2012年高考文科数学试题分类汇编--导数

合集下载

吉林省各地市2012年高考数学最新联考试题分类大汇编(3)函数与导数.pdf

吉林省各地市2012年高考数学最新联考试题分类大汇编(3)函数与导数.pdf

吉林省各地市2012年高考数学最新联考试题分类大汇编(3)函数与导数 一、选择题: 9. (2012年东北三省四市教研协作体第二次调研测试文科)若,则函数在内零点的个数为A.3B.2C.1D.0 9.C,由可知,在恒为负,即在内单调递减,又,,在只有一个零点. 故选C. 12. (2012年东北三省四市教研协作体第二次调研测试文科)已知函数在处取得极大值,在处取得极小值,满足,,则的取值范围是 A.B. C. D. 12.D,由题意可知: 所构成的区域即为图中阴影部分,四边形的四个顶点坐标分别为: 可验证得:当时,取得最大值为3;当时, 取得最小值为.于是的取值范围是.故选D. 5.若,则a的值是 ( ) A.2B.3 C.4D.6 11.已知定义在R上的奇函数,设其导函数,当时,恒有,令,则满足的实数x的取值范围是( ) A.(-1,2)B.C.D.(-2,1) 12.已知,且函数恰有3个不同的零点,则实数a的取值范围是( ) A.[-4,0]B.C.D.在点处的切线与两个坐标轴围成的三角形的面积为2,则a等于( A ) A.2B.4C.D. 12.(东北四校2012届高三第一次高考模拟文科)已知,且函数恰有3个不同的零点,则实数a的取值范围是( B) A.B.C.[-4,0]D. 叫做函数的 “新驻点”,若函数的“新驻点”分别为,则的大小关系为( ) A.B. C.D. ,,,则( B ) A.B. C.D. 12. (吉林省实验中学2012届高三第六次模拟理科)已知是定义在R上的函数,对任意都有,若的图象关于直线对称,且,则(D ) A.B.C.D. 14. (吉林省实验中学2012届高三第六次模拟理科)设函数,若,0≤≤1,则的值为 . 15. (吉林省实验中学2012届高三第六次模拟理科)已知函数在区间有零点,则实数a的取值范围为 .已知定义在上的函数.给出下列结论: 函数的值域为 ②关于的方程有个不相等的实数根; 当时,函数的图象与轴围成的图形面积为,则存在,使得不等式成立, 其中你认为正确的所有结论的序号为.①③的图像在点处的切线方程为. ⑴求实数、的值; ⑵求函数在区间上的最大值; ⑶曲线上存在两点、,使得△是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围. 对于部分:的最大值为; 当时,, 当时,恒成立,, ,,. 若,则, 由是直角得,,即, 即.此时无解;(10分),则. 由于的中点在轴上,且,所以点不可能在轴上,即. 同理有,即,. 由于函数的值域是,实数的取值范围是即为所求. (12分)21.(本小题满分12分) 已知函数在处取得极值为2,设函数图象上任意一点处的切线斜率为k。

2012年高考文科数学解析分类汇编:导数(逐题详解)

2012年高考文科数学解析分类汇编:导数(逐题详解)

2012年高考文科数学解析分类汇编:导数一、选择题1 .(2012年高考(重庆文))设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是2 .(2012年高考(浙江文))设a>0,b>0,e 是自然对数的底数( )A .若e a +2a=e b+3b,则a>bB .若e a +2a=e b+3b,则a<bC .若e a -2a=e b-3b,则a>bD .若e a -2a=e b-3b,则a<b3 .(2012年高考(陕西文))设函数f(x)=2x+lnx 则 ( )A .x=12为f(x)的极大值点 B . x=12为f(x)的极小值点 C .x=2为 f(x)的极大值点D .x=2为 f(x)的极小值点4 .(2012年高考(山东文))设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 ( ) A .12120,0x x y y +>+> B .12120,0x x y y +>+< C .12120,0x x y y +<+>D .12120,0x x y y +<+<5 .(2012年高考(辽宁文))函数y=12x 2-㏑x 的单调递减区间为 ( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)6 .(2012年高考(湖北文))如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .112π- B .1πC .21π-D .2π7 .(2012年高考(福建文))已知32()69,f x x x x abc a b c =-+-<<,且()()()0f a f b f c ===.现给出如下结论:①(0)(1)0f f >;②(0)(1)0f f <;③(0)(3)0f f >;④(0)(3)0f f <. 其中正确结论的序号是 ( )A .①③B .①④C .②③D .②④二、填空题8 .(2012年高考(上海文))已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,1),C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ .9 .(2012年高考(课标文))曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________ 三、解答题10.(2012年高考(重庆文))已知函数3()f x ax bx c =++在2x =处取得极值为16c -(1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最大值.11.(2012年高考(浙江文))已知a∈R,函数3()42f x x ax a =-+(1)求f(x)的单调区间(2)证明:当0≤x≤1时,f(x)+ 2a ->0.12.(2012年高考(天津文))已知函数3211()(0)32a f x x x ax a a -=+-->(I)求函数)(x f 的单调区间;(II)若函数)(x f 在区间(2,0)-内恰有两个零点,求a 的取值范围;(III)当1a =时,设函数)(x f 在区间]3,[+t t 上的最大值为()M t ,最小值为()m t ,记()()()g t M t m t =-,求函数()g t 在区间]1,3[--上的最小值.13.(2012年高考(陕西文))设函数()(,,)nn f x x bx cn N b c R +=++∈∈(1)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一的零点;(2)设n 为偶数,(1)1f -≤,(1)1f ≤,求b+3c 的最小值和最大值;(3)设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值范围;14.(2012年高考(山东文))已知函数ln ()(e xx kf x k +=为常数,e=2.71828是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.[15.(2012年高考(辽宁文))设()ln 1f x x x =+-,证明:(Ⅰ)当x ﹥1时,()f x ﹤32( 1x -) (Ⅱ)当13x <<时,9(1)()5x f x x -<+16.(2012年高考(课标文))设函数f (x )= e x-ax -2(Ⅰ)求f (x )的单调区间(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f´(x )+x +1>0,求k 的最大值17.(2012年高考(江西文))已知函数2()()xf x ax bx c e =++在[]0,1上单调递减且满足(0)1,(0)0f f ==.(1)求a 的取值范围;(2)设()()()g x f x f x '=--,求()g x 在[]0,1上的最大值和最小值.18.(2012年高考(湖南文))已知函数f(x)=e x-ax,其中a>0.[@、中国^教育出版&网~](1)若对一切x∈R,f(x) ≥1恒成立,求a 的取值集合;[z(2)在函数f(x)的图像上去定点A(x 1, f(x 1)),B(x 2, f(x 2))(x 1<x 2),记直线AB 的斜率为k ,证明:存在x 0∈(x 1,x 2),使0()f x k '=恒成立.19.(2012年高考(湖北文))设函数()(1)(0)nf x ax x b x =-+>,n 为正整数,,a b 为常数,曲线()y f x =在(1,(1))f 处的切线方程为1x y +=.(1)求,a b 的值; (2)求函数()f x 的最大值; (3)证明:1()f x ne<. 20.(2012年高考(广东文))(不等式、导数)设1a <,集合{}0A x R x =∈>,(){}223160B x R x a x a =∈-++>,D A B = .(Ⅰ)求集合D (用区间表示);(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点.21.(2012年高考(福建文))已知函数3()sin (),2f x ax x a R =-∈且在]2,0[π上的最大值为32π-,(1)求函数()f x 的解析式;(2)判断函数()f x 在(0,)π内的零点个数,并加以证明.22.(2012年高考(大纲文))已知函数321()3f x x x ax =++.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值.23.(2012年高考(北京文))已知函数2()1f x ax =+(0a >),3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c )处具有公共切线,求,a b 的值;(2)当3,9a b ==-时,求函数()()f x g x +在区间[,2]k 上的最大值为28,求k 的取值范围.24.(2012年高考(安徽文))设定义在(0,+∞)上的函数1()(0)f x ax b a ax=++> (Ⅰ)求()f x 的最小值;(II)若曲线()y f x =在点(1,(1))f 处的切线方程为32y x =,求,a b 的值.2012年高考文科数学解析分类汇编:导数参考答案一、选择题 1. 【答案】:C【解析】:由函数()f x 在2x =-处取得极小值可知2x <-,()0f x '<,则()0xf x '>;2x >-,()0f x '>则20x -<<时()0xf x '<,0x >时()0xf x '>【考点定位】本题考查函数的图象,函数单调性与导数的关系,属于基础题. 2. 【答案】A【命题意图】本题主要考查了函数复合单调性的综合应用,通过构造法技巧性方法确定函数的单调性.【解析】若23a b e a e b +=+,必有22a b e a e b +>+.构造函数:()2x f x e x =+,则()20x f x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除.3. 解析:22()x f x x -'=,令()0,f x '=得2x =,2x <时,()0f x '<,1()ln f x x x=+为减函数;2x >时,()0f x '>,1()ln f x x x=+为增函数,所以2x =为()f x 的极小值点,选D.4. 解析:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得3322b =.不妨设12x x <,则32223x b ==.所以231()()(2)F x x x x =--,比较系数得3141x -=,故31122x =-.3121202x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案应选B. 另解:令)()(x g x f =可得b x x+-=21. 设b x y xy +-=''=',12不妨设21x x <,结合图形可知,21x x <, 即210x x <-<,此时021>+x x ,112211y x x y -=-<=,即021<+y y .答案应选B.5. 【答案】B【解析】b x y +-=''y x1x x211ln ,,00,02y x x y x y x x x x''=-∴=->∴< 由≤,解得-1≤≤1,又≤1,故选B 【点评】本题主要考查利导数公式以及用导数求函数的单调区间,属于中档题.6. C 【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①,而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OABS a a S a πππ-==-阴影扇形.【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用. 7. 【答案】C【解析】(0),(1)4,(3)275427(0)f abc f abc f abc abc f =-=-=-+-=-= , 又()3(1)(3)f x x x '=--,所以()f x 在(,1)-∞和(3,)+∞上单调增加,在(1,3)上单调递减,故13a b c <<<<,(0)(1)0,(0)(3)0f f f f ∴<>【考点定位】本题考查函数的零点,函数的单调性极值,考查分析判断能力、必然与或然的思想.二、填空题8. [解析] 如图1,⎩⎨⎧≤<-≤≤=1,220,2)(2121x x x x x f , 所以⎩⎨⎧≤<+-≤≤==1,220,2)(212212x x x x x x xf y ,易知,y =xf (x )的分段解析式中的两部分抛物线形状完全相同,只是开口方向及顶点位置不同,如图2,封闭图形MND 与OMP 全等,面积相等,故所求面积即为矩形ODMP 的面积S=412121=⨯.9. 【命题意图】本题主要考查导数的几何意义与直线方程,是简单题.xy A BC 1 1 图1(O )Nx y OD M 1 P 图2【解析】∵3ln 4y x '=+,∴切线斜率为4,则切线方程为:430x y --=.三、解答题 10. 【答案】:(Ⅰ)1327(Ⅱ)427【解析】::(Ⅰ)因3()f x ax bx c =++ 故2()3f x ax b '=+ 由于()f x 在点2x = 处取得极值 故有(2)0(2)16f f c '=⎧⎨=-⎩即1208216a b a b c c +=⎧⎨++=-⎩ ,化简得12048a b a b +=⎧⎨+=-⎩解得112a b =⎧⎨=-⎩(Ⅱ)由(Ⅰ)知 3()12f x x x c =-+,2()312f x x '=-令()0f x '= ,得122,2x x =-=当(,2)x ∈-∞-时,()0f x '>故()f x 在(,2)-∞-上为增函数;当(2,2)x ∈- 时,()0f x '< 故()f x 在(2,2)- 上为减函数 当(2,)x ∈+∞ 时()0f x '> ,故()f x 在(2,)+∞ 上为增函数.由此可知()f x 在12x =- 处取得极大值(2)16f c -=+,()f x 在22x = 处取得极小值(2)f c =-由题设条件知1628c += 得12c =此时(3)921,(3f c f c -=+==-+=,(2)164f c =-=-因此()f x 上[3,3]-的最小值为(2)4f =-【考点定位】本题主要考查函数的导数与极值,最值之间的关系,属于导数的应用.(1)先对函数()f x 进行求导,根据(2)0f '==0,(2)16f c =-,求出a,b 的值.(1)根据函数()f x =x3-3ax2+2bx 在x=1处有极小值-1先求出函数中的参数a,b 的值,再令导数等于0,求出极值点,判断极值点左右两侧导数的正负,当左正右负时有极大值,当左负右正时有极小值.再代入原函数求出极大值和极小值.(2)列表比较函数的极值与端点函数值的大小,端点函数值与极大值中最大的为函数的最大值,端点函数值与极小值中最小的为函数的最小值.11. 【命题意图】本题是导数中常规的考查类型主要利用三次函数的求导判定函数的单调区间,并综合绝对值不等式考查了学生的综合分析问题的能力.【解析】(1)由题意得2()122f x x a '=-,当0a ≤时,()0f x '≥恒成立,此时()f x 的单调递增区间为(),-∞+∞.当0a >时,()12()()66a a f x x x '=-+,此时函数()f x 的单调递增区间为,66a a ⎡⎤-⎢⎥⎣⎦.(2)由于01x ≤≤,当2a ≤时,33()2422442f x a x ax x x +-=-+≥-+. 当2a >时,333()242(1)244(1)2442f x a x a x x x x x +-=+--≥+--=-+.设3()221,01g x x x x =-+≤≤,则233()626()()33g x x x x '=-=-+. 则有 x30,3⎛⎫⎪ ⎪⎝⎭333,13⎛⎫ ⎪ ⎪⎝⎭1()g x ' - 0 + ()g x1减极小值增1所以min 343()()1039g x g ==->. 当01x ≤≤时,32210x x -+>. 故3()24420f x a x x +-≥-+>.12.解:(1)2()(1)(1)()f x x a x a x x a '=+--=+-,由()0f x '=,得121,0x x a =-=>13.14.解:(I)1ln ()e x x k x f x --'=,由已知,1(1)0ek f -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x'=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞. (III)证明:由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e xx x x g x x x x --=<--. 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<,所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.另证:因为)0(),ln 1(1)()(>--='=x x x x e x f x x g x,设x x x x h ln 1)(--=,则2ln )(--='x x h ,令2,02ln )(-==--='e x x x h ,当),0(2-∈e x 时0)(>'x h ,)(x h 单调递增;当),(2+∞∈-e x 时0)(<'x h ,)(x h 单调递减.所以当0>x 时,221)()(--+=≤e e h x h ,而当0>x 时110<<x e ,所以当0>x 时21)ln 1(1)(-+<--=e x x x e x g x ,综上可知结论成立.15. 【答案与解析】【点评】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、运算能力、应用所学知识解决问题的能力,难度较大. 16. (Ⅰ) 解:()x f 的定义域为R ,()a e x f x -=';若0≤a ,则()0>'x f 恒成立,所以()x f 在R 总是增函数若0>a ,令()0>'x f ,求得a x ln >,所以()x f 的单增区间是()∞+,ln a ; 令()0<'x f , 求得 a x ln <,所以()x f 的单减区间是()a ln ,∞-(Ⅱ) 把()⎩⎨⎧-='=ae xf a x 1 代入()()01>++'-x x f k x 得:()()011>++--x e k x x ,因为0>x ,所以01>-x e ,所以:()()11-->--x e k x x ,11--->-x e x k x , 11-+<-x e x x k ,所以:(*))0(11 >+-+<x x e x k x令()x e x x g x +-+=11,则()()()212---='x x x e x e e x g ,由(Ⅰ)知:()()2--=x e x h x 在()∞+,0单调递增,而()()⎩⎨⎧><0201h h ,所以()x h 在()∞+,0上存在唯一零点α,且()2,1∈α; 故()x g '在()∞+,0上也存在唯一零点且为α,当()α,0∈x 时, ()0<'x g ,当()∞+∈,αx 时,()0>'x g ,所以在()∞+,0上,()()αg x g =m in ;由()0='αg 得:2+=ααe ,所以()1+=ααg ,所以()()3,2∈αg , 由于(*)式等价于()αg k <,所以整数的最大值为217. 【解析】(1)由(0)1f c ==,(1)0f =⇒1,1c a b =+=-,则2()[(1)1]x f x ax a x e =-++,2'()((1))x f x ax a x a e =+--,依题意须对于任意(0,1)x ∈,有()0f x '<,当0a >时,因为二次函数2(1)y ax a x a =---的图像开口向上,而(0)0f a '=-<,所以须(1)(1)0f a e '=-<,即01a <<,当1a =时,对任意(0,1)x ∈,有2()(1)0x f x x e '=-<,符合条件;当0a =时,对任意(0,1x ∈,()0x f x xe '=-<,()f x 符合要求,当0a <时,因(0)0f a '=>,()f x 不符合条件,故a 的取值范围为01a ≤≤.(2)因()(21),()(21)x xg x ax e g x ax a e '=-+=-+-当0a =时,()0x g x e '=>,()g x 在0x =上取得最小值(0)1g =,在1x =上取得最大值(1)g e =;当1a =时,对于任意(0,1)x ∈,有()20x g x xe '=-<,()g x 在0x =上取得最大值(0)2g =,在1x =上取得最小值(1)0g =;当01a <<时,由1()002a g x x a-'=⇒=>,18. 【解析】解:(),x f x e a '=-令()0ln f x x a '==得. [当ln x a <时()0,()f x f x '<单调递减;当ln x a >时()0,()f x f x '>单调递增,故当ln x a =时,()f x 取最小值(ln )ln .f a a a a =-于是对一切,()1x R f x ∈≥恒成立,当且仅当ln 1a a a -≥. ①令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减.故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当1a =时,①式成立.综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()().x x f x f x e e k a x x x x --==--- 令2121()(),x x xe e xf x k e x x ϕ-'=-=--则 12112121()()1,x x x e x e x x x x ϕ-⎡⎤=----⎣⎦- 21221221()()1.x x x e x e x x x x ϕ-⎡⎤=---⎣⎦- 令()1t F t e t =--,则()1t F t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.t e t -->从而2121()10x x e x x ---->,1212()10,x x e x x ---->又1210,x e x x >-2210,x e x x >- 所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在 012(,)x x x ∈使0()0,x ϕ=即0()f x k '=成立.【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出()f x 取最小值(ln )ln .f a a a a =-对一切x∈R,f(x) ≥1恒成立转化为min ()1f x ≥从而得出求a 的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.19. 【解析】(1)因为(1)f b =,由点(1,)b 在1x y +=上,可得110b b +=⇒=因为1()(1)n n f x ax a n x -'=-+,所以(1)f a '=-又因为切线1x y +=的斜率为1-,所以11a a -=-⇒=,所以1,0a b ==(2)由(1)可知,11()(1),()(1)()1n n n n n f x x x x x f x n x x n +-'=-=-=+-+ 令()01n f x x n '=⇒=+,即()f x '在(0,)+∞上有唯一的零点01n x n =+.在(0,)1n n +上,()0f x '>,故()f x 单调递增;而在(,)1n n +∞+上,()0f x '<,()f x 单调递减,故()f x 在(0,)+∞的最大值为1()()(1)111(1)nn n n n n n f n n n n +=-=++++. (3)令1()ln 1(0)t t t t ϕ=-+>,则22111()(0)t t t t t t ϕ-'=-> 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减,而在(1,)+∞上,()0t ϕ'>,()t ϕ单调递增, 故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=,所以()0(1)t t ϕ>> 即1ln 1(1)t t t >->,令11t n =+,得11ln 1n n n +>+,即11ln()ln n n e n++> 所以11()n n e n++>,即11(1)n n n n ne +<+ 由(2)知,11()(1)n n n f x n ne+≤<+,故所证不等式成立. 【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等;另外,要注意含有,ln xe x 等的函数求导的运算及其应用考查.20.解析:(Ⅰ)考虑不等式()223160x a x a -++>的解. 因为()()()2314263331a a a a ∆=⎡-+⎤-⨯⨯=--⎣⎦,且1a <,所以可分以下三种情况: ①当113a <<时,0∆<,此时B =R ,()0,D A ==+∞. ②当13a =时,0∆=,此时{}1B x x =≠,()()0,11,D =+∞ . ③当13a <时,0∆>,此时()223160x a x a -++=有两根,设为1x 、2x ,且12x x <,则()()()13133314a a a x +---=,()()()23133314a a a x ++--=,于是{}12B x x x x x =<>或. 当103a <<时,()123102x x a +=+>,1230x x a =>,所以210x x >>,此时()()120,,D x x =+∞ ;当0a ≤时,1230x x a =≤,所以10x ≤,20x >,此时()2,D x =+∞.综上所述,当113a <<时,()0,D A ==+∞;当13a =时,()()0,11,D =+∞ ;当103a <<时,()()120,,D x x =+∞ ;当0a ≤时,()2,D x =+∞.其中()()()13133314a a a x +---=,()()()23133314a a a x ++--=.(Ⅱ)()()26616f x x a x a '=-++,令()0f x '=可得()()10x a x --=.因为1a <,所以()0f x '=有两根1m a =和21m =,且12m m <.①当113a <<时,()0,D A ==+∞,此时()0f x '=在D 内有两根1m a =和21m =,列表可得x ()0,aa(),1a1 ()1,+∞()f x '+ 0 - 0 + ()f x递增极小值递减极大值递增所以()f x 在D 内有极大值点1,极小值点a . ②当13a =时,()()0,11,D =+∞ ,此时()0f x '=在D 内只有一根113m a ==,列表可得 x10,3⎛⎫⎪⎝⎭131,13⎛⎫ ⎪⎝⎭()1,+∞()f x '+ 0 - + ()f x递增极小值递减递增所以()f x 在D 内只有极小值点a ,没有极大值点. ③当103a <<时,()()120,,D x x =+∞ ,此时1201a x x <<<<(可用分析法证明),于是()0f x '=在D 内只有一根1m a =,列表可得x ()0,aa()1,a x()2,x +∞()f x '+-+()f x递增 极小值 递减 递增所以()f x 在D 内只有极小值点a ,没有极大值点.④当0a ≤时,()2,D x =+∞,此时21x >,于是()f x '在D 内恒大于0,()f x 在D 内没有极值点.综上所述,当113a <<时,()f x 在D 内有极大值点1,极小值点a ;当103a <≤时,()f x 在D 内只有极小值点a ,没有极大值点.当0a ≤时,()f x 在D 内没有极值点.21. 【考点定位】本题主要考查函数的最值、零点、单调性等基础知识,考查推理论证能力、运算求解能力、考查函数与方程思想、数形结合思想、分类讨论思想、转化化归思想. 解:()(sin cos ),(0,),sin cos 02f x a x x x x x x x π'=+∈∴+>当0a =时,3()2f x =-不合题意; 当0a <时,()0f x '<,()f x 单调递减,max 3[()](0)2f x f ==-,不合题意; 当0a >时,()0f x '>,()f x 单调递增,max33[()]()2222f x f a πππ-==-=1a ∴=,所以综上3()sin 2f x x x =-(2)()f x 在(0,)π上有两个零点.证明如下: 由(1)知3()sin 2f x x x =-,33(0)0,()0222f f ππ-=-<=> ∴()f x 在[0,]2π上至少有一个零点,又由(1)知()f x 在[0,]2π上单调递增,故在[0,]2π上只有一个零点,当x 2ππ⎡⎤∈⎢⎥⎣⎦,时,令()()sin cos g x f x x x x '==+, 10)02g g πππ=>=-<(),(,()g x 在2ππ⎡⎤⎢⎥⎣⎦,上连续,∴2m ππ⎡⎤∈⎢⎥⎣⎦,,()0g m =')2cos -sin 0g x x x x =<(,∴()g x 在2ππ⎡⎤⎢⎥⎣⎦,上递减,当2x m π⎡⎤∈⎢⎥⎣⎦,时,()()0g x g m >=,')0f x >(,()f x 递增,∴当(,)2m m π∈时,3()()022f x f ππ-≥=>∴()f x 在(,)m π上递增,∵()0,()0f m f π><∴()f x 在(,)m π上只有一个零点,综上()f x 在(0,)π上有两个零点.22. 【命题意图】本试题考查了导数在研究函数中的运用.第一问就是三次函数,通过求解导数求解单调区间.另外就是运用极值概念,求解参数值的运用.解:(1)依题意可得2()2f x x x a '=++当440a ∆=-≤即1a ≥时,220x x a ++≥恒成立,故()0f x '≥,所以函数()f x 在R 上单调递增;当440a ∆=->即1a <时,2()20f x x x a '=++=有两个相异实根1224411,112ax a x a ---==---=-+-且12x x <故由2()20f x x x a '=++>⇒(,11)x a ∈-∞---或(11,)x a ∈-+-+∞,此时()f x 单调递增由2()201111f x x x a a x a '=++<⇒---<<-+-,此时此时()f x 单调递增递减综上可知当1a ≥时,()f x 在R 上单调递增;当1a <时,()f x 在(,11)x a ∈-∞---上单调递增,在(11,)x a ∈-+-+∞单调递增,在(11,11)a a ----+-单调递减. (2)由题设知,12,x x 为方程()0f x '=的两个根,故有2211221,2,2a x x a x x a <=--=--因此321111()33a f x =+同理222()(1)33a f x a x =-- 因此直线l 的方程为2(1)33ay a x =--设l 与x 轴的交点为0(,0)x ,得02(1)ax a =-而22322031()()()(12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+---- 由题设知,点0(,0)x 在曲线()y f x =的上,故0()0f x =,解得0a =或23a =或34a = 所以所求a 的值为0a =或23a =或34a =. 【点评】试题分为两问,题面比较简单,给出的函数比较常规,这一点对于同学们来说没有难度,但是解决的关键还是要看导数的符号对函数单调性的影响,求解函数的单调区间.第二问中,运用极值的问题,和直线方程的知识求解交点,得到参数的值.23. 【考点定位】此题应该说是导数题目中较为常规的类型题目,考醒的切线、单调性、极值以及最值问题都是果本中要求的重点内容.也是学生掌握比较好的知识点,在题目占能够发现(3)28F -=和分析出区间[,2]k 包含极大值点13x =-,比较重要.解:(1)()2f x ax '=,2()=3g x x b '+.因为曲线()y f x =与曲线()y g x =在它们的交点()1c ,处具有公共切线,所以(1)(1)f g =,(1)(1)f g ''=.即11a b +=+且23a b =+.解得3,3a b ==(2)记()()()h x f x g x =+当3,9a b ==-时,32()391h x x x x =+-+,2()369h x x x '=+- 令()0h x '=,解得:13x =-,21x =;()h x 与()h x '在(,2]-∞上的情况如下:x (,3)-∞- 3-(3,1)-1 (1,2)2 ()h x + 0 —0 +()h x '↑ 28↓ -4↑3由此可知:当3k ≤-时,函数()h x 在区间[,2]k 上的最大值为(3)28h -=; 当32k -<<时,函数()h x 在区间[,2]k 上的最大值小于28. 因此,k 的取值范围是(,3]-∞-24. 【解析】(I)11()22f x ax b ax b b ax ax=++≥+=+ 当且仅当11()ax x a ==时,()f x 的最小值为2b + (II)由题意得:313(1)22f a b a =⇔++= ①2113()(1)2f x a f a ax a ''=-⇒=-= ②由①②得:2,1a b ==-。

【精品解析】北京市2012年高考数学最新联考试题分类大汇编(3)函数与导数

【精品解析】北京市2012年高考数学最新联考试题分类大汇编(3)函数与导数

精品解析:北京市2012年高考数学最新联考试题分类大汇编(3)函数与导数试题解析一、选择题:(5)(北京市东城区2012年1月高三考试文科)设0x >,且1x x b a <<,则 (A )01b a <<< (B )01a b <<< (C ) 1b a << (D ) 1a b << 【答案】C【解析】因为0x >,且1x x b a <<,所以1b a <<。

8.(北京市西城区2012年1月高三期末考试理科)已知点(1,1)A --.若曲线G 上存在两点,B C ,使A B C △为正三角形,则称G 为Γ型曲线.给定下列三条曲线:① 3(03)y x x =-+≤≤; ②(0)y x =≤≤; ③y =其中,Γ型曲线的个数是( ) (A )0(B )1(C )2(D )3 【答案】C【解析】对于①,3(03)y x x =-+≤≤的图像是一条线段,记为,BB '如图(1)所示,从的图象是圆222x y +=在第二象限的部分,如图(2)所示,显然,无论点B 、C 在何处,△ABC 都不可能为正三角形,所以②不是Γ型曲线。

对于③,1(0)y x x=->表示双曲线在第四象限的一支,如图(3)所示,显然,存在点B,C ,使△ABC 为正三角形,所以③满足; 综上,Γ型曲线的个数为2,故选C.7. (2012年3月北京市朝阳区高三一模文科)某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对A 种产品 征收销售额的%x 的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了70%1%x x ⋅-元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于14万元,则x 的最大值是A. 2B. 6.5C. 8.8D. 10 【答案】D【答案】C3.(北京市西城区2012年4月高三第一次模拟文)若2log 3a =,3log 2b =,41log 3c =,则下列结论正确的是( D ) (A )a c b << (B )c a b << (C )b c a <<(D )c b a <<(8)(北京市东城区2012年4月高考一模理科)已知函数21,0,()(1),0.x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是(A )(),1-∞ (B )(],1-∞ (C )()0,1 (D )[)0,+∞【答案】A(8)(北京市东城区2012年4月高考一模文科)设集合1[0,)2A =,1[,1]2B =,函数1,,()22(1),.x x A f x x x B ⎧+∈⎪=⎨⎪-∈⎩若0x A ∈,且0[()]f f x A ∈, 则0x 的取值范围是(A )(41,0] (B ) (21,41] (C )(21,41) (D ) [0,83]【答案】C“函数y =f (x )在R 上单调递减”的 (A) 充分不必要条件(B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件【答案】A8.(2012年3月北京市丰台区高三一模文科)已知定义在R 上的函数()y f x =满足(2)()f x f x +=,当11x -<≤时,3()f x x =.若函数()()log a g x f x x =-至少有6个零点,则a 的取值范围是(A) (1,5)(B)1(0,)[5,)5+∞ (C)1(0,][5,)5+∞ (D) 1[,1)(1,5]5二、填空题:(11)(北京市东城区2012年1月高三考试文科)已知函数3,0,()(1),0,x x f x f x x ≤⎧=⎨->⎩那么5()6f 的值为 . 【答案】12-【解析】55111()(1)()3()66662f f f =-=-=-=-(13)(北京市东城区2012年1月高三考试文科)对于函数()lg 21f x x =-+,有如下三个命题:①(2)f x +是偶函数;②()f x 在区间(),2-∞上是减函数,在区间()2,+∞上是增函数;③(2)()f x f x +-在区间()2,+∞上是增函数.其中正确命题的序号是 .(将你认为正确的命题序号都填上)【答案】①②【解析】:函数()f x 和(2)f x +的图像如图所示,由图像可知①②正确;函数2(2)()l glg222x f x f x x x x x +-=--==+--,由复合函数的单调性法则,可知函数(2)()f x f x +-在区间()2,+∞上是减函数。

2012-2017年全国高考文科导数大题官方解答

2012-2017年全国高考文科导数大题官方解答

2012--2017全国卷高考真题导数大题1.〔2012新课标全国卷1文21,本小题总分值12分〕设函数()2xf x e ax =--. 〔Ⅰ〕求()f x 的单调区间;〔Ⅱ〕假设1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值. 解:〔Ⅰ〕()f x 定义域为(,)-∞+∞,()xf x e a '=-,假设0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增;假设0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,)0f x '>(, 所以()f x 在(,ln )a -∞,单调递减,在(ln ,)a +∞单调递增; 〔Ⅱ〕由于1a =,所以()()1()(1)1xx k f x x x k e x '-++=--++, 故当0x >时,()()10x k f x x '-++>等价于1(0)1x x k x x e +<+>-,① 令1()1x x g x x e +=+-,则221(2)()1(1)(1)x x x xx xe e e x g x e e ----'=+=--, 由〔Ⅰ〕知,函数()2xh x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x 在(0,)+∞存在唯一零点,故()g x '在(0,)+∞存在唯一零点, 设此零点为α,则(1,2)α∈,当(0,)x α∈时,()0g x '<;当(,)x α∈+∞时,)0g x '>(, 所以()g x 在(0,)+∞的最小值是()g α,又()0g α'=,可得2e αα=+,所以()1(2,3)g αα=+∈, 由于①等价于()k g α<,故整数k 的最大值为2.2.〔2013新课标全国卷1文21,本小题总分值12分〕已知函数2()()4xf x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+.〔Ⅰ〕求,a b 的值;〔Ⅱ〕讨论()f x 的单调性,并求()f x 的极大值. 解:〔Ⅰ〕2()()24f x e ax a b x '=++--,由此得(0)4f =,1(0)4f =,故4b =,8a b += 从而4a =,4b =;〔Ⅱ〕由〔Ⅰ〕知,2)4(1)4x f x e x x x =+--(, 1()4(2)244(2)().2x x f x e x x x e '=+--=+-令()0f x '=得,ln 2x =或2x =-, 从而当(,2)(ln 2,)x ∈-∞--+∞时,()0f x '>;当(2,ln 2)x ∈--时,)0f x '<(, 故()f x 在(,2)-∞-,(ln 2,)-+∞单调递增,在(2,ln 2)--单调递减, 当2x =-时,函数()f x 取得极大值,极大值是2(2)4(1)f e --=-. 3.〔2013新课标Ⅱ卷文21,本小题总分值12分〕己知函数2()xf x x e -=. 〔Ⅰ〕求()f x 的极小值和极大值;〔Ⅱ〕当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 解:〔Ⅰ〕()f x 定义域是(,)-∞+∞,()(2)xf x e x x -'=--,①当(,0)x ∈-∞或(2,)x ∈+∞时,)0f x '<(;当(0,2)x ∈时,()0f x '>, 所以故()f x 在(,0)-∞,(2,)+∞单调递减,在(0,2)单调递增, 故当0x =时,()f x 取得极小值,极小值是(0)0f =, 当2x =时,()f x 取得极大值,极大值是2(2)2f e -=, 〔Ⅱ〕设切点是(,())t f t ,则l 的方程是()()()y f t x t f t '=-+,所以l 在x 轴上截距是()2()23()22f t t m t t t t f t t t =-=+=-++'--, 由已知和①得,(,0)t ∈-∞(2,)+∞,令2()h x x x=+,则当(0,)x ∈+∞时,()h x 的取值范围为)+∞, 当(,2)x ∈-∞-时,()h x 的取值范围为(,3)-∞-, 所以(,0)t ∈-∞(2,)+∞时,()m t 的取值范围为(,3)-∞-[22,)+∞,综上,l 在x 轴上截距的取值范围(,3)-∞-[22,)+∞.4.〔2014新课标全国卷1文21,本小题总分值12分〕设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.〔Ⅰ〕求b ;〔Ⅱ〕假设存在01x ≥,使得0()1af x a <-,求a 的取值范围. 解:〔Ⅰ〕'()(1)af x a x b x=+--,由题设知(1)0f '=,解得1b =. 〔Ⅱ〕()f x 的定义域为(0,)+∞,由〔Ⅰ〕知,21()ln 2a f x a x x x -=+-,1()(1)1()(1)1a a af x a x x x x x a-'=+--=---〔Ⅰ〕假设12a ≤,则11aa≤-,当(1,)x ∈+∞时,()0f x '>,()f x 在(1,)+∞单调递增,所以,存在01x ≥,使得0()1a f x a <-的充要条件为(1)1af a <-,即1121a aa --<-,解得11a <<. 〔Ⅱ〕假设112a <<,则11a a >-,故当(1,)1ax a ∈-时,()0f x '<; 当(,)1a x a ∈+∞-时,()0f x '>,()f x 在(1,)1a a -单调递减,在(,)1a a+∞-单调递增. 所以,存在01x ≥,使得0()1a f x a <-的充要条件为()11a af a a <--,而2()ln 112(1)11a a a a af a a a a a a =++>-----,所以不合题意.〔ⅡⅠ〕假设1a >,则11(1)1221a a af a ---=-=<-.综上,a 的取值范围是(1)(1,)+∞.5.〔2014新课标Ⅱ卷文21,本小题总分值12分〕已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.〔Ⅰ〕求a ;〔Ⅱ〕证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点. 解:〔Ⅰ〕26()3f x x x a =-'+,(0)f a '=,曲线()y f x =在点(0,2)处的切线方程为2y ax =+ 由题设22a-=-,所以1a =. 〔Ⅱ〕由〔Ⅰ〕知,1a =,故32()32f x x x x =-++ 设32()()23(1)4g x f x kx x x k x =-+=-+-+, 由题设知10k ->,当0x ≤时,2()26(1)0g x x x k '=-+->,()g x 单调递增,(1)10g k -=-<,(0)40g =>,所以()0g x =在(,0]-∞有唯一实根,当0x >时,因为(1)0k x ->,所以32()34g x x x >-+, 令32()34h x x x =-+,()3(2)h x x x '=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=, 所以()0g x =在(0,)+∞没有实根,综上()0g x =在R 有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点.6. 〔2015新课标全国卷1文21,本小题总分值12分〕设函数()2ln xf x ea x =-.〔1〕讨论()f x 的导函数()f x '的零点的个数; 〔2〕证明:当0a >时()22lnf x a a a≥+. 解:〔I 〕()f x 的定义域为0+,,2()=20xaf x e x x. 当0a 时,()0f x ,()f x 没有零点; 当0a 时,因为2x e 单调递增,ax单调递增,所以()f x 在0+,()0f a ,当b满足04a b且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点. 〔II 〕由〔I 〕,可设()f x 在0+,的唯一零点为0x ,当00xx ,时,()0f x ;当0+xx ,时,()0f x .故()f x 在00x ,单调递减,在0+x ,单调递增,所以当0xx 时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a ex ,所以00022()=2ln2ln2af x ax a a a x aa. 故当0a时,2()2ln f x a a a.考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.7. 〔2016新课标全国卷1文21,本小题总分值12分〕已知函数.2)1()2()(-+-=x a e x x f x(I)讨论)(x f 的单调性; (II)假设)(x f 有两个零点,求a 的取值范围. 【答案】〔Ⅰ〕见解析〔Ⅱ〕()0,+∞解:〔Ⅰ〕()()()()()'12112.x x f x x e a x x e a =-+-=-+〔i 〕设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >. 所以在(),1-∞单调递减,在()1,+∞单调递增. 〔ii 〕设0a <,由()'0f x =得x=1或x=ln 〔-2a 〕. ①假设2ea =-,则()()()'1x f x x e e =--,所以()f x 在(),-∞+∞单调递增.②假设2ea >-,则ln 〔-2a 〕<1,故当()()(),ln 21,x a ∈-∞-+∞时,()'0f x >;当()()ln 2,1x a ∈-时,()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减.③假设2ea <-,则()21ln a ->,故当()()(),1ln 2,x a ∈-∞-+∞时,()'0f x >,当()()1,ln 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.〔Ⅱ〕〔i 〕设0a >,则由〔I 〕知,()f x 在(),1-∞单调递减,在()1,+∞单调递增. 又()()12f e f a =-=,,取b 满足b <0且ln 22b a<, 则()()()23321022a f b b a b a b b ⎛⎫>-+-=->⎪⎝⎭,所以()f x 有两个零点. 〔ii 〕设a=0,则()()2xf x x e =-所以()f x 有一个零点.〔iii 〕设a <0,假设2ea ≥-,则由〔I 〕知,()f x 在()1,+∞单调递增. 又当1x ≤时,()f x <0,故()f x 不存在两个零点;假设2ea <-,则由〔I 〕知,()f x 在()()1,ln 2a -单调递减,在()()ln 2,a -+∞1x ≤时()f x <0,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.8. 〔2017新课标全国卷1文21,本小题总分值12分〕已知函数()f x =e x (e x ﹣a )﹣a 2x .〔1〕讨论()f x 的单调性;〔2〕假设()0f x ≥,求a 的取值范围. 解:〔12分〕〔1〕函数()f x 的定义域为(,)-∞+∞,22()2(2)()x x x x f x e ae a e a e a '=--=+-,①假设0a =,则2()xf x e =,在(,)-∞+∞单调递增. ②假设0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③假设0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.〔2〕①假设0a =,则2()xf x e =,所以()0f x ≥.②假设0a >,则由〔1〕得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③假设0a <,则由〔1〕得,当ln()2ax =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥. 综上,a 的取值范围为34[2e ,1]-.。

(完整版)高考文科数学试题分类汇编导数

(完整版)高考文科数学试题分类汇编导数

2012 高考文科试题分析分类汇编:导数1.【 2012 高考重庆文8】设函数 f ( x) 在R上可导,其导函数 f ( x) ,且函数 f ( x) 在x 2处获得极小值,则函数y xf( x) 的图象可能是【答案】 C【分析】:由函数 f (x) 在x 2 处获得极小值可知x 2 ,f (x)0 ,则 xf (x)0 ;x 2 ,f (x)0 则2 x0 时xf ( x) 0, x0 时xf ( x) 0【考点定位】本题考察函数的图象,函数单一性与导数的关系,属于基础题.2.【 2012 高考浙江文10】设 a> 0, b> 0, e 是自然对数的底数A.若 e a+2a=e b +3b,则 a>bB.若 e a+2a=e b +3b,则 a< bC.若 e a-2a=e b-3b,则 a> bD.若 e a-2a=e b-3b,则 a< b【答案】 A【命题企图】本题主要考察了函数复合单一性的综合应用,经过结构法技巧性方法确立函数的单一性 .a2b a b x【分析】若 a e b ,必有 e2a e 2b .构造函数:,则f x e 2 x3f x e x 2 0 恒建立,故有函数 f x e x2x 在x>0上单一递加,即a> b 建立.其他选项用相同方法清除.23.【 2012高考陕西文 9】设函数 f ( x) =+lnx 则()xA . x=1为 f(x) 的极大值点B.x= 1为 f(x) 的极小值点22C. x=2 为 f(x) 的极大值点 D .x=2 为 f(x) 的极小值点【答案】 D.【分析】 f ' x 21x2,令 f ' x0 ,则 x 2 .x2x x2当 x 2 时, f ' x 21x2x2x x20 ;当 x 2 时, f ' x 21x2x2x x20 .即当 x 2 时, f x 是单一递减的;当 x 2 时, f x 是单一递加的.所以 x 2 是 f x的极小值点.应选 D .4. 【 2012 高考辽宁文8】函数 y=1x2㏑ x 的单一递减区间为2(A)( 1,1]( B)( 0,1]( C.) [1 , +∞)( D)( 0, +∞)【答案】 B【命题企图】本题主要考察利导数公式以及用导数求函数的单一区间,属于中档题。

2011-2012年高考数学 真题分类汇编 导数及其应用(含解析,15页)

2011-2012年高考数学 真题分类汇编 导数及其应用(含解析,15页)

导数2.(2012·某某高考卷·T9·5分)函数的图像大致为【答案】D【解析】函数x x x x f --=226cos )(,)(226cos )(x f xx f xx -=-=--为奇函数, 当0→x ,且0>x 时+∞→)(x f ;当0→x ,且0<x 时-∞→)(x f ; 当+∞→x ,+∞→--xx 22,0)(→x f ;当-∞→x ,-∞→--x x 22,0)(→x f .答案应选D 。

【点评】本题考查了函数的奇偶性的性质特点,结合图象语言,考查了数形结合法的思想,函数图象是考点中重要内容,估计明年还会继续考察。

5.( 2011年某某) 函数()()m nf x ax x =1-在区间〔0,1〕上的图像如图所示,则m ,n 的值 可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==【答案】B 【命题意图】本题考查导数在研究y0.51xO0.5函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1,2m n ==,()()()f x ax x n x x x 232=1-=-2+,则 ()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由 ()()f a 21111=⨯1-=3332,知a 存在.故选B.7.(2011年某某)1(2)0xe x dx+⎰等于A .1B .1e -C .eD .1e +【答案】C8.(2011年某某)对于函数()sin f x a x bx c =++ (其中,,,a b R c Z ∈∈),选取,,a b c 的一组值计算(1)f 和(1)f -,所得出的正确结果一定不可能是A .4和6B .3和1C .2和4D .1和2【答案】D9.(2011年某某)已知函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A ,B ,C ,给出以下判断: ①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A .①③B .①④C .②③D .②④【答案】B10.(2011年某某)若关于x 的方程x2+mx +1=0有两个不相等的实数根,则实数m 的取值X 围是A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 【答案】C13.(2011年某某)函数1()lg(1)1f x x x =++-的定义域是 ( )A .(,1)-∞-B .(1,)+∞C .(1,1)(1,)-+∞D .(,)-∞+∞【答案】C14.(2011年某某)已知定义在R 上的奇函数()x f 和偶函数()x g 满足()()2+-=+-x x a a x g x f()1,0≠>a a 且,若()a g =2,则()=2fA. 2B. 415C. 417D. 2a【答案】B【解析】由条件()()22222+-=+-a a g f ,()()22222+-=-+--a a g f ,即 ()()22222+-=+--a a g f ,由此解得()22=g ,()222--=a a f ,所以2=a ,()41522222=-=-f ,所以选B.15.(2011年某某)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:()3002t M t M -=,其中M 为0=t 时铯137的含量,已知30=t 时,铯137的含量的变化率是2ln 10-(太贝克/年),则()=60MA. 5太贝克B. 2ln 75太贝克C. 2ln 150太贝克D. 150太贝克 【答案】D【解析】因为()300/22ln 301tM t M -⨯-=,则()2ln 1022ln 3013030300/-=⨯-=-M M ,解得6000=M ,所以()302600t t M -⨯=,那么()150416002600603060=⨯=⨯=-M (太贝克),所以选D.16.(2011年某某)曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12 C. D.【答案】B【解析】22cos (sin cos )sin (cos sin )1'(sin cos )(sin cos )x x x x x x y x x x x +--==++,所以2411'|2(sincos )44x y πππ===+。

2012年导数高考题汇编(含答案)

2012年导数高考题汇编(含答案)

2012年导数高考题汇编一、选择题:1.(2012年辽宁文)函数21ln 2y x x =-的单调递减区间为 A .(1,1]- B .(0,1] C .[1,)+∞ D .(0,)+∞解:1(1)(1),0x x y x x x x+-'=-=>.当01x <<时,0y '<,函数单调递减;当1x >时,0y '>,函数单调递增.故函数单调递减区间为(0,1]. 答案:B2.(2012福建理)如图所示,在边长为1的正方形O ABC 中任取一 点P ,则点P 恰好取自阴影部分的概率为A .14 B .15 C .16 D .17解:设阴影面积为S,则312120021211)|32326S x dx x x ==-=-=⎰,又正方形面积1S '=,∴由几何 概型知,P 恰好取自阴影部分的概率为16. 答案:C3.(2012年陕西理)设函数()e x f x x =,则A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点解:()e e e (1)x x x f x x x '=+=+,当1x <-时,()0f x '<,()f x 单调递减;当1x >-时,()0f x '>,()f x 单调递增.故当1x =-时,函数()f x 有极小值.答案:C4.(2012年江西理)计算定积分121(sin )d x x x -+=⎰ .解:∵321cos sin 3x x x x '⎛⎫-=+ ⎪⎝⎭,∴11231112(sin )d cos 33x x x x x --⎛⎫+=-=⎪⎝⎭⎰. 答案:23. 5.(2012年江西文)设函数2()ln f x x x=+,则A .12x =为()f x 的极大值点 B .12x =为()f x 的极小值点 C .2x =为()f x 的极大值点 D .2x =为()f x 的极小值点6.已知函数33y x x c =-+的图象与x 轴恰有两个公共点,则c =A .2-或2B .9-或3C .1-或1D .3-或17.(2012重庆理)设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图象如图所示,则下列结论中一定成立的是A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f8.(2012重庆文)设函数()f x 在R 上可导,其导函数为()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是解:∵()f x 在2x =-处取得极小值,∴当2x <-时,()f x 单调递减,即()0f x '<;当2x >-时,()f x 单调递增,即()0f x '>. ∴当2x <-时,()0y xf x '=>;当2x =-时,()0y xf x '==;当20x -<<时,()0y xf x '=<;当0x =时,()0y xf x '==;当0x >时,()0y xf x '=>.答案:选C9.(2012年新课标理)设点P 在曲线1e 2x y =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为A .1ln2- Bln 2)- C .1ln2+ Dln 2)+解:函数1e 2x y =与ln(2)y x =互为反函数,图象关于直线y x =对称,故||PQ 的最小值就应是点P (或点)到直线y x =的最小距离的2倍.设函数1e 2x y =图象上点00(,)P x y 处的切线平行于直线y x =.则有0001|e 1ln212x x x k y x y ='===⇒=⇒=,因此,直线y x =与 曲线1e 2x y =ln 2)-ln 2)2ln 2)-⨯-. 答案:选B变式 设点P 在曲线e x y =上,点Q 在曲线11y x=-上,则||PQ 的最小值为 A1)- B1)- CD解:函数e x y =的反函数为ln y x =,考查函数ln y x =与图象11y x =-的公共点情况,即考查方程1ln 1x x=-的解的个数,即考查函数1()ln 1h x x x=+-的零点个数.1()ln 1h x x x =+-,22111()x h x x x x-'=-=,当01x <<时,()0h x '<,()h x 递减;当1x >时,()0h x '>,()h x 递增.故0x >时,()(1)0h x h ≥=,即1ln 1x x≥-,仅当1x =时,取等号.因此||PQ 最小值就是函数e x y =及其反函数ln y x =图象上两点距离最小值,易知A BC D此时(0,1)P ,(1,0)Q ,故||PQ .答案:选C10.(2012年湖南文)设定义在R 上的函数()f x 是最小正周期为2π的偶函数,()f x '是()f x 的导数,当[0,]x π∈时,0()1f x <<;当(0,)x π∈且2x π≠时,()02x f x π⎛⎫'-> ⎪⎝⎭.则函数()sin y f x x=-在[2,2]ππ-上的零点个数为A .2B .4C .5D .8解:根据函数()f x 的性质,将()sin y f x x =-的零点个数转化为函数1()y f x =与2sin y x =图象的交点的个数. ∵()02πx f x ⎛⎫'-> ⎪⎝⎭,当2πx π<<时,()0f x '>,∴()f x 在,2ππ⎛⎫ ⎪⎝⎭上是增函数;当02πx <<时,()0f x '<,∴()f x 在0,2π⎛⎫⎪⎝⎭上是减函数.设2πx π≤≤,则02πx π≤-≤.由()f x 是以2π为最小正周期的偶函数知(2)()f πx f x -=.故2πx π≤≤时,0()1f x <<. 依题意作出草图可知,1()y f x =与2sin y x =在[2,2]ππ-上有四个交点. 答案:选B11.(2012年辽宁理)若[0,)x ∈+∞,则下列不等式恒成立的是 A .2e 1x x x ≤++ B 211124x x ≤-+ C .21cos 12x x ≥- D .21ln(1)8x x x +≥-解:对选项A ,在区间[0,)+∞上,函数e x y =和21y x x =++的增长速度不在同一个“档次”上,随着x 的增大,e x y =的增长速度越来越快,会超过并会远远大于21y x x =++的增长速度,故不等式2e 1x x x ≤++不能恒成立.对选项B :令t ,则1t ≥,21x t =-.于是,原不等式对[0,)x ∈+∞是否恒成立534740t t t ⇔-+-≥对[1,)t ∈+∞是否恒成立.记53()4740,[1,)f t t t t t =-+-≥∈+∞,则42()51275(1)(1),[1,)f t t t t t t t t ⎛'=-+=+-∈+∞ ⎝,易知()f t 在⎛ ⎝内递减.当t ⎛∈ ⎝时,()(1)0f t f <=,故不等式534740t t t -+-≥对[1,)t ∈+∞不恒成立,从而排除选项B. 对选项C :记21()c o s 1,[0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-≥在[0,)+∞上恒成立,故()f x 在[0,)+∞上递增,所以()(0)0f x f ≥=,即当[0,)x ∈+∞时,不等式21cos 12x x ≥-+恒成立.对选项D :取4x =,则左边2ln5lne 2=<==右边,此时21ln(1)8x x x +<-,从而排除选项D. 答案:选C12.(2012年福建文)已知32()69,f x x x x abc a b c =-+-<<,且()()()0f a f b f c ===.现给出如下结论:①(0)(1)0f f >;②(0)(1)0f f <;③(0)(3)0f f >;④(0)(3)0f f <.其中正确结论的序号是A .①③B .①④C .②③D .②④13.(2012山东文)设函数1()f x x=,2()g x x bx =-+,若()y f x =的图象与()y g x =的图象有且只有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是A .120x x +>,120y y +>B .120x x +>,120y y +<C .120x x +<,120y y +>D .120x x +>,120y y +<解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只需(0)0F =或203F b ⎛⎫= ⎪⎝⎭.因为(0)1F =,故必有203F b ⎛⎫= ⎪⎝⎭,由此得b 不妨设12x x <,则223x b =所以1()()(F x x x x =-,比较系数得1x -,故1x =120x x +,由此知12121212110x x y y x x x x ++=+=<. 答案:B13.(2012全国大纲理)已知函数33y x x c =-+的图象与x 轴恰有两个公共点,则c = A .2-或2 B .9-或3 C .1-或1 D .3-或1解:∵2333(1)(1)y x x x '=-=+-,∴当1x <-时,0y '>,函数单调递增;当11x -<<时,0y '<,函数单调递减;当1x >时,0y '<,函数单调递增.因此,当1x =-时,函数取得极大值2c +;当1x =时,函数取得极小值2c -. 当函数图象与轴恰有两个公共点时,必有20c +=或20c -=,∴2c =-或2c =. 答案:B二、填空题:本大题共4小题,每小题5分,共20分.13.(2012新课标文)曲线(3ln 1)y x x =+在点(1,1)处的切线方程为 .提示:33ln 13ln 4y x x x x'=++⋅=+,故1|4x k y ='==,所求切线方程为14(1)y x -=-,即43y x =-. 答案:43y x =-.14.(2012年广东理)曲线33y x x =-+在点(1,3)处的切线方程为 .15.(2012年山东理)设0a >,若曲线y =x a =,0y =所围成封闭图形的面积为2a ,则a = .提示:3322202233S x x a a ====⎰,故49a =.答案:49. 16.(2012年浙江理、文)定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线21:C y x a =+到直线:l y x =的距离等于曲线222:(4)2C x y ++=到直线:l y x =的距离,则实数a = .曲线2C 是圆心为(0,4)-,半径r 圆心到直线:l y x =的距离1d 所以曲线2C 到直线l 的距离为1d r -.设曲线1C 上的点00(,)x y 到直线:l y x =的距离最短为d ,则过00(,)x y 的切线平行于直线y x =.已知函数2y x a =+,则0|21x xy x ='==,即012x =,014y a =+,点00(,)x y 到直线:l y x =的距离111||||a a d ⎛⎫-+- ⎪,由题意1||a -74a =-或94a =.当74a =-时,直线l 与曲线1C 相交,不合题意,故舍去.答案:49. 16.(2012年江西理)计算定积分121(sin )d x x x -+=⎰ .解:111112231111112(sin )d d sin d cos 33x x x x x x x x x -----+=+=-=⎰⎰⎰. 答案:23. 三、解答题:本大题共6小题,共70分. 17.(2012年新课标文)设函数()e 2x f x ax =--.(1)求()f x 的单调区间;(2)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.解:(1)()f x 的定义域为(,)-∞+∞,()e x f x a '=-. 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞上单调递增.若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>.所以,()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.故()f x 的递减区间为(,ln )a -∞,递增区间为(ln ,)a +∞. (2)由于1a =,所以()()1()(e 1)1x x k f x x x k x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0)e 1x x k x x +<+>-.① 令1()e 1x x g x x +=+-,则22e 1e (e 2)()1(e 1)(e 1)x x x x x x x g x ----'=+=--. 由(1)知,函数()e 2x h x x =--在(0,)+∞上单调递增.而(1)0h <,(2)0h >,所以()h x 在(0,)+∞上存在唯一的零点,故()g x '在(0,)+∞上存在唯一的零点.设此零点为α,则(1,2)α∈.当(0,)x α∈时,()0g x '<;当(,)x α∈+∞时,()0g x '>.所以()g x 在(0,)+∞上的最小值为()g α. 又由()0g α'=,可得e 2αα=+,所以()1(2,3)g αα=+∈. 由于①式等价于()k g α<,故整数k 的最大值为2.18.(2012年新课标理)已知函数121()(1)e (0)2x f x f f x x -'=-+.(1)求()f x 的解析式及单调区间;(2)若21()2f x x ax b ≥++,求(1)a b +的最大值.解:(1)求导:1()(1)e (0)x f x f f x -''=-+,令1x =,则0(1)(1)e (0)1(0)1f f f f ''=-+⇒=. 在原函数中,令0x =,则01(0)(1)e 1(1)e f f f -''==⇒=,故21()e 2x f x x x =-+. 由于()e 1x f x x '=-+,故当(,0)x ∈-∞时,()0f x '<;当(0,)x ∈+∞时,()0f x '>. 从而,()f x 的单调递减区间为(0,)+∞,单调增区间为(0,)+∞.(2)由已知条件得e (1)x a x b -+≥.(*) ①若10a +<,则对任意实数b ,当0x <,且11bx a -<+时,可得e (1)x a x b -+<,因此(*)式不成立. ②若10a +=,则(1)0a b +=.③若10a +>,设()e (1)x g x a x =-+,则()e (1)x g x a '=-+.当(,ln(1))x a ∈-∞+时,()0g x '<;当(ln(1),)x a ∈++∞时,()0g x '>. 从而()g x 在(,ln(1))a -∞+上单调递减,在(ln(1),)a ++∞上单调递增. 故()g x 有最小值(ln(1))1(1)ln(1)g a a a a +=+-++.所以21()2f x x ax b ≥++等价于1(1)ln(1)b a a a ≤+-++.(**) 因此22(1)(1)(1)ln(1)a b a a a +≤+-++.设22()(1)(1)ln(1)h a a a a =+-++,则()(1)[12l n (1)]ha a a '=+-+.所以()h a 在121,e 1⎛⎫-- ⎪ ⎪⎝⎭上单调递增,在12e 1,⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递减,故()h a 在12e 1a =-处取得最大值.从而e ()2h a ≤,即e (1)2a b +≤.当12e 1a =-,12e 2b =时,(**)式成立,故21()2f x x ax b ≥++.综上,(1)a b +的最大值为e 2.19.(2012年江苏理)已知,a b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导数()()2g x f x '=+,求()g x 的极值点; (3)设()(())h x f f x c =-,其中[2,2]c ∈-,求函数()y h x =的零点个数.解:(1)由题设知2()32f x x ax b '=++,且(1)320f a b '-=-+=,(1)320f a b '=++=,解得0a =,3b =-.(2)由(1)知3()3f x x x =-.因为2()2(1)(2)f x x x +=-+,所以()0g x '=的根为121x x ==,32x =-,于是函数()g x 的极值点只可能是1或2-.当2x <-时,()0g x '<;当21x -<<时,()0g x '>,故2-是()g x 的极值点. 当21x -<<或1x >时,()0g x '>,故1不是()g x 的极值点. 所以的极值点为2-.(3)令()f x t =,则()()h x f t c =-.先讨论关于x 的方程()f x d =根的情况,[2,2]d ∈-. 当||2d =时,由(2)可知,()2f x =-的两个不同的根为1和2-, 注意到()f x 是奇函数,所以()2f x =的两个不同的根为1-和2.当||2d <时,因为(1)(2)20f d f d d --=-=->,(1)(2)20f d f d d -=--=--<, 所以2-,1-,1,2都不是()f x d =的根. 由(1)知()3(1)(1)f x x x '=+-.①当(2,)x ∈+∞时,()0f x '>,于是()f x 是单调递增函数,从而()(2)2f x f >=, 此时()f x d =无实根.同理,()f x d =在(,2)-∞-上无实根.②当(1,2)x ∈时,()0f x '>,于是()f x 是单调递增函数.又(1)0f d -<,(2)0f d ->,()y f x d =-的图象不间断,所以()f x d =在(1,2)内有唯一实根.同理,()f x d =在(2,1)--内有唯一实根.③当(1,1)x ∈-时,()0f x '<,故()f x 是单调减函数.又(1)0f d -->,(1)0f d -<,()y f x d =-的图象不间断,所以()f x d =在(1,1)-内有唯一实根.由上可知:当||2d =时,()f x d =有两个不同的实根1x ,2x 满足1||1x =,2||2x =;当||2d <时,()f x d =有三个不同的实根345,,x x x 满足||2,3,4,5i x i <=.现考虑函数()y h x =的零点.(ⅰ)当||2c =时,()f t c =有两个根12,t t 满足1||1t =,2||2t =,而1()f x t =有三个不同的根,2()f x t =有两个不同的根,故()y h x =有5个零点.(ⅱ)当||2c <时,()f t c =有三个不同的根345,,t t t 满足||2(3,4,5)i t i <=,而()(3,4,5)i f x t i ==有三个不同的根,故()y h x =有9个零点.综上可知,当||2c =时,函数()y h x =有5个零点;当||2c <时,函数()y h x =有9个零点.20.(2012山东)已知函数ln ()e xx kf x +=(k 为常数,e 2.71828= 是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(1)求k 的值;(2)求()f x 的单调区间;(3)(理)设2()()()g x x x f x '=+,其中()f x '为()f x 的导函数,证明:对任意0x >,2()1e g x -<+.(文)设()()g x xf x '=,其中()f x '为()f x 的导函数,证明:对任意0x >,2()1e g x -<+.解:(1)由ln ()e x k f x +=,得1ln (),(0,)e kx x xf x x x --'=∈+∞. 因为曲线()y f x =在(1,(1))f 处的切线与x 轴平行, 所以(1)0f '=,因此1k =. (2)由(1)得1ln (),(0,)e xx x xf x x x --'=∈+∞, 当(0,1)x ∈时,10x ->,ln 0x ->,()0f x '>;当(1,)x ∈+∞时,10x -<,ln 0x x -<,()0f x '<. 所以()f x 的单调增区间是(0,1),单调递减区间是(1,)+∞. (3)(文)因为()()g x xf x '=,所以1()(1ln ),(0,)e xg x x x x x =--∈+∞. 令()1ln ,(0,)h x x x x x =--∈+∞,则2()ln 2(ln ln e ),(0,)h x x x x -'=--=--∈+∞.因此,当2(0,e )x -∈时,()0h x '>,()h x 单调递增;当2(e ,)x -∈+∞时,()0h x '<,()h x 单调递减. 所以()h x 的最大值为22(e )1e h --=+,故2()1e h x -≤+. 又当(0,)x ∈+∞时,101e x<<, 故当(0,)x ∈+∞时,所以21()1e e h x -<+,即2()1e g x -<+. (理)证明:因为2()()()g x x x f x '=+,所以1()(1ln ),(0,)e xx g x x x x x +=--∈+∞. 因此,对任意0x >,2()1e g x -<+等价于2e 1ln (1e )1xx x x x ---<++.令()1ln ,(0,)h x x x x x =--∈+∞,则2()ln 2(ln ln e ),(0,)h x x x x -'=--=--∈+∞.因此,当2(0,e )x -∈时,()0h x '>,()h x 单调递增;当2(e ,)x -∈+∞时,()0h x '<,()h x 单调递减. 所以()h x 的最大值为22(e )1e h --=+,故21ln 1e x x x ---≤+.设()e (1)x x x ϕ=-+.因为0()e 1e e x x x ϕ'=-=-,所以当(0,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,()(0)0x ϕϕ>=,故当(0,)x ∈+∞时,()e (1)0x x x ϕ=-+>,即e 11xx >+. 所以22e 1ln 1e (1e )1x x x x x ----≤+<++.因此对任意0x >,2()1e g x -<+.21.(2012年安徽理)设函数1()e (0)e x xf x a b a a =++>. (1)求()f x 在[0,)+∞内的最小值;(2)设曲线()y f x =在点(2,(2))f 处的切线方程为32y x =,求,a b 的值. 解:(1)1()e e x f x a a '=-,当ln x a <-时,()0f x '<,()f x 在(,ln )a -∞-上递减;当ln x a >-时,()0f x '>,()f x 在(ln ,)a -+∞上递增.①若01a <<,ln 0a ->,()f x 在(0,ln )a -上递减,在(ln ,)a -+∞上递增,从而()f x 在[0,)+∞上的最小值为(ln )2f a b -=+; ②若1a ≥,ln 0a -≤,()f x 在(0,ln )a -上递增,从而()f x 在[0,)+∞上的最小值为1(0)f a b a=++.(2)依题意2213(2)e e 2f a a '=-=,解得2e 2a =或21e 2a =-(舍去), 所以22e a =,代入原函数可得1232b ++=,即12b =,故22e a =,12b =. 变式 (2012年安徽文)设定义在(0,)+∞上的函数1()(0)f x ax b a ax=++>. (1)求()f x 的最小值;(2)设曲线()y f x =在点(1,(1))f 处的切线方程为32y x =,求,a b 的值. 解:(1)2222211()()11()a x x a x a a f x a ax ax x +--'=-==,当10x a <<时,()0f x '<,()f x 在10,a ⎛⎫ ⎪⎝⎭上递减;当1x a >时,()0f x '>,()f x 在1,a⎛⎫+∞ ⎪⎝⎭上递增. 所以当1x a=时,()f x 取最小值为2b +. 解法二:由题设和均值不等式可知,1()2f x ax b b ax =++≥+,其中等号成立当且仅当1ax =,即1x a=时,()f x 取最小值为2b +. (2)21()f x a ax '=-,依题意13(1)2f a a '=-=,解得2a =或12a =-(舍去), 将2a =代入13(1)2f ab a =++=,解得1b =-,故2ea =,1b =-.22.(2012年浙江理)已知0a >,b ∈R ,函数3()42f x ax bx a b =--+.(1)证明:当01x ≤≤时,①函数()f x 的最大值为|2|a b a -+;②()|2|0f x a b a +-+≥. (2)若1()1f x -≤≤对[0,1]x ∈恒成立,求a b +的取值范围.解:(1)①22()122126b f x ax b a x a ⎛⎫'=-=-⎪⎝⎭.当0b ≤时,有()0f x '≥,此时()f x 在[0,)+∞上单调递增; 当0b >时,()12f x a x x ⎛'= ⎝,此时()f x在⎡⎢⎢⎣上单调递减,在⎫⎪⎪⎭上单调递增. 所以当01x ≤≤时,max 3,2,()max{(0),(1)}max{,3}|2|,2a b b a f x f f a b a b a b a a b b a-≤⎧==-+-==-+⎨-+>⎩.②由于01x ≤≤,故当2b a ≤时,333()|2|()34224222(221)f x a b a f x a b ax bx a ax ax a a x x +-+=+-=-+≥-+=-+. 当2b a >时,3333()|2|()42(1)244(1)244(1)22(221)f x a b a f x a b ax b x a ax a x a ax a x a a x x +-+=-+=+-->+-->+--=-+. 设3()221,01g x x x x =-+≤≤,则2()626g x x x x ⎛'=-= ⎝⎭⎝⎭,于是()g x ',()g x 随x 的变化情况如下:所以,min ()10g x g ==.所以当01x ≤≤时,32210x x -+>.故3()|2|2(221)f x a b a a x x +-+≥-+. (2)由①知,当01x ≤≤时,m ax ()|2|f x a b a =-+,所以|2|1a b a -+≤.若|2|1a b a -+≤,则由②知()(|2|)1f x a b a ≥--+≥-.所以1()1f x -≤≤对任意01x ≤≤恒成立的充要条件是|2|1,0,a b a a -+≤⎧⎨>⎩即20,31,0a b a b a -≥⎧⎪-≤⎨⎪>⎩或20,1,0.a b b a a -<⎧⎪-≤⎨⎪>⎩(*)在直角坐标系aOb 中,(*)所表示的平面区域为如图所示的阴影部分,其中不包括线段BC . 做一组平行直线()a b t t +=∈R ,得13a b -<+≤,所以a b +的取值范围是(1,3]-.23.(2012年浙江文)已知a ∈R ,函数3()42f x ax ax a =-+. (1)求()f x 的单调区间;(2)证明:当01x ≤≤时,()|2|0f x a +->.解:(1)依题意得2()122f x x a '=-.当0a ≤时,()0f x '≥恒成立,此时()f x 的单调增区间为(,)-∞+∞; 当0a >时,()12f x a x x ⎛'= ⎝,此时()f x的单调增区间为,⎛-∞ ⎝和⎫⎪⎪⎭,递减区间为⎛ ⎝. (2)证明:由于当01x ≤≤时,故当2a ≤时,33()|2|422442f x a x ax x x +-=-+≥-+; 当2a >时,333()|2|42(1)244(1)2442f x a x a x x x x x +-=+--≥+--=-+. 设3()221,01g x x x x =-+≤≤,则2()626g x x x x ⎛'=-= ⎝⎭⎝⎭,于是()g x ',()g x 随x 的变化情况如下:所以,min ()10g x g ==.所以当01x ≤≤时,32210x x -+>.故3()|2|4420f x a x x +-≥-+>.24.(2012年辽宁理)设()ln(1)f x x ax b =++(,a b ∈R ,,a b 为常数),曲线()y f x =与直线32y x =在点(0,0)相切. (1)求,a b 的值;(2)证明:当02x <<时,9()6xf x x <+. 解:(1)由()y f x =过点(0,0),得1b =-. 由()y f x =在(0,0)点的切线斜率为32,又0013||12x x y a x ==⎛'==+ +⎝,得0a =. (2)证法一:由均值不等式,当0x >时,112x x ++=+12x+.记9()()6x h x f x x =-+,则312(1)1545454(6)216(1)2()1(6)(6)2(1)(6)4(1)(6)x x x h x x x x x x x x +++-+'=<-=+++++++. 令3()(6)216(1)g x x x =+-+,则当02x <<时,2()3(6)2160g x x '=+-<. 因此()g x 在(0,2)内是递减函数.又(0)0g =,得()0g x <,所以()0h x '<. 因此()h x 在(0,2)内是递减函数.又(0)0h =,得()0h x <. 于是当02x <<时,9()6xf x x <+. (2)证法二:由(1)知()ln(1)1f x x =+.由均值不等式,当0x >时,112x x ++=+12x +.①记()ln(1)k x x x =+-,则(0)0k =,1()1011x k x x x -'=-=<++,故()0k x <,即ln(1)x x +<.② 由①②得,当0x >时,3()2f x x <. 记()(6)()9h x x f x x =+-,则当02x <<时,311()()(6)()9(6)(9[3(1)(6)(218(1)]212(1)h x f x x f x x x x x x x x x ''=++-<++-=+++-+++1[3(1)(6)(3)18(1)](718)02(1)24(1)x xx x x x x x x <++++-+=-<++. 因此()h x 在(0,2)内是递减函数.又(0)0h =,得()0h x <.即9()6xf x x <+. 25.(2012年辽宁文)设()ln 1f x x =.证明:(1)当1x >时,3()(1)2f x x <-;(2)当13x <<时,9(1)()5x f x x -<+.解:(1)证法一:记3()ln 1(1)2g x x x =--,则当1x >时,13()02g x x '=<.又(1)0g =,所以有()0g x <,即3()(1)2f x x <-.证法二:当1x >时,1x +122x+.① 令()ln 1k x x x =-+,则(1)0k =,1()10k x x'=-<,故()0k x <,即ln 1x x <-.②由①②得,当1x >时,3()(1)2f x x <-.(2)证法一:记9(1)()()5x h x f x x -=-+,由(1)得3112()1545454554(5)21622()(5)(5)2(5)4(5)4(1)(5)x x x x h x x x x x x x x x x ++++-'=<-=-=++++++. 令3()(5)216G x x x =+-,则当13x <<时,2()3(5)2160G x x '=+-<,因此()G x 在(1,3)上是减函数. 又由(1)0G =,得()0G x <,所以()0h x '<.因此()h x 在(1,3)内是递减函数.又(1)0h =,得()0h x <. 于是当13x <<时,9(1)()5x f x x -<+. (2)证法二:记()(5)()9(1)h x x f x x =+--,则当13x <<时,由(1)得231111()()(5)()9(1)(5)(9[3(1)(5)(2)18](73255)022224x h x f x x f x x x x x x x x x x x x''=++-<-++-=-++++-=-+<.因此()h x 在(1,3)内是递减函数.又(1)0h =,得()0h x <.即9(1)()5x f x x -<+. 26.(2012年福建理)已知函数2()e e ()x f x ax x a =+-∈R .(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求函数()f x 的单调区间;(2)试确定a 的取值范围,使得曲线()y f x =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P .解:(1)由于()e 2e x f x ax '=+-,曲线()y f x =在点(1,(1))f 处的切线斜率20k a ==,所以0a =,即()e e x f x x =-. 此时()e e x f x '=-.当(,1)x ∈-∞时,()0f x '<,当(1,)x ∈+∞时,()0f x '>. 故()f x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞.(2)设点00(,())P x f x ,曲线()y f x =在点P 处的切线方程为000()()()y f x x x f x '=-+,令000()()()()()g x f x f x x x f x '=---,故曲线()y f x =在点P 处的切线与曲线只有一个公共点P 等价于函数()g x 有唯一零点.因为0()0g x =,且000()()()e e 2()x x g x f x f x a x x '''=-=-+-.①若0a ≥,当0x x >时,()0g x '>,则0()()0g x g x >=;当0x x <时,()0g x '<,则0()()0g x g x >=. 故()g x 只有唯一零点0x x =.由P 的任意性知,0a ≥不合题意. ②若0a <,令00()e e 2()x x h x a x x =-+-,则0()0h x =,()e 2x h x a '=+.当(,ln(2))x a ∈-∞-时,()0h x '<,从而()h x 在(,ln(2))a -∞-内单调递减;当(ln(2),)x a ∈-+∞时,()0h x '>,从而()h x 在(ln(2),)a -+∞内单调递增.(ⅰ)若0ln(2)x a =-,当(,ln (2))x a ∈-∞-时,0()()()0g x h x h x '=>=;当(ln (2),)x a ∈-+∞时,0()()()0g x h x h x '=>=.所以()g x 在R 上单调递增.所以函数()g x 在R 上有且只有一个零点ln(2)x a =-.(ⅱ)若0ln(2)x a >-,由于()h x 在(ln(2),)a -+∞内单调递增,且0()0h x =,则当(ln(2),)x a ∈-+∞时有0()()()0g x h x h x '=<=,0()()0g x g x >=;任取10(ln(2),)x a x ∈-有1()0g x >.又当1(,)x x ∈-∞时,易知122200000000()e (e ())()()e (e ())()()x x g x ax f x x f x x f x ax f x x f x x f x ax bx c ''''=+-+-+<+-+-+=++,其中0(e ())b f x '=-+,1000e ()()x c f x x f x '=-+. 由于0a <,则必存在21x x <,使得2220ax bx c ++<. 所以2()0g x <,故()g x 在21(,)x x 内存在零点,即()g x 在R 上至少有两个零点. (ⅲ)若0ln(2)x a <-,仿(ⅱ)并利用3e 6x x >,可证函数()g x 在上R 至少有两个零点. 综上,当0a <时,曲线()y f x =上存在唯一的点(ln(2),(ln(2)))P a f a --,曲线在该点处的切线与曲线有且只有一个公共点P .27.(2012福建文)已知函数3()sin ()2f x ax x a =-∈R ,且在0,2π⎡⎤⎢⎥⎣⎦上的最大值为32π-.(1)函数()f x 的解析式;(2)判断函数()f x 在(0,)π内的零点个数,并加以证明.28.(2012天津理)已知函数()ln()f x x x a =-+的最小值为0,其中0a >.(1)求a 的值;(2)若对任意的[0,)x ∈+∞,有2()f x kx ≤成立,求实数k 的最小值; (3)证明:12ln(21)2()21ni n n i *=-+<∈-∑N .解:(1)()f x 的定义域为(,)a -+∞. 由()ln()f x x x a =-+,得1(1)()1x a f x x a x a--'=-=++,显然导函数零点1(,)x a a =-∈-+∞. 当1a x a -<<-时,()0f x '<,()f x 递减;当1x a >-时,()0f x '>,()f x 递增.故1x a =-时,()f x 有极小值(1)1f a a -=-,因为()f x 是单峰函数,故m in ()(1)10f x f a a =-=-=,得1a =. (2)设22()()ln(1)(0)g x kx f x kx x x x =-=-++≥,则()0g x ≥对[0,)x ∈+∞恒成立当且仅当m in ()0(0)g x g ≥=,取1x =,则应有(1)1ln20g k =-+≥,从而0k >. 1[(12)]()2112(1)x x k g x kx x k x --'=-+=++. ①若120k -<,即12k >,则当(0,)x ∈+∞时,()0g x '>,()g x 递增. 这时有m in ()0(0)g x g ≥=,故12k >适合题意. ②若120k ->,即12k <,则当(0,12)x k ∈-时,()0g x '<,()g x 递减;当(12,)x k ∈-+∞时,()0g x '>,()g x 递增. 取0(0,12)x k ∈-,有2000()(0)0()0g x g kx f x <=⇒-<,即200()f x kx ≤不成立.故102k <<不合题意.③若12k =,则2()01x g x x '=≥+在[0,)+∞上恒成立,仅当0x =时取等号,故()g x 递增. 综上,k 的最小值为12. (3)当1n =时,不等式左边2ln32=-<=右边,所以不等式成立. 当2n ≥时,1111122222ln 1[ln(21)ln(21)]ln(21)2121212121nn n n ni i i i i f i i n i i i i i =====⎡⎤⎛⎫⎛⎫=-+=-+--=-+⎪ ⎪⎢⎥-----⎝⎭⎝⎭⎣⎦∑∑∑∑∑. 在(2)中取12k =,得21()(0)2f x x x ≤≥,从而222(,2)21(21)(23)(21)f i i i i i i *⎛⎫≤<∈≥ ⎪----⎝⎭N , 所以有112222221ln(21)(2)2ln32ln312212121(23)(21)21nn n ni i i i n f f f i i i i i n ====⎛⎫⎛⎫-+==+<-+=-+-< ⎪ ⎪------⎝⎭⎝⎭∑∑∑∑. 综上,12ln(21)2()21ni n n i *=-+<∈-∑N . 29.(2012天津文)已知函数3211(),32a f x x x ax a x -=+--∈R ,其中0a >.(1)求函数()f x 的单调区间;(2)若函数()f x 在区间(2,0)-内恰有两个零点,求a 的取值范围;(3)当1a =时,设函数()f x 在区间[,3]t t +上的最大值为()M t ,最小值为()m t ,记()()()g t M t m t =-,求函数()g t 在区间[3,1]--上的最小值.30.(2012陕西理)设函数()(,,)n n f x x bx c n b c *=++∈∈N R(1)设2n ≥,1b =,1c =-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一零点;(2)设2n =,若对任意12,[1,1]x x ∈-,有2122|()()|4f x f x -≤,求b 的取值范围;(3)在(1)的条件下,设n x 是()n f x 在1,12⎛⎫⎪⎝⎭内的零点,判断数列23,,,,n x x x 的增减性.30.(2012陕西文)设函数()(,,)n f x x bx c n b c *=++∈∈N R(1)设2n ≥,1b =,1c =-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一零点;(2)设n 为偶数,|(1)|1f -≤,|(1)|1f ≤,求3b c +的最小值和最大值;(3)设2n =,若对任意12,[1,1]x x ∈-,有12|()()|4f x f x -≤,求b 的取值范围.31.(2012湖南理)已知函数()e ax f x x =-,其中0a ≠.(1)对一切x ∈R ,()1f x ≥恒成立,求a 的取值范围;(2)在函数()f x 的图象上取定两点11(,())A x f x ,2212(,())()B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.32.(2012湖南文)已知函数()e x f x ax =-,其中0a >.(1)对一切x ∈R ,()1f x ≥恒成立,求a 的取值集合;(2)在函数()f x 的图象上取定两点11(,())A x f x ,2212(,())()B x f x x x <,记直线AB 的斜率为k .证明:存在012(,)x x x ∈,使0()f x k '=成立.33.(2012北京理)已知函数2()1(0)f x ax a =+>,3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求,a b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值.34.(2012北京文)已知函数2()1(0)f x ax a =+>,3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求,a b 的值; (2)当3a =,9b =-时,求函数()()f x g x +在区间[,2]k 上的最大值为28,求k 的取值范围.35.(2012江西理)若函数()h x 满足①(0)1h =,(1)0h =;②对任意[0,1]a ∈,有(())h h a a =;③在(0,1)上单调递减.则称()h x 为补函数.已知函数11()(1,0)1ppp x h x λp λx ⎛⎫-=>-> ⎪+⎝⎭. (1)判断函数()h x 是否为补函数,并证明你的结论;(2)若存在[0,1]m ∈,使()h m m =,称m 是函数()h x 的中介元.记1()p n n*=∈N 时()h x 的中介元为n x ,且1nn i i S x ==∑对任意的n *∈N ,都有12n S <,求λ的取值范围; (3)当0λ=,(0,1)x ∈时,函数()y h x =的图象总在直线1y x =-的上方,求p 的取值范围.36.(2012江西文)已知函数2()()e x f x ax bx c =++在[0,1]上单调递减且满足(0)1f =,(1)0f =. (1)求a 的取值范围;(2)设()()()g x f x f x '=-,求()g x 在[0,1]上的最大值和最小值.37.(2012湖北理)(1)已知函数()(1)(0)r f x rx x r x =-+->,其中r 为有理数,且01r <<.()f x 求的最小值;(2)试用(1)的结果证明如下命题:设10a ≥,20a ≥,12,b b 为正有理数. 若121b b +=,则12121122b ba a ab a b ≤+; (3)请将(2)中的命题推广到一般形式,并用数学归纳法.....证明你所推广的命题.注:当α为正有理数时,有求导公式1()ααx αx -'=. 解:(1)11()(1)r r f x r rx r x --'=-=-.当01x <<时,()0f x '<,故()f x 单调递减;当1x >时,()0f x '>,故()f x 单调递增. 故函数()f x 在1x =处取得最小值(1)0f =.(2)由(1)知,当(0,)x ∈+∞时,有()(1)0f x f ≥=,即(1)r x rx r ≤+-. ①若12,a a 中有一个为0,则12121122b ba a ab a b ≤+成立. 若12,a a 均不为0,由121b b +=,可得211b b =-,于是在①中令12a x a =,1r b =,可得1111122(1)b a a b b a a ⎛⎫≤⋅+- ⎪⎝⎭,即111121121(1)b b a a a b a b -≤+-,亦即111121122b ba a ab a b -≤+. 综上,对10a ≥,20a ≥,12,b b 为正有理数,且121b b +=,总有111121122b ba a ab a b -≤+. ② (3)(2)中的命题推广形式为:设12,,,n a a a 为非负实数,12,,,n b b b 为正有理数,若121n b b b +++= ,则12121122n b b b n n n a a a a b a b a b ≤+++ .③用数学归纳法证明如下:(ⅰ)当1n =时,11b =,有11a a ≤,③成立.(ⅱ)假设当n k =时,③成立,即若12,,,k a a a 为非负实数,12,,,k b b b 为正有理数,且121k b b b +++= ,则12121122kb b bk k k a a a a b a b a b ≤+++ .当1n k =+时,已知121,,,,k k a a a a + 为非负实数,121,,,,k k b b b b + 为正有理数,且1211k k b b b b +++++= , 此时101k b +<<,即110k b +->,于是12111111112121111121121121()()kkk kk k k k k k b b b b b b b b b b b b b b b bk k k k k k a a a a a a a a a a a a +++++++----+++==⋅ . 因为121111111k k k k b b b b b b ++++++=--- ,由归纳假设可得 12111111112212121211111111k k k k b b b b b b k k k kk k k k k b a b a b a b b b a a aa a ab b b b +++---+++++++≤⋅+⋅++⋅=---- . 从而1111211122121111k kk k b b b b b bk k k k k k a b a b a b a a a a a b +++-+++⎛⎫+++≤⋅ ⎪-⎝⎭.又因为11(1)1k k b b ++-+=,由②得11111221122111111221111(1)11k k b b k k k kk k k k k k k k k k a b a b a b a b a b a b a b a b a b a b a b a b b b ++-++++++++⎛⎫++++++⋅≤⋅-+=++++ ⎪--⎝⎭,从而112121112211kk b b b bk k k k k k a a a a a b a b a b a b ++++≤++++ .故当1n k =+时,③成立.由(ⅰ)、(ⅱ)可知,对一切正整数n ,所推广的命题成立.38.(2012湖北文)设函数()(1)(0)n f x ax x b x =-+>,n 为正整数,,a b 为常数,曲线()y f x =在(1,(1))f 处的切线方程为1x y +=.(1)求,a b 的值; (2)求函数()f x 的最大值; (3)证明:1()ef x n <. (1)解:因为(1)f b =,由点(1,)b 在直线1x y +=上,可得11b +=,即0b =. 因为1()(1)n n f x anx a n x -'=-+,所以(1)f a '=-.又因为切线1x y +=的斜率为1-,所以1a -=-,即1a =.故1a =,0b =.(2)解:有(1)知1()(1)n n n f x x x x x +=-=-,1()(1)1n n f x n x x n -⎛⎫'=+-⎪+⎝⎭.当0,1n x n ⎛⎫∈ ⎪+⎝⎭时,()0f x '>,故()f x 单调递增;当,1n x n ⎛⎫∈+∞⎪+⎝⎭时,()0f x '<,故()f x 单调递减. 故()f x 在(0,)+∞上的最大值为1111(1)nn n nn n f n n n n ⎛⎫⎛⎫⎛⎫=⋅-= ⎪ ⎪⎪++++⎝⎭⎝⎭⎝⎭. (3)证明:令1()ln 1(0)φt t t t =-+>,则22111()(0)t φt t t t t-'=-=>. 当(0,1)t ∈时,()0φt '<,故()φx 单调递减;当(1,)t ∈+∞时,()0φt '>,故()φt 单调递增. 故在(0,)+∞上()φt 的最小值为(1)0φ=,所以()0(1)φt t >>,即1ln 1(1)t t t>->.令11t n =+,得11ln 1n n n +>+,两边取对数得11ln ln e n n n ++⎛⎫> ⎪⎝⎭,所以11e n n n ++⎛⎫> ⎪⎝⎭,即11(1)en n n n n +<+. 由(2)知11()(1)en n n f x n n +≤<+.39.(2012大纲理)设函数()cos ,[0,]f x ax x x π=+∈.(1)讨论()f x 的单调性;(2)设()1sin f x x ≤+,求a 的取值范围.解:(1)()sin f x a x '=-.①当1a ≥时,()0f x '≥,且仅当1a =,2x π=时,()0f x '=,所以()f x 在[0,]π上是增函数;②当0a ≤时,()0f x '≤,且仅当0a =,0x =,或x π=时,()0f x '=,所以()f x 在[0,]π上是减函数; 当01a <<时,方程()0f x '=有两实根1x ,2x . 当1[0,)x x ∈时,sin x a <,()0f x '>,()f x 是增函数; 当12(,)x x x ∈时,sin x a >,()0f x '<,()f x 是减函数; 当2(,]x x π∈时,sin x a <,()0f x '>,()f x 是增函数. (2).40.(2012全国大纲文)已知函数321()3f x x x ax =++.(1)讨论()f x 的单调性;(2)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值.41.(2012四川理)已知a 为正实数,n 为自然数,抛物线22na y x =-+与x 轴正半轴相交于点A .设()f n 为该抛物线在点A 处的切线在y 轴上的截距.(1)用a 和n 表示()f n ;(2)求对所有n 都有33()1()11f n n f n n -≥++成立的a 的最小值;(3)当01a <<时,比较11()(2)nk f k f k =-∑与27(1)()4(0)(1)f f n f f -⋅-的大小,并说明理由.解:(1)由已知得,交点A 的坐标为⎫⎪⎪⎭,对212ny x a=-+求导得2y x '=-,则抛物线在A 处的切线方程为y x =,即n y a =+,则()n f n a =.(2)由(1)知()n f n a =,则33()1()11f n n f n n -≥++成立的充要条件是321n a n ≥+.即知321n a n ≥+对所有n 成立.特别地,取2n =,得到a当a 3n ≥时,122331223332314(13)1C 3C 3C 31C 3C 3C 312[5(2)(25)]212n n n n n n n n n a n n n n n >=+=+⋅+⋅+⋅+≥+⋅+⋅+⋅=++-+->+ .当0,1,2n =时,显然321n n ≥+.故当a 3()1()11f n n f n n -≥++对所有自然数n 都成立.所以满足条件的a . (3)由(1)知()k f k a =,则21111()(2)nnk kk k f k f k a a ===--∑∑,(1)()(0)(1)1nf f n a a f f a--=--. 下面证明:1127(1)()()(2)4(0)(1)nk f f n f k f k f f =->⋅--∑.首先证明:当01x <<时,21274x x x ≥-. 设函数227()()1,014g x x x x x =-+<<,则812()43g x x x ⎛⎫'=- ⎪⎝⎭.当203x <<时,()0g x '<;当213x <<时,()0g x '>. 故()g x 在区间(0,1)上的最小值min 2()03g x g ⎛⎫== ⎪⎝⎭.所以,当01x <<时,()0g x ≥,即得21274x x x ≥-. 由01a <<知01()k a k *<<∈N ,因此21274k kka a a ≥-,从而 121111127272727(1)()()(2)441414(0)(1)n n nnn k k k k k k a a a a f f n a f k f k a a a a f f +===---=≥=⋅>⋅=⋅-----∑∑∑. 42.(2012四川文)已知a 为正实数,n 为自然数,抛物线22na y x =-+与x 轴正半轴相交于点A .设()f n 为该抛物线在点A 处的切线在y 轴上的截距.(1)用a 和n 表示()f n ; (2)求对所有n 都有()1()11f n nf n n -≥++成立的a 的最小值;(3)当01a <<时,比较111(1)(2)(2)(4)()(2)f f f f f n f n +++--- 与(1)(1)6(0)(1)f f n f f -+⋅-的大小,并说明理由.解:(1)由已知得,交点A 的坐标为⎫⎪⎪⎭,对212ny x a=-+求导得2y x '=-,则抛物线在A 处的切线方程为y x =,即n y a =+,则()n f n a =.。

2012年高考试题+模拟新题分类汇编专题文科B 函数与导数(高考真题+模拟新题).pdf

2012年高考试题+模拟新题分类汇编专题文科B  函数与导数(高考真题+模拟新题).pdf

《日历》 学习目标: 知识与能力 1、掌握本文字词,作家作品。

2、理解文章用具体可感的事物来表现抽象意义的巧妙构思。

过程与方法 1、在反复的阅读中,理解体会作者的思想感情。

2、朗读中体会作者将抽象具体化的巧妙构思。

情感、态度与价值观 深入体会作者借助对日历的抒写表达感知生命、珍惜生命的积极的人生态度。

教学重点、难点: 文章用具体可感的事物来表现抽象意义的巧妙构思。

教学方法: 自主、合作探究 教学过程: 一、自主学习 1、走近作者 冯骥才(1942~),( )。

任天津市文联主席。

著有长篇小说《 》(与李定兴合写)、《 》,短篇小说《 》,中篇小说《 》、《 》,分获全国优秀短篇、优秀中篇小说奖。

部分作品已被译成英、法、德、日、俄等文字在国外出版。

冯骥才以写知识分子生活和天津近代历史故事见长。

注意选取新颖的视角,用多变的艺术手法,细致深入的描写,开掘生活的底蕴,咀嚼人生的况味。

2、给加点字注音 蹒跚 ( ) 嵌入 ( ) 废墟 ( ) 一缕 ( )涵义...... ( ) 捻成( ) 了无( ) 侥幸 ( ) 嵌入 ( ) 黯.....淡( ) 魅力( ) 平庸( )纯粹( ) ... 3、解释词语: 倒行逆施: 刻骨铭心: 了无: 侥幸: 二、合作探究 1、反复阅读全文,用简洁的语言概括出作者喜欢用日历的原因有哪些? 2、请引用文中的一句话,概括本文的主题. 3、理解文章的巧妙构思。

本文怎么从日历谈到时间与生命呢?这个过程有些曲折。

我们一道沿着作者的思路,从“日历”出发向“时间”“生命”攀登,理清脉络,就能更加理解文章深意。

朗读以下文段,概括大意。

(1)(第2—3自然段): (2)(第4—6自然段): (3)(第8—9自然段): (4)(第10—15自然段): 4、珍惜时间与生命,这是个抽象的问题。

而此时我们不觉得抽象,反而是具体可感,为什么? 5、借助语言训练强化认识 如果也让同学们用一种具体的事物来表现时间、生命,你会选择什么?请同学们写一段话来表现你对时间与生命的认识。

高考文科数学试题分类汇编--导数

高考文科数学试题分类汇编--导数

2012高考文科试题解析分类汇编:导数1.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是2.设a >0,b >0,e 是自然对数的底数A. 若e a +2a=e b +3b ,则a >bB. 若e a +2a=e b +3b ,则a <bC. 若e a -2a=e b -3b ,则a >bD. 若e a -2a=e b-3b ,则a <b3.设函数f (x )=2x+lnx 则 ( )A .x=12为f(x)的极大值点B .x=12为f(x)的极小值点C .x=2为 f(x)的极大值点D .x=2为 f(x)的极小值点 4.函数y=12x 2-㏑x 的单调递减区间为(A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 5.已知f (x )=x ³-6x ²+9x-abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0. 其中正确结论的序号是A.①③B.①④C.②③D.②④,6已知P,Q 为抛物线x 2=2y 上两点,点P,Q 的横坐标分别为4,-2,过P,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为(A) 1 (B) 3 (C) -4 (D) -8 7.曲线y =x (3ln x +1)在点)1,1(处的切线方程为________8.已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1(,1)2B 、(1,0)C ,函数()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为9已知函数f(x)=ax 2+1(a>0),g(x)=x 3+bx 。

高考数学真题汇编3 导数 文(解析)

高考数学真题汇编3 导数 文(解析)

2012高考试题分类汇编:3:导数一、选择题1.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是【答案】C【解析】由函数()f x 在2x =-处取得极小值可知2x <-,()0f x '<,则()0xf x '>;2x >-,()0f x '>则20x -<<时()0xf x '<,0x >时()0xf x '>,选C.2.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数A. 若e a +2a=e b+3b ,则a >bB. 若e a +2a=e b+3b ,则a <bC. 若e a -2a=e b-3b ,则a >bD. 若e a -2a=e b-3b ,则a <b 【答案】A【解析】若23a b e a e b +=+,必有22a b e a e b +>+.构造函数:()2x f x e x =+,则()20x f x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除.3.【2012高考陕西文9】设函数f (x )=2x+lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=12为f(x)的极小值点C .x=2为 f(x)的极大值点D .x=2为 f(x)的极小值点 9.【答案】D. 【解析】xx x f x x x f 12)(',ln 2)(2+-=∴+=,令0)('=x f ,则2=x ,当20<<x 时0)('<x f ,当2>x 时0)('>x f ,所以2=x 为)(x f 极小值点,故选D.4.【2012高考辽宁文8】函数y=12x 2-㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 【答案】B 【解析】211ln ,,00,02y x x y x y x x x x''=-∴=->∴<由≤,解得-1≤≤1,又≤1,故选B【点评】本题主要考查利导数公式以及用导数求函数的单调区间,属于中档题。

2012年高考数学真题汇编B函数与导数(文科)

2012年高考数学真题汇编B函数与导数(文科)

B 函数与导数 B1 函数及其表示14.B1[2012·天津卷] 已知函数y =|x 2-1|x -1的图象与函数y =kx 的图象恰有两个交点,则实数k 的取值范围是________.14.(0,1)∪(1,2) [解析] y =|x 2-1|x -1=⎩⎪⎨⎪⎧-(x +1),-1≤x <1,x +1,x <-1或x >1, 在同一坐标系内画出y =kx 与y =|x 2-1|x -1的图象如图,结合图象当直线y =kx 斜率从0增到1时,与y =|x -1|x -1在x 轴下方的图象有两公共点;当斜率从1增到2时,与y =|x 2-1|x -1的图象在x 轴上、下方各有一个公共点.11.B1[2012·陕西卷] 设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,⎝⎛⎭⎫12x ,x <0,则f (f (-4))=________.11.4 [解析] 由题目所给的是一分段函数,而f (-4)=16,所以f (16)=4,故答案为4. 3.B1[2012·山东卷] 函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]3.B [解析] 本题考查函数的定义域,考查运算能力,容易题. 要使函数f (x )=1ln (x +1)+4-x 2有意义,须有⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,解之得-1<x ≤2且x ≠0.3.B1[2012·江西卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23 D.1393.D [解析] f (x )=23,f (f (3))=⎝⎛⎭⎫232+1=139,故选D.5.B1[2012·江苏卷] 函数f (x )=1-2 log 6x 的定义域为________.5.(0,6] [解析] 本题考查函数定义域的求解.解题突破口为寻找使函数解析式有意义的限制条件.由⎩⎪⎨⎪⎧x >0,1-2log 6x ≥0,解得0<x ≤ 6.11.B1[2012·广东卷] 函数y =x +1x的定义域为________.11.{x |x ≥-1且x ≠0} [解析] 本题考查函数的定义域,函数有意义,满足:⎩⎨⎧x +1≥0,x ≠0.解得{x |x ≥-1且x ≠0}.9.B1[2012·福建卷] 设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π9.B [解析] 解题的关键是求分段函数的值时,一定要认真分析自变量所在的区间,因为各段上的解析式是不相同的.∵π是无理数,∴g (π)=0,f (g (π))=f (0)=0,所以选择B.13.B1[2012·四川卷] 函数f (x )=11-2x的定义域是________.(用区间表示)13.⎝⎛⎭⎫-∞,12 [解析] 由⎩⎪⎨⎪⎧1-2x ≠0,1-2x ≥0,解得x <12,即函数f (x )的定义域为⎝⎛⎭⎫-∞,12. B2 反函数2.B2[2012·全国卷] 函数y =x +1(x ≥-1)的反函数为( )A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1)2.A [解析] 本小题主要考查求反函数的方法.解题的突破口为原函数与反函数定义域与值域的关系和反解x 的表达式.由y =x +1得y 2=x +1,即x =y 2-1,交换x 和y 得y =x 2-1,又原函数的值域为y ≥0,所以反函数的定义域为x ≥0,故选A.B3 函数的单调性与最值16.B3[2012·课标全国卷] 设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m =________.16.[答案] 2[解析] 因为f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,令g (x )=2x +sin xx 2+1,则f (x )=g (x )+1.由g (-x )=-2x -sin xx 2+1=-g (x )及函数g (x )的定义域为R ,得函数g (x )是奇函数,故g (x )max 与g (x )min互为相反数.故g (x )max +g (x )min =0.易知M =g (x )max +1,m =g (x )min +1,所以M +m =g (x )max +1+g (x )min +1=0+2=2.13.B3[2012·安徽卷] 若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.13.-6 [解析] 容易作出函数f (x )的图像(图略),可知函数f (x )在⎝⎛⎦⎤-∞,-a2上单调递减,在⎣⎡⎭⎫-a 2,+∞单调递增.又已知函数f (x )的单调递增区间是[3,+∞),所以-a2=3,解得a =-6. 12.B2、D2[2012·四川卷] 设函数f (x )=(x -3)3+x -1,{a n }是公差不为0的等差数列,f (a 1)+f (a 2)+…+f (a 7)=14,则a 1+a 2+…+a 7=( )A .0B .7C .14D .2112.D [解析] 记公差为d , 则f (a 1)+f (a 2)+…+f (a 7)=(a 1-3)3+(a 2-3)3+…+(a 7-3)3+(a 1+a 2+…+a 7)-7=(a 4-3d -3)3+(a 4-2d -3)3+…+(a 4+2d -3)3+(a 4+3d -3)3+7a 4-7 =7(a 4-3)3+7×3(a 4-3)+7a 4-7.由已知,7(a 4-3)3+7×3(a 4-3)+7a 4-7=14, 即7(a 4-3)3+7×3(a 4-3)+7(a 4-3)=0, ∴(a 4-3)3+4(a 4-3)=0.因为f (x )=x 3+4x 在R 上为增函数,且f (0)=0, 故a 4-3=0,即a 4=3,∴a 1+a 2+…+a 7=7a 4=7×3=21. 2.B3、B4[2012·陕西卷] 下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3C .y =1xD .y =x |x |2.D [解析] 本小题主要考查函数的单调性、奇偶性,解题的突破口为单调性的定义、奇偶性的定义与函数图像的对应关系.若函数为单调增函数,其图像为从左向右依次上升;若函数为奇函数,其图像关于原点对称.经分析,A 选项函数的图像不关于原点对称,不是奇函数,排除;B 选项函数的图像从左向右依次下降,为单调减函数,排除;C 选项函数的图像从左向右依次下降,为单调减函数,排除;故选D.其实对于选项D ,我们也可利用x >0、x =0、x <0讨论其解析式,然后画出图像,经判断符合要求,故选D.8.B3、B10[2012·北京卷] 某棵果树前n 年的总产量S n 与n 之间的关系如图1-6所示.从目前记录的结果看,前m 年的年平均产量最高,m 的值为( )A .5B .7C .9D .118.C [解析] 本题考查利用函数图像识别函数值的变化趋势,也就是函数增减速度的快慢.法一:因为随着n 的增大,S n 在增大,要使S nn 取得最大值,只要让随着n 的增大S n +1-S n的值超过S n +1-S 1n (平均变化)的加入即可,S n +1-S n 的值不超过S n +1-S 1n (平均变化)的舍去,由图像可知,6,7,8,9这几年的改变量较大,所以应该加入,到第10,11年的时候,改变量明显变小,所以不应该加入,故答案为C.法二:假设S m m 是S n n 取的最大值,所以只要S m m >S m +1m +1即可,也就是S m -0m -0>S m +1-0(m +1)-0,即可以看作点Q m (m ,S m )与O (0,0)连线的斜率大于点Q m +1(m +1,S m +1)与O (0,0)连线的斜率,所以观察可知到第Q 9(9,S 9)与O (0,0)连线的斜率开始大于点Q 10(10,S 10)与O (0,0)连线的斜率.答案为C.14.A2、A3、B3、E3[2012·北京卷] 已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2,若∀x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是________.14.(-4,0) [解析] 本题考查函数图像与性质、不等式求解、逻辑、二次函数与指数函数等基础知识和基本技能,考查分类讨论的数学思想、分析问题和解决问题以及综合运用知识的能力.由已知g (x )=2x -2<0,可得x <1,要使∀x ∈R ,f (x )<0或g (x )<0,必须使x ≥1时,f (x )=m (x -2m )(x +m +3)<0恒成立,当m =0时,f (x )=m (x -2m )(x +m +3)=0不满足条件,所以二次函数f (x )必须开口向下,也就是m <0,要满足条件,必须使方程f (x )=0的两根2m ,-m -3都小于1,即⎩⎪⎨⎪⎧2m <1,-m -3<1,可得m ∈(-4,0).20.B3、D4、M4[2012·北京卷] 设A 是如下形式的2行3列的数表,满足性质P :a ,b ,c ,d ,e ,f c +d +e +f =0.记r i (A )为A 的第i 行各数之和(i =1,2),c j (A )为A 的第j 列各数之和(j =1,2,3);记k (A )为|r 1(A )|,|r 2(A )|,|c 1(A )|,|c 2(A )|,|c 3(A )|中的最小值. (1)对如下数表A ,求k (A )的值;(2)设数表A 形如其中-1≤d ≤0,求k (A )(3)对所有满足性质P 的2行3列的数表A ,求k (A )的最大值.20.解:(1)因为r 1(A )=1.2,r 2(A )=-1.2,c 1(A )=1.1,c 2(A )=0.7,c 3(A )=-1.8, 所以k (A )=0.7.(2)r 1(A )=1-2d ,r 2(A )=-1+2d , c 1(A )=c 2(A )=1+d ,c 3(A )=-2-2d . 因为-1≤d ≤0,所以|r 1(A )|=|r 2(A )|≥1+d ≥0, |c 3(A )|≥1+d ≥0.所以k (A )=1+d ≤1.当d =0时,k (A )取得最大值1. (3)任给满足性质P 的数表A (如下所示).任意改变A 的行次序或列次序,或把A 中的每个数换成它的相反数,所得数表A *仍满足性质P ,并且k (A )=k (A *).因此,不妨设r 1(A )≥0,c 1(A )≥0,c 2(A )≥0. 由k (A )的定义知,k (A )≤r 1(A ),k (A )≤c 1(A ),k (A )≤c 2(A ). 从而3k (A )≤r 1(A )+c 1(A )+c 2(A ) =(a +b +c )+(a +d )+(b +e ) =(a +b +c +d +e +f )+(a +b -f ) =a +b -f ≤3. 所以k (A )≤1.由(2)知,存在满足性质P 的数表A 使k (A )=1.故k (A )的最大值为1.6.B3、B4[2012·天津卷] 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .y =cos2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x2,x ∈RD .y =x 3+1,x ∈R6.B [解析] 法一:由偶函数的定义可排除C 、D ,又∵y =cos2x 为偶函数,但在(1,2)内不单调递增,故选B.法二:由偶函数定义知y =log 2|x |为偶函数,以2为底的对数函数在(1,2)内单调递增.22.B3、B9、B12[2012·福建卷] 已知函数f (x )=ax sin x -32(a ∈R ),且在⎣⎡⎦⎤0,π2上的最大值为π-32.(1)求函数f (x )的解析式;(2)判断函数f (x )在(0,π)内的零点个数,并加以证明.22.解:(1)由已知f ′(x )=a (sin x +x cos x ),对于任意x ∈⎝⎛⎭⎫0,π2,有sin x +x cos x >0. 当a =0时,f (x )=-32,不合题意;当a <0,x ∈⎝⎛⎭⎫0,π2时,f ′(x )<0,从而f (x )在⎝⎛⎭⎫0,π2内单调递减, 又f (x )在⎣⎡⎦⎤0,π2上的图象是连续不断的,故f (x )在⎣⎡⎦⎤0,π2上的最大值为f (0)=-32,不合题意;当a >0,x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,从而f (x )在⎝⎛⎭⎫0,π2内单调递增,又f (x )在⎣⎡⎦⎤0,π2上的图象是连续不断的,故f (x )在⎣⎡⎦⎤0,π2上的最大值为f ⎝⎛⎭⎫π2,即π2a -32=π-32,解得a =1.综上所述,得f (x )=x sin x -32.(2)f (x )在(0,π)内有且只有两个零点. 证明如下:由(1)知,f (x )=x sin x -32,从而有f (0)=-32<0.f ⎝⎛⎭⎫π2=π-32>0,又f (x )在⎣⎡⎦⎤0,π2上的图象是连续不断的. 所以f (x )在⎝⎛⎭⎫0,π2内至少存在一个零点. 又由(1)知f (x )在⎣⎡⎦⎤0,π2上单调递增,故f (x )在⎝⎛⎭⎫0,π2内有且仅有一个零点. 当x ∈⎣⎡⎦⎤π2,π时,令g (x )=f ′(x )=sin x +x cos x .由g ⎝⎛⎭⎫π2=1>0,g (π)=-π<0,且g (x )在⎣⎡⎦⎤π2,π上的图象是连续不断的,故存在m ∈⎝⎛⎭⎫π2,π,使得g (m )=0.由g ′(x )=2cos x -x sin x ,知x ∈⎝⎛⎭⎫π2,π时,有g ′(x )<0, 从而g (x )在⎝⎛⎭⎫π2,π内单调递减.当x ∈⎝⎛⎭⎫π2,m 时,g (x )>g (m )=0,即f ′(x )>0,从而f (x )在⎝⎛⎭⎫π2,m 内单调递增, 故当x ∈⎣⎡⎦⎤π2,m 时,f (x )≥f ⎝⎛⎭⎫π2=π-32>0,故f (x )在⎣⎡⎦⎤π2,m 上无零点; 当x ∈(m ,π)时,有g (x )<g (m )=0,即f ′(x )<0,从而f (x )在(m ,π)内单调递减. 又f (m )>0,f (π)<0,且f (x )在[m ,π]上的图象是连续不断的,从而f (x )在(m ,π)内有且仅有一个零点.综上所述,f (x )在(0,π)内有且只有两个零点.8.B3、B10[2012·北京卷] 某棵果树前n 年的总产量S n 与n 之间的关系如图1-6所示.从目前记录的结果看,前mA .5B .7C .9D .118.C [解析] 本题考查利用函数图像识别函数值的变化趋势,也就是函数增减速度的快慢.法一:因为随着n 的增大,S n 在增大,要使S nn 取得最大值,只要让随着n 的增大S n +1-S n的值超过S n +1-S 1n (平均变化)的加入即可,S n +1-S n 的值不超过S n +1-S 1n (平均变化)的舍去,由图像可知,6,7,8,9这几年的改变量较大,所以应该加入,到第10,11年的时候,改变量明显变小,所以不应该加入,故答案为C.法二:假设S m m 是S n n 取的最大值,所以只要S m m >S m +1m +1即可,也就是S m -0m -0>S m +1-0(m +1)-0,即可以看作点Q m (m ,S m )与O (0,0)连线的斜率大于点Q m +1(m +1,S m +1)与O (0,0)连线的斜率,所以观察可知到第Q 9(9,S 9)与O (0,0)连线的斜率开始大于点Q 10(10,S 10)与O (0,0)连线的斜率.答案为C.16.B3、B4[2012·浙江卷] 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.16.[答案] 32[解析] 本题考查了函数的性质等基本知识,考查了学生的观察、变通能力,属于较易题.函数f (x )是定义在R 上的周期为2的偶函数,且当x ∈[0,1]时,f (x )=x +1,那么f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12=32.B4 函数的奇偶性与周期性12.B4[2012·重庆卷] 若f (x )=(x +a )(x -4)为偶函数,则实数a =________.12.4 [解析] 因为f (x )=x 2+(a -4)x -4a ,所以根据f (x )为偶函数得f (x )=f (-x ),即x 2+(a -4)x -4a =x 2+(4-a )x -4a ,所以a -4=4-a ,解得a =4.9.B4[2012·上海卷] 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.9.3 [解析] 考查函数的奇偶性和转化思想,解此题的关键是利用y =f (x )为奇函数.已知函数y =f (x )为奇函数,由已知得g (1)=f (1)+2=1,∴f (1)=-1,则f (-1)=-f (1)=1,所以g (-1)=f (-1)+2=1+2=3. 4.B4[2012·广东卷] 下列函数为偶函数的是( ) A .y =sin x B .y =x 3C .y =e xD .y =ln x 2+14.D [解析] 根据奇偶性的定义知A 、B 都为奇函数,C 非奇非偶函数,D 是偶函数,所以选择D.6.B3、B4[2012·天津卷] 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .y =cos2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x2,x ∈RD .y =x 3+1,x ∈R6.B [解析] 法一:由偶函数的定义可排除C 、D ,又∵y =cos2x 为偶函数,但在(1,2)内不单调递增,故选B.法二:由偶函数定义知y =log 2|x |为偶函数,以2为底的对数函数在(1,2)内单调递增. 2.B3、B4[2012·陕西卷] 下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3C .y =1x D .y =x |x |2.D [解析] 本小题主要考查函数的单调性、奇偶性,解题的突破口为单调性的定义、奇偶性的定义与函数图像的对应关系.若函数为单调增函数,其图像为从左向右依次上升;若函数为奇函数,其图像关于原点对称.经分析,A 选项函数的图像不关于原点对称,不是奇函数,排除;B 选项函数的图像从左向右依次下降,为单调减函数,排除;C 选项函数的图像从左向右依次下降,为单调减函数,排除;故选D.其实对于选项D ,我们也可利用x >0、x =0、x <0讨论其解析式,然后画出图像,经判断符合要求,故选D.16.B3、B4[2012·浙江卷] 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.16.[答案] 32[解析] 本题考查了函数的性质等基本知识,考查了学生的观察、变通能力,属于较易题.函数f (x )是定义在R 上的周期为2的偶函数,且当x ∈[0,1]时,f (x )=x +1,那么f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12=32. B5 二次函数12.B5[2012·山东卷] 设函数f (x )=1x,g (x )=-x 2+bx .若y =f (x )的图象与y =g (x )的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .x 1+x 2>0,y 1+y 2>0B .x 1+x 2>0,y 1+y 2<0C .x 1+x 2<0,y 1+y 2>0D .x 1+x 2<0,y 1+y 2<012.B [解析] 本题考查函数的图象与性质,考查推理论证能力,偏难. 当y =f (x )的图象与y =g (x )图象有且仅有两个不同的公共点时,其图象为作出点A 关于原点的对称点C ,则C (-x 1,-y 1),由图象知-x 1<x 2,-y 1>y 2,故x 1+x 2>0,y 1+y 2<0,故选B.6.B5、B6[2012·上海卷] 方程4x -2x +1-3=0的解是________.6.log 23 [解析] 考查指数方程和二次方程的求解,以及函数与方程的思想和转化思想,关键是把指数方程转化为二次方程求解.把原方程转化为(2x )2-2·2x -3=0,化为(2x -3)(2x +1)=0, 所以2x =3,或2x =-1(舍去),两边取对数解得x =log 23.B6 指数与指数函数4.B6[2012·四川卷] x -a (a >0,且a ≠1)的图象可能是( )1-14.C [解析] 由f (1)=0可知选C. 15.B6、B8[2012·山东卷] 若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.15.14 [解析] 本题考查指数函数与幂函数的单调性,考查分类讨论思想及推理论证能力,中档题.∵g (x )=(1-4m )x 在(0,+∞)上单调递增,∴m <14.当a >1时,f (x )的最大值为a 2=4,即a =2,m =2-1=12>14,与m <14相矛盾,舍去;当0<a <1时,f (x )的最大值为a -1=4,即a =14,m =⎝⎛⎭⎫142<14成立. 4.B6、B7[2012·天津卷] 已知a =21.2,b ⎝⎛⎭⎫12-0.8,c =2 log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a4.A [解析] ∵a =21.2>2,1=⎝⎛⎭⎫120<b =⎝⎛⎭⎫12-0.8<⎝⎛⎭⎫12-1=2,c =2log 52=log 54<1, ∴c <b <a .6.B5、B6[2012·上海卷] 方程4x -2x +1-3=0的解是________.6.log 23 [解析] 考查指数方程和二次方程的求解,以及函数与方程的思想和转化思想,关键是把指数方程转化为二次方程求解.把原方程转化为(2x )2-2·2x -3=0,化为(2x -3)(2x +1)=0,所以2x =3,或2x =-1(舍去),两边取对数解得x =log 23.11.B6、B7[2012·课标全国卷] 当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)11.B [解析] 当a >1时,因为0<x ≤12,所以log a x <0.不满足4x <log a x ,故舍去;当0<a <1时,因为0<x ≤12,数形结合易得,需满足412<log a 12,得2<log a 12,则a 2>12,解得a >22或a <-22.结合前提条件得22<a <1.综上,a ∈⎝⎛⎭⎫22,1.故选B. 5.B6、B8、B9[2012·北京卷] 函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .35.B [解析] 本题考查指数函数和幂函数的图象与性质,考查数形结合的数学思想.由f (x )=x 12-⎝⎛⎭⎫12x =0,可得x 12=⎝⎛⎭⎫12x ,令h (x )=x 12,g (x )=⎝⎛⎭⎫12x ,所以函数f (x )的零点个数就是函数h (x )与g (x )的交点个数,如图可知交点个数只有一个,所以函数f (x )的零点个数为1,答案为B.7.E1、B6、B7[2012·湖南卷] 设a ①c a >cb;②a c <b c ;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( ) A .① B .①② C .②③ D .①②③7.D [解析] 本题考查不等式性质、指数式和对数式的大小比较,意在考查考生对不等式性质、幂函数和对数函数的性质的运用能力;解题思路:转化为幂函数比较大小,利用换底公式比较对数式的大小.由不等式的基本性质可知①对;幂函数y =x c (c <0)在(0,+∞)上单调递减,又a >b >1,所以②对;由对数函数的单调性可得log b (a -c )>log b (b -c ),又由对数的换底公式可知log b (b -c ) >log a (b -c ),所以log b (a -c )>log a (b -c ),故选项D 正确.[易错点] 本题易错一:不等式基本性质不了解,以为①错;易错二:指数式大小比较,利用指数函数的性质比较,容易出错;易错三:对换底公式不了解,无法比较,错以为③错.10.A1、E3、B6[2012·重庆卷] 设函数f (x )=x 2-4x +3,g (x )=3x -2,集合M ={x ∈R |f (g (x ))>0|,则N ={x ∈R |g (x )<2},则M ∩N 为( )A .(1,+∞)B .(0,1)C .(-1,1)D .(-∞,1)10.D [解析] 因为f (g (x ))=[g (x )]2-4g (x )+3,所以解关于g (x )不等式[g (x )]2-4g (x )+3>0,得g (x )<1或g (x )>3,即3x -2<1或3x -2>3,解得x <1或x >log 35,所以M =(-∞,1)∪(log 35,+∞),又由g (x )<2,即3x -2<2,3x <4,解得x <log 34,所以N =(-∞,log 34),故M ∩N =(-∞,1),选D.B7 对数与对数函数7.B7[2012·重庆卷] 已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c7.B [解析] 因为a =log 233>1,b =log 293=log 233>1,又∵0=log 31<log 32<log 33=1,∴a =b >c ,选B.11.B7[2012·全国卷] 已知x =lnπ,y =log 52,z =e -12,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x11.D [解析] 本小题主要考查对数与指数的大小比较,解题的突破口为寻找中间量作比较.x =lnπ>lne =1,0<log 52<log 42=log 4412=12,1=e 0>e -12=1e >14=12,∴y <z <x ,故选D.12.B7[2012·北京卷] 已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.12.2 [解析] 本题考查函数解析式与对数运算性质.因为f (ab )=lg(ab )=1,所以f (a 2)+f (b 2)=lg a 2+lg b 2=lg(ab )2=2lg(ab )=2.3.B7[2012·安徽卷] (log 29)·(log 34)=( ) A.14 B.12 C .2 D .43.D [解析] (解法一)由换底公式,得()log 29·()log 34=lg9lg2·lg4lg3=2lg3lg2·2lg2lg3=4. (解法二)()log 29·()log 34=()log 232·()log 322=2()log 23·2()log 32=4.4.B6、B7[2012·天津卷] 已知a =21.2,b ⎝⎛⎭⎫12-0.8,c =2 log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a4.A [解析] ∵a =21.2>2,1=⎝⎛⎭⎫120<b =⎝⎛⎭⎫12-0.8<⎝⎛⎭⎫12-1=2,c =2log 52=log 54<1, ∴c <b <a .7.E1、B6、B7[2012·湖南卷] 设a >b >1,c <0,给出下列三个结论: ①c a >cb;②a c <b c ;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( ) A .① B .①② C .②③ D .①②③7.D [解析] 本题考查不等式性质、指数式和对数式的大小比较,意在考查考生对不等式性质、幂函数和对数函数的性质的运用能力;解题思路:转化为幂函数比较大小,利用换底公式比较对数式的大小.由不等式的基本性质可知①对;幂函数y =x c (c <0)在(0,+∞)上单调递减,又a >b >1,所以②对;由对数函数的单调性可得log b (a -c )>log b (b -c ),又由对数的换底公式可知log b (b -c ) >log a (b -c ),所以log b (a -c )>log a (b -c ),故选项D 正确.[易错点] 本题易错一:不等式基本性质不了解,以为①错;易错二:指数式大小比较,利用指数函数的性质比较,容易出错;易错三:对换底公式不了解,无法比较,错以为③错.2.A1、B7[2012·安徽卷] 设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]2.D [解析] 根据已知条件,可求得A =[]-1,2,B =()1,+∞,所以A ∩B =[]-1,2∩()1,+∞=(]1,2.11.B6、B7[2012·课标全国卷] 当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)11.B [解析] 当a >1时,因为0<x ≤12,所以log a x <0.不满足4x <log a x ,故舍去;当0<a <1时,因为0<x ≤12,数形结合易得,需满足412<log a 12,得2<log a 12,则a 2>12,解得a >22或a <-22.结合前提条件得22<a <1.综上,a ∈⎝⎛⎭⎫22,1.故选B. B8 幂函数与函数的图像象15.B6、B8[2012·山东卷] 若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.15.14 [解析] 本题考查指数函数与幂函数的单调性,考查分类讨论思想及推理论证能力,中档题.∵g (x )=(1-4m )x 在(0,+∞)上单调递增,∴m <14.当a >1时,f (x )的最大值为a 2=4,即a =2,m =2-1=12>14,与m <14相矛盾,舍去;当0<a <1时,f (x )的最大值为a -1=4,即a =14,m =⎝⎛⎭⎫142<14成立. 5.B6、B8、B9[2012·北京卷] 函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .35.B [解析] 本题考查指数函数和幂函数的图象与性质,考查数形结合的数学思想.由f (x )=x 12-⎝⎛⎭⎫12x =0,可得x 12=⎝⎛⎭⎫12x ,令h (x )=x 12,g (x )=⎝⎛⎭⎫12x ,所以函数f (x )的零点个数就是函数h (x )与g (x )的交点个数,如图可知交点个数只有一个,所以函数f (x )的零点个数为1,答案为B.6.B8[2012·湖北卷] f (x )的图象如图1-1所示,则y =-f (2-x )的图象为( )图16.B[解析] y =f (x )→y =f (-x )→y =f [-(x -2)]→y =-f (2-x ),即将y =f (x )的图象关于y 轴对称,再向右平移2个单位长度,然后关于x 轴对称,即为B 图象.B9 函数与方程21.B9、B12、E5[2012·陕西卷] 设函数f (x )=x n +bx +c (n ∈N +,b ,c ∈R ).(1)设n ≥2,b =1,c =-1,证明:f (x )在区间⎝⎛⎭⎫12,1内存在唯一零点; (2)设n 为偶数,|f (-1)|≤1,|f (1)|≤1,求b +3c 的最小值和最大值;(3)设n =2,若对任意x 1,x 2∈[-1,1]有|f (x 1)-f (x 2)|≤4,求b 的取值范围. 21.解:(1)当b =1,c =-1,n ≥2时,f (x )=x n +x -1. ∵f ⎝⎛⎭⎫12f (1)=⎝⎛⎭⎫12n -12×1<0. ∴f (x )在⎝⎛⎭⎫12,1内存在零点.又当x ∈⎝⎛⎭⎫12,1时,f ′(x )=nx n -1+1>0, ∴f (x )在⎝⎛⎭⎫12,1上是单调递增的,∴f (x )在⎝⎛⎭⎫12,1内存在唯一零点.(2)解法一:由题意知⎩⎪⎨⎪⎧-1≤f (-1)≤1,-1≤f (1)≤1,即⎩⎪⎨⎪⎧0≤b -c ≤2,-2≤b +c ≤0.由图像知,b +3c 在点(0,-2)取到最小值-6, 在点(0,0)取到最大值0,∴b +3c 的最小值为-6,最大值为0.解法二:由题意知-1≤f (1)=1+b +c ≤1,即-2≤b +c ≤0,① -1≤f (-1)=1-b +c ≤1,即-2≤-b +c ≤0,② ①×2+②得-6≤2(b +c )+(-b +c )=b +3c ≤0,当b =0,c =-2时,b +3c =-6;当b =c =0时,b +3c =0, 所以b +3c 的最小值为-6,最大值为0.解法三:由题意知⎩⎪⎨⎪⎧f (-1)=1-b +c ,f (1)=1+b +c ,解得b =f (1)-f (-1)2,c =f (1)+f (-1)-22,∴b +3c =2f (1)+f (-1)-3.又∵-1≤f (-1)≤1,-1≤f (1)≤1, ∴-6≤b +3c ≤0,所以b +3c 的最小值为-6,最大值为0. (3)当n =2时,f (x )=x 2+bx +c .对任意x 1,x 2∈[-1,1]都有|f (x 1)-f (x 2)|≤4等价于f (x )在[-1,1]上的最大值与最小值之差M ≤4.据此分类讨论如下:①当⎪⎪⎪⎪b 2>1,即|b |>2时,M =|f (1)-f (-1)|=2|b |>4,与题设矛盾.②当-1≤-b2<0,即0<b ≤2时,M =f (1)-f ⎝⎛⎭⎫-b 2=⎝⎛⎭⎫b2+12≤4恒成立. ③当0≤-b2≤1,即-2≤b ≤0时,M =f (-1)-f ⎝⎛⎭⎫-b 2=⎝⎛⎭⎫b2-12≤4恒成立. 综上可知,-2≤b ≤2.注:②,③也可合并证明如下: 用max{a ,b }表示a ,b 中的较大者.当-1≤-b2≤1,即-2≤b ≤2时,M =max{f (1),f (-1)}-f ⎝⎛⎭⎫-b 2 =f (-1)+f (1)2+|f (-1)-f (1)|2-f ⎝⎛⎭⎫-b2 =1+c +|b |-⎝⎛⎭⎫-b24+c =⎝⎛⎭⎫1+|b |22≤4恒成立.3.B9、C1[2012·湖北卷] 函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为( ) A .2 B .3 C .4 D .5 3.D[解析] 要使f (x )=x cos2x =0,则x =0或cos2x =0,而cos2x =0(x ∈[0,2π])的解有x =π4,3π4,5π4,7π4,所以零点的个数为5.故选D. 22.B3、B9、B12[2012·福建卷] 已知函数f (x )=ax sin x -32(a ∈R ),且在⎣⎡⎦⎤0,π2上的最大值为π-32.(1)求函数f (x )的解析式;(2)判断函数f (x )在(0,π)内的零点个数,并加以证明.22.解:(1)由已知f ′(x )=a (sin x +x cos x ),对于任意x ∈⎝⎛⎭⎫0,π2,有sin x +x cos x >0. 当a =0时,f (x )=-32,不合题意;当a <0,x ∈⎝⎛⎭⎫0,π2时,f ′(x )<0,从而f (x )在⎝⎛⎭⎫0,π2内单调递减, 又f (x )在⎣⎡⎦⎤0,π2上的图象是连续不断的,故f (x )在⎣⎡⎦⎤0,π2上的最大值为f (0)=-32,不合题意;当a >0,x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,从而f (x )在⎝⎛⎭⎫0,π2内单调递增,又f (x )在⎣⎡⎦⎤0,π2上的图象是连续不断的,故f (x )在⎣⎡⎦⎤0,π2上的最大值为f ⎝⎛⎭⎫π2,即π2a -32=π-32,解得a =1.综上所述,得f (x )=x sin x -32.(2)f (x )在(0,π)内有且只有两个零点. 证明如下:由(1)知,f (x )=x sin x -32,从而有f (0)=-32<0.f ⎝⎛⎭⎫π2=π-32>0,又f (x )在⎣⎡⎦⎤0,π2上的图象是连续不断的. 所以f (x )在⎝⎛⎭⎫0,π2内至少存在一个零点.又由(1)知f (x )在⎣⎡⎦⎤0,π2上单调递增,故f (x )在⎝⎛⎭⎫0,π2内有且仅有一个零点. 当x ∈⎣⎡⎦⎤π2,π时,令g (x )=f ′(x )=sin x +x cos x .由g ⎝⎛⎭⎫π2=1>0,g (π)=-π<0,且g (x )在⎣⎡⎦⎤π2,π上的图象是连续不断的,故存在m ∈⎝⎛⎭⎫π2,π,使得g (m )=0.由g ′(x )=2cos x -x sin x ,知x ∈⎝⎛⎭⎫π2,π时,有g ′(x )<0, 从而g (x )在⎝⎛⎭⎫π2,π内单调递减.当x ∈⎝⎛⎭⎫π2,m 时,g (x )>g (m )=0,即f ′(x )>0,从而f (x )在⎝⎛⎭⎫π2,m 内单调递增, 故当x ∈⎣⎡⎦⎤π2,m 时,f (x )≥f ⎝⎛⎭⎫π2=π-32>0, 故f (x )在⎣⎡⎦⎤π2,m 上无零点; 当x ∈(m ,π)时,有g (x )<g (m )=0,即f ′(x )<0,从而f (x )在(m ,π)内单调递减. 又f (m )>0,f (π)<0,且f (x )在[m ,π]上的图象是连续不断的,从而f (x )在(m ,π)内有且仅有一个零点.综上所述,f (x )在(0,π)内有且只有两个零点.5.B6、B8、B9[2012·北京卷] 函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .35.B [解析] 本题考查指数函数和幂函数的图象与性质,考查数形结合的数学思想.由f (x )=x 12-⎝⎛⎭⎫12x =0,可得x 12=⎝⎛⎭⎫12x ,令h (x )=x 12,g (x )=⎝⎛⎭⎫12x ,所以函数f (x )的零点个数就是函数h (x )与g (x )的交点个数,如图可知交点个数只有一个,所以函数f (x )的零点个数为1,答案为B.B10 函数模型及其应用21.B10、B11、B12 [2012·浙江卷] 已知a ∈R ,函数f (x )=4x 3-2ax +a . (1) 求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0. 21.解:(1)由题意得f ′(x )=12x 2-2a .当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0 时,f ′(x )=12⎝⎛⎭⎫x -a 6⎝⎛⎭⎫x +a 6,此时 函数f (x )的单调递增区间为⎝⎛⎦⎤-∞,-a 6和⎣⎡⎭⎫a 6,+∞, 单调递减区间为⎣⎡⎦⎤-a 6,a 6. (2)由于0≤x ≤1,故当a ≤2时,f (x )+|a -2|=4x 3-2ax +2≥4x 3-4x +2.当a >2时,f (x )+|a -2|=4x 3+2a (1-x )-2≥4x 3+4(1-x )-2=4x 3-4x +2. 设g (x )=2x 3-2x +1,0≤x ≤1,则 g ′(x )=6x 2-2=6⎝⎛⎭⎫x -33⎝⎛⎭⎫x +33, 于是所以当0≤x ≤1时,2x 3-2x +1>0.故f (x )+|a -2|≥4x 3-4x +2>0. 18.B10、B11、B12[2012·北京卷] 已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值;(2)当a =3,b =-9时,若函数f (x )+g (x )在区间[k,2]上的最大值为28,求k 的取值范围. 18.解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b .因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,所以f (1)=g (1),且f ′(1)=g ′(1).即a +1=1+b ,且2a =3+b . 解得a =3,b =3.(2)记h (x )=f (x )+g (x ).当a =3,b =-9时, h (x )=x 3+3x 2-9x +1, h ′(x )=3x 2+6x -9.令h ′(x )=0,得x 1=-3,x 2=1. h (x )与h ′(x )在(-∞,2]上的情况如下:由此可知:当k ≤-3时,函数h (x )在区间[k,2]上的最大值为h (-3)=28; 当-3<k <2时,函数h (x )在区间[k,2]上的最大值小于28.因此,k 的取值范围是(-∞,-3].18.K2、B10、I2[2012·课标全国卷] 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.18.解:(1)当日需求量n ≥17时,利润y =85. 当日需求量n <17时,利润y =10n -85. 所以y 关于n 的函数解析式为y =⎩⎪⎨⎪⎧10n -85,n <17,85,n ≥17(n ∈N ). (2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为 1100(55×10+65×20+75×16+85×54)=76.4. ②利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为 p =0.16+0.16+0.15+0.13+0.1=0.7. 18.B10、I4[2012·福建卷] 某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ; (2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)18.解:(1)由于x -=16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5,y -=16(y 1+y 2+y 3+y 4+y 5+y 6)=80.所以a =y --b x -=80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1000=-20⎝⎛⎭⎫x -3342+361.25. 当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润.B11 导数及其运算9.B11[2012·陕西卷] 设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点9.D [解析] 所给的原函数f (x )=2x +ln x 的导函数为f ′(x )=-2x 2+1x ,令f ′(x )=0可得x =2,当x >2时,f ′(x )>0,函数f (x )为增函数;当x <2时,f ′(x )<0,函数f (x )为减函数,所以x =2为极小值点,故选D.13.B11[2012·课标全国卷] 曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.13.[答案] y =4x -3[解析] y ′=3ln x +1+x ·3x =3ln x +4,故y ′|x =1=4.故所求切线方程为y -1=4(x -1),即4x -y -3=0.21.B10、B11、B12 [2012·浙江卷] 已知a ∈R ,函数f (x )=4x 3-2ax +a . (1) 求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0.21.解:(1)由题意得f ′(x )=12x 2-2a .当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0 时,f ′(x )=12⎝⎛⎭⎫x -a 6⎝⎛⎭⎫x +a 6,此时 函数f (x )的单调递增区间为⎝⎛⎦⎤-∞,-a 6和⎣⎡⎭⎫a 6,+∞, 单调递减区间为⎣⎡⎦⎤-a 6,a 6. (2)由于0≤x ≤1,故当a ≤2时,f (x )+|a -2|=4x 3-2ax +2≥4x 3-4x +2.当a >2时,f (x )+|a -2|=4x 3+2a (1-x )-2≥4x 3+4(1-x )-2=4x 3-4x +2. 设g (x )=2x 3-2x +1,0≤x ≤1,则 g ′(x )=6x 2-2=6⎝⎛⎭⎫x -33⎝⎛⎭⎫x +33, 于是所以当0≤x ≤1时,2x 3-2x +1>0.故f (x )+|a -2|≥4x 3-4x +2>0. 18.B10、B11、B12[2012·北京卷] 已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值;(2)当a =3,b =-9时,若函数f (x )+g (x )在区间[k,2]上的最大值为28,求k 的取值范围. 18.解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b .因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,所以f (1)=g (1),且f ′(1)=g ′(1).即a +1=1+b ,且2a =3+b . 解得a =3,b =3.(2)记h (x )=f (x )+g (x ).当a =3,b =-9时, h (x )=x 3+3x 2-9x +1, h ′(x )=3x 2+6x -9.令h ′(x )=0,得x 1=-3,x 2=1. h (x )与h ′(x )在(-∞,2]上的情况如下:由此可知:当k ≤-3时,函数h (x )在区间[k,2]上的最大值为h (-3)=28; 当-3<k <2时,函数h (x )在区间[k,2]上的最大值小于28.因此,k 的取值范围是(-∞,-3].12.B11[2012·辽宁卷] 已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P 、Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-812.C [解析] 本小题主要考查导数的几何意义的应用.解题的突破口为求切点坐标和切线的斜率.由x 2=2y 可知y =12x 2,这时y ′=x ,由P ,Q 的横坐标为4,-2,这时P (4,8),Q (-2,2),以点P 为切点的切线方程P A 为y -8=4(x -4),即4x -y -8=0①;以点Q 为切点的切线方程QA 为y -2=-2(x +2),即2x +y +2=0②;由①②联立得A 点坐标为(1,-4),这时纵坐标为-4.7.D3、B11[2012·上海卷] 有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则lim n→∞(V 1+V 2+…+V n )=________.7.87 [解析] 考查等比数列和无穷递缩等比数列的极限,此题只要掌握极限公式即可解决,是简单题型.由已知可知V 1,V 2,V 3,…构成新的等比数列,首项V 1=1,公比q =18,由极限公式得lim n →∞(V 1+V 2+…+V n)=V 11-q =11-18=87. 10.B11、B12、E1[2012·浙江卷] 设a >0,b >0,e 是自然对数的底数( )A .若e a +2a =e b +3b ,则a >bB .若e a +2a =e b +3b ,则a <bC .若e a -2a =e b -3b ,则a >bD .若e a -2a =e b -3b ,则a <b10.A [解析] 本题考查构造函数、利用函数性质来实现判断逻辑推理的正确与否,考查观察、构想、推理的能力.由e a +2a =e b +3b ,有e a +3a >e b +3b ,令函数f (x )=e x +3x ,则f (x )在(0,+∞)上单调递增,∵f (a )>f (b ),∴a >b ,A 正确,B 错误;由e a -2a =e b -3b ,有e a -2a <e b -2b ,令函数f (x )=e x -2x ,则f ′(x )=e x -2,函数f (x )=e x -2x 在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,当a ,b ∈(0,ln2)时,由f (a )<f (b ),得a >b ,当a ,b ∈(ln2,+∞)时,由f (a )<f (b )得a <b ,故C 、D 错误.B12 导数的应用8.B12[2012·重庆卷] 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )图18.C [解析] 在A 中,当x <-2时,由图象知y =xf ′(x )>0,则f ′(x )<0;当-2<x <0时,由图象知y =xf ′(x )>0,则f ′(x )<0,所以函数在x =-2处没有极值;在B 中,当x <-2时,由图象知y =xf ′(x )<0,则f ′(x )>0;当-2<x <0时,由图象知y =xf ′(x )<0,则f ′(x )>0,所以函数在x =-2处没有极值;在C 中,当x <-2时,由图象知y =xf ′(x )>0,则f ′(x )<0;当-2<x <0时,由图象知y =xf ′(x )<0,则f ′(x )>0,所以函数在x =-2处取得极小值;在D 中,当x <-2时,由图象知y =xf ′(x )<0,则f ′(x )>0;当-2<x <0时,由图象知y =xf ′(x )>0,则f ′(x )<0,所以函数在x =-2处取得极大值.综上所知,选C.20.B12[2012·天津卷] 已知函数f (x )=13x 3+1-a 2x 2-ax -a ,x ∈R ,其中a >0.(1)求函数f (x )的单调区间;(2)若函数f (x )在区间(-2,0)内恰有两个零点,求a 的取值范围; (3)当a =1时,设函数f (x )在区间[t ,t +3]上的最大值为M (t ),最小值为m (t ),记g (t )=M (t )-m (t ),求函数g (t )在区间[-3,-1]上的最小值.20.解:(1)f ′(x )=x 2+(1-a )x -a =(x +1)(x -a ).由f ′(x )=0,得x 1=-1,x 2=a >0. 当x 变化时,f ′(x ),f (x )的变化情况如下表:故函数f (x )的单调递增区间是(-∞,-1),(a ,+∞);单调递减区间是(-1,a ). (2)由(1)知f (x )在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f (x )在区间(-2,0)内恰有两个零点当且仅当⎩⎪⎨⎪⎧f (-2)<0,f (-1)>0,f (0)<0,解得0<a <13.所以,a 的取值范围是⎝⎛⎭⎫0,13. (3)a =1时,f (x )=13x 3-x -1.由(1)知f (x )在[-3,-1]上单调递增,在[-1,1]上单调递减,在[1,2]上单调递增.①当t ∈[-3,-2]时,t +3∈[0,1],-1∈[t ,t +3],f (x )在[t ,-1]上单调递增,在[-1,t+3]上单调递减.因此,f (x )在[t ,t +3]上的最大值M (t )=f (-1)=-13,而最小值m (t )为f (t )与f (t +3)中的较小者.由f (t +3)-f (t )=3(t +1)(t +2)知,当t ∈[-3,-2]时,f (t )≤f (t +3),故m (t )=f (t ),所以g (t )=f (-1)-f (t ).而f (t )在[-3,-2]上单调递增,因此f (t )≤f (-2)=-53,所以g (t )在[-3,-2]上的最小值为g (-2)=-13-⎝⎛⎭⎫-53=43. ②当t ∈[-2,-1]时,t +3∈[1,2], 且-1,1∈[t ,t +3].下面比较f (-1),f (1),f (t ),f (t +3)的大小. 由f (x )在[-2,-1],[1,2]上单调递增,有 f (-2)≤f (t )≤f (-1). f (1)≤f (t +3)≤f (2).又由f (1)=f (-2)=-53,f (-1)=f (2)=-13,从而M (t )=f (-1)=-13,m (t )=f (1)=-53,所以g (t )=M (t )-m (t )=43.综上,函数g (t )在区间[-3,-1]上的最小值为43.21.B10、B11、B12 [2012·浙江卷] 已知a ∈R ,函数f (x )=4x 3-2ax +a . (1) 求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0. 21.解:(1)由题意得f ′(x )=12x 2-2a .当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0 时,f ′(x )=12⎝⎛⎭⎫x -a 6⎝⎛⎭⎫x +a 6,此时 函数f (x )的单调递增区间为⎝⎛⎦⎤-∞,-a 6和⎣⎡⎭⎫a 6,+∞, 单调递减区间为⎣⎡⎦⎤-a 6,a 6. (2)由于0≤x ≤1,故当a ≤2时,f (x )+|a -2|=4x 3-2ax +2≥4x 3-4x +2.当a >2时,f (x )+|a -2|=4x 3+2a (1-x )-2≥4x 3+4(1-x )-2=4x 3-4x +2. 设g (x )=2x 3-2x +1,0≤x ≤1,则 g ′(x )=6x 2-2=6⎝⎛⎭⎫x -33⎝⎛⎭⎫x +33, 于是所以当0≤x ≤1时,2x 3-2x +1>0. 故f (x )+|a -2|≥4x 3-4x +2>0.10.B11、B12、E1[2012·浙江卷] 设a >0,b >0,e 是自然对数的底数( ) A .若e a +2a =e b +3b ,则a >b B .若e a +2a =e b +3b ,则a <b C .若e a -2a =e b -3b ,则a >b D .若e a -2a =e b -3b ,则a <b10.A [解析] 本题考查构造函数、利用函数性质来实现判断逻辑推理的正确与否,考查观察、构想、推理的能力.由e a +2a =e b +3b ,有e a +3a >e b +3b ,令函数f (x )=e x +3x ,则f (x )在(0,+∞)上单调递增,∵f (a )>f (b ),∴a >b ,A 正确,B 错误;由e a -2a =e b -3b ,有e a -2a <e b -2b ,令函数f (x )=e x -2x ,则f ′(x )=e x -2,函数f (x )=e x -2x 在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,当a ,b ∈(0,ln2)时,由f (a )<f (b ),得a >b ,当a ,b ∈(ln2,+∞)时,由f (a )<f (b )得a <b ,故C 、D 错误.22.B12[2012·山东卷] 已知函数f (x )=ln x +kex (k 为常数,e =2.71828…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间;(3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.22.解:(1)由f (x )=ln x +kex ,得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞),由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x ex (1-x -x ln x ),x ∈(0,+∞),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012高考文科试题解析分类汇编:导数1.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是【答案】C【解析】:由函数()f x 在2x =-处取得极小值可知2x <-,()0f x '<,则()0xf x '>;2x >-,()0f x '>则20x -<<时()0xf x '<,0x >时()0xf x '>【考点定位】本题考查函数的图象,函数单调性与导数的关系,属于基础题. 2.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数A. 若e a +2a=e b +3b ,则a >bB. 若e a +2a=e b +3b ,则a <bC. 若e a -2a=e b -3b ,则a >bD. 若e a -2a=e b -3b ,则a <b 【答案】A【命题意图】本题主要考查了函数复合单调性的综合应用,通过构造法技巧性方法确定函数的单调性. 【解析】若23abe a e b+=+,必有22a be a e b+>+.构造函数:()2xf x ex =+,则()20xf x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除.3.【2012高考陕西文9】设函数f (x )=2x+lnx 则 ( )A .x=12为f(x)的极大值点 B .x=12为f(x)的极小值点C .x=2为 f(x)的极大值点D .x=2为 f(x)的极小值点 【答案】D.【解析】()22212'x f x xxx-=-+=,令()'0f x =,则2x =.当2x <时,()22212'0x f x x x x -=-+=<; 当2x >时,()22212'0x f x xx x-=-+=>.即当2x <时,()f x 是单调递减的;当2x >时,()f x 是单调递增的. 所以2x =是()f x 的极小值点.故选D . 4.【2012高考辽宁文8】函数y=12x 2-㏑x 的单调递减区间为(A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 【答案】B【命题意图】本题主要考查利导数公式以及用导数求函数的单调区间,属于中档题。

【解析】211ln ,,00,02y x x y x y x x x x''=-∴=->∴< 由≤,解得-1≤≤1,又≤1,故选B5.【2102高考福建文12】已知f (x )=x ³-6x ²+9x-abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0. 其中正确结论的序号是A.①③B.①④C.②③D.②④ 【答案】C .考点:导数。

难度:难。

分析:本题考查的知识点为导数的计算,零点问题,要先分析出函数的性质,结合图形来做。

解答:c b a abc x x x x f <<-+-=,96)(23, 9123)('2+-=x x x f)3)(1(3)34(32--=+-=x x x x导数和函数图像如下:由图04961)1(>-=-+-=abc abc f ,0275427)3(<-=-+-=abc abc f ,且0)3()0(<=-=f abc f , 所以0)3()0(,0)1()0(<>f f f f 。

6.【2012高考辽宁文12】已知P,Q 为抛物线x 2=2y 上两点,点P,Q 的横坐标分别为4,-2,过P,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为 (A) 1 (B) 3 (C) -4 (D) -8 【答案】C【命题意图】本题主要考查利用导数求切线方程的方法,直线的方程、两条直线的交点的求法,属于中档题。

【解析】因为点P ,Q 的横坐标分别为4,-2,代人抛物线方程得P ,Q 的纵坐标分别为8,2.由2212,,,2x y y x y x '==∴=则所以过点P ,Q 的抛物线的切线的斜率分别为4,-2,所以过点P ,Q 的抛物线的切线方程分别为48,22,y x y x =-=--联立方程组解得1,4,x y ==-故点A 的纵坐标为-4【点评】曲线在切点处的导数即为切线的斜率,从而把点的坐标与直线的斜率联系到一起,这是写出切线方程的关键。

7.【2012高考新课标文13】曲线y =x (3ln x +1)在点)1,1(处的切线方程为________ 【答案】34-=x y)x (【命题意图】本题主要考查导数的几何意义与直线方程,是简单题.【解析】∵3ln 4y x '=+,∴切线斜率为4,则切线方程为:430x y --=.8.【2012高考上海文13】已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1(,1)2B 、(1,0)C ,函数()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为【答案】41。

【解析】根据题意,得到12,02()122,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+≤⎪⎩ ,从而得到⎪⎪⎩⎪⎪⎨⎧≤+-≤≤==121,22210,2)(22x x x x x x xf y 所以围成的面积为41)22(2121221=+-+=⎰⎰dx x x xdx S ,所以围成的图形的面积为41 .【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大. 9【2102高考北京文18】(本小题共13分)已知函数f(x)=ax 2+1(a>0),g(x)=x 3+bx 。

若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b 的值; 当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k 的取值范围。

【考点定位】此题应该说是导数题目中较为常规的类型题目,考醒的切线、单调性、极值以及最值问题都是果本中要求的重点内容。

也是学生掌握比较好的知识点,在题目占能够发现(3)28F -=和分析出区间[,2]k 包含极大值点13x =-,比较重要。

解:(1)()2f x ax '=,2()=3g x x b'+.因为曲线()y f x =与曲线()y g x =在它们的交点()1c ,处具有公共切线,所以(1)(1)f g =,(1)(1)f g ''=.即11a b +=+且23a b =+.解得3,3a b == (2)记()()()h x f x g x =+当3,9a b ==-时,32()391h x x x x =+-+,2()369h x x x '=+- 令()0h x '=,解得:13x =-,21x =;()h x 与()h x '在(,2]-∞上的情况如下:由此可知:当3k ≤-时,函数()h x 在区间[,2]k 上的最大值为(3)28h -=; 当32k -<<时,函数()h x 在区间[,2]k 上的最大值小于28. 因此,k 的取值范围是(,3]-∞-10.【2012高考江苏18】(16分)若函数)(x f y =在0x x =处取得极大值或极小值,则称0x 为函数)(x f y =的极值点。

已知a b ,是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数. 【答案】解:(1)由32()f x x ax bx =++,得2()32f'x x ax b =++。

∵1和1-是函数32()f x x ax bx =++的两个极值点,∴ (1)32=0f'a b =++,(1)32=0f'a b -=-+,解得==3a b -0,。

(2)∵ 由(1)得,3()3f x x x =- ,∴()()23()()2=32=12g x f x x x x x '=+-+-+,解得123==1=2x x x -,。

∵当2x <-时,()0g x <';当21<x <-时,()0g x >', ∴=2x -是()g x 的极值点。

∵当21<x <-或1x >时,()0g x >',∴ =1x 不是()g x 的极值点。

∴()g x 的极值点是-2。

(3)令()=f x t ,则()()h x f t c =-。

先讨论关于x 的方程()=f x d 根的情况:[]2, 2d ∈-当=2d 时,由(2 )可知,()=2f x -的两个不同的根为I 和一2 ,注意到()f x 是奇函数,∴()=2f x 的两个不同的根为一和2。

当2d <时,∵(1)=(2)=20f d f d d >----,(1)=(2)=20f d f d d <----- ,∴一2 , -1,1 ,2 都不是()=f x d 的根。

由(1)知()()()=311f'x x x +-。

① 当()2x ∈+∞,时,()0f 'x > ,于是()f x 是单调增函数,从而()(2)=2f x >f 。

此时()=f x d 在()2+∞,无实根。

② 当()1 2x ∈,时.()0f'x >,于是()f x 是单调增函数。

又∵(1)0f d <-,(2)0f d >-,=()y f x d -的图象不间断, ∴()=f x d 在(1 , 2 )内有唯一实根。

同理,()=f x d 在(一2 ,一I )内有唯一实根。

③ 当()1 1x ∈-,时,()0f'x <,于是()f x 是单调减两数。

相关文档
最新文档