计算方法课后习题答案

合集下载

计算方法-刘师少版第一章课后习题完整答案

计算方法-刘师少版第一章课后习题完整答案
1
9000 m=1
9000.00
解 (1)∵ 2.0004=0.20004×10 ,
x − x ∗ = x − 0.20004 ≤ 0.000049 ≤ 0.5 × 10 −4
m-n=-4,m=1 则 n=5,故 x=2.0004 有 5 位有效数字
x1 =2,相对误差限 ε r =
1 1 × 10 −( n −1) = × 101−5 = 0.000025 2 × x1 2× 2
-2
(2)∵ -0.00200= -0.2×10 ,
m=-2
x − x ∗ = x − (−0.00200) ≤ 0.0000049 ≤ 0.5 × 10 −5
m-n=-5, m=-2 则 n=3,故 x=-0.00200 有 3 位有效数字
x1 =2,相对误差限 ε r =
4
1 × 101−3 =0.0025 2× 2
4 3 4 πR − π ( R * ) 3 3 ε r* (V ) = 3 4 3 πR 3 R 3 − (R* )3 ( R − R * )( R 2 + RR * + R * ) = = R3 R3 R − R * R 2 + RR * + R * R − R * R 2 + RR * + RR * = ⋅ ≈ ⋅ R R R2 R2
可以得到计算积分的递推公式:
I n = 1 − nI n −1
1 0
n = 1,2, L
1 0
I 0 = ∫ e x −1 dx = e x −1
则准确的理论递推式 实际运算的递推式 两式相减有
* *
= 1 − e −1
I n = 1 − nI n −1
* * In = 1 − nI n −1 * * * In − In = −n( I n −1 − I n −1 ) = − ne( I n −1 ) *

计算方法_课后习题答案

计算方法_课后习题答案

(4.5)(0.01172)

0.00879
(2)采用 Newton 插值多项式 y x N2(x) 根据题意作差商表:
i
xi
0
4
1
6.25
f (xi ) 2 2.5
一阶差商 2 9
2
9
3
2 11
二阶差商 4 495
N2 (7) 2 29 (7 4) ( 4 495) (7 4) (7 6.25) 2.6484848

1
e2
则根据二次Lagrange插值公式得:
L2 (x)

(x ( x0

x1)(x x2 ) x1)(x0 x2 )
y0

(x ( x1

x0 )(x x2 ) x0 )(x1 x2 )
y1

(x ( x2

x0 )(x x1) x0 )(x2 x1)
y2
2(x 1)(x 0.5) 2x(x 0.5)e1 4x(x 1)e0.5
8. 求作 f x xn1 关于节点 xi i 0,1, , n 的 Lagrange 插值多项式,并利用
插值余项定理证明
n
n
xin1li 0 1n xi
i0
i0
式中 li x 为关于节点 xi i 0,1, , n 的 Lagrange 插值基函数。
2 02 12 4 23 4 04 14 2 3
1 x2 3x 2 x 4 3x x2 6x 8 23 x x2 5x 4 1 x x2 3x 2
8
4
8

《数值计算方法》习题答案

《数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法课后习题答案

数值计算方法课后习题答案

习题一1.设x >0相对误差为2%4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得 (1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x x δδδ≈===4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈ 解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ= =0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121x y x x -=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A)y =,(B)y =(3)已知1x <<,(A )22sin x y x=,(B )1cos 2xy x -=;(4)(A)9y =(B)y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

故在设计算法时应尽量避免上述情况发生。

(1)(A )中两个相近数相减,而(B )中避免了这种情况。

故(B )算得准确些。

(2)(B )中两个相近数相减,而(A )中避免了这种情况。

故(A )算得准确些。

(3)(A )中2sin x 使得误差增大,而(B )中避免了这种情况发生。

故(B )算得准确些。

(4)(A )中两个相近数相减,而(B )中避免了这种情况。

计算方法课后习题集规范标准答案

计算方法课后习题集规范标准答案

习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插值函解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意 (1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯= 其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈ 根据题意作差商表:224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的Lagrange 插值多项式。

注意到:若1n +个节点()0,1,...,i x i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,i x i n =满足条件(),0,1,...,i i P x y i n ==的插值多项式()P x 就是它本身。

可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,i x i n =的插值多项式就是它本身,故依Lagrange 公式有()00(),0,1,...,nn n k kk i j j j j j i j ii jx x x l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nn n ij j j i j ii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnn ij j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏ 5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。

计算方法第二版课后练习题含答案

计算方法第二版课后练习题含答案

计算方法第二版课后练习题含答案前言本文将为大家提供计算方法第二版课后练习题的答案,旨在帮助读者更好地学习和掌握计算方法的知识。

本文全部内容均为作者整理,尽可能保证每一题的答案正确性。

读者可以借助本文的答案,检验自己的练习成果,加强对计算方法知识的理解和掌握程度。

同时,读者也应该注意切勿直接复制答案,本文的答案仅供参考,希望读者能够通过自己的思考和探索,获得更深层次的学习感悟。

第一章引论1.1 计算方法的基本概念和思想练习题 1写出计算方法的三要素,并分别简要解释。

答案计算方法的三要素为:模型、算法、误差分析。

•模型:计算方法所涉及的实际问题所对应的数学模型,是解决问题的基础;•算法:根据模型,构造相应的计算程序,即算法;•误差分析:计算结果与实际应用中所需的精度之间的差异,称为误差。

误差分析是对计算结果质量的保障。

1.2 算法的误差练习题 2写出二分法算法,并解释其误差。

答案算法:function binarySearch(a, target) {let low = 0;let high = a.length - 1;while (low <= high) {let midIndex = Math.floor((low + high) / 2);let midValue = a[midIndex];if (midValue === target) {return midIndex;} else if (midValue < target) {low = midIndex + 1;} else {high = midIndex - 1;}}return -1;}误差:二分法算法的误差上界为O(2−k),其中k为迭代次数。

在二分法被成功应用时,k取决于与目标值x的距离,即 $k=\\log _{2}(\\frac{b-a}{\\epsilon})$,其中[a,b]是区间,$\\epsilon$ 是目标值的精度。

计算方法答案王能超

计算方法答案王能超

计算方法答案王能超【篇一:计算方法习题集及实验指导书】s=txt>计算机科学与技术系檀明2008-02-10课程性质及目的要求(一)课程性质自计算机问世以来,科学计算一直是计算机应用的一个重要领域,数值计算方法是解决各种复杂的科学计算问题的理论与技术的基础。

《计算方法》课程讨论用于科学计算中的一些最基本、最常用的算法,不但具有数学的抽象性与严密的科学性的特点,而且具有应用的高度技术性的特点。

它对于培养从事计算机应用的科技人才有着重要的作用,是计算机应用专业(本科段)的一门重要的技术基础课程。

(二)目的要求通过本课程的学习和上机实验,了解用计算机解决科学计算问题的方法特点,掌握计算方法中的一些基本概念、基本公式和相应的算法流程,提高根据算法描述设计高级语言程序并进行验证的技能。

在学习过程中,应注重理解和应用,在搞清基本原理和基本概念的基础上,通过习题、编程和上机等环节,巩固和加深已学的内容,掌握重要的算法及其应用。

注重理论与算法的学习和应用相结合,强调编程及上机计算的技能培养,是本课程不同于一般数学课程的重要特点。

(三)学习方法指导1.循序渐进逐章学习本课程从第二章开始,每章都讨论一个大类的算法。

虽然各算法是相对独立的,但是也存在相互联系与前后继承的关系。

前面的概念和算法学好了,后面的内容也就容易学,越学越感到容易。

前面的内容没有学好,后面就会感到难学,甚至会出现越来越感到困难、失去学习信心的情况。

2.稳扎稳打融会贯通学习要扎实、要讲求实效。

每一个重要的概念和公式,都会搞清楚,做到融会贯通。

只有这样,才能取得学习的学习效果。

3.多学练勤做习题教材及本习题集中的每一章都附有适量的习题,可以帮助考生巩固和加深理解所学的知识,提高解题能力。

因此,在学习过程中,应当适合习题进行思考,应当尽可能多做习题,遇到某些不会做的题,应三思之后再请老师给予提示。

4.抓住特点前后联系本课程只讲了五大类算法。

每类算法都是针对一类特定的计算问题,都有其自身的特点。

计算方法的课后答案

计算方法的课后答案

《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。

2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。

解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而 1 0 -1 0 1 -4 -3 -3 9 -24 72 -2191-38-2473-223所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。

5.叙述误差的种类及来源。

答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。

(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。

(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。

(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。

这样引起的误差称为舍入误差。

6.掌握绝对误差(限)和相对误差(限)的定义公式。

计算方法课后习题答案第四章作业

计算方法课后习题答案第四章作业

(五)课后习题4.1 对于积分⎰-aadx x f )(,以a x x a x ==-=210,0,为节点,构造形如⎰-++≈aax f A x f A x f A dx x f )()()()(221100的插值型求积公式,并讨论所得公式的代数精度。

解答:⎰⎰--=------=----=aa a a a dx a a a a x x dx x x x x x x x x A 31))(0())(0())(())((2010210⎰⎰--=-+-+=----=aa a a a dx a a a x a x dx x x x x x x x x A 34)0)(0())(())(())((2101201⎰⎰--=-+-+=----=aa a a a dx a a a x a x dx x x x x x x x x A 31)0)(()0)(())(())((1202102易知为Simpson 公式,因此代数精度为34.2 确定 下列求积公式中的待定参数,使其代数精度尽量高,并指出所得公式的代数精度。

(1)⎰++≈2210)2()1()0()(f A f A f A dx x f(2)⎰-⋅++≈hh f f h h f f hdx x f 0''2)]()0([)]()0([2)(α解答:(1)令2,,1)(x x x f =,假定求积公式均准确成立,从而有: ⎰++==202102A A A dx 21022102⋅+⋅+⋅==⎰A A A xdx22212022210038⋅+⋅+⋅⋅==⎰A A A dx x 解以上三元线性方程组从得:34,31120===A A A ,显然仍为Simpson 公式,因此代数精度为3(2)求积公式中只含一个待定参数α,当x x f ,1)(=时,有 ⎰++=hh dx 00]11[2,⎰-++=h h h hxdx 02)11(]0[2α故令2)(x x f =时求积公式准确成立,即⎰-⨯++=hh h h h dx x 0222]202[]0[2α,解得121=α将3)(x x f =代入上述确定的求积公式,有:⎰-++=hh h h h dx x 02233]30[12]0[2,这说明求积公式至少有3次代数精度,再令 4)(x x f =,代入求积公式时有:⎰-++≠hh h h h dx x 03244]40[12]0[2故所建求积公式为⎰-++≈hh f f h h f f h dx x f 0''2)]()0([2)]()0([2)(4.3 对于xxx f sin )(=,利用下表数据,计算8,4=n 时的复合梯形公式84,T T ,以及4=n 复合Simpson 公式4S 的值。

数值计算方法课后习题答案(李庆扬等)

数值计算方法课后习题答案(李庆扬等)

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

计算方法 课后习题答案

计算方法 课后习题答案

计算方法课后习题答案计算方法课后习题答案计算方法是一门重要的学科,它涉及到数值计算、算法设计和数据处理等方面的内容。

在学习计算方法的过程中,课后习题是不可或缺的一部分。

通过解答习题,我们可以巩固所学的知识,提高自己的计算能力。

下面是一些计算方法课后习题的答案,希望对大家的学习有所帮助。

1. 矩阵的转置矩阵的转置是将矩阵的行和列互换得到的新矩阵。

对于一个m×n的矩阵A,它的转置记作A^T。

转置后的矩阵A^T的行数和列数分别为原矩阵A的列数和行数。

例如,对于一个3×2的矩阵A,它的转置A^T是一个2×3的矩阵。

2. 矩阵的加法和减法矩阵的加法和减法是对应位置上的元素进行相加或相减得到的新矩阵。

对于两个相同大小的矩阵A和B,它们的和记作A+B,差记作A-B。

加法和减法的运算规则是相同位置上的元素进行相应的运算。

3. 矩阵的乘法矩阵的乘法是指将两个矩阵相乘得到一个新矩阵的运算。

对于两个矩阵A和B,它们的乘积记作AB。

矩阵乘法的运算规则是矩阵A的行与矩阵B的列进行相乘,并将结果相加得到新矩阵的对应位置上的元素。

4. 矩阵的逆矩阵的逆是指对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。

如果一个矩阵A存在逆矩阵,则称其为可逆矩阵或非奇异矩阵。

求解矩阵的逆可以使用伴随矩阵和行列式的方法。

5. 线性方程组的求解线性方程组是指由一组线性方程组成的方程组。

求解线性方程组的方法有很多,包括高斯消元法、LU分解法、迭代法等。

其中,高斯消元法是一种常用的求解线性方程组的方法,它通过消元和回代的过程,将线性方程组转化为上三角形矩阵或对角矩阵,从而求解出方程组的解。

6. 数值积分的方法数值积分是指通过数值计算的方法来求解定积分的近似值。

常用的数值积分方法包括梯形法则、辛普森法则和龙贝格法则等。

这些方法都是基于将定积分转化为离散求和的形式,通过计算离散点上的函数值来估计定积分的近似值。

计算方法-刘师少版第二章课后习题完整答案

计算方法-刘师少版第二章课后习题完整答案

0 < λf ′(x) < 2
− 2 < −λf ′(x) < 0
−1 < 1 − λf ′(x) < 1
1 − λf ′(x) < 1
即 ϕ ′(x) < 1 ,所以 xk+1 = ϕ (xk ) = xk − λf (xk ) 收敛于 f (x) =0 的根。
2.7 试用牛顿迭代法导出下列各式的迭代格式:
应的迭代公式:
(1)x
=1+
1 x2
,迭代公式
xk
+1
=1+
1
x
2 k
(2)x3 = 1 + x 2 ,迭代公式 xk+1 = 3 1 + xk2
(3) x 2
=
x
1 −
1
,迭代公式
xk
+1
=
1 xk −1
(4) x = x3 − 1 ,迭代公式
xk+1 = xk3 − 1
试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似
x8 = 1.4656344
x9 = 1.4656000
x9
− x8
≤ 1 ×10−4 , 2
x9 = 1.4656000
2.5 对于迭代函数ϕ (x) = x + C(x 2 − 2) ,试讨论:
(1) 当 C 取何值时, xk+1 = ϕ (xk ), (k = 0,1,2,L) 产生的序列 {xk }收敛于 2 ;
6 6x2
63
ϕ ′(3 a ) == 5 − a (3 a )−3 = 5 − 1 = 1 ≠ 0
63

计算方法课后习题答案

计算方法课后习题答案

计算方法课后习题答案在计算方法课程中,学生通常会接触到各种数学问题的求解方法,包括但不限于数值分析、线性代数、微分方程等。

以下是一些课后习题的解答示例:习题一:求解线性方程组设线性方程组为:\[ \begin{align*}a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\\vdots \quad \quad & \ \vdots \\a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m,\end{align*} \]解答:使用高斯消元法或矩阵分解法求解上述方程组。

首先将系数矩阵转换为行简化阶梯形式,然后回代求解未知数 \( x_1, x_2,\ldots, x_n \)。

习题二:数值积分给定函数 \( f(x) \),需要在区间 \( [a, b] \) 上进行数值积分。

解答:可以使用梯形法、辛普森法等数值积分方法。

例如,使用梯形法的公式为:\[ \int_a^b f(x)dx \approx \frac{h}{2} \left( f(a) + 2f(a+h) + 2f(a+2h) + \cdots + 2f(b-h) + f(b) \right), \]其中 \( h = \frac{b-a}{n} \) 是区间的等分宽度,\( n \) 是等分数。

习题三:常微分方程的数值解给定一个常微分方程 \( y' = f(x, y) \),初始条件为 \( y(x_0) = y_0 \)。

解答:使用欧拉法或龙格-库塔法求解。

以欧拉法为例,其迭代公式为:\[ y_{n+1} = y_n + h f(x_n, y_n), \]其中 \( h \) 是步长,\( x_{n+1} = x_n + h \)。

最优化计算方法课后习题集答案解析

最优化计算方法课后习题集答案解析
(1)
解:取 , 时,DFP法的第一步与最速下降法相同
, ,

以下作第二次迭代

其中,

所以
令 , 利用 ,求得
所以 ,
以下作第三次迭代


所以
令 , 利用 ,求得
所以 , 因为 ,于是停止
即为最优解。
习题四
包括题目: P95页 3;4;8;9(1);12选做;13选做
3题解如下
3.考虑问题 ,其中
X1,x2,x3≥0 (3)
求出点(1,1,0)处的一个下降可行方向.
解:首先检查在点(1,1,0)处哪些约束为有效约束。检查易知(1),X3≥0为有效约束。设所求可行方向d=(d1,d2,d3)T。根据可行方向d的定义,应存在a>0,使对∀t∈(0,a)能有
X+td=(1+td1,1+td2,0+td3)T
(1)
s.t.
(2)
s.t.
(1)解:非线性规划的K-T条件如下:
(1)
(2)
(3)
再加上约束条件 (4)
为求出满足(1)~(4)式的解,分情况考虑:
①若(4)式等号不成立,即 ,那么由(2)式得 ,将 代入(1)式解得 , ,所得值不满足 的条件,故舍去。
②若(4)式等号成立,由(1)式可以解得 , ,代入(4)式有:
JBi
1
2
3
4
5
6
7
8
9
di0
1
1
0
-5/6
-1/6
1
10/6
4
0
0
38/6
2
0
1
-9/6

数值计算方法》习题答案

数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

计算方法引论徐萃薇课后题答案

计算方法引论徐萃薇课后题答案

计算方法引论徐萃薇课后题答案徐萃薇(Xu Cuiwei)教授向学生们提出了一个有关计算方法的练习题,这里是课后习题的答案:题目一:定义“计算方法”计算方法是一种数值解决问题的方法,用计算机或者类比设备来完成一系列计算过程,以解决由某一特定问题及其变体而产生的一系列更复杂问题。

它是一种能用有限的资源(如时间、空间、技术等)产生正确结果的计算机程序,他可以安排合理的步骤,使用易于操作的方法来解决指定的问题。

题目二:分析计算方法的优缺点优点:1. 计算方法基于数理模型的明确理论,可以更好地解决问题;2. 相较于其他方法,它使用更简单的计算机程序来实现更复杂的功能;3. 它可以把不容易解决的问题转变为容易解决的形式,这将有助于系统更好地管理和管理空间。

缺点:1. 计算方法有一定的局限性,不一定适用于所有的情景;2. 数学建模常常非常耗时,而且可能有很多假设和过程;3. 数学建模的结果可能有很多偏差,可能不切实际。

题目三:对于复杂问题,需要用到哪些计算方法对于复杂问题,可以用到多种方法来解决,如:1. 动态规划法(DP):动态规划法可以用来解决最优化问题,如旅行商问题、背包问题等。

2. 概率法:概率法可以跨越归纳和演绎,在可预期结果和把握风险方面有很大的优势。

3. 机器学习:机器学习可以帮助系统自动从数据中获取规律,从而有效地解决规模复杂的问题。

4. 启发式搜索:启发式搜索可以有效地模拟人类的求解思考方法,通过把问题分解为子问题,再变换为其他问题求解的方法,可以有效解决复杂的问题。

5. 分支定界法:分支定界法是一种能获得全局最优解的解决复杂问题的方法,它被广泛应用于思维密集型最优化问题。

总而言之,复杂问题可以用多种计算方法来解决。

正确使用和选择合适的方法是关键,从而能够获得更好的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取 计算结果列于下表,并和 比较得出结果,
0
1
2
3
2
1.888889
1.879452
1.879385
解得
用弦截法求解

依迭代公式为 进行计算。
计算结果列于下表,并和 比较
0
1
2
3
4
2
1.9
1.881094
1.879411
1.879385
解得
用抛物线法求解

故 则根号前的符号为正。
迭代公式为
取 计算
10.设
(3)如果要求截断误差不超过 ,那么使用复化Simpson公式计算时,应将积分区间分成多少等分?
解:(1)
= ,
当误差 时, 25.6,所以取 =26。
(2)
7.推导下列三种矩形求积公式:
证明: 将 在 处Taylor展开,得
两边在 上积分,得
将 在 处Taylor展开,得
两边在 上积分,得
将 在 处Taylor展开,得
(1)
依Taylor公式有
代人式(1)右端,则有
另一方面,
故隐式Euler格式的局部截断误差为
可见隐式Euler格式 是一阶方法。
证明 :对于Euler两步格式 : ,考察局部截断误差
,仍设 则有
注意到
于是

因此有
即Euler两步格式 是二阶方法。且其主项系数是2。
特别地,当 时,有
而当 时有
5.依据下列函数表分别建立次数不超过3的 插值多项式和 插值多项式,并验证插值多项式的唯一性。
0
1
2
4
1
9
23
3
解:
(1)Lagrange插值多项式
=
=
=
=
(2)Newton插值多项式
一阶差商
二阶差商
三阶差商
0
0
1
1
1
9
8
2
2
23
14
3
3
4
3
-10
由求解结果可知:
说明插值问题的解存在且唯一。
解:1)用梯形公式有:
事实上,
2)Simpson公式
事实上,
3)由Cotes公式有:
事实上,
3.分别用复化梯形公式和复化公式Simpson计算下列积分.
(1)
解:(1)用复化梯形公式有:
, 由复化Simpson公式有:
5.给定积分 。
(1)利用复化梯形公式计算上述积分值,使其截断误差不超过
(2)取同样的求积节点,改用复化Simpson公式计算时,截断误差是多少?
8.判断函数 在 上两两正交,并求一个三次多项式,使其在 上与上述函数两两正交。
解:
(1) , ,


所以, 在 上两两正交。
(2)设所求多项式为
2.用最小二乘法求一个形如 的经验公式,使它与下列数据相拟合,并估计平方误差。
19
25
31
38
44
19.0
32.3
49.0
73.3
97.8
解:
将 =19,25,31,38,44分别代入 ,得
②此方程组的Jacobi迭代格式为:
取 ,可求得
由于 故所求解为:
据Gauss-Seidel迭代格式:
取 求得:
由于 ,故所求解为:
3.设方程组 试考察此方程组的Jacobi迭代法和Gauss-Seidel迭代法的收敛性。
解:⑴所给方程组的Jacobi迭代矩阵
因为 解得:
则 ,所以解此方程组Jacobi迭代法收敛。
7.设 ,试利用 余项定理给出 以 为节点的插值多项式 。
解:由Lagrange余项定理
可知:当 时,
8.设 且 ,求证
证明:以 为节点进行线性插值,得
由于 ,故 。于是由
有 ,

13.设节点 与点 互异,试对 证明
并给出 的 插值多项式。
解依差商的定义

一般地,设

故 的 插值多项式为
16.求作满足条件 的插值多项式 。
又Gauss-seidel迭代矩阵为
可见,G的特征值为
所以 ,Gauss-seidel迭代法收敛。
10..用SOR迭代法求解方程组(取 )
要求当 时迭代终止。
解:SOR迭代公式为:
取初值 ,迭代可得:
,所以所求解
15.用最速下降法和共轭斜向量法解方程组
解:取初始向量 ,
(一)最速下降法
第1步: ;
第22步:
解: 用三点 Gauss-Chebyshev求积公式来计算:
此时,
由公式可得:
由余项可估计误差为
用四点 Gauss-Chebyshev求积公式来计算:
此时,
由余项可估计误差为
14.用三点 求积公式计算积分 ,并估计误差。
解:作变换 则得
由三点Gauss-Legendre公式:
其估计误差为:
,( )。其准确值
两边在 上积分,得
10.判别下列求积公式是否是插值型的,并指明其代数精度:
解:插值型求积公式
其中

因此, 是插值型的求积公式。
因其求积公式是插值型的,且存在2个节点,所以其代数精度至少是1。
对于 时,
可见它对于 不准确成立,故该求积公式的代数精度是1。
11.构造下列求积公式,并指明这些求积公式所具有的代数精度:
所给方程组的Gauss-Seidel迭代矩阵
因为 解得:
则 所以解此方程组Gauss-Seidel迭代法收敛。
⑵Jacobi迭代矩阵
因为
则 ,所以解此方程组Jacobi迭代法收敛。
Gauss-Seidel迭代矩阵
因为 解得:
则 ,所以解此方程组Gauss-Seidel迭代法不收敛。
5.讨论用Jacobi迭代法和Gauss-Seidel迭代法解方程组 的收敛性,如果收敛,比较哪种方法收敛较快,其中
解:(1)①
因为 ,故Jacobi迭代法收敛。
又:
所以Gauss-Seidel的迭代矩阵
因为 故Gauss-Seidel迭代法收敛。
②据方程组的Jacobi迭代格式:
取 计算求得
由于 ,因此,所求的解为
另据Gauss-Seidel迭代格式为:
取 计算求得
由于 ,因此,所求的解为
⑵①因为系数矩阵 是严格对角占优矩阵,所以Jacobi迭代法和Gauss-Seidel迭代法均收敛。
其准确误差等于:
第四章习题答案
2。用Gauss列主元素消去法解方程组
解:因为第一列中10最大,因此把10作为列主元素
得到方程组
6。用Doolittle分解法解方程组
解:A= =
其中L= U=
由Ly= 解得y=
由Ux=y,解得x=
7。用Crout分解法接方程组。
解:
由Ly=b= 得y=
由Ux=y= 得x=
11。已知 ,求 。
解: ,
13。求证:
证明:(1) , ,
所以 ,
所以
(2)
14。设 计算A的条件数
解:
矩阵A的较大特征值为198.00505035,较小的特征值为-0.00505035,则
第五章习题答案
2.设方程组
1考察用Jacobi迭代法和Gauss-Seidel迭代法解次方程组的收敛性;
2用Jacobi迭代法和Gauss-Seidel迭代法解次方程组,要求 时迭代终止。
解法1:根据三次Hermite插值多项式:
并依条件 ,得
解法2:由于 ,故可直接由书中(3.9)式,得
18.求作满足条件 的插值多项式 ,并估计其误差。
解法1:由已知条件
0
1
2
1
2
9
3
用基函数方法构造 。令
其中, 均为三次多项式,且满足条件
依条件可设 ,由 可得:
同理,
误差为:
解法2:用承袭性构造
由条件 先构造一个二次多项式
解(1):令原式对于 准确成立,于是有
解之得 ,于是有求积公式
容易验证,它对于 不准确成立,故该求积公式的代数精度是1。
解(2):令原式对于 准确成立,于是有
解之得 于是有求积公式
容易验证当 时, 而
可见,它对于 不准确成立,故该求积公式的代数精度是3。
解(3):令原式对于 准确成立,于是有
解得:
于是有求积公式
迭代公式
迭代公式
迭代公式 试讨论它们的收敛性。
解:
所以此迭代格式是收敛的。
所以此迭代格式是收敛的。
所以此迭代格式不收敛的。
7.用下列给定的方法求 在 附近的根,根的准确值为
要求计算结果准确到四位有效数字。
(1)用Newton法;
(2)用弦截法,
(3)用抛物线法,取
解: 用Newton法求解
将它们代入公式 有,
可以作出差商表
一阶
二阶
三阶
四阶
0
0
1
1
1
-1
-1
0
0
0
-2
1
10
10
3
9
20
6
11
5
根据Newton插值多项式,有
且插值余项为
第二章答案
1.计算下列函数 关于 的 :
注: ,
解:(1)
(2)
3.. 是区间 上带权 的最高次项系数为1的正交多项式族,其中 ,求 。
解法一:
解法二:设 ,则由
4.求 ,使积分 取得最小值。
习题一
相关文档
最新文档