记
所以,直线参数方程中 参数t的绝对值等于直 线上动点M到定点M0的 距离. |t|=|M0M|
e
O
x
我们是否可以根据t的值来确定向量 M 0 M

高考复习配套讲义:选修4-4 第2讲 参数方程

高考复习配套讲义:选修4-4 第2讲 参数方程

第2讲 参数方程[最新考纲]1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.3.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.知 识 梳 理1.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎨⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的参数方程,其中变量t 称为参数. 2.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).(2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为⎩⎨⎧x =a +r cos θy =b +r sin θ(θ为参数).(3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎨⎧x =a cos θy =b sin θ(θ为参数).(4)抛物线方程y 2=2px (p >0)的参数方程为⎩⎨⎧x =2pt 2y =2pt (t 为参数).诊 断 自 测1.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+t (t 为参数)所表示的图形分别是________.①直线、直线;②直线、圆;③圆、圆;④圆、直线.解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=xρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎪⎨⎪⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 ④2.若直线⎩⎨⎧x =1-2t ,y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________.解析 参数方程⎩⎪⎨⎪⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -63.(2012·北京卷)直线⎩⎨⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.解析 直线方程可化为x +y -1=0,曲线方程可化为x 2+y 2=9,圆心(0,0)到直线x +y -1=0的距离d =12=22<3.∴直线与圆相交有两个交点. 答案 24.已知直线l :⎩⎨⎧x =1-2t ,y =2+2t (t 为参数)上到点A (1,2)的距离为42的点的坐标为________.解析 设点Q (x ,y )为直线上的点, 则|QA |=(1-1+2t )2+(2-2-2t )2=(2t )2+(-2t )2=42,解之得,t =±22,所以Q (-3,6)或Q (5,-2). 答案 (-3,6)和(5,-2)5.(2013·广东卷)已知曲线C 的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析 由ρ=2cos θ知,ρ2=2ρcos θ 所以x 2+y 2=2x ,即(x -1)2+y 2=1, 故其参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案 ⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数)考点一 参数方程与普通方程的互化【例1】 把下列参数方程化为普通方程,并说明它们各表示什么曲线;(1)⎩⎪⎨⎪⎧x =1+12t ,y =2+32t(t 为参数);(2)⎩⎨⎧x =1+t 2,y =2+t(t 为参数); (3)⎩⎪⎨⎪⎧x =t +1t ,y =1t -t(t 为参数).解 (1)由x =1+12t 得t =2x -2. ∴y =2+32(2x -2).∴3x -y +2-3=0,此方程表示直线. (2)由y =2+t 得t =y -2,∴x =1+(y -2)2. 即(y -2)2=x -1,此方程表示抛物线. (3)⎩⎪⎨⎪⎧x =t +1t y =1t -t①②∴①2-②2得x 2-y 2=4,此方程表示双曲线.规律方法 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,不要忘了参数的范围.【训练1】 将下列参数方程化为普通方程. (1)⎩⎨⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数); (2)⎩⎪⎨⎪⎧x =12(e t +e -t),y =12(e t-e-t)(t 为参数).解 (1)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2]. (2)由参数方程得e t =x +y ,e -t =x -y , ∴(x +y )(x -y )=1,即x 2-y 2=1.考点二 直线与圆参数方程的应用【例2】 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解 (1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5. (2)将l 的参数方程代入圆C 的直角坐标方程. 得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.规律方法 (1)过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),t 的几何意义是直线上的点P 到点P 0(x 0,y 0)的数量,即t =|PP 0|时为距离.使用该式时直线上任意两点P 1、P 2对应的参数分别为t 1、t 2,则|P 1P 2|=|t 1-t 2|,P 1P 2的中点对应的参数为12(t 1+t 2).(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【训练2】 已知直线l 的参数方程为⎩⎨⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎨⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.解 由⎩⎨⎧ x =1+t ,y =4-2t消参数后得普通方程为2x +y -6=0,由⎩⎨⎧x =2cos θ+2,y =2sin θ消参数后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255,所以所求弦长为222-⎝⎛⎭⎪⎫2552=855. 考点三 极坐标、参数方程的综合应用【例3】 已知P 为半圆C :⎩⎨⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解 (1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3.(2)点M 的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0). 故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t(t 为参数).规律方法 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.【训练3】 (2013·福建卷)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解 (1)由点A (2,π4)在直线ρcos(θ-π4)=a 上,可得a = 2. 所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.转化思想在解题中的应用【典例】 已知圆锥曲线⎩⎨⎧x =2cos θy =3sin θ(θ是参数)和定点A (0, 3),F 1、F 2是圆锥曲线的左、右焦点.(1)求经过点F 1且垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.[审题视点] (1)先将圆锥曲线参数方程化为普通方程,求出F 1的坐标,然后求出直线的倾斜角度数,再利用公式就能写出直线l 的参数方程.(2)直线AF 2是已知确定的直线,利用求极坐标方程的一般方法求解.解 (1)圆锥曲线⎩⎪⎨⎪⎧x =2cos θy =3sin θ化为普通方程x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =-3,于是经过点F 1且垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+t cos 30°y =t sin 30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t(t 为参数).(2)直线AF 2的斜率k =-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则ρsin 60°=1sin (120°-θ),ρsin(120°-θ)=sin 60°,则ρsin θ+3ρcos θ= 3.[反思感悟] (1)本题考查了极坐标方程和参数方程的求法及应用.重点考查了转化与化归能力.(2)当用极坐标或参数方程研究问题不很熟练时,可以转化成我们比较熟悉的普通方程求解.(3)本题易错点是计算不准确,极坐标方程求解错误.【自主体验】已知直线l 的参数方程为⎩⎨⎧ x =4-2t y =t -2(t 为参数),P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l 的距离的最大值.解 将直线l 的参数方程⎩⎨⎧x =4-2ty =t -2(t 为参数)转化为普通方程为x +2y =0,因为P 为椭圆x 24+y 2=1上任意一点, 故可设P (2cos θ,sin θ),其中θ∈R . 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫θ+π45. 所以当θ=k π+π4,k ∈Z 时, d 取得最大值2105.一、填空题1.(2014·芜湖模拟)直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点A (-2,3)的距离等于2的点的坐标是________.解析 由题意知(-2t )2+(2t )2=(2)2,所以t 2=12,t =±22,代入⎩⎪⎨⎪⎧x =-2-2t ,y =3+2t(t 为参数),得所求点的坐标为(-3,4)或(-1,2). 答案 (-3,4)或(-1,2)2.(2014·海淀模拟)若直线l :y =kx 与曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(参数θ∈R )有唯一的公共点,则实数k =________.解析 曲线C 化为普通方程为(x -2)2+y 2=1,圆心坐标为(2,0),半径r =1.由已知l 与圆相切,则r =|2k |1+k 2=1⇒k =±33.答案 ±333.已知椭圆的参数方程⎩⎨⎧x =2cos t y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.解析 当t =π3时,x =1,y =23,则M (1,23),∴直线OM 的斜率k =2 3. 答案 2 34.(2013·湖南卷)在平面直角坐标系xOy 中,若l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________. 解析 ∵x =t ,且y =t -a , 消去t ,得直线l 的方程y =x -a , 又x =3cos φ且y =2sin φ,消去φ, 得椭圆方程x 29+y 24=1,右顶点为(3,0),依题意0=3-a , ∴a =3. 答案 35.直线3x +4y -7=0截曲线⎩⎨⎧x =cos α,y =1+sin α(α为参数)的弦长为________.解析 曲线可化为x 2+(y -1)2=1,圆心(0,1)到直线的距离d =|0+4-7|9+16=35,则弦长l =2r 2-d 2=85.答案 856.已知直线l 1:⎩⎨⎧ x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎨⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =________;若l 1⊥l 2,则k =________.解析 将l 1、l 2的方程化为直角坐标方程得l 1:kx +2y -4-k =0,l 2:2x +y -1=0,由l 1∥l 2,得k 2=21≠4+k1⇒k =4,由l 1⊥l 2,得2k +2=0⇒k =-1. 答案 4 -17.(2012·广东卷)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧ x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.解析 曲线C 1的普通方程为y 2=x (y ≥0), 曲线C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧y 2=x (y ≥0),x 2+y 2=2,解得⎩⎪⎨⎪⎧ x =1,y =1,即交点坐标为(1,1). 答案 (1,1)8.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎨⎧ x =3+cos θ,y =sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.解析 消掉参数θ,得到关于x 、y 的一般方程C 1:(x -3)2+y 2=1,表示以(3,0)为圆心,以1为半径的圆;C 2:x 2+y 2=1,表示的是以原点为圆心的单位圆,|AB |的最小值为3-1-1=1.答案 19.(2012·湖南卷)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =______.解析 ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的普通方程为2x +y -1=0,ρ=a (a >0)对应的普通方程为x 2+y 2=a 2.在2x +y -1=0中,令y =0,得x =22.将⎝ ⎛⎭⎪⎫22,0代入x 2+y 2=a 2得a =22. 答案 22二、解答题10.(2013·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧ x =4+5cos t ,y =5+5sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎨⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎨⎧ x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎨⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎨⎧ x =1,y =1或⎩⎨⎧ x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2. 11.(2013·新课标全国Ⅱ卷)已知动点P 、Q 都在曲线C :⎩⎨⎧ x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎨⎧ x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹通过坐标原点.12.(2012·新课标全国卷)已知曲线C 1的参数方程是⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3. (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围.解 (1)由已知可得A ⎝ ⎛⎭⎪⎫2cos π3,2sin π3, B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].。

人教版选修4-4 极坐标与参数方程(精品课件)共24张PPT

人教版选修4-4 极坐标与参数方程(精品课件)共24张PPT

三、极坐标的正式应用和扩展
◆1736年出版的《流数术和无穷级数》一书中,牛顿 第一个将极坐标系应用于表示平面上的任何一点。牛 顿在书中验证了极坐标和其他九种坐标系的转换关系。 ◆在1691年出版的《博学通报》一书中伯努利正式使 用定点和从定点引出的一条射线,定点称为极点,射 线称为极轴。平面内任何一点的坐标都通过该点与定 点的距离和与极轴的夹角来表示。伯努利通过极坐标 系对曲线的曲率半径进行了研究。
(2)点P(ρ,θ)与点(ρ,2kπ+θ)(k∈Z)
所表示的是同一个点,即角θ与2kπ+θ的终边是 相同的。 综上所述,在极坐标系中,点与其点的极 坐标之间不是一一对应而是一对多的对应
(ρ,θ),(ρ,2kπ+θ),(-ρ,(2k+1)π+θ)均 表示同一个点
3.极坐标和直角坐标的互化
y
(1)互化背景:把直角坐标系 的原点作为极点,x轴的正半轴 作为极轴,并在两种坐标系中取 相同的长度单位,如图所示:
极坐标系和参数方程虽为选修内容,高中学生也 应该重视对本专题的学习,既可以体会其中的数 学思想,也能提高对数学的认识,而且可以与已 学知识融会贯通
极坐标系
定义:平面内的一条有规 定有单位长度的射线0x,0 为极点,0x为极轴,选定 一个长度单位和角的正方 向(通常取逆时针方向), 这就构成了极坐标系。
关于教材编排
参数方程是选修4-4专题的一个重要内容。这一专 题包含、涉及了很多高中内容。利用高二学生已掌 握的直线、圆和圆锥曲线曲线方程为基础,鼓励学 生利用参数的思想对它们进行探究解析,以及能学 习掌握如何优化参数的选择推出已知曲线方程的参 数形式,能等价互化参数方程与普通方程;借助实 际生活例子或相应习题体会参数方程的优势,理解 学习参数方程的缘由。

高中数学选修4-4-参数方程

高中数学选修4-4-参数方程

参数方程知识集结知识元参数方程知识讲解1.参数方程的概念【知识点的认识】参数方程的定义在平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数,即,并且对于t的每一个允许值,由该方程组所确定的点M(x,y)都在这条曲线上,那么此方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.对于参数方程而言,直接给出点的坐标间关系的方程F(x,y)=0叫做普通方程.2.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.3.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.4.圆的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M0M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.直线l的参数方程为(t为参数).圆C的参数方程为(θ为参数),则直线l被圆C截得的弦长为___.例2.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是___.例3.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),直线l的参数方程为(t为参数),设直线l与抛物线C的两交点为A、B,点F为抛物线C的焦点,则|AF|+|BF|=___.当堂练习填空题练习1.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).圆C的参数方程是=(θ为参数),直线l与圆C交于两个不同的点A、B,当点P在圆C上运动时,△PAB面积的最大值为___练习2.参数方程(θ∈R)所表示的曲线与x轴的交点坐标是_______练习3.设直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)的距离为2,若该直线的参数方程改写成(t为参数),则在这个方程中P点对应的t值为____.练习4.设a∈R,直线ax-y+2=0和圆(θ为参数)相切,则a的值为___。

高中数学人教A版选修4-4课件:2.1曲线的参数方程

高中数学人教A版选修4-4课件:2.1曲线的参数方程
因为 θ∈ 0,

2
所以 sin θ +

4
,所以 θ+ ∈

4

2
,1
2
3
,
4 4

4
Hale Waihona Puke ..,即 2sin θ +
故 x+y 的最大值是 2,最小值是 1.

4
∈ 1, 2 .
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
关系比较明显,容易列出方程.
首 页
1
2
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
3
思考 2 求曲线参数方程的步骤是什么?
提示:第一步,画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画图
时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.
C.相切
D.相离
解析:圆的普通方程为 x2+y2=4,圆心(0,0)到直线 xcos φ+ysin φ-2=0 的距离
2
1
d= =2.因为圆的半径为 2,所以直线与圆相切.
答案:C
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
1
x = 1 + 2θ,
3.将参数方程
HONGDIAN NANDIAN
1
2
1.与普通方程 xy=1 表示相同曲线的参数方程(t 为参数)是(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——基础梳理——1.椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是__________.规定参数φ的取值范围为__________.(2)中心在(h ,k)的椭圆的普通方程为x -h 2a2+y -k 2b2=1,则其参数方程为__________. 2.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x2a2-y2b2=1(a >0,b >0)的参数方程是__________.规定参数φ的取值范围为__________.(2)中心在原点,焦点在y 轴上的双曲线y2a2-x2b2=1(a >0,b >0)的参数方程是__________. 3.抛物线的参数方程(1)抛物线y2=2px(p >0)的参数方程为__________,t ∈__________.(2)参数t 的几何意义是__________.[答案]1.(1)⎩⎪⎨⎪⎧x =acosφy =bsinφ(φ为参数) [0,2π) (2)⎩⎪⎨⎪⎧ x =h +acosφy =k +bsinφ(φ为参数) 2.(1)⎩⎪⎨⎪⎧ x =asecφy =btanφ(φ为参数) [0,2π),且φ≠π2,φ≠3π2(2)⎩⎪⎨⎪⎧ x =btanφy =asecφ(φ为参数) 3.(1)⎩⎪⎨⎪⎧ x =2pt2y =2pt (t 为参数) (-∞,+∞)(2)抛物线上除顶点外的任意一点与原点连线的斜率的倒数自主演练1.已知方程x2+my2=1表示焦点在y 轴上的椭圆,则()A .m <1B .-1<m <1C .m >1D .0<m <1[解析]方程化为x2+y21m=1,若要表示焦点在y 轴上的椭圆,需要1m>1,解得0<m <1.故应选D.2.已知90°<θ<180°,方程x 2+y 2cos θ=1表示的曲线是()A .圆B .椭圆C .双曲线D .抛物线[解析]当90°<θ<180°时,-1<cos θ<0,方程x 2+y 2cos θ=1表示的曲线是双曲线.故应选C.[答案]C3.直线y =ax +b 经过第一、二、四象限,则圆⎩⎪⎨⎪⎧ x =a +rcosθ,y =b +rsinθ(θ为参数)的圆心位于第几象限()A .一B .二C .三D .四[解析]直线y =ax +b 经过第一、二、四象限,则a <0,b >0,而圆心坐标为(a ,b),所以位于第二象限.[答案]B4.椭圆⎩⎪⎨⎪⎧ x =acos θ,y =bsin θ(θ为参数),若θ∈[0,2π],则椭圆上的点(-a,0)对应的θ为()A .π B.π2C .2π D.32π [解析]由已知acos θ=-a ,∴cos θ=-1,又θ∈[0,2π],∴θ=π.故选A.[答案]A5.二次曲线⎩⎪⎨⎪⎧ x =5cosθ,y =3sinθ(θ是参数)的左焦点的坐标为__________.[解析]原方程消去参数θ,得普通方程为x225+y29=1.它是焦点在x 轴上的椭圆,a2=25,b2=9,c2=a2-b2=16,c =4,所以左焦点坐标是(-4,0).6.圆锥曲线⎩⎪⎨⎪⎧ x =4secθ,y =3tanθ(θ是参数)的渐近线方程是________________,实轴长是__________.[解析]原方程可化为⎩⎪⎨⎪⎧ x 4=secθ,y 3=tanθ,因为sec2θ-tan2θ=1,所以x216-y29=1.它是焦点在x 轴上的双曲线,∴a2=16.∴双曲线的渐近线为y =±34x ,且实轴长为8. [答案]y =±34x8——题型探究——题型一椭圆的参数方程及应用【例1】已知A ,B 分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 的重心G 的轨迹方程.【分析】△ABC 的重心G 取决于△ABC 的三个顶点的坐标,为此需要把动点C 的坐标表示出来,可考虑用参数方程的形式.【解析】由题意知A(6,0),B(0,3),由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cosθ,3sinθ),点G 的坐标设为(x ,y),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧ x =6+0+6cosθ3y =0+3+3sinθ3,即⎩⎪⎨⎪⎧ x =2+2cosθy =1+sinθ,消去参数θ得到x -224+(y -1)2=1. 【评析】本题的解法体现了椭圆的参数方程对于解决相关问题的优越性,运用参数方程显得很简单,运算更简便. 变式训练在椭圆x225+y216=1中有一内接矩形,问内接矩形的最大面积是多少? [解析]椭圆的参数方程为⎩⎪⎨⎪⎧ x =5cost ,y =4sint (t 为参数),设第一象限内椭圆上任一点M(x ,y),由椭圆的对称性,知内接矩形的面积为S =4xy =4×5cost×4sint=40sin2t.当t =π4时,面积S 取得最大值40,此时,x =5cos π4=522,y =4sin π4=22,因此,矩形在第一象限的顶点为⎝ ⎛⎭⎪⎫522,22,此时内接矩形的面积最大,且最大面积为40. 题型二双曲线的参数方程及应用【例2】求点M0(0,2)到双曲线x2-y2=1的最小距离(即双曲线上任一点M 与点M0距离的最小值).【分析】化双曲线方程为参数方程,对||MM0建立三角函数求最值.【解析】把双曲线方程化为参数方程⎩⎪⎨⎪⎧ x =sec θ,y =tan θ.设双曲线上动点M(sec θ,tan θ),则||M0M 2=sec2θ+(tan θ-2)2=(tan2θ+1)+(tan2θ-4tan θ+4)=2tan2θ-4tan θ+5=2(tan θ-1)2+3,当tan θ-1=0即θ=π4时,||M0M 2取最小值3,此时有||M0M =3,即M0点到双曲线的最小距离为 3. 【评析】在求解一些最值问题时,用参数方程来表示曲线的坐标,将问题转化为三角函数求最值,能简化运算过程.变式训练设P 为等轴双曲线x2-y2=1上的一点,F1,F2为两个焦点,证明:||F1P ·||F2P =||OP 2.[解析]如图所示,设双曲线上的动点为P(x ,y),焦点F1(-2,0),F2(2,0),双曲线的参数方程为⎩⎪⎨⎪⎧ x =sec θ,y =tan θ,得(||F1P ·||F2P )2=[(sec θ+2)2+tan2θ]·[(sec θ-2)2+tan2θ]=(sec2θ+22sec θ+2+tan2θ)·(sec2θ-22sec θ+2+tan2θ)=(2sec2θ+1)2-(22sec θ)2=4sec4θ-4sec2θ+1=(2sec2θ-1)2,又||OP 2=sec2θ+tan2θ=2sec2θ-1,由此得||F1P ·||F2P =||OP 2.题型三抛物线的参数方程及应用【例3】如图,O 是直角坐标原点,A ,B 是抛物线y2=2px(p >0)上异于顶点的两动点,且OA ⊥OB ,点A ,B 在什么位置时,△AOB 的面积最小?最小值是多少?【分析】利用抛物线的参数方程,将△AOB 面积用其参数表示,再利用均值不等式求最值.【解析】根据题意,设点A ,B 的坐标分别为(2pt21,2pt1),(2pt22,2pt2)(t1≠t2,且t1·t2≠0),则 ||OA =2pt212+2pt12=2p ||t1t21+1, ||OB =2pt222+2pt22=2p ||t2t22+1.因为OA ⊥OB ,所以OA →·OB →=0,即2pt21·2pt 2+2pt1·2pt2=0,所以t1·t2=-1.△AOB 的面积为S △AOB =12||OA ·||OB =12·2p ||t1t21+1·2p ||t2t22+1 =2p2||t1t2t21+1t22+1=2p2t21+t22+2=2p2t21+1t21+2 ≥2p22+2=4p2.当且仅当t21=1t21,即t1=1,t2=-1时,等号成立. 所以点A ,B 的坐标分别为(2p,2p),(2p ,-2p)时,△AOB 的面积最小,最小值为4p2.变式训练已知抛物线y2=2px ,过顶点两弦OA ⊥OB ,求以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程.[解析]设A(2pt21,2pt1),B(2pt22,2pt2),则以OA 为直径的圆的方程为x2+y2-2pt21x -2pt1y =0,以OB 为直径的圆的方程为x2+y2-2pt22x -2pt2y =0,即t1,t2为方程2pxt2+2pty -x2-y2=0的两根,∴t1t2=-x2+y22px. 又OA ⊥OB ,∴t1t2=-1,∴x2+y2-2px =0(x≠0),∴另一交点Q 的轨迹是以(p,0)为圆心,p 为半径的圆(除去(0,0)点).题型四圆锥曲线参数方程的综合应用【例4】已知双曲线x2a2-y2b2=1(a >0,b >0)的动弦BC 平行于虚轴,M 、N 是双曲线的左、右顶点. (1)求直线MB 、CN 的交点P 的轨迹方程;(2)若P(x1,y1),B(x2,y2),求证:a 是x1,x2的比例中项.【分析】将双曲线方程化为参数方程.(1)利用交轨法求解;(2)即x1x2=a2【解析】(1)由题意可设点B(asec θ,btan θ),则点C(asec θ,-btan θ),又M(-a,0),N(a,0),∴直线MB的方程为y =btan θasec θ+a (x +a),直线CN 的方程为y =btan θa -asec θ(x -a).将以上两式相乘消去参数θ,得点P 的轨迹方程为x2a2+y2b2=1. (2)证明:因为点P 既在MB 上,又在CN 上,由两直线方程消去y1得x1=a sec θ,而x2=asec θ,所以有x1x2=a2,即a 是x1,x2的比例中项.【评析】利用圆锥曲线的参数方程解决圆锥曲线综合问题时要根据条件使用不同方法,如方程的思想、函数思想、数形结合思想等.变式训练抛物线y2=4x 的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三角形的周长.[解析]如图,y2=4x 焦点F(1,0),设A 点坐标为(4t2,4t),t 为参数,且t >0,则B 点坐标为(4t2,-4t). AF 斜率为kAF =4t 4t2-1,∴AF :y =4t 4t2-1(x -1). 而OB 的中点(2t2,-2t)应在直线AF 上,∴-2t =4t 4t2-1(2t2-1),∵t≠0,∴-1=24t2-1(2t2-1), ∴t2=38,t =64,∴A 点坐标为⎝ ⎛⎭⎪⎫32,6, 则||AB =26,||OA =⎝ ⎛⎭⎪⎫322+62=332. ∴△OAB 的周长为||AB +2||OA =26+33.课内巩固1.椭圆⎩⎪⎨⎪⎧ x =4+5c osφy =3sinφ(φ为参数)的焦点坐标为()A .(0,0),(0,-8)B .(0,0),(-8,0)C .(0,0),(0,8)D .(0,0),(8,0)[解析]利用平方关系化为普通方程x -4225+y29=1,c2=16,c =4,中心(4,0),焦点在x 轴上,∴焦点为(0,0),(8,0).也可以直接画出椭圆的示意图,排除A ,B ,C.故应选D.2.与参数方程为⎩⎨⎧ x =t ,y =21-t(t 为参数)等价的普通方程为()A .x2+y24=1 B .x2+y24=1(0≤x≤1) C .x2+y24=1(0≤y≤2) D .x2+y24=1(0≤x≤1,0≤y≤2)[解析]x2=t ,y24=1-t =1-x2,x2+y24=1,而t≥0,0≤1-t≤1,得0≤t≤1,即0≤x≤1,0≤y≤2.3.参数方程⎩⎪⎨⎪⎧ x =et -e -t ,y =et +e -t (t 为参数)表示的曲线是()A .双曲线B .双曲线的下支C .双曲线的上支D .圆[解析]由已知得x +y =2et ,y -x =2e -t ,两式相乘得y2-x2=4.又y =et +e -t≥2.∴方程表示双曲线y24-x24=1上支.4.椭圆⎩⎪⎨⎪⎧ x =3+17cos θ,y =8sin θ-2(θ为参数)的中心坐标为______.[解析]将椭圆的参数方程化为普通方程得x -32172+y +2282=1,∴椭圆的中心为(3,-2).5.若曲线⎩⎪⎨⎪⎧ x =2pt y =2pt2(t 为参数)上异于原点的不同两点M1,M2所对应的参数分别是t1,t2,则弦M1M2所在直线的斜率是__________.[解析]设M1(2pt1,2pt21),M2(2pt2,2pt22),∴k =2pt21-2pt222pt1-2pt2=t21-t22t1-t2=t1+t2.[答案]t1+t26.求点M0(2,0)到双曲线y2-x2=1的最小距离(即双曲线上任一点M 与点M0距离的最小值).[解析]把双曲线方程化为参数方程⎩⎪⎨⎪⎧ x =tanθ,y =sec θ.设双曲线上动点M(tan θ,s ec θ),则||M0M 2=sec2θ+(tan θ-2)2=(tan2θ+1)+(tan2θ-4tan θ+4)=2tan2θ-4tan θ+5=2(tan θ-1)2+3,当tan θ-1=0即θ=π4时,||M0M 2取最小值3,此时有||M0M =3,即M0点到双曲线的最小距离为 3.。

相关文档
最新文档