大学物理 第七章 恒定磁场习题课
厦门大学 大学物理B 第07章 恒定磁场(3)
I lj 由 B dl I
i S i
L 0 i
L
d
Bc
⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙
i
得:
a
B
l
b
1 B 0 jS 2
作业:
习题7-5: 如两平行长直导线相距d=40 cm,每根导线载有 电流I1=I2=20 A,电流流向如图所示。求:(1) 两导 线所在平面内与该两导线等距的一点 A 处的磁感应 强度;(2) 通过图中斜线所示面积的磁通量(r1=r3=10 cm, r2=10 cm, l=25 cm)。
0 / 2, d m 0 / 2 , d m 0
• 闭合曲面(外法线方向为面元正方向):
穿出 : 0 / 2, d m 0 穿入 : / 2 , d m 0
3.磁场的高斯定理
1 n 静电场的高斯定理: SE dS qi内 0 i 1 恒定磁场: B dS ?
S
电流元:毕奥─萨伐尔定律 0 Idl er Biblioteka B 4 r 2d m 0
Idl1 , Idl2 ,... dB1 , dB2 ,...
d m1, d m 2 ,... d m1 d m 2 ... d mN 0
Id l
r
2.1 解题要点
1)分析磁场特点,选择适当的积分回路 2)计算
B dl 3)计算 I
L
i
i
4)由
L
B dl 0 I i 求 B
i
2.2 几种常见电流的磁场 (1)无限长载流圆柱体的磁场 按电流的对称性分析, 磁场也应该有柱对称性!
大学物理稳恒磁场习题课
S
当 S 很小时,可得
B2S B1S 0
B1
B2
B
有 B2 B1 ,即同一条磁感应线上的
B
相等
如再在该磁场中做一有向矩形安培环路 abcda , ☆ bc 、 让 ab 、cd 与磁感应线平行, da 与磁感应线垂直。 / 设沿 ab 段磁感应强度为 B ,沿 cd 段磁感应强度为 B , 由磁感应线疏密不均匀可知 , 磁感应强度沿该回路的线积分为 / B d l B ab B cd 0
也就不能推出 H d S 0
S
r 都相等,
。
因此,一般说来,不能得出 通过以闭合曲线 L 为边界的各曲面的通量均相等的结论
例如,一永磁棒,设棒内 M 为一常值,
对以 L 为边界的二曲面 S1 和S2 ,有
☆
S1
B dS B dS
S2
M 的方向与外磁场方向相反
Pm 为无矩分子在外磁场中出则的附加磁矩,
磁场强度 引入磁场强度辅助矢量 H
H
B
☆
在各向同性均匀介质中 M m H
m 称为磁化率,是一个纯数。
0
M
顺磁质中
m 1,抗磁质中 m 1 。 H 和 B 的关系为
T
)
2.毕奥一萨伐尔定律
电流元
电流元
☆
Idl
是矢量, 与
大小等于电流 I
导线元长度 dl 的乘积,
方向沿电流正方向。
毕奥一萨伐尔定律 电流元 Idl 在
P 点产生的磁感应强度为
0 4 107 N A2
0 Idl r 0 Idl r ˆ dB 3 2 4 r 4 r
大学物理马文蔚版-第七章恒定磁场习题课选讲例题
解: F F F bc bo oc
Fbc Foc aIB
第十一章 恒定磁场
Fbo 0
c a I o a b
B
恒定磁场习题课选讲例题
物理学教程 (第二版)
例 有一根流有电流 I 的导线,被折成长度分别 为 a 、b ,夹角为 120 的两段,并置于均匀磁场 B 中, 若导线的长度为 b 的一段与 B 平行,则 a 、 b 两段载 流导线所受的合磁力的大小为多少?
3. 运动电荷的磁场
第十一章 恒定磁场
恒定磁场习题课选讲例题 三 反映磁场性质的两条基本定理
物理学教程 (第二版)
磁场的高斯定理 Φm S B dS 0
安培环路定理
无源场
有旋场
l B dl 0 I i
i
磁场的高斯定理和安培环路定理反映了磁场是无源 有旋(非保守)场.
L
B0 B0 B0
B 常量
I
I
L
第十一章 恒定磁场
恒定磁场习题课选讲例题
物理学教程 (第二版)
例 取一闭合积分回路 L ,使三根载流导线穿过 它所围成的面,现改变三根导线之间的相互间隔,但 不越出积分回路,则: ()
(1) 回路 L 内的 I (2) 回路 L 内的 I (3) 回路 L 内的 I (4) 回路 L 内的 I
物理学教程 (第二版)
例 求无限大均匀通电平面的磁场,已知电流密度如图. 解:1)对称性分析磁场分布
j
L
I
dI dI
2)取正方形回路 L 如图, 边长为 l .
B
B dl 0 jl
L
I
B
中国地质大学 ,大学物理习题集 第七章 磁场的源
例 无限长圆柱面电流的磁场分布
分析场结构: 分析场结构:有轴对称性 以轴上一点为圆心, 以轴上一点为圆心,取垂直于轴 的平面内半径为 r 的圆为安培环路
I
dS ′′
dB dB ′ dB′′
P
∵ ∫ B dl = 2πrB = 0 I
L
dS ′
∴
B=0
r<R
0 I B= 2πr
r>R
B
无限长圆柱面电流外面的磁场与电流 都集中在轴上的直线电流的磁场相同
∫ B dl = 0 ∑ I i
与毕萨 定理结 果一致
同理: 同理:∫ B dl = ∫ Bdl cos0o = B 2π r
R
而 ∫ B dl = 0 ∫ j ds = 0 I 2 π r 2 s πR 0I r r ∴B = 2 2π R
求通电螺绕环的磁场分布. 例 求通电螺绕环的磁场分布.已知环管轴线的半径 匝线圈, 为R,环上均匀密绕 匝线圈,设通有电流 . ,环上均匀密绕N匝线圈 设通有电流I. 由于电流对称分布, 解:由于电流对称分布,与环共轴 的圆周上,各点B大小相等 大小相等, 的圆周上,各点 大小相等, 方向沿圆周切线方向. 方向沿圆周切线方向. 取以o为中心,半径为r的圆周为 取以 为中心,半径为 的圆周为L 为中心 的圆周为 I
r
半径为R的无限长圆柱载流直导线 电流I沿轴线 的无限长圆柱载流直导线, 例 半径为 的无限长圆柱载流直导线,电流 沿轴线 方向流动,并且截面上电流是均匀分布. 方向流动,并且截面上电流是均匀分布.计算任 意点P的 ? 意点 的B=? I
L
ds′
O
ds′′
B
解:先分析P点磁场的方向 先分析 点磁场的方向 由电流对称分布可知: 由电流对称分布可知: B ⊥ oP 取过P点半径为 的圆周L, 取过 点半径为 r =op 的圆周 , L上各点 大小相等,方向沿切线 上各点B大小相等 上各点 大小相等, dB r >R时 由安培环路定理得: 时 由安培环路定理得: dB′′ dB′ B dl = ∫ Bdl cos0o = B 2π r ∫ . 0 I 又 ∫ B dl = 0 I P ∴B = 2π r 若r<R
大学物理第七章恒定磁场
在均匀磁场中,有一段长度为l的导线,导线的一端固定在x=0处,另一端在x=l处自由悬 挂。当导线受到外力作用而摆动时,求摆动的周期T是多少?
问题三
在均匀磁场中,有一段长度为l的导线,导线的一端固定在x=0处,另一端在x=l处自由悬 挂。当导线受到外力作用而摆动时,求摆动的振幅A是多少?
THANK YOU
04
磁场中的电流
电流产生的磁场
安培环路定律
描述电流产生的磁场,即磁场与电流 成正比,并与电流的环绕方向有关。
毕奥-萨伐尔定律
描述电流在其周围空间产生的磁场, 与电流的大小和距离有关。
磁场对电流的作用
洛伦兹力
描述带电粒子在磁场中受到的力,该 力垂直于粒子的运动方向和磁场方向。
霍尔效应
当电流垂直于磁场通过导体时,会在 导体两侧产生电势差,这种现象称为 霍尔效应。
在磁场中画出一系列从N极指向S 极的曲线,表示磁力作用的路径 。
磁感应强度和磁场强度
磁感应强度
描述磁场对放入其中的导体的作用力,用B表示。
磁场强度
描述磁场本身的强弱,用H表示。
恒定磁场与变化磁场
恒定磁场
磁场强度不随时间变化的磁场。
变化磁场
磁场强度随时间变化的磁场。
03
磁场中的物质
物质的磁性分类
磁化现象
当物质处于磁场中时,物质内部会产生感应磁场,感应磁场 与外磁场相互作用,使物质表现出磁性。这种现象被称为磁 化现象。
磁滞效应
当外磁场变化时,物质的磁化强度不仅与外磁场有关,还与 外磁场的历史状态有关。这种现象被称为磁滞效应。磁滞效 应是磁性材料中常见的一种现象,也是制造电磁铁和电机的 重要原理。
磁场中的能量
大学物理习题课-稳恒电流的稳恒磁场-2011.6.10
1 5
r r 向上, M垂直 B, 向上,
一根无限长的直圆柱形铜导线, 例5. 一根无限长的直圆柱形铜导线,外包一层相对磁导率为 µr的圆筒形磁介质,导线半径为 R1,磁介质的外半径为 R2。 的圆筒形磁介质, 导线内有电流通过, 磁介质内、 导线内有电流通过 , 求 : 磁介质内 、 外的磁场强度和磁感应 强度的分布
大学物理习题课
恒定电流的稳恒磁场
•
电流 电流密度 电动势
电流强度 电流密度
v v j = qnv
(S )
∆q dq I = lim = ∆t →0 ∆ t dt
v r 对任意曲面S: 对任意曲面 : I = ∫∫ j ⋅ dS
r I 是 j 的通量
v v dqin 电流的连续性方程 ∫∫S j ⋅ dS = − dt v v 电流稳恒条件 ∫∫ j ⋅ dS = 0
I
v × B 1
p -e 3r
用补偿法求p处的磁感应强度: 用补偿法求 处的磁感应强度: 处的磁感应强度
v v 根据 ∫ B⋅ dl = µ0 ∑Ii
L
v v
v • B2
δ
o`
v
得: B = 1
µ0δ r
6
B2 =
µ0δr
88
41µ0δr ∴B = B − B2 = 1 264
v v v v v fm = qv× B = −ev× B
计算得 方向: B = 5.0×10−16 (T) 方向:垂直于纸面向里
例2:空气中有一半径为 的“无限长”直圆柱金属导体,竖直 :空气中有一半径为r的 无限长”直圆柱金属导体, 的圆柱空洞, 线oo`为中心轴线 ,在圆柱体内挖一个直径为 r 的圆柱空洞, 为中心轴线 空洞侧面与oo`相切,在未挖洞部分通以均匀分布的电流I,方 空洞侧面与 相切,在未挖洞部分通以均匀分布的电流 , 相切 向沿oo`向下,如图所示。在距轴线 处有一电子 电量为-e) 处有一电子( 向沿 向下,如图所示。在距轴线3r处有一电子(电量为 ) 向下 o 沿平行于oo`轴方向 在中心轴线oo` 轴方向, 沿平行于 轴方向,在中心轴线 r/2
大学物理下 恒定磁场习题解答2016
2R
3.在半径为R的长直金属圆柱体内部挖去一个半径为r的长直金 属圆柱体,两柱体轴线平行,其间距为a (a>r),如图所示.今在此导 体上通以电流I,电流在截面上均匀分布,方向平行于轴线. 求: (1) 圆柱空腔轴线上磁感应强度; I (2) 空腔中任一点的磁感应强度. R
解:(1)用补偿法
原电流分布等效于: I1 实心圆柱电流 空腔部分反向电流 电流密度: j
8. 如图,半圆形线圈(半径为R)通有电流 I.线圈处在 与线圈平面平行向右的均匀磁场 B 中.则线圈的磁 矩为__________,线圈所受磁力矩的大小为 __________,方向为_______. O B
× d d F Idl B I ( dl ) B c c × I 2 IaB ×
3.真空中稳恒电流I流过两个半径分别为R1,R2的同心 半圆形导线,两半圆导线间由沿直径的直导线连接, 电流沿直导线流入。(1)如果两个半圆共面(图1),圆心 0 I 1 1 B0 方向为 O点的磁感强度 B0 的大小为____________, ( - ) 4 R R 2 1 ____________________; 垂直纸面向外
一、选择题
大作业题解
1. 在一平面内,有两条垂直交叉但相互绝缘的导线, 流过每条导线的电流 i 的大小相等, 其方向如图所 示,问哪些区域中某些点的磁感应强度B可能为零? ( ) A、仅在象限Ⅰ C、仅在象限Ⅰ、Ⅳ B、仅在象限Ⅱ D、仅在象限Ⅱ 、 Ⅳ i Ⅰ Ⅱ
恒定磁场
答案:D
Ⅲ
Ⅳ i
2.有一个圆形回路1及一个正方形回路2,圆直径和正 方形的边长相等,二者中通有大小相等的电流,它们在 各自中心产生的磁感应强度的大小之比B1/B2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. 答案:C
大学物理稳恒磁场习题及答案
衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dIj n dS ⊥=,单位是:安培每平方米(A/m 2) 。
2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。
3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。
4小为πR 2c Wb。
5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :dB l ⋅⎰=____μ0I __; 对环路b :d B l ⋅⎰=___0____; 对环路c :d B l ⋅⎰ =__2μ0I __。
6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。
二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. 0.90B. 1.00C. 1.11D. 1.22( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )( C )??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。
北科大稳恒磁场习题
Y.L.Wang
如图所示,两根长直载流导线垂直纸面放置, 例: 如图所示,两根长直载流导线垂直纸面放置,电流 方向垂直纸面向外; I 1 = 1 A ,方向垂直纸面向外;电流 I 2 = 2 A,方向垂直 纸面向内。 纸面向内。则 P 点的磁感应强度 B 的方向与 x 轴的夹角 为( A ) (A)30°;
µ0 I1 I 2b (A) F = 2πx
(B) F =
π (a + b)
a
µ0 I1
A
I 2b
I1 a B
C I2 D b
(C) F = ∫a
a+b
µ0 I1 I 2 dx 2πx
(D) F = ∫b
µ0 I1 I 2 dx 2πx
Y.L.Wang
一圆形载流导线圆心处的磁感应强度为B 一圆形载流导线圆心处的磁感应强度为 1,若保 持导线中的电流强度不变,而将导线变成正方形, 持导线中的电流强度不变,而将导线变成正方形, 8 = 此时回路中心处的磁感应强度为B 此时回路中心处的磁感应强度为 2,则B2/B12 。
ω 解: Q i e = e 2π
-e
2
∴ Pm = ieπ r
e
=
ω
2
er
2
Y.L.Wang
例3. 薄圆环内半径a,外半径 ,可绕与环面垂直的轴o 薄圆环内半径 ,外半径b,可绕与环面垂直的轴 的角速度逆时针旋转。现给该圆环均匀带电+Q,求 以ω的角速度逆时针旋转。现给该圆环均匀带电 求 环心o处的磁感应强度 处的磁感应强度。 环心 处的磁感应强度。 解:将环分成无数同心小环,任选 将环分成无数同心小环, 个环, 环宽dr 其中一 个环,设其半径为 r, 环宽 则环上带电量: 则环上带电量: Q
第7章 恒定磁场答案 大学物理 高教版
第七章 恒定磁场 答案一、选择题1.C 注释:四段载流直导线在O 点的磁场,)135cos 45(cos 2440-=a IB πμ,B 与I 成正比,与a 成反比。
2.B 注释:思路同上题,由一段载流直导线的磁场分布公式)cos (cos 4210θθπμ-=a I B ,可分别求出两段载流导线在O 点的磁感应强度πθθ43,021==,和πθπθ==21,41。
3.D 注释:由磁场的高斯定理απφφcos 2r B S -=-=圆4.D 注释:对磁场安培环路定理的记忆和电流正负的判断,a 回路的方向与I 方向满足右手定则故积分结果应为I l d B a 0μ=⋅⎰ ,对于b 回路内部电流代数和为零,故0=⋅⎰b l d B ,对于c 回路两个电流均满足右手定则,故积分结果I l d B c02μ=⋅⎰ 。
5.B 注释:此题考察对磁场安培环路定理的理解,B 沿某回路的线积分仅取决于回路内所包围电流的代数和,而与电流的形状和分布无关,但回路上各点的B 应取决于电流的具体分布,由此可得到正确答案。
6.C 注释: 载流线圈在磁场中所受最大磁力矩为mB M =max ,由此可知B R I M 2max π=。
7.A 注释:运动电荷垂至于B 的方向进入磁场后将作匀速圆周运动,因此可等效为一个圆电流,而载流线圈的磁矩可表示为IS m =,其中22)(eB mv R S ππ==,qBme T e I π2==,带入磁矩表达式,可得答案。
8.B 注释:略。
9.C 注释:由洛仑兹力的特性,始终垂直与运动电荷的速度方向,所以洛仑兹力不改变运动电荷的速度大小,只改变其方向,所以洛仑兹力对电荷不做功,但其动量发生了变化。
10.B 注释:运动电荷垂至于B 的方向进入磁场后将作匀速圆周运动,轨道曲线所围的面的磁通量为:Bq mv qB mv B BS 222)()(ππφ===,由此可得答案。
11.B 注释:矩形线框左边框受力方向向右且较大,右边框受力向左且较小,所以整个载流线框受合力向右,所以要远离。
大学物理电磁学第七章习题
第七章 电磁感应和暂态过程一、选择题1、一导体圆线在均匀磁场中运动,能使其中产生感应电流的一种情况是()A 、线圈绕自身直径轴转动,轴与磁场方向平行。
B 、线圈绕自身直径轴转动,轴与磁场方向垂直C 、线圈平面垂直于磁场并沿垂直于磁场方向平移。
D 、线圈平面平行于磁场并沿垂直磁场方向平移。
答案:B 2、一闭合正方形线圈放在均匀场中,绕通过其中心且与一边平行的转轴OO`转动,转轴与磁场方向垂直,转动角速度为ω,如图所示,用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?()A 、把线圈的匝数增加到原来的两倍。
B、把线圈的面积增加到原来的两倍,而形状不变C 、把线圈切割磁力线的两条边增长到原来的两倍D 、把线圈的角速度ω增大到原来的两倍 答案:D 3、两根无限长平行直导线载有大小相等方向相反的电流I,I 以dI/dt 的变化率增长,A 、线圈中无感应电流 B 、线圈中感应电流为顺时针方向C 、线圈中感应电流为逆时针方向D 、线圈感应电流方向不确定 答案:B 4、一块铜板放在磁感应强度正在增大的磁场中,铜板中出现涡流(感应电流),则涡流将() A 、加速铜板中磁场的增加 B 、减缓铜板中磁场的增加C 、对磁场不起作用D 、使铜板中磁场反向 答案:B 5、一无限长直导体薄板宽为l ,板面与Z 轴垂直,板的长度方向沿Y 轴,板的两侧与一个伏特计相接,如图,整个系统放在磁感应强度为B 的均匀磁场中,B的方向沿Z 轴正方向,如果伏特计与导体平板均以速度v向 Y 轴正方向移动,则伏特计指示的电压值为() A 、0 B 、vBl 21 C 、vBl D 、vBl2 答案:A6、半径为a 的圆线圈置于磁场强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B的夹角60=α时,线圈中已通过的电量与线圈面积及转动的时间的关系是()A 、与线圈面积成正比,与时间无关B 、与线圈面积成正比,与时间成正比C 、与线圈面积成反比,与时间成正比D 、与线圈面积成反比,与时间无关 答案:A 7、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量时间的变化率相等,则() A 、铜环中有感应电动势,木环中无感应电动势 B 、铜环中感应电动势大,木环中感应电动势小C 、铜环中感应电动势小,木环中感应电动势大D 、两环中感应电动势相等 答案:D 8、在无限大长的载流直导线附近 放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流() A 、以情况Ⅰ中为最大 B 、以情况Ⅱ中为最大C 、以情况Ⅲ中为最大D 、在情况Ⅰ和Ⅱ中相同 答案:B9、在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直,今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流I (如图),可选择下列哪一个方法?()A 、把线圈在自身平面内绕圆心旋转一个小角度B 、把线圈绕通过其直径的OO`轴转一个小角度C 、把线圈向上平移D 、把线圈向右平移 答案:C10、 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B欲使圆线环中产生逆时针方向的感应电流,应使()A 、线环向右平移B 、线环向上平移C 、线环向左平移D 、磁场强度减弱 答案:C 11、 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流I A 、载流螺线管向线圈靠近 B 、载流螺线管离开线圈C 、载流螺线管中电流增大D 、载流螺线管中插入铁芯 答案:B12、 在一通有电流I 的无限长直导线所在平面内,有一半径为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且a 》r,当直导线的电流被切断后,沿着导线环流过的电量约为()A 、⎪⎭⎫ ⎝⎛+-r a a R Ir 11220πμ B 、a ra R Ir +ln 20πμ C 、aRIr 220μ D 、rRIa 220μ13、 如图所示,一矩形线圈,放在一无限长载流直导线附近,开始时线圈与导线在同一平面内,矩形的长边与导线平行,若矩形线圈以图(1)、(2)、(3)、(4)A 、以图(1)所示方式运动。
大学物理第7章恒定磁场试题及答案.docx
第7章恒定磁场一、选择题1.磁场可以用下述哪一种说法来定义?[](A)只给电荷以作用力的物理量(B)只给运动电荷以作用力的物理量(C)贮存有能量的空间(D)能对运动电荷作功的物理量2.空间某点磁感应强度的方向,在下列所述定义中错误的是[](A)小磁针N极在该点的指向(B)运动正电荷在该点所受最大的力与其速度的矢积的方向(C)电流元在该点不受力的方向(D)载流线圈稳定平稳时,磁矩在该点的指向3.下列叙述中错误的是[](A) 一根给定的磁力线上各点处的B的大小一定相等一(B)一根给定的磁力线上各点处的〃的方向不一定相同(C)均匀磁场的磁力线是一组平行直线(D)载流长直导线周围的磁力线是一组同心圆坏4.下列关于磁力线的描述中正确的是[](A)条形磁铁的磁力线是从N极到S极的(B)条形磁铁的磁力线在磁铁内部是从S极到N极的(C)磁力线是从N极出发终止在S极的曲线(D)磁力线是不封闭的曲线5.下列叙述中不能正确反映磁力线性质的是[](A)磁力线是闭合曲线(B)磁力线上任一点的切线方向为运动电荷的受力方向(C)磁力线与载流回路彖环一样互相套连(D)磁力线与电流的流向互相服从右手定则6.关于磁场之I'可的相互作用有下列说法,其屮正确的是[](A)同性磁极相吸,异性磁极相斥(B)磁场屮小磁针的磁力线方向只有与磁场磁力线方向一致时,才能保证稳定平稳(C) 小磁针在非均匀磁场中一定向强磁场方向运动 (D) 在涡旋电场中,小磁针沿涡旋电场的电场线运动7. 一电荷放置在行驶的列车上,相对于地面来说,电荷产生电场和磁场的情况将是[](A) (B)只只产生产生电场磁场(C)既产生电场,又产生磁场 (D)既不产生电场,又不产生磁场 T7-1-7图8. 通以稳恒电流的长直导线,在其周阖产生电场和磁场的情况将是 [](A)只产生电场 (B) 只产生磁场(C) 既产生电场,又产生磁场 (D) 既不产生电场,乂不产生磁场9. 在电流元I d/激发的磁场中,若在距离电流元为r 处的磁感应强度为d B .则下列叙述中正确的是(C) dB 一的方向垂直于/d 乙与[组成的平面二T7-1-9图 (D) dB 的方向为(-厂)方向10. 决定长直螺线管中磁感应强度大小的因素是 [](A)通入导线中的电流强度 (B)螺线管的体积(C)螺线管的直径(D)与上述各因素均无关一-11. 磁场的高斯定理B-dS= 0,说明S[](A)穿入闭合曲血的磁感应线的条数必然等于穿出的磁感应线的条数(B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数[](A) d B 一的方向与r 方向相同一(B) dB 的方向与/d/方向相同 dl(C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内13. 磁场中的高斯路理JJ BdS= 0说明了磁场的性质之一是[](A)磁场力是保守力(B)磁力线可能闭合 (C)磁场是无源场(D)磁场是无势场14. 若某空间存在两无限长直载流导线,空间的磁场就不存在简单的对称性.此 时该磁场的分布[](A)可以直接用安培环路定理来计算 (B) 只能用安培环路定理来计算 (C) 只能用毕奥-萨伐尔定律来计算(D) 可以用安培环路定理和磁场的叠加原理求出15.对于安培环 路定律I ,在下面说法中正确的是[](A)H 只是穿过闭合环路的电流所激发,与环路外的电流无关(B)是环路内、外电流的代数和(C) 安培环路定律只在具有高度对称的磁场中才成立(D) 只有磁场分布具有高度对称性时,才能用它直接计算磁场强度的人小16. 在圆形电流的平面内取一同心圆形坏路,由于环路内无电流穿过,所以§H・d/[](A)圆形环路上各点的磁场强度为零(B) 圆形环路上各点的磁场强度方向垂直于环路平面 (C) 圆形坏路上各点的磁场强度方向指向圆心 (D) 圆形环路上各点的磁场强度方向为该点的切线方向12.安培环路定 律/说明了磁场的性质之一是[](A)磁力线是闭合曲线(C)磁场是无源场(B)磁场力是保守力 (D)磁场是无势场17.下述情况中能用安培坏路定律求磁感应强度的是[](A) 一段载流直导线 (C) 一个环形电流(B) 无限长直线电流 (D) 任意形状的电流1& 取一闭合积分回路L,使三根载流导线穿过L 所围成的面.现改变三根导线 之间的相互间隔,但不越出积分回路,则[](A)回路厶内的》/不变,厶上各点的8不变(B)回路厶内的工/不变,L 上各点的B 改变变,厶上各点的B 不变 (D)冋路厶内的》/改变,厶上各点的B 改变19.边长为L 的一个正方形线圈屮通有电流/,则线圈中心的磁感应强度的大小将](A)与厶成正比 (B)与厶成反比(C)与厶无关(D)与厶*成正比T7-1-19图 20. 一无限长直圆柱体,半径为沿轴向均匀流有电流. 磁感应强度大小为Bi,圆柱体外(r>R )感应强度大小为B2,则有[1(A) 31、均与厂成正比设圆柱体内(r<R )的 (B) B 、、B 2均与厂成反比(C) B\与F •成反比,与厂 成正比(D) B 1与F •成正比,〃2与r 成反比 T7-1-20图21.如T7-1-21图所示,两根载有相同电流的无限长直导 线,分别通过x 】 = l 和兀2=3的点,且平行于尹轴.由此可 知,磁感一应强度B 为零的地方是 O12 3 x T7-1-21 图[](A) x=2的直线上(B) x>2的区域(C) x<l 的区域 (D)不在平而内22・一个半径为R 的圆形电流厶其圆心处的磁场强度大小为[1(A)4R (B)(C) 0(D)— 2R23. 有一个圆形冋路1及一个正方形冋路2,圆的直径和正方 形回路的边长相等,二者屮通有大小相等的电流,它们在各自屮心产 生的磁感应强度的大小之比BJB.为[](A) 0.90(B) 1.00(C) 1.11 (D) 1.2224. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺 线管(R = 2r ),两螺线管单位长度上的匝数相等•两螺线管屮的磁感应强度大小B R 和B r 应满足关系[](A) B R =2 B 丫 r(D) B R = 4 B r25. 两根载有相同电流的通电导线,彼此之间的斥力为F.如果它们的电流均增加一 倍,相互之间的距离也加倍,则彼此之间的斥力将为变为FF[](A)—(B)— (C)F (D) 2F4226. 两束阴极射线(电子流),以不同的速率向同一方向发射,则两束射线间[](A)存在三种力:安培力、库仑力和洛仑兹力 (B) 存在二种力:库仑力和洛仑兹力 (C) 存在二种力:安培力和洛仑兹力 (D) 只存在洛仑兹力27. 可以证明,无限接近长直电流处(r->0)的B 为--有限值.可是从毕一萨定律 得到的长直电流的公式屮得出,当尸一0时B-8.解释这一矛盾的原因是 [](A)毕一萨定律得出的过程不够严密(B) 不可能存在真正的无限长直导线 (C) 当尸一0 口寸,毕一萨定律已不成立 (D) 毕一萨定律是一个近似理论28. 运动电荷受洛仑兹力后,其动能、动量的变化情况是[](A)动能守恒(B)动量守恒(C)动能、动量都守恒(D)动能、动量都不守恒29. 运动电荷垂直进入均匀磁场后,下列各量中不守恒是T7亠23图(B)B R =B 「 (C) 2B R =B[](A)动量(B)关于圆心的角动量(C)动能(D)电荷与质量的比值30. —电量为g 的带电粒子在均匀磁场中运动,下列说法中正确的是 [](A)只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q 变为一么则粒子受力反向,数值不变 (C) 粒子进入磁场后,其动能和动量都不改变 (D) 洛仑兹力与速度方向垂直,所以其运动轨迹是圆31. 一个长直螺线管通有交流电,把一个带负电的粒子沿 螺线管的轴线射入管屮,粒子将在管屮作 ](A)圆周运动 (B)沿管轴来回运动(C)螺旋线运动 (D)匀速直线运动T7-1-31图32. 一束正离子垂直射入一个均匀磁场与均匀电场互相平行 且同向的区域.结果表明离子束在一与入射束垂直放置的荧光屏 上产生一条抛物线,则所有粒子有相同的 [](A)动能(B)质量(C)电量(D)荷质比 T7-1-32图33. 质量为〃?、电量为g 的带电粒子,以速度v 沿与均匀磁场E 成g 角方向射入磁场,英轨迹为一螺旋线.若要增大螺距,应34. 在一个由南指向北的匀强磁场中,一束电子垂直地向下通过_B此 (C) [ ] (A)磁场,受到由由磁场对西下指向上指向它东的作用力的力•向耳V® 0 0T7-1-34 图—11 11 111[](A)增大磁场B (C)减小速度v (B)减少磁场B _(D) 增加夹角q(B)(D)由由北东指向指向南西35. 一电子在垂直于一均匀磁场方向作半径为R 的圆周运动,电子的速度为v ,忽略电子产生的磁场,则此轨道内所包圉面积的磁通量为x BxnmvRT7亠35图36. 一带电粒子垂直射入均匀磁场中,如果粒子质量增大到原来的两倍,入射速度增 大到两倍,磁场的磁感应强度增大到4倍,忽略粒子运动产生的磁场,则粒子运动轨迹所包 围范围内的磁通量增大到原来的1 1 [](A)2 倍 (B)4 倍(C)2 倍(D)4倍37. 一电子以速度丿垂直地入射到一磁感应强度为B 的均匀磁场中•忽略其电子产 生的磁场,此时电子在磁场中运动的轨道所圉面积的磁通量 [](A)正比于3,正比于v 2 (B)反比于B,反比于v 2(C) 正比于5正比于v(D)反比于5反比于v38. 图中六根无限长导线相互绝缘,通过的电流均为/,区域I 、II 、均为相等的正方形.问哪个区域垂直指向里的磁通量最大?1(B) II 区/ III IV (C)III 区(D) IV 区T7-1-38 图39. 在某均匀磁场中放置有两个平面线圈,其面积S]二2S2,通有电流人二2/2,它们所受的最大磁力矩之比M 2为[](A)1 (B)2 (C)4 (D) 1/440. 有一由N 匝细导线绕成的平而正三角形线圈,边长为°,通有电流/,置于均匀外 磁场3中.当线圈平面的法向与外磁场同向时,线圈所受到的磁力矩大小为 [](A) 3Na 岳/ 2(B) 3Na 炼 /4[](A)eR 2(B) emR (C)——eR(D)兀u41.一直径为2.0cm、匝数为300匝的圆线圈,放在5xl0'2T的磁场中,当线圈内通过10mA的电流时,磁场作用于线圈的最大磁力矩为[](A) 4.7 N.m (B) 4.7xlO'2N.m(C) 4.7x1 O'5 N.m (D) 4.7x10-4 N.m42.有一直径为8 cm的线圈,共12匝,通以电流5 A.现将此线圈置于磁感应强度为0.6 T的匀强磁场屮,则[](A)作用在线圈上的最大磁力矩为M=18N.m(B)作用在线圈上的最大磁力矩为M=1.8N.m(C)线圈正法线与B成30。
大学物理稳恒磁场理论及习题解读
250 0 方向垂直A面
B
BC
0 N C I C
2 RC
0 20 5
2 0.10
O BA
5000 方向垂直C面
B
2 BA
2 BC
7.02 10 T 方向 : tan
4
1
BC 63.4 BA
NIZQ
第14页
大学物理学
恒定磁场
NIZQ
问题: 磁现象产生的原因是什么?
第 2页
大学物理学
恒定磁场
• 电流的磁效应 1820年奥斯特实验表明: 电流对磁极有 力的作用. 1820年 9月 11日在法国科学院演示的奥 斯特的实验 ,引起了安培的兴趣 .一周之后 安培发现了电流间也存在着相互作用力.
此后安培又提出了著名的安 培定律 : 磁体附近的载流导线 会受到力的作用而发生运动.
NIZQ
第 3页
大学物理学
恒定磁场
结论: 磁现象与电荷的运动有着密切的关系 . 运动电荷既能产 生磁效应,也受到磁力的作用. 安培把磁性归结为电流之间的相互作用 . 1822年安培提 出了分子电流假说:
• 一切磁现象起源于电荷的运动.
• 磁性物质的分子中存在分子电流, 每个分子电流相当于一基元磁体。
写成矢量表示:
0 Idl sin
2 4π r 0 Idl r dB 4π r 3
真空中的磁导率: 0= 410-7亨利· 米-1 (H· m-1)
NIZQ
第 8页
大学物理学
恒定磁场
• 毕奥—萨伐尔定律的应用 恒定磁场的计算: 1.选取电流元或某些典型电流分布为积分元. 2.由毕-萨定律写出积分元的磁场dB .
《大学物理学》恒定磁场练习题
《大学物理学》恒定磁场部分自主学习材料要掌握得典型习题:1. 载流直导线得磁场:已知:真空中、、、。
建立坐标系,任取电流元,这里,点磁感应强度大小:;方向:垂直纸面向里.统一积分变量:;有:;.则: 。
①无限长载流直导线:,;(也可用安培环路定理直接求出)②半无限长载流直导线:,。
2。
圆型电流轴线上得磁场:已知:、,求轴线上点得磁感应强度。
建立坐标系:任取电流元,P 点磁感应强度大小:;方向如图。
分析对称性、写出分量式:;。
统一积分变量:∴.结论:大小为;方向满足右手螺旋法则。
①当时,;②当时,(即电流环环心处得磁感应强度):;③对于载流圆弧,若圆心角为,则圆弧圆心处得磁感应强度为:第③情况也可以直接用毕—沙定律求出:。
一、选择题:1.磁场得高斯定理说明了下面得哪些叙述就是正确得?( )(a ) 穿入闭合曲面得磁感应线条数必然等于穿出得磁感应线条数;(b) 穿入闭合曲面得磁感应线条数不等于穿出得磁感应线条数;(c ) 一根磁感应线可以终止在闭合曲面内;(d ) 一根磁感应线可以完全处于闭合曲面内.(A )ad ; (B )ac ; (C )cd ; (D)a b。
【提示:略】 7-2.如图所示,在磁感应强度B 得均匀磁场中作一半经为得半球面S,S 向边线所在平面法线方向单位矢量与得夹角为,则通过半球面S 得磁通量(取凸面向外为正)为: ( (A );(B );(C );(D)。
【提示:由通量定义知为】7—-2.在图(a )与(b )中各有一半径相同得圆形回路、,圆周内有电流、,其分布相同,且均在真空中,但在(b )图中回路外有电流,、为两圆形回路上得对应点,则:( )(A ),;(B),;(C),;(D),。
【提示:用判断有;但P点得磁感应强度应等于空间各电流在P点产生磁感强度得矢量与】7-—1。
如图所示,半径为R得载流圆形线圈与边长为a得正方形载流线圈中通有相同得电流I,若两线圈中心得磁感应强度大小相等,则半径与边长之比为:( )(A);(B);(C);(D)。
大学物理简明教程习题解答第7章201091
第7章 恒定磁场7-1在闪电中电流可高达2⨯104A ,若将闪电电流视作长直电流,问距闪电电流1.0m 处的磁感应强度有多大?解 根据安培环路定理∑⎰=⋅iiLI0d μl B ,与长直电流相距r 处的磁感应强度为 I rB 0π2μ= 解得相距1.0m 处的磁感应强度的大小 T 104π230-⨯==rIB μ7-2 如图所示,两根无限长直导线互相垂直地放置,相距d =2.0⨯10-2m 。
设两根导线通过的电流均为I =10A ,求两导线垂直距离中点P 处的磁感应强度。
解 两根载有相同电流的无限长直导线在P 处的磁感应强度的大小相同,由安培环路定理∑⎰=⋅iiLI0d μl BI B d02π2μ=得 T 102/2π24021-⨯===d IB B μ1B 和2B 的方向分别指向x 轴的负方向和z 轴的正方向。
由磁场叠加原理,P 处磁感应强度的大小为 T 108.22d π2402221-⨯==+=IB B B P μB P 的方向在x -z 平面内,与z 轴正方向和x 轴负方向均成45°夹角。
7-3 如图所示,一无限长载流绝缘直导线弯成如附图所示的形状。
求使o 点的磁感应强度为零的半径a 和b 的比值。
解 该载流系统由三部分组成,o 点的磁感应强度为载有相同电流的无限长直导线及两个半径分别为a 和b 的圆环分别在该处激发的磁感应强度的矢量和。
设磁场方向以垂直纸面向内为正,向外为负。
由安培环路定理∑⎰=⋅iiLI0d μl B无限长载流直导线在o 点的磁感应强度为 I bB 0π2μ=直线,bIB π20μ=直线根据毕奥–萨伐尔定律,电流元I d l 在o 点的磁感应强度02d sin d 4πI l B r μθ=,其中2π=θ,对两载流圆环分别积分,有 ===⎰⎰2π20020d π4d π4blI rlI B b lμμ大环bI20μ题7-2图题7-3图aIalI rlI B al2d π4d π402π20020μμμ===⎰⎰小环由磁场叠加原理 小环大环直线B B B B -+=022π2000=-+=aIbIbIμμμ解得 1ππ+=b a7-4 如图所示,两导线沿半径方向引到铁环上a 、b 两点,并与远处的电源相连,已知环的粗细均匀,求环中心o 的磁感应强度。
大学物理课后选择与作业答案
第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π (C )αB r cos π22(D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) (A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B =(C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠(D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H求得磁介质内的磁化强度,因而正确答案为(B ).7 -15 如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x [图(b)],载流长直导线的磁场穿过该面元的磁通量为x l xlμΦd π2d d 0=⋅=S B 矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==211200ln π2d π2d d d d Il μx l x l μΦ 7 -16 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求:(1) 导线内、外磁感强度的分布;(2) 导线表面的磁感强度.分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等.方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 (1) 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222πππRr r R I I ==∑,因而 202πRIrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.(2) 在导线表面磁感强度连续,由I =50 A ,m 1078.1π/3-⨯==s R ,得T 106.52π30-⨯==RIμB 7 -25 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 7 -29 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力. 解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dlI I μF π22103=()b d lI I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F 合力的方向朝左,指向直导线.第八章 电磁感应 电磁场8 -1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).8 -2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( ) (A ) 铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;tiM εd d 21212=.因而正确答案为(D ).8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).8 -5 下列概念正确的是( ) (A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tId d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S ΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tlM E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xIμx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd=-+==⎰⎰⎰再由法拉第电磁感应定律,有tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为43ln π20dI μΦ=线圈与两长直导线间的互感为43ln π20d μI ΦM ==当电流以tld d 变化时,线圈中的互感电动势为 tI d μt I ME d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入tΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =t ξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xIμB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xIμΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===SIyμx y x I μΦΦ回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iyμt y x I μt ΦE 由于静止的形导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =t ξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为 ()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和t I d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.第九章 振动9-1 一个质点作简谐运动,振幅为A ,起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为()题9-1 图分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ).9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( )()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=t x t x t x t x题9-2 图分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ=,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( )(A ) 2v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()ϕωω+=t A m E k 222sin 21,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( )(A ) π23 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 22+=t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).9-7 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s π20-=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a9-8 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==.证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题9-8 图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为 0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为 gS ρm πωT /2/π2==9-12 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0 和v =v 0 来确定φ值.(2) 旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0 和速度v 0 的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.9-28 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1 +x 3 的振幅最大? 又3ϕ 为多少时,x 2 +x 3 的振幅最小?题9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=,故合振动振幅为 ()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A 合振动初相位()()[]rad1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A / (2) 要使x 1 +x 3 振幅最大,即两振动同相,则由π2Δk =得,...2,1,0,π75.0π2π213±±=+=+=k k k要使x 1 +x 3 的振幅最小,即两振动反相,则由()π12Δ+=k 得 (),...2,1,0,π25.1π2π1223±±=+=++=k k k题9-12 图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=,因00<v ,取2π2=; (3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±= ,由00<v ,取3π3=; (4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±= ,由00>v ,取3π44=. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=,3π3=,3π44=. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x (2)()()m /2πt π4cos 100.22+⨯=-x (3)()()m /3πt π4cos 100.22+⨯=-x (4)()()m /3π4t π4cos 100.22+⨯=-x 第十章 波 动10-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题10-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).10-2 机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则( )(A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播分析与解 波动方程的一般表式为⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=ϕωu x t A y cos ,其中A 为振幅,φ为初相,u 为波速.x /u 前的“-”表示波沿x 轴正向传播,“+”表示波沿x 轴负向传播.因此将原式写为()()()m 100/π6cos 05.0x t y +=和一般式比较可知(B)、(D) 均不对.而由ω=2π/T =6πs-1 可知T =(1/3)s.则λ=uT =33.3 m ,因此(A)也不对.只有(C)正确.10-3 一平面简谐波,沿x 轴负方向传播,角频率为ω,波速为u .设4T t =时刻的波形如图(a )所示,则该波的表达式为( ) ()()()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=πωπωπωπωu x t A y u x t A y u x t A y u x t A y cos B 2cos C 2cos B cos A题10-3 图分析与解 因为波沿x 轴负向传播,由上题分析知(A)、(B )表式不正确.找出(C )、(D )哪个是正确答案,可以有很多方法.这里给出两个常用方法.方法一:直接将t =T /4,x =0 代入方程,那么对(C )有y 0 =A 、对(D )有y 0 =0,可见(D )的结果与图一致.方法二:用旋转矢量法求出波动方程的初相位.由图(a )可以知道t =T /4 时原点处质点的位移为0,且向y 轴正向运动,则此时刻的旋转矢量图如图(b )所示.要求初相位,只要将该时刻的旋转矢量反转(顺时针转)Δφ=ω·Δt =ω·T /4 =π/2,如图(b )所示,即得φ0 =π.同样得(D )是正确答案.题10-4 图10-4 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()πλπϕϕπλπϕϕπϕϕπk r r k r r k k r r 22A 22A 2A A 211212121212=-+-=-+-=-=-// 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λr r /π2Δ1212---=,故选项(D )正确.10-5 在驻波中,两个相邻波节间各质点的振动( )(A ) 振幅相同,相位相同 (B ) 振幅不同,相位相同(C ) 振幅相同,相位不同 (D ) 振幅不同,相位不同分析与解 驻波方程为t λx A y v π2cos π2cos 2=,因此根据其特点,两波节间各点运动同相位,但振幅不同.因此正确答案为(B ).10-8 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式()ϕω+=t cos A y 进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解.解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT =0.25 m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0 ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=-10-10 波源作简谐运动,周期为0.02s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得 m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 =15.0 m 和x 2 =5.0 m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-15.5π和φ10 =-5.5π(若波源初相取φ0=3π/2,则初相φ10 =-13.5π,φ10 =-3.5π.)(2) 距波源16.0m 和17.0 m 两点间的相位差()π/π2Δ1212=-=-=λx x10-13 如图所示为一平面简谐波在t =0 时刻的波形图,求(1)该波的波动方程;(2) P 处质点的运动方程.题10-13 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A =0.04 m, 波长λ=0.40 m, 波速u =0.08m·s-1 ,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为()m 208.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=πx t(2) 距原点O 为x =0.20m 处的P 点运动方程为 ()m 2520.04cos y ⎥⎦⎤⎢⎣⎡+=ππ10-18 有一波在介质中传播,其波速u =1.0 ×103m·s -1 ,振幅A =1.0 ×10-4 m ,频率ν =1.0 ×103Hz .若介质的密度为ρ =8.0×102 kg·m -3 ,求:(1) 该波的能流密度;(2) 1 min 内垂直通过4.0 ×10-4m 2 的总能量.解 (1) 由能流密度I 的表达式得2522222m W 10581221-⋅⨯===.v uA uA I ρπωρ (2) 在时间间隔Δt =60 s 内垂直通过面积S 的能量为J 107933⨯=∆⋅=∆⋅=.t IS t P W10-20 如图所示,两相干波源分别在P 、Q 两点处,它们发出频率为ν、波长为λ,初相相同的两列相干波.设PQ =3λ/2,R 为PQ 连线上的一点.求:(1) 自P 、Q 发出的两列波在R 处的相位差;(2) 两波在R 处干涉时的合振幅.题10-20 图分析 因两波源的初相相同,两列波在点R 处的相位差Δφ仍与上题一样,由它们的波程差决定.因R 处质点同时受两列相干波的作用,其振动为这两个同频率、同振动方向的简谐运动的合成,合振幅ϕ∆++=cos 2212221A A A A A .解 (1) 两列波在R 处的相位差为πλr 3/Δπ2Δ==(2) 由于π3Δ=,则合振幅为21212221cos32A A A A A A A -=++=π第十一章 光 学11-1 在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.因此正确答案为(B ).。
(完整word版)大学物理A(一)课件第七章 稳恒磁场习题及答案
第七章 练习题1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B .. (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B、2B 、3B 表示,则O点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B.3、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P . 4、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]5、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll B d(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.B x OR(D) B x OR(C) B xOR(E)6、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是:(A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动.(D) 离开大平板向外运动.7、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.8、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l Id 所受的安培力Fd 的大小为____,方向________.9、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导 线所受磁力与重力平衡时,导线中电流I =___________________.10、图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表____________________的B ~H 关系曲线.b 代表____________________的B ~H 关系曲线.c 代表____________________的B ~H 关系曲线.11、AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)12、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.I 1I 2 IlI dIB13、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.14、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布. 答案: 一 选择题1、D2、A3、D4、B5、D6、B7、2ln 20πIaμ8、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左) 9、)/(lB mg10、铁磁质、 顺磁质、 抗磁质 11、解:AA '线圈在O 点所产生的磁感强度002502μμ==A A A A r IN B (方向垂直AA '平面)CC '线圈在O 点所产生的磁感强度 005002μμ==CC C C r IN B (方向垂直CC '平面)O 点的合磁感强度 42/1221002.7)(-⨯=+=C AB B B T B 的方向在和AA '、CC '都垂直的平面内,和CC '平面的夹角︒==-4.63tg 1AC B BθA12、解:利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d δ=(2) 这载流长条在P 点产生的磁感应强度x i B π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμb b a x +π=ln 20δμ 方向垂直纸面向里.13、解: ===l NI nI H /200 A/m===H H B r μμμ0 1.06 T14、解:由安培环路定理: ∑⎰⋅=i I l Hd0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ r >R 3区域: H = 0,B = 0。
《大学物理》恒定磁场练习题及答案
《大学物理》恒定磁场练习题及答案一、简答题1、如何使一根磁针的磁性反转过来?答:磁化:比如摩擦,用一个磁体的N 极去摩擦小磁针的N 极可以让它变为S 极,另一端成N 极。
2、为什么装指南针的盒子不是用铁,而是用胶木等材料做成的? 答:铁盒子产生磁屏蔽使得指南针无法使用。
3、在垂直和水平的两个金属圆中通以相等的电流,如图所示,问圆心O 点处的磁场强度大小及方向如何?答:根据圆电流中心处磁感应强度公式,水平金属圆在O 点的磁感应强度大小为RI20μ;方向垂直向下,竖直金属圆在O 点的磁感应强度大小为RI20μ;方向垂直指向纸面内。
故O 点叠加后的磁感应强度大小为RI220μ;方向为斜下450指向纸面内。
4、长直螺旋管中从管口进去的磁力线数目是否等于管中部磁力线的数目? 为什么管中部的磁感应强度比管口处大?答:因为磁力线是闭合曲线,故磁力线数目相等。
根据载流长直螺旋管磁感应强度计算公式)cos (cos 21120θθμ-=nI B 可知,管口处21πθ→,0cos 1=θ,管口处磁感应强度为20cos 21θμnI B =;中心处212cos 2cos cos θθθ'='-',故中心处磁感应强度为20cos θμ'=nI B ,因为22θθ>',所以中心处磁感应强度比管口处大。
5、电荷在磁场中运动时,磁力是否对它做功? 为什么? 答:不作功,因为磁力和电荷位移方向成直角。
6、在均匀磁场中,怎样放置一个正方型的载流线圈才能使其各边所受到的磁力大小相等?答:磁力线垂直穿过正四方型线圈的位置。
因为线圈每边受到的安培力为B Ia F ⨯=,由于处在以上平面时,每边受到的磁力为IaB F =。
7、一个电流元Idl 放在磁场中某点,当它沿x 轴放置时不受力,如把它转向y 轴正方向时,则受到的力沿z 铀负方向,问该点磁感应强度的方向如何?答:由安培力公式B Idl dF ⨯=可知,当Idl 沿x 轴放置时不受力,即0=dF ,可知B 与Idl 的方向一致或相反,即B 的方向沿x 轴线方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U H j I EH vB B B l nq ldnq
IB 由霍尔电势差可测载流子浓度 n qdU H
7-21 如图所示,把一宽2.010–2m、厚1.010–3m的铜片放在磁 感应强度B=1.5T的均匀磁场中,如果铜片中通有200A的电流。 试问(1)铜片左右两侧的电势哪侧高?(2)霍耳电势差有 多大?(铜的电子浓度n=8.41028 l/m3)。
2r T V
e ev I T 2r
0 ev B 2r 4 r 2
I: 等效电流
0 I
3、载流螺绕环的磁场分布
B dl 2rB 0 NI
L
安培环路
0 NI B 2r
当R2 R1 R1 , R2时 B 0 nI
4、长直载流螺线管的磁场分布
πa 2 B1 2πr 0 I 2 ,得 πr
B1
0 Ir
2πa 2
0 I
2πr
(2)a<r<b
B2 2πr 0 I
,得
B2
(3)b<r<c 应用安培环路定理
B dl I
L 0 i
i
在b<r<c柱体内作环形回路L,而
I
i
i
π(r 2 b 2 ) I I 2 2 π(c b )
载流螺线管内
载流螺绕环内
0 NI (5).B 2r
四、安培环路定理
在稳恒电流的磁场中,磁感应强度 B 沿任何闭合回路L 的线积分,等于穿过这回路的所有电流强度代数和的 0 倍。
B dl o I iห้องสมุดไป่ตู้
L i
1、闭合回路的选取 2、左侧积分大小 3、电流的正负
c b d a b B dl B dl B dl
L a b c d a
B ab 0 nlI
B 0 nI B 0 nI
安培环路
7-14一长直导线中通有电流I1,近旁有一矩形线圈,其长边与 导线平行。若线圈中通有电流I2,线圈的位置及尺寸如图所示。 当I1=20A、I2=10A、x1=1.0cm、x2=10cm、l=20cm时,求矩形 线圈所受力的大小和方向。
M 8U
证明 设离子经电压U加速后进入磁场时的速度为v。 电场力作功使离子获得动能
1 qU Mv 2 2
在磁场中洛伦兹力提供作圆周运动的向心力
v2 2v 2 qvB M M R x
qB 2 x 2 由此解得该离子的质量为 M 8U
霍尔效应(Hall effect)
qEH qvB E H vB, 霍尔电场 U H E H l vBl 霍尔电势差
解:由安培环路定理可知,长直载流导线在线 圈左、右两侧处产生的磁感应强度分别为
B1
0 I1
2πx1
和
B2
0 I1
2πx 2
由此线圈左、右两侧载流导线受力大小分别为
F1 B1 I 2 l
0 I1
2πx1
I 2l
F2 B2 I 2 l
0 I1
2πx 2
I 2l
线圈所受合力 F F2 F1 方向水平向左。
0 I1
2πx2
I
0 I1
2πx1
I 2l 7.2 104 N
7-20 质谱仪的构造原理如图所示。离子源S提供质量为M、电荷 为q的离子。离子初速很小,可以看作是静止的,然后经过电压U 的加速,进入磁感应强度为B的均匀磁场,沿着半圆周运动,最 后到达记录底片P上。测得离子在P上的位置到入口处A的距离为x qB2 x 2 。试证明该离子的质量为:
π(r 2 b 2 ) B3 2πr 0 I I 2 2 π(c b )
解得
B3
0 I (c 2 r 2 )
2πr (c 2 b 2 )
(4)r >c
B4 2πr 0 ( I I ) ,得 B4 0
例题:氢原子中的电子以速度v=2.2*106 m/s沿半径为r=0.53*10-10m 作匀速圆周运动,求电子轨道中心的磁感应强度。
磁感应线
ΦB B dS 0
S
o Idl r ˆ dB 4 r2
五、几种典型的磁场分布
0 I (1).B 2a 0 I (2).B 2R 0 I (3).B 4R
(4).B 0 nI
无限长长直载流直导线 载流圆线圈圆心处 载流圆弧圆心处
0 I 1、无限长长直载流直导线 B 2r
B
I
7-11 同轴长电缆由内、外两导体构成,内导体是半径为a的 实心圆柱,外导体是内外半径分别为b和c的圆筒。在两导体 中,大小相等、方向相反的电流I通过。试求磁感应强度B的 分布:(1)圆柱导体内离轴r处(r<a);(2)两导体间 (a<r<b);(3)圆筒形导体内(b<r<c);(4)圆筒形导 体外(r >c)。 解 (1)r<a
IB n 2.86 1020 (个 / m3 ) eaU H
解 (1)根据洛伦兹力 F qv B 可判断铜片内载流子(电子)在磁场中的受力方向向 右,因此右侧积聚了电子带负电,左侧因缺少电子而 带等量的正电。所以左侧电势高。 (2)霍耳电势差 U H
1 IB 2.2 105 V ne d
7-22 图示为半导体样品,沿x轴方向有电流I,z轴方向有均匀磁场 B。实验测得的数据为:a=0.10cm,b=0.35cm,c=1.0cm, I=1.0mA,B=0.3T,半导体片两侧的电势差U1-U2=6.55mV。 (1)试问这种样品是p型还是n型半导体?(2)求载流子浓度。 解 (1)根据洛伦兹力可判断半导体样品内载流子在磁场中 的受力方向向左。因U1>U2,可知左侧带负电,因此载流 子为电子,半导体为n型。 (2)载流子(电子)浓度