博弈论战略分析入门

合集下载

企业战略管理中的博弈论分析

企业战略管理中的博弈论分析

企业战略管理中的博弈论分析企业在制定战略时,除了考虑自身的利益、环境因素和市场需求等外,还需要考虑到其竞争对手的行为。

因此,运用博弈论对企业竞争策略进行分析成为了一种有力的工具。

博弈论理论中的博弈模型具备预测和预判对手行为的能力,可以帮助企业制定最优策略,同时也可以为实际应用提供决策参考。

一、博弈论基本概念博弈是一种交互行为,在这个过程中,双方(或多方)会根据自己的利益和目标做出决策,代价是对手的反应。

在博弈中,玩家可以选择不同的策略,但其决策与结果是有联系的。

博弈论研究的是这种决策与结果之间的关系,并为企业决策提供方法和工具。

博弈论通过建立博弈模型和求解博弈结果,为企业竞争决策提供指导思路。

博弈论中最基本的概念是博弈双方的策略和收益,而策略和收益的不同组合可以对应不同的博弈模型。

博弈模型的基本要素包括玩家、策略、收益和信息等。

玩家是决定事件的个体,决策后会获得一定的收益。

策略是决策者在一定的状态下的行动方案。

收益是表示关于决策的某种结果得到的利益。

信息是用来描述玩家之间的相互影响。

这些要素共同构成了博弈模型,模型的求解结果将指导实际应用。

二、博弈论在企业战略中的应用企业竞争是一种动态博弈过程,包括市场博弈、价格博弈、广告宣传博弈等。

在这个过程中,企业需要不断地优化其经营策略,以最大化自身利益。

博弈论为企业决策提供了理论和方法,包括最大化自身收益、最小化对手收益、稳定对抗等方面。

下面以三个例子分别说明博弈论在企业决策中的应用。

1.价格竞争模型在价格竞争模型中,企业需要决定自己的定价策略,以占有更多市场份额,并获得更高的利润。

同时,企业也需要考虑竞争对手的反应,以避免价格战的产生。

此时,博弈论就可以帮助企业进行分析。

以两家企业为例,设企业A和企业B的定价分别为$a$和$b$,消费者对于两家企业提供的产品有完全相同的需求,且价格是他们做购买决策的唯一考虑因素。

两家企业的成本相同,均为$c$元。

如果两家企业的定价相同,那么他们将平分市场份额,并获得利润$a-c$。

博弈论入门

博弈论入门

博弈论入门简而言之,博弈论研究的是策略形势。

那么你知道下列哪项属于策略形势吗?∙自由竞争企业∙垄断企业∙两者皆是∙两者皆不是自由竞争企业是价格接受者,不必担心他们竞争对手的行为;垄断企业没有竞争对手,他们虽然不是价格接受者,但要面对需求曲线。

而介于两者之间的就是策略形势。

博弈论研究策略形势,即不完全竞争的情况。

换句话说,行为影响结果,结果不但取决于你的行为,还取决于其他人的行为。

博弈论所分析的是两个或两个以上的竞争者或参与者选择能够共同影响每一参与者的行动或策略的方式。

下面我们通过一个有趣的案例,来体会博弈中将会遇到的进退得失智猪博弈(Pigs Payoffs)猪圈里有一头大猪,一头小猪。

猪圈的一边有一个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。

如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。

当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。

那么,这两只猪各会采取什么策略呢?答案是,小猪将选择“搭便车”策略,即舒舒服服地等在食槽边,而大猪则为这一点食物不知疲倦地奔波于踏板和食槽之间。

原因其实很简单,因为若小猪去踩踏板,它将一无所获,不踩踏板反而能吃上食物。

对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。

反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强,所以不得不亲力亲为。

但是如果我们换一种投食方案,结果将会大大不同。

单选题现在我们采取减量方案:投食量仅为原来的一半,其他条件保持不变。

那么依你推断,将会出现什么情况?∙大猪坐享其成,小猪疲于奔命。

∙两只猪均拼命争抢着去踩踏板。

∙两只猪都不愿去踩踏板。

∙以上皆不是单选题如果想让两只猪拼命争抢着去踩踏板才能得到食物,应该采取什么策略?∙投食量减少一半∙投食量增加一倍∙投食量减少一半,同时投食口移到踏板附近∙投食量增加一倍,同时投食口移到踏板附近单选题以下哪个现实生活中的案例,符合“智猪博弈”的最原始情况(小猪躺着大猪跑)?∙股市上等待庄家抬轿的散户∙等待市场中出现具有赢利能力的新产品,随即大举仿制牟利的游资∙公司中不创造效益但分享成果的人∙以上全部价格战现在我们来看另外一个例子:假设一家网上书店amazing公司,他们公司的口号是“我们的售价不会高于别人”。

博弈论战略分析入门

博弈论战略分析入门
➢ 冷酷触发: ➢ 豁免触发:针锋相对、一报还两报、两报还一报
❖ 冷酷触发的有效程度高于豁免触发。
整理课件
15
图:两轮熨衬衫博弈 A

B
2,2

B
A -1,3
熨 A
整理课件
B 0,0
4,4 1,5 1,5 -2,6
2,2 -1,3
16
16.3 连锁店悖论
2 1
-2,3
图 :单轮的进入博弈
-2,3 5,5
表:改进的囚徒困境
阿尔钦
合作 背叛
威廉姆森
合作 背叛 1/2,1 -1,2 1,-1 0,1/2
20.2 囚徒困境的结论
两种解释:
(1)现实中的人们不像 博弈论假设的那样理性, 不能完全领会博弈的设 置,因此达不到占优战 略均衡;
(2)人们并不总是按照 利己的原则来决定自己 的行动。
结论:
(1) 人类是有限理性
第15章 嵌套博弈
❖ 掌握的概念:
嵌套/嵌入博弈、前向/后向归纳、改变规则
整理课件
1
15.1 博士学习计划
N A
4,0
3,7
软件工程
0,0
A
0,0
7,3
图:安娜的博士学习计划
整理课件
2
表:博士学习博弈第2阶段的收益
诺拉
信息恢复 软件工程
信息恢复
安娜
软件工程
3,7 0,0
0,0 7,3
前向归纳法:诺拉根据对手在过去做过的选择进行推断,以此解
民主党 第1
第2
第3
49%
共和党 第2
第1
第3
48%
绿党 第2
第3

博弈论的基本原理和策略分析

博弈论的基本原理和策略分析

博弈论的基本原理和策略分析博弈论,是一门研究决策和策略选择的学科,它以不同参与者之间的相互作用为研究对象,通过模型建立和分析,来帮助人们在冲突和合作的情境中做出最优化的决策。

博弈论发展至今已广泛应用于经济学、政治学、社会学等领域,成为解决现实问题的重要工具。

博弈论的基本原理包括参与者、策略和收益。

参与者是参与博弈的个体或组织,他们在博弈中通过选择不同的策略来争取最大的收益。

策略是参与者可选择的行动方式,通过策略选择可以实现不同的收益结果。

收益是参与者从博弈中获得的结果,包括直接的经济利益、社会声誉等。

在博弈论中,有两种基本的博弈形式:合作博弈和非合作博弈。

合作博弈是指博弈参与者之间存在着一定程度的合作和沟通,他们可以通过协商、合作达成一致,并分享协作带来的收益。

非合作博弈则是指博弈参与者之间不存在合作和沟通的限制,他们通过自利行动来争取最大的收益。

针对不同的博弈形式,博弈论提供了一系列的策略分析方法。

在合作博弈中,常见的策略分析方法有纳什均衡理论、核心和分配规则等。

纳什均衡理论是指在博弈中,当参与者都选择了自己最优策略时,整体状态将达到一种均衡状态,没有参与者能够通过改变策略来获得更多的收益。

核心是指合作博弈中一组合理的分配方案,对于该方案,没有参与者能够通过组成联盟来获得更多的收益。

分配规则则是用于确定合作博弈中收益的分配方式,常见的规则包括沙普利分配规则和核心分配等。

在非合作博弈中,常见的策略分析方法有占优策略、均衡与稳定策略等。

占优策略是指参与者在博弈中通过选择最优策略来争取最大的收益。

均衡则是指在博弈中参与者的策略选择相互映衬,没有参与者能够通过改变策略来获得更多的收益。

稳定策略是指参与者在博弈中的策略选择对于其他参与者的策略选择是一个稳定的反应。

博弈论的应用领域广泛,其中最为典型的应用是经济学中的市场竞争分析。

在市场竞争中,供求双方为了追求最大的利润,会通过定价、广告等手段展开博弈。

博弈论提供了一种分析框架,可以帮助理解市场竞争中的策略选择与结果,并为决策者提供指导。

博弈论战略分析入门课后练习题含答案

博弈论战略分析入门课后练习题含答案

博弈论战略分析入门课后练习题含答案题目翻译:
1.两个人轮流选择从1到7之间的数字,不能重复选择,哪个人最后选
择7就赢了。

如果两个人都采用最优策略,第一个选择数字的人能否保证获胜?
2.有两个球队A和B,比赛规则为A队挑选一个数字k,B队猜测这个
数字是奇数还是偶数。

如果B队猜错了,A队获胜;反之,B队获胜。

如果A队更喜欢奇数,那么它们应该挑选多少奇数呢?
解答:
1.第一个选择数字的人不能保证获胜,因为第二个人可以选择数字4,
让第一个人面临两个选择:选择数字2或6。

无论哪个数字,第二个人都可以接下来选择数字3,然后赢得游戏。

所以第一个人不能获胜。

2.如果A队总是选择奇数,那么B队的最优策略是选择奇数。

因为如果
A队选择奇数,B队就获胜,如果A队选择偶数,B队有50%的机会猜对,平局的概率为25%,B队的总胜率为75%。

因此A队最好选择所有奇数,这样B 队只有50%的机会获胜。

思路解析:
1.对于第一道题,我们需要根据规则分析游戏的局面,然后确定最优策
略。

在此基础上,我们可以找到第一个人的必胜策略,或者证明无论如何第一个人都不能获胜。

2.对于第二道题,我们需要考虑两个球队的思考方式,并且理解如何最
小化选手的期望获胜率。

这也需要一些概率的基础知识。

以上就是本次博弈论战略分析入门课后练习题答案。

希望这些题目能够帮助您加深对博弈论和战略分析的理解,进一步提升您的分析能力和决策能力!
1。

博弈论-入门

博弈论-入门

人接受了这五十万,其中的一个人说:“自己没有钱
,父母苦了一辈子了,临老了生病没钱医治,为了父
母,放弃了爱情吧。” ­

男人接着开出了第三个价格“500万!” ­

现场更静了,男人的第一个动作都是看身边的女
人,也许是在权衡什么。一半的男人沉默了,另一半
的男人怯生生的说:“我要爱情。”身边的女友也有
点呆住了,一个女孩子站起来说:“如果一个男人肯
去年七八月间,陈某儿子与赖某离婚;同年9月17日,陈某也 与王某办理了事实婚姻的离婚手续。仅仅四天后,陈某就与原 儿媳赖某登记结婚。结婚当天,他就向高新区公安分局户籍管 理部门申请办理儿媳、孙女的户籍迁移,欲将她们的户口迁到 上王村。工作人员将陈某的申请材料退了回来,口头告知他说 ,要迁户口,需先取得所在村委会的同意,并开具证明。
博弈 game—— “下棋”、“玩牌”,赌博和其他许 多智力游戏在内的对抗性游戏、对抗性体育竞 赛。博弈就是策略性的互动决策,通俗的说就 基于交叉效应的有意识的行为互动 交叉效应 参与人意识到交叉效应
博弈论,英文为Game theory,是研究相互依 赖、相互影响的决策主体的理性决策行为以及 这些决策的均衡结果的理论。
以利交者,利尽则散!以色交者,色衰则疏! 以貌交者,久之则腻!唯有以心交者,方能永恒!
理性
每个参与人均以获取最大支付为目标 理性内涵:对自己利益完全了解并能完美计算出何种
行动可最大化其利益 理性不意味着:
参与人自私 着眼于短期利益 与其他参与人有相同价值体系
男人无所谓忠诚,忠诚是因为背叛的砝码太低; 女人无所谓忠贞,忠贞是因为受到的引诱不够.
2
田忌策略:
结 果:
谋士孙膑 策略: 结 果:

博弈论入门PPT课件

博弈论入门PPT课件

基于对其他参与 者信息的了 解程度
完全信息博 弈
不完全信息 博弈
负和博弈
根据结果
零和博弈
正和博弈
特征 合作中如何分配利益,使大家都满意。 只考虑自己的利益,不考虑对方的利益。 做出策略虽然有先后,但每一方都不知
道对方的策略。 做出策略虽然有先后,但参与者对对方
做出的策略是知道。(例如下象棋) 博弈中对其他参与者的各方面信息、可
最理想的结局:双赢
一、正和博弈各方本着相互合作,公平公 正,互利互惠的原则分配利益,让每一 个人参与者都满意的博弈。
案例:鳄鱼鸟与鳄鱼和谐相处,生存搭档 的典型。凶恶的鳄鱼可以容忍鳄鱼鸟清 理它牙缝里的残肉,因为这样可以避免 滋生细菌,它的牙就不会生虫了。
二、博弈中发生冲突的时候,充公了解对 方、取长补短,各取所需,往往会使双 方走出负和博弈和零和博弈的误区,实 现合作共赢。
一年轻人在酒吧喝酒,中途去厕所。一美女尾随 他打劫,对他说:将钱和手机都交出来,否则 我说你非礼我。年轻人转念一想,计上心来, 用手指自己的嘴和耳朵。美女误以为他是聋哑 人,想放弃。年轻人掏出一支笔和一张纸在上 面写上:你说什么呀?
美女见状拿过笔来也在纸上写了:将钱和手机都 交出来,否则我说你非礼我。这时年轻人一把 抓住美女的手,大声喊道:我要送你去派出所 。
最坏的结果:两败俱伤
战争是典型的负和博弈:二战共有61个国 家卷入,涉及人口20亿以上。二战中军 民伤亡1.9亿,其中死亡6000万,受伤 1.3亿。其中死亡的平民有2730万。盟 军中苏联军队伤亡最为惨重,死亡890 万,中国军队死亡148万,英国与美国 各死亡38万。法西斯德国军队伤亡人数 1170万,军队死亡600万,日本军队伤 亡216万。

博弈论 战略分析入门第一章课后题答案

博弈论 战略分析入门第一章课后题答案

Instructor’s Guide to Game Theory: A Nontechnical Introduction to theAnalysis of StrategyChapter 1. Conflict, Strategy, and Games1.Objectives and ConceptsThe major objective of this chapter is to introduce the student to the idea that “serious” interactions can be usefully treated as games – what I have called the “scientific metaphor” at the root of game theory. Secondary objectives are to introduce the concepts of best-response strategies and the representation of games in normal form. Thus, the chapter starts with an example from war, which most people without preparation in game theory would think of as a most natural field for thinking of strategy, and the chapter begins with an example presented in extensive form, because it seems to be a more intuitive and natural way of thinking about strategy. Interweaved with this are some discussions of the origins of game theory. The chapter also takes up an episode from the movie version of “A Beautiful Mind,” since it seems very likely that many students will have seen the movie and it may be a major source of whatever ideas they have about game theory. The Prisoner’s Dilemma is the one example they are most likely to have seen in one or more other classes, so it belongs here, too.Using the Karplus Learning Cycle as a major organizing principle, I open with an example – the Spanish Rebellion – and only then introduce the general ideas it illustrates, and then follow with another example, NIM. Again, the discussion of the game in normal form begins with an example, the familiar Prisoner’s Dilemma, then proceeds to the general principles and follows with two more examples, the one from the movie and an advertising dilemma. This procedure is “psycho-logical” rather than logical, and someinstructors may not be familiar with it. However, I think it works well with most students, who can understand the general principles better if they have an example already in mind.Accordingly, the key concepts areDefinition of Game TheoryHistory and emergence of Game TheoryGame Theory as applicable to more than what we ordinarily think of as games.Representation in extensive form (tree diagrams)Best ResponseRepresentation in Normal Form2. Common Study ProblemsThe most important study problem probably will not actually emerge for a few class periods, but the roots are here in the first chapter: the concept of best response is difficult for some students, including some very good ones. Confusion may show up later in the form of a real difficulty in answering questions about social dilemmas: “How can this be a best response if it makes everybody worse off?” At this point, it may be helpful to emphasize that “best response” means the best response to other strategies that other players might choose, NOT necessarily a best response to the situation as a whole.Some (often very good) students may want to dispute whether the analysis of the Spanish Rebellion is really right. They have a point. It could be more completely represented as follows:Good Chance for Piust i s m Sure win for Pius But a) it doesn’t make any difference, since Hirtuleius will never choose to stay at Laminium, and give Pius a sure win. (That would not be subgame perfect, a concept we will get into in Chapter 14). b) Therefore, at the first step Hirtuleius commits himself to meeting Pius at the River Baetis, and it is that commitment that is shown by the firstdecision node. c) All game theory examples are simplified and abstracted in some ways,and we always need to take care that we have a simplification that focuses on theimportant points, rather than missing them. So it really is a good point to make, and this is a good example of the ways we need to be careful about our simplifying assumption.3. For Business StudentsThe major bait for business students in this chapter is purposely given a highprofile as the last example, the advertising game.4. Class AgendaFirst hour1) Get organizeda)Class Detailsb)Assignments2)Introductory presentation: What is Game Theory?Second hour1)Discussion of assignments, homework, etc.2)Discussion on Game Theory as a Scientific MetaphorDiscussion question: One issue in environmental policy is the passage ofresources on to the next and following generation. For example, forests andunderground aquifers can be of use to each generation, if they are preserved.However, if one generation uses them so intensively that they are destroyed,then future generations are deprived of that benefit. How might we capturethis as a “game?” Who are the players? What are the rules? Payoffs? Is theplay sequential or simultaneous?3)Play “The Environment Game” in class. Handout follows on the next page forconvenience in printing and copying.An In-Class GameFrom time to time in this class we will conduct some experiments with games, playing the games in class and discussing the results. Payoffs will be in GameBucks, and you will accumulate GameBucks throughout the class. Students’ GameBucks accumulations will be public knowledge. At the end of the class, students with above-average accumulations of GameBucks will get grade bonus points in proportion to the difference between the student’s accumulation and the class average. (Those below average will not be penalized). Your mastery of the principles of game theory should enable you to be more competitive in accumulating GameBucks.An Environment GameThis chapter focuses on the idea that “real-world” problems and interactions can be thought of as games. Environmental problems are often studied in game theoretic terms. One issue in environmental problems is the passage of resources on to the next and following generation. For example, forests and underground aquifers can be of use to each generation, if they are preserved. However, if one generation uses them so intensively that they are destroyed, then future generations are deprived of that benefit.For this game, students play in order, for example, around a circle from left to right. The first student is given a certificate with “One GameBuck” written at each end. The student has the choices of passing the certificate on to the next student in order, or tearing it in half and returning it to the instructor in return for two GameBucks. Each student who receives the certificate has the same choices, except the last. Each student who passes the certificate gets one GameBuck on his record. The last student can only pass it back to the experimenter for one point.The succession of students represents the succession of generations, each of which has the potential to get one GameBuck of benefit from the resource if it is preserved. The maximum benefit is equal to the number of students. If a student early in the ordering takes the opportunity to get two GameBucks, the total number of GameBucks awarded may be considerably less than this.5. Answers to Exercises and Discussion Questions1. The Spanish Rebellion. In her story about the Spanish Rebellion, McCullough writes "There was only one thing Hirtuleius could do: march down onto the easy terrain ... and stop Metellus Pius before he crossed the Baetis." Is McCullough right? Discuss.Yes, McCoullough is right. Hirtuleius must assume that Pius will respond to Hirtuleius’choice, and anticipate that response. If Hirtuleius marches for New Carthage, Pius will respond by taking Laminium and breaking out, the worst outcome for Hirtuleius. If Hirtuleius waits and marches for the River Baetis, Pius will march for New Carthage, with a good chance of beating Hirtuleius – Hirtuleius’ second worst outcome. But these are the only two possibilities, and second worst is better than very worse, so that is what Hirtuleius must choose.2. Nim. Consider a game of Nim with three rows of coins, with one coin in the top row, two in the second row, and either one, two or three in the third row. A) Does it make any difference how many coins are in the last row? B) In each case, who wins?a)Suppose there are just 2 pennies in the last line. Then Anna can take the one fromthe top line. Barbara is left with one of two choices – take 1 from either line,leaving the same game we had in the chapter, which we know Anna can win, ortake two from line, in which case Anna immediately takes the other two and wins.Thus first player wins in this case.b)Suppose there is just one in the last line. Then Anna can take the two from themiddle, leaving Barbara to take one of the others so Anna takes the remaining one and wins. Here again the first player wins.c)However, try what you will, you will find there is no way that Anna can win ifthere are three coins in the last row. Here, second player wins, so it does make adifference.There is a mathematical trick to figure out more complex games, fortunately, since a tree diagram for a Nim game with 3 coins in the last row would start out with 6 options for Anna and have from 3 to 5 for Barbara at the next stage, it would get pretty unwieldy. Do a Google search on “Nim” if you are interested in the trick.3. Matching Pennies. Matching pennies is a school-yard game. One player is identified as "even" and the other as "odd." The two players each show a penny, with either the head or the tail showing upward. If both show the same side of the coin, then "even" keeps both pennies. If the two show different sides of the coin, then "odd" keeps both pennies. Draw a payoff table to represent the game of matching pennies in normal form.OddHeads Tails EvenHeads2,00,2Tails0,22,0The standard of reading is assumed with the first payoff to even and the second to odd. (Even then odd.) 0- means wins no pennies; 2- means wins 2 pennies. Payoffs 1, -1 for wins one, loses one would be equally correct.4. Happy Hour. Jim's Gin Mill and Tom's Turkey Tavern compete for pretty much the same crowd. Each can offer free snacks during happy hour, or not. The profits are 30 to each tavern if neither offers snacks, but 20 to each if they both offer snacks, since the taverns have to pay for the snacks they offer. However, if one offers snacks and the other does not, the one who offers snacks gets most of the business and a profit of 50, while the other loses 20. Discuss this example using concepts from this chapter. How is the competition between the two tavern owners like a game? What are the strategies? Represent this game in normal form.Jim'sGive Snacks No SnacksGive Snacks20,2050,-20No Snacks-20, 5030,30TOM'SThis situation resembles a game because:• There is more than one player• Strategy is important• There are outcomes that depend on each player’s choice of strategyConsider the strategies and payoffs involved here. The basic strategies are: offerfree snacks, do not offer free snacks. If both offer snacks, their payoff is lower than if both do not offer snacks. However, if one bar chooses not to offer free snacks and the other does offer them, the potential payoff is superior to all other options.6. Quiz questionPlaced on the next page for convenience in copying and printing.Student name ____________________________Quiz – Game TheoryIn Game Theory at Work, James Miller writes: “When … my sister and I … were young teenagers, … Our mother told us she was going out into the yard but was expecting an important call. She told us to be sure to answer the phone when it rang.”(This was before home answering machines.) Neither teenager wanted to take the call, but each knew that unless one of them did so, they would both be punished for disobedience. What are the strategies? Represent this game in normal form.Answer:The strategies are “answer” or “don’t answer.” At this stage, this particular game needs to be expressed in normal form, since there is a “trick” to putting it into extensive form that will only be covered in the next chapter.SisterAnswer Don’tAnswer-2,-2-1,1JamesDon’t1,-1-5,-5Or, with qualitative rather than number payoffs,SisterAnswer Don’tAnswer Some confusion, someconfusionembarrassment, noembarrassmentJamesDon’t no embarrassment,embarrassmentpunished, punished1.11。

第一讲 博弈论战略分析

第一讲 博弈论战略分析

博弈论战略分析刘会齐手机:135********QQ:470498940Email:commonuse@公共:sbsteacherliu@PIN:1234567890123考核方式期末考试占60%,开卷考试(范围以课堂讲解内容,在ppt上都有)平时占40%,其中考勤占20%课堂练习占20%第一章:冲突、战略与博弈本章主要概念●博弈论( Game theory):博弈论是研究理性的经济个体在相互交往中战略选择问题的理论。

●博弈分析的关键步骤是找出在别人选择既定的情况下自己的最优反应战略。

依据新古典经济学,我们把一个参与者的最优反应(best response)定义为,在其他参与者已经选定战略,或者可以预计到他们将选择何种战略时,能够给该参与者带来最大收益的战略。

●博弈论这种说法是一种科学的比喻,很多不被看做是博弈的行为,如竞争、战争和竞选等都可以作为博弈来处理和分析。

什么是博弈论?它与战略、冲突又有什么关系呢?显然,包括博弈在内的许多人类活动,都存在着战略和冲突。

冲突的结果是一方获胜,一方落败,博弈通常也总是有输有赢。

本讲将向读者介绍一种分析战略的方法,一种源自数学研究的博弈思维方式。

本章首先要回答两个问题:一是何为博弈论(game theory);二是博弈论与战略之间有什么关系。

为了阐述这些问题,让我们先看几个例子。

第一个例子是最常与战略、冲突联系在一起的人类活动:战争。

1.1西班牙叛乱:击溃赫图勒斯约公元前75年,西班牙(位于拉丁美洲的伊斯巴尼亚)发生了一起反对罗马的叛乱,然而,叛乱的发起人却是罗马士兵和一些膜拜罗马的西班牙人。

后人普遍认为,西班牙叛乱的领导者昆塔斯·塞多留(Quintus Sertorius)当时是想利用西班牙来使自己登上罗马帝国的最高统治宝座。

西班牙叛乱:击溃赫图勒斯为了扑灭叛乱,罗马帝国派出了两支部队,其中一支由德高望重的贵族将军梅特路斯·皮乌斯(Metellus Pius)统领,另一支由年轻气盛的庞培(Pompey)指挥,庞培负责统率整个军队的行动。

第三讲博弈论战略分析.pdf

第三讲博弈论战略分析.pdf

继续
占优战略的存在以及它与合作解相悖的事实是导致社 会两难的根本原因。例如,在囚徒困境的例子中,两 个罪犯肯定愿意协调他们的战略,拒绝认罪,这样每 人只需服刑一年。警察把他们关在不同的牢房,就是 为了防止他们协调双方的战略。 在广告博弈中,合作解是不做广告。当政府宣称要实 施一项广告禁令时,遵守这一禁令可以让烟草公司获 得利润,因为在政府的强制之下,两家企业都会不做 广告。在军力调拨博弈中,和平是合作解。 然而,由于对重型大炮和铁路运输的依赖性所造成的 时间限制,使得双方不可能协调他们的战略。
继续
假定有两个候选人:参议院布兰克先生和地方官员 格雷先生。虽然他们在政治立场上没什么个人偏 好,但身为民主党的布兰克持左翼立场要比身为共 和党的格雷更加具有信服力。 相反,如果持右翼立场,格雷比布兰克更具有信服 力。持左翼立场还是右翼立场是他们可以选择的两 种战略。 此外,他们还有第三个可供选择的战略:持中立立 场。
继续
当一个博弈中的每一位 参与者都选择了各自的 占优战略时,相应的博 弈结果就是占优战略均 衡。 我们也可以说,“倾倒”战 略占优于“雇卡车”战略。 如果无论对手选择哪种 战略,一个战略的收益 总是高于另一个战略, 我们就说,第二个战略 被第一个战略占优,第 二个战略被称为劣战略 (dominated strategy)。 在该博弈中,“雇卡车”战 略就是一个劣战略。
3.1垃圾处理博弈
在探讨这个 博弈之前, 我们先来看 一个故事。 故事的主人 公是两所房 屋的主人, 琼斯先生和 史密斯先 生。两人各 在郊区拥有 一套周末别 墅,该地区 不提供垃圾 日常处理服 务。
他们可以共同雇一 辆卡车处理垃圾,但 收费很高,每人每年 需支付500美元。此 外,他们还有另一个 选择,琼斯可以将垃 圾倒在史密斯房子旁 边的一块属于自己的 空地上,史密斯则可 以将垃圾倒在琼斯房 子旁边的一块属于自 己的空地上。(如图 3.1)

博弈论战略分析入门.ppt

博弈论战略分析入门.ppt
EV(雇主)=1/3*1/2*1+1/3*1/2*4+2/3*1/2*2+2/3*1/2*3 =5/2
EV(UTG)= 1/3*1/2*1+1/3*1/2*(-1)+2/3*1/2*0+2/3*1/2*1 =1/3
4,2,0
E 2.5,2.5,0.33
图:简化的加入协会的罢工博弈
第16章 重复博弈
表:努力困境博弈的战略规则和收益(δ =0.9)
注:当社会两难博弈以确定概率重复,而且没有可断定的终点时, 合作性结果优可能成为均衡。
17.2 折现因子
• 折现因子δ:人们为得到一年后的1美 元愿意现在支付的数额。
• v=p*1/(1+r)*Y+(1p)*1/(1+r)*0 =p*1/(1+r)*Y
第17章 无限重复博弈
17.1 重复的努力困境
比尔
工作 推卸
工作 10,10 2,15 安迪 推卸 15,2 5,5
表:一个努力困境博弈
比尔
工作
推卸 针锋相对
工作 100,100 20,150 100,100
安迪
推卸 150,20 50,50 60,47
针锋相对 100,100 47,60 100,100
图:两轮熨衬衫博弈 A

B
2,2

B
A -1,3
熨 A
B 0,0
4,4 1,5 1,5 -2,6
2,2 -1,3
16.3 连锁店悖论
2 1
-2,3
图 :单轮的进入博弈
-2,3 5,5
16.4 恐怖活动
2 1
0,0
2 1
0,0

博弈论 战略分析入门第四章课后题答案

博弈论 战略分析入门第四章课后题答案

Instructor’s Guide to Game Theory: A Nontechnical Introduction to theAnalysis of StrategyChapter 4. Nash Equilibrium1.Objectives and ConceptsThe principle objective of this chapter is to introduce the Nash equilibrium and to convey some notion of the range of possibilities and applications, including the possibilities that there may be no Nash equilibria in pure strategies and the possibility that there may be plural Nash equilibria. (Since mixed strategy equilibria are not introduced until Chapter 8, it is not possible to give a meaningful definition of pure strategies at this point, and is necessary to talk around it a bit.) Important subsidiary concepts are coordination games and Schelling points (or focal point equilibria), heuristic methods of finding the Nash equilibria, such as underlining, and refinement of Nash equilibrium.The chapter begins with an example that is based on Warren Nutter’s game-theoretic version of Bertrand competition, except that in this instance a kind of quality competition is considered. The solution to this game can be found by iterated elimination of dominated strategies (which will not be covered until Chapter 11) and reflects the intuition that it is best to be just one step ahead of the competition. Thus, while it does not have a dominant strategy equilibrium, it has some dominated strategies and a unique Nash equilibrium, and hopefully forms a natural bridge from the study of dominant strategy equilibrium.Games with plural equilibria are introduced with the game of Choosing Radio Formats. The idea that history (or other clues) can establish a Schelling point also comes in with this example. The Market Day game reinforces the idea that plural Nashequilibria can have explanatory value – explaining the persistence of what seem to be arbitrary conventions. Games without Nash equilibria (in pure strategies) are introduced with an escape-evasion game. This is an important category in itself, though the most important applications are in differential games and thus beyond the scope of the book.Accordingly, the concepts areNash EquilibriumUnique Nash EquilibriaFinding Nash EquilibriaPlural Nash EquilibriaThe difficulty of choosing among plural Nash equilibriaSchelling PointsCustom, convention and history as Schelling pointsSchelling points from the logic of the gameRefinementGames without Nash equilibria in pure strategies2. Common Study ProblemsStudents who have not yet grasped the best-response idea will find Nash equilibria even more difficult than dominant strategy equilibria. This is the crisis point for students who have not “got” best response. The best response tables (such as table 2 in the chapter) are designed to make this a little easier, so urge the student to rely on them and on underlining as intermediate steps in their analysis. I sometimes suggest to mystudents that they physically move their fingers along the column or row to pick out the biggest payoff. Making the solution as mechanical as possible will help students over that hump. Another (less troubling) problem is the relationship between Nash and dominant strategy equilibria. Taking dominant strategy equilibria first is a pedagogical convenience, since it is a little easier and will be familiar to students who have seen the Prisoner’s Dilemma in another class, but it can produce the impression that dominant strategy equilibria are not Nash equilibria. The Venn diagram (Figure 1) is meant to speak to that problem, and may need some stress in class.3. For Business StudentsThe key business concepts for this chapter are strategies of location and market niche, in the Location, Location, Location example, but also in the Radio Formats example and in the Hairstyle example in the exercises and discussion questions.4. Class AgendaFirst hour:1)Quiz on earlier material2)Introductory presentation: Nash Equilibria•Assignments3)Discussion: The Blonde Problem AgainSecond Hour:1)Discussion of quiz and assignments2)Play a coordination game in class, with random matching and without discussion.A handout description of the game is given on the next page.Another Random-Matching Two-Person GameOnce again, each person chooses between the strategies of collusion or defecting from the collusive arrangement.Put in your name and circle one of the two statements: either "my strategy is collude" or "my strategy is defect." Your instructor will tell you whether to follow directions A) or B) below.A)After you turn it in, your strategy choice will be matched with that of anotherclass member AT RANDOM, and your bonus points will be based on the payofftable above. There is to be no discussion of your strategy choices.B)You will be matched with your neighbor and may discuss your strategy choice ifyou wish.Payoffs are in GameBucks.TableArt's StrategyCollude DefectCollude (3,3)(0,2)Bob's StrategyDefect(2,0)(1,1)What will you do? Go for the big reward with a "collude" strategy or protect yourself with an "defect" strategy?Student name ____________________________My strategy is (circle one)ColludeDefect3)Discussion:a.Results of the in-class game.b.Give other examples of Schelling points in coordination games. Ideally,these should come from the students, but the following instances maystimulate the discussion if it comes slowly:i.Driving on the right or left-hand side of the road.ii.Speaking the same language.iii.Choosing a profession. Assumption: if both choose the sameprofession, it does not pay well because it is too crowded. Howmany business majors in the class? Engineering? Communications,etc?5. Answers to Exercises and Discussion Questions1.Solving the Game. Explain the advantages and disadvantages of NashEquilibrium as a solution concept for noncooperative games.Nash equilibrium is based on the idea that each player chooses the best response tothe strategy chosen by the other player. This is a clear concept of rationality wheneach person chooses in isolation from the other. Among the shortcomings are 1)Nash equilibrium may not be unique, posing the problem of determining which oftwo or more Nash equilibria may actually be chosen by rational agents, and 2) considering only the list of strategies for the game in normal form, that is, the“pure” strategies, there may not be a Nash equilibrium.2.Location, Location, Location (Again) Not all location problems have similarsolutions. Here is another one: Gacey's and Mimbel's are deciding where to puttheir stores in Metropolis, the town across the river from Gotham City. The three strategies for Metropolis are to locate downtown, in Old Town, or in the Garden District. The payoffs are shown in Table E1.Table E1 Payoffs in a New Location GameGacey'sDowntown Old Town Garden DistrictDowntown70,6060,12080,100Old Town110,7040,40120,110Mimbel'sGardenDistrict120,80110,12050,50Does this game have Nash equilibria? What strategies, if so? Which strategies would you predict that Gacey's and Mimbel's would choose? Compare and contrast this game with the location game in the chapter. What would you say about the relative importance of congestion in the location decisions of the firms in the two cases?A table modified to show the highest payouts for each player for each decision is as follows:Gacey's Downtown Old Town Garden District Downtown 70, 6060, 12080, 100Old Town110, 7040, 40120, 110M i m b e l 's Garden District 120, 80110, 12050, 50There are two Nash Equilibria. When Gacey’s locates in Old Town, Mimbels will locate in the Garden District, and vice versa. Which solution will actually be chosen is not definite.This problem is different from the one in the chapter since there are 2 NashEquilibriums instead of one, which requires a little guesswork as to which one will be the final solution. It is similar in that there is not a dominant strategy equilibrium.Congestion must be more of a problem in this scenario than in the chapterproblem. There is never a Nash equilibrium when both pick the same site. This could be explained by the congestion problem3. Drive on. Two cars meet, crossing, at the intersection of Pigtown Pike and Hiccup Lane. Each has two strategies: wait or go. The payoffs are shown in Table E2.Table E2. The Drive On Game Mercedeswait go wait0,01,5Buick go 5,1-100,-100Discuss this game, from the point of view of noncooperative solutions. Does it have a dominant strategy equilibrium? Does it have Nash equilibria? What strategies, if so? Would you predict which strategies rational drivers would choose in this game?Which? Why? Pigtown Borough has decided to put a stoplight at this intersection. How could that make a difference in the game?Here is a table modified to show the maximum payout for each driver:Mercedes Wait Go Wait0, 05, 1B u i c kGo 5, 1-100,-100Once again, there are 2 Nash Equilibria. They are for the Buick to wait and the Mercedes go, or vice versa.To determine which will happen requires guesswork. The personality of thedrivers might determine what happens. If I were in the Mercedes, I would probably not want to risk an expensive car getting damaged. Someone else, say in a CL600, mightfigure that his car is faster and that he can beat the other driver. Also, one of the drivers might just wave the other on rather than have both wait or both go.It is possible that both drivers might wait rather than run the risk of an accident, i.e. choose a risk dominant strategy.The stoplight would provide a Schelling Point to select for the equilibrium at which the driver with the green light chooses go.4. Rock, Paper, Scissors. Here is another common school-yard game called Rock, Paper, Scissors. Two children (we will call them Susan and Tess) simultaneously choose a symbol for rock, paper or scissors. The rules for winning and losing are:Paper covers rock (paper wins over rock)Rock breaks scissors (rock wins over scissors)Scissors cut paper (scissors win over paper)The payoff table is shown as Table E3.Table E3. Rock, Paper, ScissorsSusanpaper stone scissors.paper0,01,-1-1,1Tessstone-1,10,01,-1scissors1,-1-1,10,0Discuss this game, from the point of view of noncooperative solutions. Does it have a dominant strategy equilibrium? Does it have Nash equilibria? What strategies, if so? How do you think the little girls will try to play the game?Here is a table modified to show the best responses.Susanpaper stone scissors.paper0,01,-1-1,1Tessstone-1,10,01,-1scissors1,-1-1,10,0We see that there are no dominant strategies, nor are there Nash equilibriain terms of the strategies shown here. We have no basis (so far) to decide how the girls will play the game.NOTE TO INSTRUCTOR For the purist, it is not correct to say here that “thereare no Nash equilibria,” since this game has a mixed-strategy equilibrium. But, of course, we will not cover mixed strategy equilibria until a later chapter. Thecorrect statement is that there is no equilibrium in pure strategies.5. The Great Escape. Refer to Chapter 2, Question 2.Discuss this game, from the point of view of noncooperative solutions. Does it have a dominant strategy equilibrium? Does it have Nash equilibrium? What strategies, if so? How can these two opponents each rationally choose a strategy?WardenGuard walls Inspect cellsclimb No escape, success inpreventing escape Escape,failurePrisonerdig Escape,failure No escape, success inpreventing escapeThe numerical payoffs can be assigned in many different ways. Here is a simple version that interprets “no escape” as minus one for the prisoner, plus one for the warden, and “escape” as vice versa. As the underlines show, there is no Nash equilibrium. Thus far, we have no basis to say how a rational person would choose strategies in this case.WardenGuard walls Inspect cellsclimb-1,11,-1Prisonerdig1,-1-1,16. Sibling Rivalry. Refer to Chapter 2, Question 1.Discuss this game, from the point of view of noncooperative solutions. Does it have a dominant strategy equilibrium? Determine all the Nash equilibria in this game. Do some Nash Equilibria seem likelier to occur than others? Why?Irismath litmath 3.7, 3.8 4.0, 4.0Julialit 3.8, 4.0 3.7, 4.0If the siblings act independently, rationally and with self- interest (non-cooperatively), we can find two Nash equilibrium's strategies: (literature, math), (math, literature).We note that there is a Schelling point in this game: (Math, Lit) yields a certain 4.0 for both girls, which is a reason it might attract attention, and probably is more likely to be observed.7. Hairsyle.Shaggmopp, Inc. and Shear Delight are hair-cutting salons in the same strip mall, each groping for a market niche. Each can choose one of three styles: punker, contemporary sophisticate, or traditional. Those are their strategies. They already have somewhat different images, based on the personalities of the proprietors, as the names may suggest. The payoff table is shown as Table E4.Table E4. Payoffs for HaircuttersShearpunker sophisticate traditionalpunker35,2050,4060,30Shaggmoppsophisticate30,4025,2535,55traditional20,4040,4520,20Are there any dominant strategies in this game? Is there a dominant strategy equilibrium? Are there any Nash equilibria? How many? Which? How do you know?Once again, here is the modified table:ShearPunkerSophisticate Traditional Punker 35, 2050, 4060, 30Sophisticate 30, 4025, 2535, 55S h a g g m o p pTraditional20, 4040, 4520, 20Shaggmopp’s best strategy is to go punker regardless of what Shear does. This is his dominant strategy. Since Shear has no such dominant strategy, there is no dominant strategy equilibrium.The only Nash equilibrium is when Shear decides to go with the sophisticate look.Since Shear knows that Shaggmopp will probably go punk rather than sophisticate, it will choose sophisticate.6. Quiz questionPlaced on the next page for convenience in copying and printing.Student name ____________________________Quiz – Game TheoryFelix and Oscarina share their home with two cats. Felix, who has a sharp sense of smell, would like for the cat boxes to be cleaned twice a week. Oscarina, whose sense of smell is less acute, would be satisfied if they were cleaned once a week. Each would prefer not to be the one to clean the cat boxes. Their payoffs are shown on the following table.Oscarinadon't clean clean once clean twicedon't clean-5,-30,-17,-5Felixclean once-2,45,26,-4clean twice0,51,32,-3Find any and all Nash equilibria for the catbox game? Are there dominated strategies? Which? Is there a dominant strategy equilibrium? Explain.Answer:A payoff table with best responses underlined follows:Oscarinadon't clean clean once clean twicedon't clean-5,-30,-17,-5Felixclean once-2,45,26,-4clean twice0,51,32,-3The Nash equilibrium is where Felix cleans the cat box twice and Oscarina never cleans. “Clean twice” is a dominated strategy for Oscarina. Since the best response for each person depends on the strategy chosen by the other, there is no dominant strategy equilibrium.It seems that Felix, whose need is greater, will empty the catbox, if the two companions act noncooperatively. Now, it may seem odd that people who live together would act noncooperatively , but life is strange, and odd things do happen. However, a couple of years ago, Oscarina gave Felix a Christmas present – a year of catbox cleaning – and has renewed the gift, so love triumphs after all.。

博弈论知识点总结完整版

博弈论知识点总结完整版

博弈论(一):基本知识1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。

即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。

1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。

1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。

两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。

倘若不能,则称非合作博弈(Non-cooperative game)。

合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。

目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。

博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。

把两个角度结合就得到了4种博弈:a、完全信息静态博弈,纳什均衡,Nash(1950)b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965)c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968)d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991)1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form)1.6占优均衡:a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。

第十章---博弈论初步精选全文完整版

第十章---博弈论初步精选全文完整版
由于p1,p2和q1,q2的取值有无限多的可能,
甲 (式乙)
p.61
p.42
A B
混合策略组合及其支付也就有无限多的可能。
q.31 C 4,6 7,3

.q72 D 9,1 2,8 9
不存在纯策略均衡时的混合策略均衡3
• 条件混合策略:参与人在假定其他参与人按某一概率选择某一策略
的条件下设计的对自己而言具有相对优势的(即期望支付最大的)混合 策略,称为“条件混合策略”。
• 对乙而言,如果假定甲合作,那么乙合作的支付为6,比不合作的支付 多1,因此合作是甲合作条件下乙的条件策略;假定甲不合作,那么乙的 条件策略是也不合作,乙若合作支付只有1,不合作则可得到3。
• 条件策略组合:参与人以其他参与人选择某一策略为条件的条件策略与
作为它的条件的对方策略之间的组合,称为“条件优势策略组合”或
• 假q2=定1-(q1p代1,入p甲2)与、乙(各q自1,的q2期)望的支取付值表从达0到式1有无,限经多整可理能可,得把:p2=1-p1和 E甲= p1(7-10q1)+5q1+2(式1); E乙= 5q1(2p1-1)-7p1+8(式2)
• 每个参与人需要确定,在另一参与人为其混合策略选择某个概率值时, 己方混合策略的概率向量应怎样取值,才能使自己的期望支付最大。
e点的坐标是p1=0.5,q1=0.7,则纳什均衡 时p2=0.5,q2=0.3 。
q1 1
本题中混合策略的纳什均衡还可表示为:
((p1 , p2),(q1 ,q2) )= ((0.5 , 0.5),(0.7 , 0.3) )。 0.7 本题中,只有唯一的这个纳什均衡点。
1
q1<0.7
p1= [0,1] q1 = 0.7

博弈论翟文明第一章博弈论入门

博弈论翟文明第一章博弈论入门

博弈论翟文明第一章博弈论入门博弈论是研究决策者在特定环境中做出选择的数学理论。

在这个数学理论中,决策者之间的互动是核心问题,他们根据对手的选择来优化自己的策略。

博弈论是一个多学科的领域,涉及数学、经济学、计算机科学和行为科学等多个学科。

在这篇文章中,我们将探讨博弈论的基本概念、应用和相关问题,希望能为读者提供一个深入了解博弈论的入门指南。

一、博弈论的基本概念博弈论研究的对象是决策者在特定环境中做出选择的数学理论。

在博弈论中,决策者被称为“玩家”,他们之间的互动构成了一个“博弈”。

在一个博弈中,每个玩家的选择都会影响其他玩家的利益,因此每个玩家都需要根据其他玩家的选择来优化自己的策略。

博弈可以分为合作博弈和非合作博弈两种类型。

合作博弈是指玩家之间可以合作来达到共同的目标,而非合作博弈是指玩家之间没有合作的可能性,每个玩家都要根据自己的利益来做出选择。

在合作博弈中,最著名的例子是合作博弈的核心概念即核心解概念,博弈的核心是指在合作博弈中所有玩家都能获得自己认为至少不亏损的结果。

而在非合作博弈中,最著名的例子是纳什均衡,即所有玩家都选取了最佳的策略,没有人会因为改变自己的策略而受益。

二、博弈论的应用博弈论在经济学、政治学、生物学、计算机科学等领域都有着重要的应用。

在经济学中,博弈论被广泛应用于研究市场竞争、价格形成和合作行为。

在政治学中,博弈论被用来研究政治决策和国际关系。

在生物学中,博弈论被应用于研究动物行为和进化论。

在计算机科学中,博弈论被用来解决博弈游戏和人工智能领域的问题。

博弈论还可以用来分析一些具体的博弈问题,例如囚徒困境、交易谈判、拍卖机制、合作博弈等等。

这些问题在现实生活中存在着,并且对人们的生活产生着重要的影响,因此博弈论的应用在现实生活中是非常广泛的。

三、博弈论的相关问题在博弈论中存在一些经典的问题,例如囚徒困境、拍卖问题、合作博弈和非合作博弈等等。

这些问题都是博弈论研究的核心内容,它们有着重要的理论意义和实际应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当当网购买 货到付款 点击查看详情
市场价:¥42.00 当当价:¥36.30 点击查看
本书简介
本书主要针对经济学专业入门课程和非经济专业学生编写,是一本全面介绍博弈论的具有指导意义的入门教材。

阐释清晰:本书以基础性知识作为重点,以清晰的思路和简洁明了的方法阐述了博弈论知识及其应用,并覆盖了所涉及的各个学科。

全书讲解深入浅出,循序渐进,具有很强的逻辑性。

每章开头的“预备知识”介绍了学习该章之前应该经已掌握的内容,增加了章节安排的灵活性;同样位于各章开头的“本章主要概念”介绍了该章将会出现的关键概念,以使学生对整章内容有所准备。

案例生动:案例是本书的一种重要讲解工具,涉及商业、拍卖、军事、生物学和博彩等方面,不仅使概念的引出更加出动,而且能够激发读者的全面思考。

方便学生理解的应用实例及各章后面的“练习与讨论”,不仅进一步阐释了博弈理论,而且涉及不同的学科领域,既可以用来检验学生的
知识掌握程度,也可以作为教师的课堂问题。

结构科学:对一般的导论性教材中关未特别说明或不会涉及的概念、容易混淆的概念,本书也做了必要的解释。

书中没有涉及过多、过于复杂的数学计算,而是设置了部分选修章节,介绍一些与概率相关的概念,详细分析解读,对于只想简单了解博弈论的读者来说,略去选修章节,其中,不会影响全书逻辑的连贯性。

目录
译者序
前言
第一部分 基本原理
第1章 冲突、战略与博弈
第2章 护展式博弈与标准式博弈
第二部分 标准式博弈的非合作均衡
第3章 占优战略与社会两难
第4章 纳什均衡
第5章 博弈论中的经典例子
第6章 三人博弈
第7章 概率与博弈论
第8章 混合战略纳什均衡
第9章 非合作均衡的深入讨论
第10章 双寡头垄断的战略与定价
第11章 多人博弈
第三部分 博弈的合作解
第12章 合作博弈的要素
第13章 核在经济学中的应用
第四部分 序贯博弈
第14章 序贯博弈
第15章 嵌套博弈
第16章 重要博弈
第17章 无限重要博弈
第五部分 博弈论的应用
第18章 博弈论、法律与社会机制设计
第19章 投票博弈
第20章 博弈与实验
第21章 拍卖
第22章 演进和有限理性学习
术语表
当当网购买 货到付款 点击查看详情。

相关文档
最新文档