2019中考真题-数与代数-方程与不等式
2019年全国各地中考数学真题汇编:数与式、方程不等式(湖南专版)(解析卷)
2019年全国各地中考数学真题汇编(湖南专版)数与式、方程不等式参考答案与试题解析一.选择题(共8小题)1.(2019•株洲)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2解:A、x2﹣1=(x+1)(x﹣1),故此选项错误;B、a3﹣2a2+a=a(a﹣1)2,故此选项错误;C、﹣2y2+4y=﹣2y(y﹣2),故此选项错误;D、m2n﹣2mn+n=n(m﹣1)2,正确.故选:D.2.(2019•衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得()A.9(1﹣2x)=1B.9(1﹣x)2=1C.9(1+2x)=1D.9(1+x)2=1解:设这两年全省贫困人口的年平均下降率为x,根据题意得:9(1﹣x)2=1,故选:B.3.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.解:由题意可得,,故选:A.4.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.10<x<12B.12<x<15C.10<x<15D.11<x<14解:根据题意可得:,可得:12<x<15,∴12<x<15故选:B.5.(2019•张家界)不等式组的解集在数轴上表示为()A.B.C.D.解:解不等式2x﹣2≤0,得:x≤1,则不等式组的解集为﹣1<x≤1,故选:B.6.(2019•益阳)解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)解:方程两边都乘以(2x﹣1),得x﹣2=3(2x﹣1),故选:C.7.(2019•邵阳)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.8.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55B.72C.83D.89解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.二.填空题(共7小题)9.(2019•怀化)计算:﹣=1.解:原式==1.故答案为:1.10.(2019•邵阳)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是0.解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;11.(2019•株洲)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走250步才能追到速度慢的人.解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.12.(2019•岳阳)我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布尺.解:设第一天织布x尺,则第二天织布2x尺,第三天织布4x尺,第四天织布8x尺,第五天织布16x尺,根据题意可得:x+2x+4x+8x+16x=5,解得:x=,即该女子第一天织布尺.故答案为:.13.(2019•常德)若x2+x=1,则3x4+3x3+3x+1的值为4.解:∵x2+x=1,∴3x4+3x3+3x+1=3x2(x2+x)+3x+1=3x2+3x+1=3(x2+x)+1=3+1=4;故答案为:4.14.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多12步.解:设长为x步,宽为(60﹣x)步,x(60﹣x)=864,解得,x1=36,x2=24(舍去),∴当x=36时,60﹣x=24,∴长比宽多:36﹣24=12(步),故答案为:12.15.(2019•湘西州)下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为3.(用科学计算器计算或笔算).解:解:由题图可得代数式为.当x=16时,原式=÷2+1=4÷2+1=2+1=3.故答案为:3三.解答题(共15小题)16.(2019•岳阳)计算:(﹣1)0﹣2sin30°+()﹣1+(﹣1)2019解:原式=1﹣2×+3﹣1=1﹣1+3﹣1=2.17.(2019•长沙)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?解:(1)设增长率为x,根据题意,得2(1+x)2=2.42,解得x1=﹣2.1(舍去),x2=0.1=10%.答:增长率为10%.(2)2.42(1+0.1)=2.662(万人).答:第四批公益课受益学生将达到2.662万人次.18.(2019•常德)解方程:x2﹣3x﹣2=0.解:∵a=1,b=﹣3,c=﹣2;∴b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==,∴x1=,x2=.19.(2019•衡阳)关于x的一元二次方程x2﹣3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,求此时m的值.解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)k的最大整数为2,方程x2﹣3x+k=0变形为x2﹣3x+2=0,解得x1=1,x2=2,∵一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,∴当x=1时,m﹣1+1+m﹣3=0,解得m=;当x=2时,4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,∴m的值为.20.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.21.(2019•长沙)先化简,再求值:(﹣)÷,其中a=3.解:原式=•=,当a=3时,原式==.22.(2019•岳阳)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?解:(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩,由题意,得x+(600+x)=1200解得x=300.则600+x=900.答:改造土地面积是300亩,则复耕土地面积是900亩;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,由题意,得y≤(300﹣y).解得y≤75.故休闲小广场总面积最多为75亩.答:休闲小广场总面积最多为75亩.23.(2019•张家界)先化简,再求值:(﹣1)÷,然后从0,1,2三个数中选择一个恰当的数代入求值.解:原式=(﹣)÷=•=,当x=0时,原式=﹣1.24.(2019•衡阳)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.25.(2019•怀化)解二元一次方组:解:,①+②得:2x=8,解得:x=4,则4﹣3y=1,解得:y=1,故方程组的解为:.26.(2019•益阳)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)设今年稻谷的亩产量为z千克,由题意得:20×100×30+20×25z﹣20×600≥80000,解得:z≥64;答:稻谷的亩产量至少会达到64千克.27.(2019•湘西州)列方程解应用题:某列车平均提速80km/h,用相同的时间,该列车提速前行驶300km,提速后比提速前多行驶200km,求该列车提速前的平均速度.解:设该列车提速前的平均速度为xkm/h,则提速后的平均速度为(x+80)km/h,依题意,得:=,解得:x=120,经检验,x=120是原方程的解,且符合题意.答:该列车提速前的平均速度为120km/h.28.(2019•张家界)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?解:(1)设购买甲种树苗x棵,购买乙种树苗(2x﹣40)棵,由题意可得,30x+20(2x﹣40)=9000,70x=9800,x=140,∴购买甲种树苗140棵,乙种树苗240棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵;29.(2019•郴州)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?解:(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.30.(2019•张家界)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为a n.所以,数列的一般形式可以写成:a1,a2,a3,…,a n,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d为5,第5项是25.(2)如果一个数列a1,a2,a3,…,a n…,是等差数列,且公差为d,那么根据定义可得到:a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,a n﹣a n﹣1=d,….所以a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……由此,请你填空完成等差数列的通项公式:a n=a1+(n﹣1)d.(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?解:(1)根据题意得,d=10﹣5=5;∵a3=15,a4=a3+d=15+5=20,a5=a4+d=20+5=25,故答案为:5;25.(2)∵a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……∴a n=a1+(n﹣1)d故答案为:n﹣1.(3)根据题意得,等差数列﹣5,﹣7,﹣9…的项的通项公式为:a n=﹣5﹣2(n﹣1),则﹣5﹣2(n﹣1)=﹣4041,解之得:n=2019∴﹣4041是等差数列﹣5,﹣7,﹣9…的项,它是此数列的第2019项.。
2019年全国各地中考数学真题汇编:数与式、方程不等式(湖南专版)(原卷)
2019年全国各地中考数学真题汇编(湖南专版)数与式、方程不等式一.选择题(共8小题)1.(2019•株洲)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)22.(2019•衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得()A.9(1﹣2x)=1B.9(1﹣x)2=1C.9(1+2x)=1D.9(1+x)2=1 3.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.4.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.10<x<12B.12<x<15C.10<x<15D.11<x<145.(2019•张家界)不等式组的解集在数轴上表示为()A.B.C.D.6.(2019•益阳)解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)7.(2019•邵阳)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.8.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55B.72C.83D.89二.填空题(共7小题)9.(2019•怀化)计算:﹣=.10.(2019•邵阳)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.11.(2019•株洲)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.12.(2019•岳阳)我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布尺.13.(2019•常德)若x2+x=1,则3x4+3x3+3x+1的值为.14.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多步.15.(2019•湘西州)下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为.(用科学计算器计算或笔算).三.解答题(共15小题)16.(2019•岳阳)计算:(﹣1)0﹣2sin30°+()﹣1+(﹣1)201917.(2019•长沙)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?18.(2019•常德)解方程:x2﹣3x﹣2=0.19.(2019•衡阳)关于x的一元二次方程x2﹣3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,求此时m的值.19.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.21.(2019•长沙)先化简,再求值:(﹣)÷,其中a=3.22.(2019•岳阳)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?23.(2019•张家界)先化简,再求值:(﹣1)÷,然后从0,1,2三个数中选择一个恰当的数代入求值.24.(2019•衡阳)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?25.(2019•怀化)解二元一次方组:26.(2019•益阳)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?27.(2019•湘西州)列方程解应用题:某列车平均提速80km/h,用相同的时间,该列车提速前行驶300km,提速后比提速前多行驶200km,求该列车提速前的平均速度.28.(2019•张家界)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?29.(2019•郴州)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?30.(2019•张家界)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为a n.所以,数列的一般形式可以写成:a1,a2,a3,…,a n,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d为,第5项是.(2)如果一个数列a1,a2,a3,…,a n…,是等差数列,且公差为d,那么根据定义可得到:a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,a n﹣a n﹣1=d,….所以a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……由此,请你填空完成等差数列的通项公式:a n=a1+()d.(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?。
2019年全国各地中考数学真题汇编:数与式、方程不等式(湖北专版)(解析卷)
2019年全国各地中考数学真题汇编(湖北专版)数与式、方程不等式参考答案与试题解析一.选择题(共11小题)1.(2019•天门)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种解:设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.2.(2019•武汉)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.3.(2019•黄石)化简(9x﹣3)﹣2(x+1)的结果是()A.2x﹣2B.x+1C.5x+3D.x﹣3解:原式=3x﹣1﹣2x﹣2=x﹣3,故选:D.4.(2019•十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15B.﹣=15C.﹣=20D.﹣=20解:设原计划每天铺设钢轨x米,可得:,故选:A.5.(2019•宜昌)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18D.解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019•十堰)一列数按某规律排列如下:,,,,,,,,,,…,若第n 个数为,则n=()A.50B.60C.62D.71解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.7.(2019•襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3B.5x+45=7x+3C.=D.=解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.8.(2019•荆门)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关解:设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,∴x(1+20%)=y(1﹣20%),整理得:3x=2y,该服装店卖出这两件服装的盈利情况为:0.2x﹣0.2y=0.2x﹣0.3x=﹣0.1x,即赔了0.1x元,故选:B.9.(2019•孝感)已知二元一次方程组,则的值是()A.﹣5B.5C.﹣6D.6解:,②﹣①×2得,2y=7,解得,把代入①得,+y=1,解得,∴=.故选:C.10.(2019•荆州)已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0B.k>﹣2且k≠﹣1C.k>﹣2D.k<2且k≠1解:∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.11.(2019•随州)“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.二.填空题(共11小题)12.(2019•武汉)计算﹣的结果是.解:原式====.故答案为:13.(2019•黄石)分式方程:﹣=1的解为x=﹣1.解:去分母得:4﹣x=x2﹣4x,即x2﹣3x﹣4=0,解得:x=4或x=﹣1,经检验x=4是增根,分式方程的解为x=﹣1,故答案为:x=﹣114.(2019•十堰)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=﹣3或4.解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3或4.15.(2019•襄阳)定义:a*b=,则方程2*(x+3)=1*(2x)的解为x=1.解:2*(x+3)=1*(2x),=,4x=x+3,x=1,经检验:x=1是原方程的解,故答案为:x=1.16.(2019•黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵,则第20行第19个数是625.解:由图可得,第一行1个数,第二行2个数,第三行3个数,…,则前20行的数字有:1+2+3+…+19+20=210个数,∴第20行第20个数是:1+3(210﹣1)=628,∴第20行第19个数是:628﹣3=625,故答案为:625.17.(2019•荆门)已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为1.解:∵x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个实数根,∴x1+x2=﹣(3k+1),x1x2=2k2+1.∵(x1﹣1)(x2﹣1)=8k2,即x1x2﹣(x1+x2)+1=8k2,∴2k2+1+3k+1+1=8k2,整理,得:2k2﹣k﹣1=0,解得:k1=﹣,k2=1.∵关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,∴△=(3k+1)2﹣4×1×(2k2+1)>0,解得:k<﹣3﹣2或k>﹣3+2,∴k=1.故答案为:1.18.(2019•鄂州)若关于x、y的二元一次方程组的解满足x+y≤0,则m的取值范围是m≤﹣2.解:,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤﹣2.故答案是:m≤﹣2.19.(2019•咸宁)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.解:设木条长x尺,绳子长y尺,依题意,得:.故答案为:.20.(2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是13≤x<15.解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.21.(2019•咸宁)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是﹣384.解:∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,故答案为:﹣384.22.(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为2和9.解:设图中两空白圆圈内应填写的数字从左到右依次为a,b∵外圆两直径上的四个数字之和相等∴4+6+7+8=a+3+b+11①∵内、外两个圆周上的四个数字之和相等∴3+6+b+7=a+4+11+8②联立①②解得:a=2,b=9∴图中两空白圆圈内应填写的数字从左到右依次为2,9故答案为:2;9.三.解答题(共12小题)23.(2019•黄石)计算:(2019﹣π)0+|﹣1|﹣2sin45°+()﹣1.解:原式=1+﹣1﹣2×+3=3.24.(2019•襄阳)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?解:设小路的宽应为xm,根据题意得:(16﹣2x)(9﹣x)=112,解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽应为1m.25.(2019•宜昌)HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,化简得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.26.(2019•黄石)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.解:,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵=1,2x﹣9=﹣1,∴点P的坐标为(1,﹣1),∴点P在的第四象限.27.(2019•十堰)已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.28.(2019•鄂州)先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷解:原式=[﹣]÷=[﹣])÷=•=x+2∵x﹣2≠0,x﹣4≠0,∴x≠2且x≠4,∴当x=﹣1时,原式=﹣1+2=1.29.(2019•黄石)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.30.(2019•孝感)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A 型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.31.(2019•黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,依题意,得:﹣=10,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴1.25x=100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.32.(2019•鄂州)已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.33.(2019•荆州)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为8辆;(3)学校共有几种租车方案?最少租车费用是多少?(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.34.(2019•随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为,易知=10m+n;同理,一个三位数、四位数等均可以用此记法,如=100a+10b+c.【基础训练】(1)解方程填空:①若+=45,则x=2;②若﹣=26,则y=4;③若+=,则t=7;【能力提升】(2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则+一定能被11整除,﹣一定能被9整除,•﹣mn一定能被10整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532﹣235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为495;②设任选的三位数为(不妨设a>b>c),试说明其均可产生该黑洞数.解:(1)①∵=10m+n∴若+=45,则10×2+x+10x+3=45∴x=2故答案为:2.②若﹣=26,则10×7+y﹣(10y+8)=26解得y=4故答案为:4.③由=100a+10b+c.及四位数的类似公式得若+=,则100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1∴100t=700∴t=7故答案为:7.(2)∵+=10m+n+10n+m=11m+11n=11(m+n)∴则+一定能被11整除∵﹣=10m+n﹣(10n+m)=9m﹣9n=9(m﹣n)∴﹣一定能被9整除.∵•﹣mn=(10m+n)(10n+m)﹣mn=100mn+10m2+10n2+mn﹣mn=10(10mn+m2+n2)∴•﹣mn一定能被10整除.故答案为:11;9;10.(3)①若选的数为325,则用532﹣235=297,以下按照上述规则继续计算972﹣279=693963﹣369=594954﹣459=495954﹣459=495…故答案为:495.②当任选的三位数为时,第一次运算后得:100a+10b+c﹣(100c+10b+a)=99(a﹣c),结果为99的倍数,由于a>b>c,故a≥b+1≥c+2∴a﹣c≥2,又9≥a>c≥0,∴a﹣c≤9∴a﹣c=2,3,4,5,6,7,8,9∴第一次运算后可能得到:198,297,396,495,594,693,792,891,再让这些数字经过运算,分别可以得到:981﹣189=792,972﹣279=693,963﹣369=594,954﹣459﹣495,954﹣459=495…故都可以得到该黑洞数495.。
2019年全国中考数学真题分类汇编:方程、不等式与函数的实际应用题
(分类)专题复习(四)方程、不等式与函数的实际应用题类型1 多种函数的综合应用类型2 函数与方程或不等式的综合应用类型1 多种函数的综合应用(2019云南)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.(2019十堰)(2019毕节)(2019襄阳)(2019咸宁)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x 天该产品的生产量z(件)与x(天)满足关系式z=-2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w圆.①求w与x之间的函数关系式,并指出第几天的利润最大.最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?(2019随州)(2019荆门)(2019黄冈)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红。
经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100),已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w’(万元)不低于55万元,产量至少要达到多少吨?(2019鄂州)“互联网+”时代,网上购物备受消费者青睐. 某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施. 据市场调查反映:销售单价每降1元,则每月可多销售5条. 设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生. 为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?解:(1)y=100+5(80-x)或y=-5x+500 …………2′(2)由题意,得:W=(x-40)( -5x+500)=-5x2+700x-20000=-5(x-70)2+4500 …………4′∵a=-5<0 ∴w有最大值即当x=70时,w最大值=4500∴应降价80-70=10(元)答:当降价10元时,每月获得最大利润为4500元 …………6′(3)由题意,得:-5(x-70)2+4500=4220+200解得:x1=66 x2 =74 …………8′∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.…………10′(2019黔东南)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如下表:X(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?(2019广西北部湾)(2019天水)天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润w(元)与销售价x(元/件)之间的函数关系式,并求出没见销售价位多少元时,每天的销售利润最大?最大利润是多少?答案不完整……(2019武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价-进价)(1) ①求y关于x的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(2) 由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值(2019攀枝花)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/干克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如下表所示的一次函数关系.(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量;(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?(2019宿迁)(2019嘉兴)某农作物的生长率 与温度 ()有如下关系:如图 1,当10≤≤25 时可近似用函数p t C t 11505p t =-刻画;当25≤≤37 时可近似用函数 刻画.t 21()0.4160p t h =--+ (1)求 的值. (2)按照经验,该作物提前上市的天数(天)与生长率满足函数关系:h m p 生长率p0.20.250.30.35提前上市的天数 (天)m 051015①请运用已学的知识,求 关于 的函数表达式;m p ②请用含的代数式表示t m(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为 200元,该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600元.因此给大棚继续加温,加温后每天成本 (元)与大棚温度()之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个w t C 最大利润(农作物上市售出后大棚暂停使用).x y (2019临沂)汛期到来,山洪暴发,下表记录了某水库20h内水位的变化情况,其中表示时间(单位:h),x表示水位高度(单位:m),当=8(h)时,达到警戒水位,开始开闸放水。
2019年安徽省中考数学精品复习试卷:方程(组)与不等式(组)(含答案解析)
2019年安徽省中考数学精品复习试卷:方程(组)与不等式(组)(含答案解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.方程4x -1=3的解是( )A.x =1B.x =-1C.x =-2D.x =22.一个实数的平方根是a +1和2a -10,则这个实数是( ) A.4B.16C.3D.93.已知 3243x y k x y k +=,⎧⎨-=+,⎩如果x 与y 互为相反数,那么( ) A.k =0B.34k =-C.32k =-D.34k =4.不等式组 221x x -≤,⎧⎨-<⎩的解集在数轴上表示正确的是( )5.某种商品进价100元,标价150元出售,但销量较小.为了促销,商场决定打折销售,若为了保证利润率不低于5%,那么最低可以打( )A.6折B.7折C.8折D.9折6.某工厂生产一种机器,计划机器在50天内完成,若每天多生产5台,则40天完成且还多生产10台,问原计划每天生产多少台机器?设原计划每天生产x 台,根据题意可列出方程 ( )A.5010540x x -+=B.5010540x x ++=C.5054010x x +=+D.501054010x x ++=-7.在公式12()S a b h =+中,已知a =3,b =5,S =12,则h 的值为 ( ) A.34 B.43C.3D.48.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 值为 ( ) A.1B.-1C.3D.49.若实数x ,y 满足(x +y +2)(x +y -1)=0,则x +y 的值为 ( )A.1B.-2C.2或-1D.-2或110.若不等式组4151x m x m <-,⎧⎨>+⎩无解,则m 的取值范围是( ) A.2m ≥B.2m ≥-C.2m ≤D.2m ≤-二、填空题(本大题共4小题,每小题5分,满分20分) 11.已知x =1是方程x -1=k -2x 的解,那么k = .12.若2(2)0m -=,则mn = .13.某学校准备用5000元购买文学名著和辞典作为科技创新节奖品,其中名著每套65元,辞典每本35元,现已购买名著40套,最多还能购买辞典 本.14.某工厂第一季度的一月份生产电视机1万台,第一季度生产电视机的总台数是3.31万台,则二月份、三月份生产电视机平均增长率是 . 三、(本大题共2小题,每小题8分,满分16分) 15.解方程组2375 3.x y x y -=,⎧⎨+=-⎩ ① ②16.解方程:21331x x x ---+=.四、(本大题共2小题,每小题8分,满分16分) 17.解不等式组303(1)2(21)1x x x -≤,⎧⎨---<,⎩ ① ② 并把解集在数轴上表示出来.18.解方程组278ax by cx y +=,⎧⎨-=⎩时,正确的解应该为32x y =,⎧⎨=-.⎩由于看错了系数c ,得到方程组的解为22x y =-,⎧⎨=.⎩求a +2b +3c 的值.五、(本大题共2小题,每小题10分,满分20分)19.我市计划在两年内将现在的商品房价格调低19% ,求平均每年应降低的百分数.20.观察下列各等式:311112111244224464324466844⨯⨯⨯⨯⨯⨯⨯⨯⨯=,+=,++=,….(1)猜想并写出第n 个等式.(2)这个等式的结果能等于1980吗?若能,请写出这个等式;若不能,请分析原因.六、(本题满分12分)21.仔细阅读下列材料,然后解答问题.某商场在促销期间规定:商场内所有商品按标价的80%出售.同时,当顾客在该商场消费一定金额后,按如下方案获得相应金额的奖券:消费金额a (元)200400a ≤< 400500a ≤< 500700a ≤< 700900a ≤< …获得奖券的金额(元)30 60 100 130 …根据上述促销方法,顾客在商场内购物可以获得双重优惠.例如,购买标价为450元的商品,则消费金额为45080%360⨯=元,共获得的优惠额为450(180%)30120⨯-+=%元.设购买该商品得到的优惠率=购买商品获得的优惠额商品的标价. (1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到13的优惠率?七、(本题满分12分)22.某中学为了落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?八、(本题满分14分)23.某汽车销售公司销售的汽车价格全在11万元以上,最近推出两种分期付款购车活动:①首付款满11万元,减1万元;②首付款满10万元,分期交付的余款可享受八折优惠. (1)小王看中了一款汽车,交了首付款后,还有12万余款需要分期交付,设他每月付款p 万元,n 个月结清余款,用关于p 的代数式表示n ;(2)设小王看中的汽车的价格为x 万元,他应该采取哪种付款方式最省钱?请说明理由; (3)已知小王分期付款的能力是每月0.2万元,若不考虑其他因素,只希望早点结清余款,他该怎样选择?请说明理由.阶段检测二 方程(组)与不等式(组)1.A 【解析】本题考查解一元一次方程.解方程4x -1=3,得x =1.2.B 【解析】由题意得(a +1)+(2a -10)=0,解得a =3,所以这个实数是2(31)16+=. 3.C 【解析】本题考查二元一次方程组的求解以及相反数的概念.解题中关于x ,y 的方程组得9611955k k x y ++=,=-.∵x 与y 互为相反数,∴9611955k k ++=,解得32k =-. 4.C 【解析】解本题中的不等式组得-2≤x <3观察选项知C 正确.5.B 【解析】设打x 折销售,由题意得110150100x ⨯-≥5%100⨯,解得x ≥7故最低可以打7折.6.B 【解析】本题考查列方程解应用题.由题意知,原计划每天生产x 台, 实际每天生产(x +5)台,生产任务为50x 台,实际40天完成(50x +10)台,根据题意可列出方程5010540x x ++=.7.C 【解析】把a =3,b =5,S =12代入公式12()S a b h =+中,得1212(35)h =⨯+,解得h =3.8.B 【解析】本题考查一元二次方程的性质与求解.把x =0代入一元二次方程22(1)10a x x a -++-=,解得1a =±,又∵a =1不合题意,应舍去,∴a =-1.9.D 【解析】本题考查整体思想和一元二次方程的求解.把x +y 整体看成一个未知数,解关于x +y 的一元二次方程(x +y +2)(x +y -1)=0,得x +y =-2或x +y =1.10.B 【解析】本题考查不等式组的求解.由题意可得41m -≤5m +1,解得m ≥-2 11.2 【解析】本题考查解一元一次方程.由题意得1-1=k -2,解得k =2. 12.-16 【解析】由题意得m -2=0,且n +8=0,解得m =2,n =-8,故mn =-16.13.68 【解析】设还能购买辞典x 本,由题意得654035x ⨯+≤5000,解得x ≤4807,x 取整数,其最大值为68,即最多还能购买辞典68本.14.10% 【解析】设二月份、三月份生产电视机平均增长率为x ,由题意得211(1)1(1)3.31x x +⨯++⨯+=,解得10.1x =,2x =-3.1(不合题意,舍去),则二月份、三月份生产电视机平均增长率为10%.15.解:由②2⨯得2x +10y =-6, ③ 2分①-③得-13y =13,解得y =-1,代入②,解得x =2. 6分 故原方程组的解为21x y =,⎧⎨=-.⎩ 8分16.解:方程两边同时乘x -3,得2-x -1=x -3, 解得x =2. 4分检验:当x =2时310x ,-=-≠, 所以原分式方程的根为x =2. 8分 17.解:解①得3x ≤,解②得x >-2.3分 所以原不等式组的解集为23x -<≤.6分 在数轴上表示为8分18.解:由 32x y =,⎧⎨=-⎩ 是方程组 278ax by cx y +=,⎧⎨-=⎩ 的解,得3223148a b c -=,⎧⎨+=,⎩①②解②得c =-2. 2分另一方面,由于是看错了系数c ,而未看错系数a ,b 得到解 22x y =-,⎧⎨=,⎩因而x =-2,y =2仍是方程ax +by =2的解, 4分从而有-2a +2b =2 ③,联立①③建立方程组,解得a =4,b =5. 7分 所以a 23425(2)38b c ++=+⨯+-⨯=. 8分19.解:设平均每年应降低的百分数为x ,现在的房价为a . 2分由题意得2(1)(119a x ,-=-%)a ,解得x =10%. 8分 答:平均每年应降低的百分数为10%. 10分20.解:(1)第1个式子左边最后一项为1124(21)(22)⨯⨯⨯⨯=,右侧为142⨯;第2个式子左边最后一项为1146(22)(23)⨯⨯⨯⨯=,右侧为243⨯;第3个式子左边最后一项为1168(23)(24)⨯⨯⨯⨯=,右侧为344⨯; 2分……依此类推,第n 个式子左边最后一项为1(2)[2(1)]n n ⨯⨯⨯+,即12(22)n n ⨯+,右侧为4(1)nn +. 4分 ∴第n 个等式为111244668⨯⨯⨯+++…12(22)4(1)nn n n +++=. 5分(2)当194(1)80nn +=时,解得n =19,经检验n =19是原方程的根, 8分则这个等式的结果能等于1980,且这个等式为111244668⨯⨯⨯+++ (191)384080⨯+=.10分21.解:(1)购买一件标价为1 000元的商品消费金额为1 00080⨯%=800元,因此可获得奖券为130元,购买该商品得到的优惠率为1000(180%)130100033%⨯-+=. 4分答:购买一件标价为1 000元的商品,顾客得到的优惠率为33%. 5分 (2)因为50080⨯%=400元80080,⨯%=640元.所以对于标价在500元与800元之间(含500元和800元)的商品的优惠价在400元与640元之间(含400元和640元). 7分设顾客购买标价为x 元的商品,可以得到13的优惠率.当优惠额在400元(含400)与500元之间时,有(180%)6013x x-+=,解得x =450,又45080⨯%=360<400,不合题意,舍去; 9分当优惠价在500元(含500)与700元之间时,有(180%)10013x x-+=,解得x =750.经检验,x =750是分式方程的解,且满足题意.答:顾客购买标价为750元的商品,可以得到13的优惠率. 12分22.解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意得8030(30)19005060(30)1620x x x x +-≤,⎧⎨+-≤,⎩ 解得1820x ≤≤. 2分∵x 只能取整数,∴x 的所有可能取值是18,19,20.①当x =18时,30-x =12;②当x =19时,30-x =11;③当x =20时,30-x =10. 5分故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个. 7分 (2)方案一的费用是860185701222320⨯+⨯=元; 方案二的费用是860195701122610⨯+⨯=元;方案三的费用是860205701022900⨯+⨯=元. 10分 故方案一的费用最低,最低费用是22320元. 12分 23.解:(1)由题意可得12p n,=. 2分(2)由题意可知,第①种方式中,应实付款(x -1)万元,第②种方式中,应实付款0.8(x -10)+10=(0.8x +2)万元, 4分 则(x -1)-(0.8x +2)=0.2x -3, 令0.2x -3=0,解得x =15. 6分∴当汽车价格11<x <15时,采取第①种方式较省钱;当汽车价格x =15时,两种方式一样;当汽车价格x >15时,采取第②种方式较省钱. 8分(3)小王采取第①种优惠方式所购汽车的价格x (万元)与结清余款所需的月数1n 之间的关系为x -11-1=0.12n ,即1n =5x -60.小王采取第②种优惠方式所购汽车的价格x (万元)与结清余款所需的月数2n 之间的关系为0.8(x -10)=0.22n ,即2440n x =-. 10分 则12(560)(440)20n n x x x -=---=-,令x -20=0,解得x =20,当x =20时1240n n ,==.12分∴当汽车价格在11~20万元之间时,采取第①种方式可早点结清余款; 当汽车价格等于20万元时,两种方式都需要40个月才能结清余款; 当汽车价格大于20万元时,采取第②种方式可早点结清余款. 14分。
2019年浙江省中考数学真题分类汇编专题2——方程与不等式(练习版+解析版)
2019年浙江省中考数学分类汇编专题2:方程与不等式(练习版+答案版)一、单选题1.不等式的解为()A. B. C. D.2.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为().A. 20%B. 40%C. 18%D. 36%3.方程= 的解为().A. x=B. x=C. x=D. x=4.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头两,根据题意可列方程组为()A. B. C. D.5.已知四个实数,,,,若,,则()A. B. C. D.6.如图是一个2×2的方阵,其中每行、每列的两数和相等,则可以是()A. B. -1 C. 0 D.7.一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程,则另一个方程正确的是()A. B. C. D.8.已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设e男生有人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72D. 3x+2(30-x)=729.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=510.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A. 31元B. 30元C. 25元D. 19元二、填空题11.不等式组的解为________.12.不等式组的解集是________ 。
13.在x2+________ +4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根。
14.在的括号中添加一个关于的一次项,使方程有两个相等的实数根________15.不等式3x-2≥4的解为________.三、解答题16. (1)计算:4sin60°+(π-2)0-( )-(2)x为何值时,两个代数式x2+1,4x+1的值相等?17.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.18.寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用。
2019年中考数学方程与不等式重点试题及解析
2019年中考数学方程与不等式重点试题及解析【一】选择题(此题共10小题,每题4分,总分值40分) 1、点(412)A m m --,在第三象限,那么m 值是〔〕。
A、12m >B、4m <C、142m << D、4m >2、不等式组⎩⎨⎧>>ax x 3的解集是x>a ,那么a 的取值范围是〔〕。
A、a ≥3B 、a =3C、a >3D、a <3 3、方程2x x 2-4 -1=1x +2 的解是〔〕。
A、-1B 、2或-1C、-2或3D、3 4、方程2-x 3 -x-14=5的解是〔〕。
A、5B 、-5C、7D、-75、一元二次方程x 2-2x-3=0的两个根分别为〔〕。
A 、x 1=1,x 2=-3B 、x 1=1,x 2=3C 、x 1=-1,x 2=3D 、x 1=-1,x 2=-3 6、a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,,那么a b -的值为〔〕。
A、1-B、1m -C、0D、17、假设方程组35223x y m x y m +=+⎧⎨+=⎩的解x 与y 的和为0,那么m 的值为〔〕。
A、-2B 、0C、2D、48、假如x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1, 那么x 1·x 2等于〔〕。
A、2B 、-1C、1D、-29、在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图、假如要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是〔〕。
A 、x 2+130x-1400=0B 、x 2+65x-350=0C 、x 2-130x-1400=0D 、x 2-65x-350=0 10、假设解分式方程2x x -1 -m +1x 2+x =x +1x产生增根,那么m 的值是〔〕。
2019年全国各地中考数学真题汇编:数与式、方程不等式(湖北专版)(原卷)
2019 年全国各地中考数学真题汇编(湖北专版)数与式、方程不等式一.选择题(共11 小题)1.( 2019?天门)把一根9m 长的钢管截成1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有()A.3 种B.4 种C.5 种D.9 种2 3 2 3 4 2 3 4 52 .( 2019?武汉)察看等式: 2+2 = 2 ﹣ 2; 2+2 +2 = 2 ﹣ 2; 2+2 +2 +2 = 2 ﹣ 2已知按必定规律摆列的一组数:250、251、252、、 299、2100.若 250= a,用含 a 的式子表示这组数的和是()A .2a 2﹣ 2a B.2a2﹣ 2a﹣2 C. 2a2﹣a D. 2a2+a3.( 2019?黄石)化简(9x﹣ 3)﹣ 2( x+1)的结果是()A .2x﹣ 2 B.x+1 C. 5x+3 D. x﹣ 34.( 2019?十堰)十堰马上跨入高铁时代,钢轨铺设任务也将达成.现还有6000 米的钢轨需要铺设,为保证年末通车,假如实质施工时每日比原计划多铺设20 米,就能提早15 天达成任务.设原计划每日铺设钢轨x 米,则依据题意所列的方程是()A .﹣=15B .﹣= 15C.﹣= 20 D .﹣= 205.( 2019?宜昌)古希腊几何学家海伦和我国宋朝数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:假如一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 为 a, b, c,若 a= 5, b= 6, c= 7,则△ ABC 的面积为(中,∠)A,∠ B,∠ C 所对的边分别记A .6 B.6 C. 18 D.6.( 2019?十堰)一列数按某规律摆列以下:,,,,,,,,,,,若第 n 个数为,则 n=()A .50 B.60 C. 62 D. 717.( 2019?襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文以下:今有人合伙买羊,每人出 5 钱,会差 45 钱;每人出 7 钱,会差 3 钱.问合伙人数、羊价各是多少?设合伙人数为 x 人,所列方程正确的选项是()A .5x﹣ 45=7x﹣ 3 B.5x+45= 7x+3 C.=D.=8.( 2019?荆门)欣欣服饰店某天用相同的价钱a( a> 0)卖出了两件服饰,此中一件盈余20%,另一件损失 20%,那么该服饰店卖出这两件服饰的盈余状况是()A .盈余B .损失C.不盈不亏 D .与售价 a 相关9.( 2019?孝感)已知二元一次方程组,则的值是()A.﹣5 B.5 C.﹣ 6 D. 610.( 2019?荆州)已知对于 x 的分式方程﹣2=的解为正数,则 k 的取值范围为()A .﹣ 2< k<0 B.k>﹣ 2 且 k≠﹣ 1 C. k>﹣ 2 D. k< 2 且 k≠ 111.( 2019?随州)“分母有理化” 是我们常用的一种化简的方法,如:==7+4,除此以外,我们也能够用平方以后再开方的方式来化简一些有特色的无理数,如:对于﹣,设 x=﹣,易知>,故 x> 0,由x2=(﹣)2=3++3﹣.依据以上方法,化简﹣ 2+= 2 ,解得x=﹣后的结果为(,即)﹣=A .5+3 B.5+ C. 5﹣D.5﹣ 3 二.填空题(共11 小题)12.( 2019?武汉)计算﹣的结果是.13.( 2019?黄石)分式方程:﹣=1 的解为.14.( 2019?十堰)对于实数a, b,定义运算“◎”以下:a◎ b=( a+b)2﹣( a﹣ b)2.若( m+2)◎( m﹣ 3)= 24,则 m=.15.( 2019?襄阳)定义: a*b=,则方程2* ( x+3)= 1* ( 2x)的解为.16.(2019?黄石)将被 3 整除余数为 1 的正整数,依据以下规律排成一个三角形数阵,则第20 行第19 个数是.2 217.( 2019?荆门)已知 x1, x2是对于 x 的方程 x +( 3k+1) x+2k +1= 0 的两个不相等实数根,且满足( x1﹣1)( x2﹣ 1)= 8k 2,则 k 的值为.18.( 2019?鄂州)若对于 x、 y 的二元一次方程组的解知足 x+y≤ 0,则 m 的取值范围是.19.( 2019?咸宁)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大概是:“用一根绳索去量一根木条,绳索节余 4.5 尺;将绳索对折再量木条,木条节余 1 尺,问木条长多少尺?”假如设木条长x 尺,绳索长y 尺,可列方程组为.20.( 2019?荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n 为非负整数时,若n﹣≤ x<,则( x)= n.如()= 1,()= 5.若(﹣ 1)= 6,则实数x 的取值范围是.21.( 2019?咸宁)有一列数,按必定规律摆列成1,﹣ 2,4,﹣ 8,16,﹣ 32,,此中某三个相邻数的积是412,则这三个数的和是.22.( 2019?随州) 2017 年,随州学子尤东梅参加《最强盛脑》节目,成功达成了高难度的项目挑战,显现了惊人的记忆力.在2019 年的《最强盛脑》节目中,也有好多拥有挑战性的竞赛项目,此中《幻圆》这个项目充足表现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:① 内、外两个圆周上的四个数字之和相等;② 外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右挨次为和.三.解答题(共12 小题)23.( 2019?黄石)计算:(﹣ 1|﹣ 2sin45° +(﹣ 1 2019 ﹣π) +| ).24.( 2019?襄阳)改良小区环境,争创文明家园.以下图,某社区决定在一块长(AD ) 16m,宽( AB)9m 的矩形场所ABCD 上修筑三条相同宽的小道,此中两条与AB 平行,另一条与AD 平行,其余部分种草.要使草坪部分的总面积为112m 2,则小道的宽应为多少?25.( 2019?宜昌) HW 企业 2018 年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800 万块,生产了 2800 万部手机,此中乙类芯片的产量是甲类芯片的 2 倍,丙类芯片的产量比甲、乙两类芯片产量的和还多 400 万块.这些“QL”芯片解决了该企业2018 年生产的所有手机所需芯片的10% .( 1)求 2018 年甲类芯片的产量;( 2)HW 企业计划 2020 年生产的手机所有使用自主研发的“QL ”系列芯片.从 2019 年起逐年扩大“ QL”芯片的产量, 2019 年、 2020 年这两年,甲类芯片每年的产量都比前一年增加一个相同的百分数 m%,乙类芯片的产量均匀每年增加的百分数比m%小 1,丙类芯片的产量每年按相同的数量递加 .2018 年到 2020 年,丙类芯片三年的总产量达到 1.44 亿块.这样, 2020 年的 HW 企业的手机产量比 2018 年整年的手机产量多 10%,求丙类芯片2020 年的产量及 m 的值.26.( 2019?黄石)若点P 的坐标为(,2x﹣9),此中x 知足不等式组,求点 P 所在的象限.27.( 2019?十堰)已知于 x 的元二次方程 x 2﹣ 6x+2a+5 = 0 有两个不相等的实数根 x 1, x 2.( 1)求 a 的取值范围;22( 2)若 x 1 +x 2 ﹣ x 1x 2≤ 30,且 a 为整数,求 a 的值.28.( 2019?鄂州)先化简,再从﹣ 1、2、 3、 4 中选一个适合的数作为 x 的值代入求值.(﹣)÷29.( 2019?黄石)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:相同时间段内,走路快的人能走100 步,走路慢的人只好走 60 步.假设二者步长相等,据此回答以下问题:( 1)今不善行者先行一百步, 善行者追之, 不善行者再行六百步, 问孰至于前, 二者几何步隔之?即:走路慢的人先走100 步,走路快的人开始追赶,当走路慢的人再走 600 步时,请问谁在前方,两人相隔多少步?( 2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200 步,请问走路快的人走多少步才能追上走路慢的人?30.( 2019?孝感)为加速“智慧校园”建设,某市准备为试点学校采买一批A 、B 两种型号的一体机.经过市场检查发现,今年每套B 型一体机的价钱比每套 A 型一体机的价钱多0.6 万元,且用960 万元恰巧能购置 500 套 A 型一体机和 200 套 B 型一体机.( 1)求今年每套 A 型、 B 型一体机的价钱各是多少万元?( 2)该市明年计划采买A 型、B 型一体机共 1100 套,考虑物价要素,估计明年每套 A 型一体机的价钱比今年上升25%,每套 B 型一体机的价钱不变,若购置 B 型一体机的总花费不低于购置A型一体机的总花费,那么该市明年起码需要投入多少万元才能达成采买计划?31.( 2019?黄冈)为了对学生进行革命传统教育,红旗中学展开了“清明节祭扫”活动.全校学生从学校同时出发,步行4000 米抵达烈士纪念馆.学校要求九(1)班提早抵达目的地,做好活动的准备工作.行走过程中,九(1)班步行的均匀速度是其余班的 1.25 倍,结果比其余班提早10 分钟抵达.分别求九(1)班、其余班步行的均匀速度.232.( 2019?鄂州)已知对于x 的方程 x ﹣ 2x+2 k﹣ 1= 0 有实数根.( 2)设方程的两根分别是x1、 x2,且+=x1?x2,试求k的值.33.( 2019?荆州)为拓展学生视线,促使书籍知识与生活实践的深度交融,荆州市某中学组织八年级全体学生前去松滋洈水研学基地展开研学活动.在此次活动中,若每位老师带队14 名学生,则还剩 10 名学生没老师带;若每位老师带队15 名学生,就有一位老师少带 6 名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人 /辆)3530租金(元 /辆)400320学校计划此次研学活动的租金总花费不超出3000 元,为安全起见,每辆客车上起码要有 2 名老师.( 1)参加此次研学活动的老师和学生各有多少人?( 2)既要保证所有师生都有车坐,又要保证每辆车上起码要有 2 名老师,可知租车总辆数为辆;( 3)学校共有几种租车方案?最少租车花费是多少?34.( 2019?随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为,易知= 10m+n;同理,一个三位数、四位数等均能够用此记法,如=100a+10b+c.【基础训练】( 1)解方程填空:①若+=45,则x=;②若﹣=26,则y=;③若+=,则t=;【能力提高】( 2)互换随意一个两位数的个位数字与十位数字,可获得一个新数,则+必定能被整除,﹣必定能被整除,?﹣mn必定能被整除;(请从大于 5 的整数中选择适合的数填空)【探究发现】(3)北京时间 2019 年 4 月 10 日 21 时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃走不了它的约束.数学中也存在风趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小从头摆列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数获得一个新数(比如若选的数为325,则用 532﹣ 235= 297),再将这个新数按上述方式从头摆列,再相减,像这样运算若干次后必定会获得同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.① 该“卡普雷卡尔黑洞数”为;②设任选的三位数为(不如设a> b> c),试说明其均可产生该黑洞数.。
2019中考真题-数与代数-方程与不等式
29. (2019 黄石)已知关于 的一元二次方程 (1)求 的取值范围. (2)若该方程的两个实数根为 、 ,且
有实数根. ,求 的值.
30. (2019 长沙)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作 实施意见》鼓励教师与志愿辅导,某区率先示范,推出名师公益大课堂,为 学生提供线上线下免费辅导,据统计,第一批公益课受益学生 2 万人次,第 三批公益课受益学生 2.42 万人次.
8. (2019 广东)解不等式组: 2 x 1 4 ②
9.(2019 南通)解不等式: 4x 1 x 1 ,并在数轴上表示解集. 3
10.(2019 湘潭)解不等式组
,并把它的解集在数轴上表示出来.
方程与不等式- 5 -
2(x 1)>x
11.
(2019
江西)解不等式组:
1
2x
x7 2
,并在数轴上表示它的解集.
数与代数——方程与不等式
一、方程与方程组 1. (2019 杭州)已知九年级某班 30 位同学种树 72 棵,男生每人种 3 棵,女生
每人种 2 棵,设男生 x 人,则 ( )
A. 2x + 3(72 - x) = 30
B. 3x + 2(72 - x) = 30
C. 2x + 3(30 - x) = 72
25. (2019 枣庄)已知关于 x 的方程 ax2 2x 3 0 有两个不相等的实数根,则 a
的取值范围是___.
26. (2019 吉林)若关于 x 的一元二次方程 x 32 c 有实数根,则 c 的值可以
为________(写出一个即可). 27. (2019 山西) 如图,在一块长 12 m,宽 8 m 的矩形空地上,
2019年浙江省中考数学分类汇编专题:方程与不等式
2019年浙江省中考数学分类汇编专题:方程与不等式、单选题1. 不等式 的解为()A.B.C.D.【答案】 A【考点】解一元一次不等式【解析】【解答】解:去分母得: 3-x > 2x ,移项得:-x-2x >-3,合并同类项得:-3x >-3,系数化为1 得: x < 1. 故答案为:A【分析】解不等式的步骤是:去分母、移项、合并同类项、系数化为1.根据解不等式的步骤计算即可求解。
2. 某商品经过连续两次降价,售价由原来的每件 25元降到每件16元,则平均每次降价的百分率为()A. 20%B. 40%C. 18%D. 36%【答案】 A【考点】一元二次方程的实际应用 -百分率问题【解析】【解答】解:设平均每次降价的百分率,由题意得225 ( 1-x ) =16解之:X 1=0.2=20%, x 2=1.8 (不符合题意,舍去) 故答案为:A2【分析】根据等量关系:连续两次降价前的售价( 1-降低率)=连续两次降价后的售价,设未知数,列【考点】解分式方程2x=3 ( 3x-1) 解之: -经检验| 一「是原方程的解。
故答案为:C【分析】方程两边同时乘以 x (3x-1),将分式方程转化为整式方程,解方程求出 x 的值,再检验即可求解。
方程求解即可。
3.方程 一:=*的解为().3_ UCA. x=B. X =C. x=7-3= X【答案】 【解析】【解答】解:方程两边同时乘以 x (3x-1) 得【考点】二元一次方程组的其他应用【解析】【解答】解:设马每匹x两,牛每头y两,根据题意得:|4v+6y = 48故答案为:D4X马的单价+6X牛的单价=48;3>马的单价+5X牛的单价=38,列方程组即可。
,,若,,则()【答案】A【考点】不等式及其性质【考点】一元一次方程的其他应用,特殊角的三角函数值【解析】【解答】解:由题意得:a+ ^氓=2' |-'解之:a=1故答案为:D【分析】根据2X2的方格中,每一行和每一列的两数之和相等,建立关于a的方程,解方程求出a的值, 再将选项A、D化简即可得出正确答案。
四川省各市2019年中考数学分类解析专题3:方程(组)和不等式(组)
四川各市2019年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1. (2019四川成都3分)分式方程31=2x x1-的解为【】A.x=1 B. x=2 C. x=3 D. x=4 【答案】C。
【考点】解分式方程。
【分析】由31=2x x1-去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3。
检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解。
∴原方程的解为:x=3。
故选C。
2. (2019四川成都3分)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是【】A.100(1+x)=121 B. 100(1-x)=121 C. 100(1+x)2=121 D. 100(1-x)2=121【答案】C。
【考点】由实际问题抽象出一元二次方程(增长率问题)。
【分析】由于每次提价的百分率都是x,第一次提价后的价格为100(1+x),第一次提价后的价格为100(1+x) (1+x) =100(1+x)2。
据此列出方程:100(1+x)2=121。
故选C。
3. (2019四川攀枝花3分)下列说法中,错误的是【】A.不等式x<2的正整数解中有一个B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3 D.不等式x<10的整数解有无数个【答案】C。
【考点】不等式的解集。
【分析】解不等式求得B,C选项的不等式的解集,即可判定C错误,由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确。
故选C。
4. (2019四川攀枝花3分)已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22的值为【】A.﹣3 B. 3 C.﹣6 D. 6【答案】A。
【考点】一元二次方程根与系数的关系,求代数式的值。
【分析】由一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,根据一元二次方程根与系数的关系得,x1+x2=3,x1x2=―1,∴x 12x 2+x 1x 22=x 1x 2(x 1+x 2)=(-1)·3=-3。
2019年全国各地中考数学真题汇编:数与式、方程不等式(江苏专版)(原卷)
2019年全国各地中考数学真题汇编(江苏专版)数与式、方程不等式一.选择题(共5小题)1.(2019•泰州)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为()A.﹣1B.1C.2D.32.(2019•宿迁)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个3.(2019•苏州)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A.=B.=C.=D.=4.(2019•淮安)若关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是()A.k<﹣1B.k>﹣1C.k<1D.k>15.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10B.9C.8D.7二.填空题(共4小题)6.(2019•常州)若是关于x、y的二元一次方程ax+y=3的解,则a=.7.(2019•南京)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.8.(2019•连云港)已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于.9.(2019•宿迁)关于x的分式方程+=1的解为正数,则a的取值范围是.三.解答题(共13小题)10.(2019•无锡)计算:(1)|﹣3|+()﹣1﹣()0;(2)2a3•a3﹣(a2)3.11.(2019•南京)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?12.(2019•常州)解不等式组并把解集在数轴上表示出来.13.(2019•连云港)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.13.(2019•南京)解方程:﹣1=.14.(2019•常州)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?15.(2019•苏州)先化简,再求值:÷(1﹣),其中,x=﹣3.17.(2019•淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?18.(2019•盐城)计算:|﹣2|+(sin36°﹣)0﹣+tan45°.19.(2019•扬州)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?20.(2019•盐城)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?21.(2019•宿迁)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?22.(2019•盐城)【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:第一次第二次:(1)完成上表;(2)计算甲两次买菜的均价和乙两次买菜的均价.(均价=总金额÷总质量)【数学思考】设甲每次买质量为m千克的菜,乙每次买金额为n元的菜,两次的单价分别是a元/千克、b元/千克,用含有m、n、a、b的式子,分别表示出甲、乙两次买菜的均价、,比较、的大小,并说明理由.【知识迁移】某船在相距为s的甲、乙两码头间往返航行一次.在没有水流时,船的速度为v,所需时间为t1;如果水流速度为p时(p<v),船顺水航行速度为(v+p),逆水航行速度为(v﹣p),所需时间为t2.请借鉴上面的研究经验,比较t1、t2的大小,并说明理由.。
2019年全国各地中考数学真题汇编:数与式、方程不等式(四川专版)(解析卷)
2019年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2019•绵阳)已知x是整数,当|x﹣|取最小值时,x的值是()A.5B.6C.7D.8解:∵,∴5<,且与最接近的整数是5,∴当|x﹣|取最小值时,x的值是5,故选:A.2.(2019•攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)B.C.D.设上山的路程为x千米,则上山的时间小时,下山的时间为小时,则上、下山的平均速度=千米/时.故选:D.3.(2019•绵阳)已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b3解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.4.(2019•遂宁)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a的值为()A.0B.±1C.1D.﹣1解:∵关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,∴a2﹣1=0,a﹣1≠0,则a的值为:a=﹣1.故选:D.5.(2019•绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.6.(2019•遂宁)关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4B.k<4C.k>﹣4且k≠4D.k<4且k≠﹣4解:分式方程去分母得:k﹣(2x﹣4)=2x,解得:x=,根据题意得:>0,且≠2,解得:k>﹣4,且k≠4.故选:C.7.(2019•乐山)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11B.7,53C.7,61D.6,50解:设有x人,物价为y,可得:,解得:,故选:B.8.(2019•达州)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.9.(2019•南充)关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为()A.﹣5<a<﹣3B.﹣5≤a<﹣3C.﹣5<a≤﹣3D.﹣5≤a≤﹣3解:解不等式2x+a≤1得:x≤,不等式有两个正整数解,一定是1和2,根据题意得:2≤<3,解得:﹣5<a≤﹣3.故选:C.10.(2019•达州)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5B.﹣C.D.解:∵a1=5,a2===﹣,a3===,a4===5,…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673,∴a2019=a3=,故选:D.二.填空题(共4小题)11.(2019•自贡)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,12.(2019•成都)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为﹣2.解:根据题意得:x1+x2=﹣2,x1x2=k﹣1,+﹣x1x2=﹣3x1x2=4﹣3(k﹣1)=13,k=﹣2,故答案为:﹣2.13.(2019•绵阳)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为10km/h.解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.14.(2019•宜宾)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.解:设每个季度平均降低成本的百分率为x,依题意,得:65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.故答案为:65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.三.解答题(共18小题)15.(2019•成都)先化简,再求值:(1﹣)÷,其中x=+1.解:原式=×=×=将x=+1代入原式==16.(2019•泸州)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为30万元;(2)设购进A型汽车m辆,购进B型汽车(10﹣m)辆,根据题意得:解得:3≤m<5,∵m是整数,∴m=3或4,当m=3时,该方案所用费用为:25×3+30×7=285(万元);当m=4时,该方案所用费用为:25×4+30×6=280(万元).答:最省的方案是购买A型汽车4辆,购进B型汽车6辆,该方案所需费用为280万元.17.(2019•乐山)已知关于x的一元二次方程x2﹣(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC的内切圆半径.(1)证明:∵△=(k+4)2﹣16k=k2﹣8k+16=(k﹣4)2≥0,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵,∴,即,解得:k=2;(3)解:解方程x2﹣(k+4)x+4k=0得:x1=4,x2=k,根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3﹣r)+(4﹣r)=5,∴直角三角形ABC的内切圆半径r=.18.(2019•绵阳)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?解:设甲、乙两种客房每间现有定价分别是x元、y元,根据题意,得:,解得,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设每天的定价增加了a个20元,则有2a个房间空闲,根据题意有:m=(20﹣2a)(200+20a﹣80)=﹣40a2+160a+2400=﹣40(a﹣2)2+2560,∵﹣40<0,∴当a=2时,m取得最大值,最大值为2560,此时房间的定价为200+2×20=240元.答:当每间房间定价为240元时,乙种风格客房每天的利润w最大,最大利润是2560元.19.(2019•广元)某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?解:(1)设甲种水果的单价是x元,则乙种水果的单价是(x+4)元,,解得,x=16,经检验,x=16是原分式方程的解,∴x+4=20,答:甲、乙两种水果的单价分别是16元、20元;(2)设购进甲种水果a千克,则购进乙种水果(200﹣a)千克,利润为w元,w=(20﹣16)a+(25﹣20)(200﹣a)=﹣a+1000,∵甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,∴,解得,145≤a≤150,∴当a=145时,w取得最大值,此时w=855,200﹣a=55,答:水果商进货甲种水果145千克,乙种水果55千克,才能获得最大利润,最大利润是855元.20.(2019•遂宁)仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)解:(1)设第一批仙桃每件进价x元,则×=,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.则:×225×80%+×225×(1﹣80%)×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.21.(2019•绵阳)(1)计算:2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0;(2)先化简,再求值:(﹣)÷,其中a=,b=2﹣.解:(1)2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0=+2﹣2×﹣1=+2﹣﹣1=1;(2)原式=×﹣×=﹣﹣=﹣=﹣,当a=,b=2﹣时,原式=﹣=﹣.22.(2019•南充)在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)钢笔、笔记本的单价分别为x、y元,根据题意得,,解得:,答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a元,购买数量为b元,支付钢笔和笔记本的总金额w元,①当30≤b≤50时,a=10﹣0.1(b﹣30)=﹣0.1b+13,w=b(﹣0.1b+13)+6(100﹣b)=﹣0.1b2+7b+600=﹣0.1(b﹣35)2+722.5,∵当b=30时,w=720,当b=50时,w=700,∴当30≤b≤50时,700≤w≤722.5;②当50<b≤60时,a=8,w=8b+6(100﹣b)=2b+600,700<w≤720,∴当30≤b≤60时,w的最小值为700元,∴这次奖励一等奖学生50人时,购买奖品总金额最少,最少为700元.23.(2019•宜宾)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C 两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.解:设乙车的速度为x千米/时,则甲车的速度为(x+10)千米/时.根据题意,得:+=,解得:x=80,或x=﹣110(舍去),∴x=80,经检验,x=,80是原方程的解,且符合题意.当x=80时,x+10=90.答:甲车的速度为90千米/时,乙车的速度为80千米/时.24.(2019•眉山)在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=6,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设甲工程队施工a天,乙工程队施工b天刚好完成绿化任务,由题意得:100a+50b=3600,则a==﹣b+36,根据题意得:1.2×+0.5b≤40,解得:b≥32,答:至少应安排乙工程队绿化32天.25.(2019•广安)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.解:(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,,解得,,答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元;(2)设购买A型号的节能灯a只,则购买B型号的节能灯(200﹣a)只,费用为w元,w=5a+7(200﹣a)=﹣2a+1400,∵a≤3(200﹣a),∴a≤150,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50,答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.26.(2019•南充)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣3=0有实数根.(1)求实数m的取值范围;(2)当m=2时,方程的根为x1,x2,求代数式(x12+2x1)(x22+4x2+2)的值.解:(1)由题意△≥0,∴(2m﹣1)2﹣4(m2﹣3)≥0,∴m≤.(2)当m=2时,方程为x2+3x+1=0,∴x1+x2=﹣3,x1x2=1,∵方程的根为x1,x2,∴x12+3x1+1=0,x22+3x2+1=0,∴(x12+2x1)(x22+4x2+2)=(x12+2x1+x1﹣x1)(x22+3x2+x2+2)=(﹣1﹣x1)(﹣1+x2+2)=(﹣1﹣x1)(x2+1)=﹣x2﹣x1x2﹣1﹣x1=﹣x2﹣x1﹣2=3﹣2=1.27.(2019•达州)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?解:设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,依题意,得:+=27,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:这种粽子的标价是8元/个.28.(2019•巴中)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=解得x=90经检验,x=90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件由题意得:5000≤100y+90(55﹣y)≤5050解得5≤y≤10∴共有6种选购方案.29.(2019•资阳)为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B两种彩页构成.已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元.(注:彩页制版费与印数无关)(1)每本宣传册A、B两种彩页各有多少张?(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?解:(1)设每本宣传册A、B两种彩页各有x,y张,,解得:,答:每本宣传册A、B两种彩页各有4和6张;(2)设最多能发给a位参观者,可得:2.5×4a+1.5×6a+2400≤30900,解得:a≤1500,答:最多能发给1500位参观者.30.(2019•成都)(1)计算:(π﹣2)0﹣2cos30°﹣+|1﹣|.(2)解不等式组:解:(1)原式=1﹣2×﹣4+﹣1,=1﹣﹣4+﹣1,=﹣4.(2)由①得,x≥﹣1,由②得,x<2,所以,不等式组的解集是﹣1≤x<2.31.(2019•自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=210﹣1;(2)3+32+…+310=;(2)设S=3+3+32+33+34+…+310 ①,则3S=32+33+34+35+…+311 ②,②﹣①得2S=311﹣1,所以S=,即3+32+33+34+…+310=;故答案为:;(3)设S=1+a+a2+a3+a4+..+a n①,则aS=a+a2+a3+a4+..+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,a=1时,不能直接除以a﹣1,此时原式等于n+1;a不等于1时,a﹣1才能做分母,所以S=,即1+a+a2+a3+a4+..+a n=,32.(2019•凉山州)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为﹣1<x<3.(2)求不等式<0的解集(要求写出解答过程)解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数与代数——方程与不等式一、方程与方程组1. (2019杭州)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A. ()237230x x +-=B. ()327230x x +-=C. ()233072x x +-=D. ()323072x x +-=2. (2019福建)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A. x+2x+4x=34 685B. x+2x+3x=34 685C. x+2x+2x=34 685D. x+12x+14x=34 685 3.(2019南通)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x 个人共同出钱买鸡,根据题意,可列一元一次方程为 .4.(2019岳阳)我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布__________尺.5. (2019黄石)“今有善行者行一百步,不善行者行六十步”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?6. (2019吉林)问题解决:糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳:现有a 根竹签,b 个山楂.若每根竹签串c 个山楂,还剩余d 个山楂,则下列等式成立的是________(填写序号).⑴bc d a +=;⑵ac d b +=;⑶ac d b -=.7.(2019南通)已知a 、b 满足方程组⎩⎨⎧=+=+,632,423b a b a 则a+b 的值为( )A .2B .4C .—2D .—48. (2019长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A. 4.50.51y x y x =+⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.51y x y x =-⎧⎨=+⎩D. 4.521y x y x =-⎧⎨=-⎩ 9. (2019长春)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( )A. 911616x y x y +=⎧⎨+=⎩B. 911616x y x y -=⎧⎨-=⎩C. 911616x y x y +=⎧⎨-=⎩D. 911616x y x y -=⎧⎨+=⎩10. (2019苏州)若28,3418a b a b +=+=,则+a b 的值为__________________.11. (2019福建)解方程组524x y x y -=⎧⎨+=⎩.12.(2019山西)解方程组:⎩⎨⎧3x -2y =-8, ①x +2y =0. ②13.(2019湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( )A .=B .=C .=D .=14. (2019苏州)小明15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A. 15243x x =+ B. 15243x x =- C. 15243x x =+ D. 15243x x=- 15. (2019盘锦)某班学生从学校出发前往科技馆参观,学校距离科技馆15km ,一部分学生骑自行车先走,过了15min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是_____km/h .16. (2019黄石)分式方程:的解为__________________17. (2019江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.18.(2019南通)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.19.(2019湘潭)已知关于x 的一元二次方程x 2﹣4x+c =0有两个相等的实数根,则c =( )A .4B .2C .1D .﹣420.(2019南通)用配方法解方程0982=++x x ,变形后的结果正确的是( )A .()942-=+xB .()742-=+xC .()2542=+xD .()742=+x 21. (2019广东)已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A. 12x x ≠ B. 21120x x -= C. 122x x += D. 122x x ⋅=22. (2019山西)一元二次方程x 2-4x -1=0配方后可化为( )A. (x +2)2=3B. (x +2)2=5C. (x -2)2=3D. (x -2)2=523. (2019呼和浩特)若12x x ,是一元二次方程230x x +-=的两个实数根,则3221417-+x x 的值为( )A. ﹣2B. 6C. ﹣4D. 424. (2019江西)设1x ,2x 是一元二次方程210x x --=的两根,则1212x x x x ++=_______.25. (2019枣庄)已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a的取值范围是___.26. (2019吉林)若关于x 的一元二次方程()23x c +=有实数根,则c 的值可以为________(写出一个即可).27. (2019山西) 如图,在一块长12 m ,宽8 m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为77 m 2,设道路的宽为x m ,则根据题意,可列方程为________________.28.(2019北京)关于x 的方程22+210x x m --=有实数根,且m 为正整数,求m的值及此时方程的根.29. (2019黄石)已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.30. (2019长沙)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》鼓励教师与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?二、不等式与不等式组1. (2019山西)不等式组⎩⎨⎧x -1>3,2-2x<4的解集是( ) A. x>4 B. x>-1 C. -1<x<4 D. x<-12.(2019南充)关于x 的不等式21x a +≤只有2个正整数解,则a 的取值范围为( )A. 53a -<<-B. 53a -≤<-C. 53a -<≤-D. 53a -≤≤-3. (2019吉林)不等式321x ->的解集是________.4. (2019盘锦)不等式组341025143xx x x +≤+⎧⎪+⎨-<⎪⎩的解集是_____. 5. (2019长沙)不等式组10360x x +≥⎧⎨-<⎩的解集是_______. 6.(2019北京)解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩7. (2019苏州)解不等式组:()152437x x x +<⎧⎨+>+⎩.8. (2019广东)解不等式组:()12214x x ①②->⎧⎨+>⎩9.(2019南通)解不等式:1314>--x x ,并在数轴上表示解集.10.(2019湘潭)解不等式组,并把它的解集在数轴上表示出来.11. (2019江西)解不等式组:⎪⎩⎪⎨⎧+≥-+2721)1(2x x x x >,并在数轴上表示它的解集.三、综合1. (2019黄石)若点的坐标为,其中满足不等式组,求点所在的象限.2. (2019广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?3. (2019福建)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m 吨的废水处理车间,对该厂工业废水进行无害化处理. 但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理. 已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m ;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.。