切线长定理的应用

合集下载

初中数学第六册切线长定理应用教案

初中数学第六册切线长定理应用教案

初中数学第六册切线长定理应用教案是数学教学中比较重要的一部分,也是初中数学中比较难理解的一些知识点之一。

本篇文章将介绍有关切线长定理应用的教案,以帮助初中学生更好地理解并掌握这一知识点。

一、教学目标1、掌握切线长定理的基本概念和性质。

2、理解切线长定理的应用。

3、通过教学案例,让学生掌握切线长定理在实际问题中的运用方法。

二、教学内容本文的教学内容是初中数学第六册中有关切线长定理应用教案。

1、基本概念(1)圆的切线以点P为圆心,以PA(A为圆上任意一点)为半径作圆,与圆交于点B、C,则线段BC称为圆的切线。

(2)切线长定理切点P与切线上的两点A、B连线所组成的线段AB的长度相等,即PA=PB。

2、应用(1)两圆内切或外切若两圆内切或外切,则连接两圆切点,该线段即为两圆的外公切线或内公切线,其长度为两圆半径之差或之和。

(2)直线和圆的位置关系当一条直线与一个圆相交时,其切点到该圆心的距离等于该切点到该直线的距离。

(3)切线及切点的坐标在平面直角坐标系内,圆的标准方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r 为半径。

则此圆上定点 M(x1, y1) 与圆上某点 P 的切线方程为:x1(x-x2)+y1(y-y2)=r²。

点P的坐标可用切线方程解得。

三、教学方法1、讲授法通过讲解切线长定理的基本概念和性质,配合实例让学生掌握切线长定理的应用方法和应用场景。

2、练习法通过练习题让学生进行切线长定理的应用练习,加深他们对该知识点的理解和掌握程度。

3、自学法给学生自学材料,有选择性地进行答疑和提问,组织学生讨论,使学生掌握切线长定理的应用方案。

四、教学重点难点1、切线长定理的基本概念和性质。

2、切线长定理在实际应用中的应用方式和技巧。

五、教学效果评估1、测验法对学生进行课后测验,测试他们对该知识点的掌握水平。

2、回顾法在下一次课堂上,让学生回顾切线长定理的应用情况,巩固他们的应用能力。

切线长定理及应用

切线长定理及应用
(2)填空:AB+CD = AD+BC
A L B (>,<,=) 结论:圆的外切四边形的两组对边和相等。 比较圆的内接四边形的性质:
圆的内接四边形:角的关系
圆的外切四边形:边的关系
练习四 已知:△ABC是⊙O外切三角形,切点
为D,E,F。若BC=14 cm ,AC=9cm,AB=
13cm。求AF,BD,CE。
例1、如图,PA、PB是⊙O的切线,A、B为 切点,∠OAB=30°. (1)求∠APB的度数; (2)当OA=3时,求AP的长.
A
O
P
B
随堂训练 如图,AC为⊙O的直径,PA、PB分别切⊙O 于点A、B,OP交⊙O于点M,连结BC。 (1)若OA=3cm, ∠APB=60°,则PA=______.
O
A
B
C
思考:当切点F在弧AB上运动时,问△PED 的周长、∠DOE的度数是否发生变化,请说 明理由。
AD
OF
P
E B
(2)如图,Δ ABC的内切圆分别和BC,AC, AB切于D,E,F;如果 AF=2cm,BD=7cm,CE=4cm,则BC=11cm,
AC= 6cm
AB= 9cm
A
2 F
E 4
2. 边长为5、5、6的三角形的内切圆的半径为——
3. 已知:△ABC的面积S=4cm,周长等于 10cm.求内切圆⊙O的半径r.
例题选讲
例:如图, △ABC的内切圆⊙O与BC、CA、 AB分别相切于点D、E、F,且AB=9cm, BC=14cm,CA=13cm,求AF、BD、CE的长。
x A x F 9﹣x
求证: PA PB, APO BPO
一、判断

初中数学第六册切线长定理用途教案

初中数学第六册切线长定理用途教案

我们先来看看初中数学第六册中介绍的切线长定理是什么?切线长定理是指,如果在圆内任取一点P作一条直线与圆相交,交点分别为A、B,则AP、BP的乘积等于切线BC的平方,即AP × BP = BC^2。

接下来,我们来探讨一下切线长定理在实际生活中有哪些用途。

一、建筑工程
在建筑工程中,切线长定理常被应用于圆柱体的斜侧面上。

以一根圆柱形的管为例子,从管的一侧用尺子量出管径D,再从管的对边上,延长一条与对边平行的线段,用尺子测出该线段的长度L,那么根据切线长定理,我们就可以求出管的斜侧面长度H了。

H=√(L^2 - D^2)
切线长定理的应用,能够非常准确地计算出斜侧面长度,从而更好地指导建筑工程的完成。

二、机械制造
在机械制造中,切线长定理也有着重要的应用。

例如,在汽车发动机的齿轮齿条连接处,就需要应用到切线长定理。

由于齿轮锥与齿条倾角不同,因此需要利用切线长定理来计算出锥齿轮齿高。

通过计算锥齿轮齿高,我们可以精确的控制汽车的齿轮连接处,保证其工作的可靠性和稳定性。

三、科学研究
切线长定理在科学研究中也有着重要的应用。

例如,在医学领域中,我们利用切线长定理,可以计算出人体血液的流速。

当血管壁发生了弯曲,就会形成一个圆弧,我们可以利用切线长定理计算出这个圆弧上的切线长,搭配计时器,就能精确地计算出血液在圆弧上的流速了。

切线长定理在生活和科学研究中的应用是十分广泛的,它不仅解决了生活中的实际问题,还帮助我们更好地认识到圆形和直线的关系,为我们的学习和工作提供了很好的指导。

切线长定理及其应用

切线长定理及其应用

切线长定理及其应用一、基础知识总结1.内切圆和内心定义: 与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分 线的交点,叫做三角形的内心.总结:判断一个多边形是否有内切圆,就是判断能否找到一个点到各边距离都 相等。

2.直角三角形的内切圆半径与三边关系(1)一个基本图形;(2)两个结论:1)四边形OECF 是正方形2)r=(a+b-c)∕2或r=ab ∕(a+b+c)(3)两个方法代数法(方程思想);面积法3.切线长定义:过圆外一点作圆的切线,该点和切点之间的线段长叫做切线长。

4.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的交角。

二、典型例题解析【例1】如图△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相交于点D 、E 、F ,且AB=9 cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长D E F O CB A 11212902a b c A B C A B C S s r p a b c p C r a b c ∆∠∠∠==++∠=︒=+-设、、分别为中、、的对边,面积为,则内切圆半径(),其中();(),则()【例2】如图,已知⊙O是△ABC的内切圆,切点为D、 E、F,如果AE=1, CD=2,BF=3,且△ABC的面积为6.求内切圆的半径r.【例3】如图,以等腰ABC∆中的腰A B为直径作⊙O,交底边BC于点D.过点D作⊥,垂足为E.D E A C(I)求证:D E为⊙O的切线;(II)若⊙O的半径为5,60∠= ,求D E的长.B A C【例4】如上图等边三角形的面积为S,⊙O是它的外接圆,点P是⌒BC的中点.(1)试判断过C所作的⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线 CP与AB相交于点D,过点B作BE⊥CD垂足为E,证明BE是⊙O的切线,并求△ BDE的面积.【例5】 已知:在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC ,使 ∠FCA =∠AOE ,交AB 的延长线于点D.(1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG =2,求⊙O 半径的长;(3)在(2)的条件下,当OE =3时,求图中阴影部分的面积.F B DE O A C。

切线长定理课件

切线长定理课件

练习题1的解答:利用切 线长定理, CD=AB^2/2*OA=8^2/2* 5=16cm。
总结与回顾
切线长定理是一个重要的几何定理,可以应用于各种实际问题中。通过本课件的学习,你已经了解了切线长度 的定义、切线长定理的表述、应用场景和证明方法。希望你能够运用切线长定理解决更多的问题。
2
基于勾股定理
利用勾股定理和圆的性质,可以得以证明切线长定理。
举例说明切线长定理的应用
建筑设计
通过切线长定理,可以确定建筑 中圆形元素的尺寸和位置,使建 筑更美观。
光学折射
使用切线长定理可以计算光线在 界面上的折射角度,帮助设计光 学仪器。
机械工程
切线长定理
切线长定理是关于切线长度的一个重要定理,可以应用于许多实际问题中。 本课件将介绍切线长度的定义、表述、应用场景以及证明方法。
切线长度的定义
切线是与圆相切于一点且只与圆有此一点的直线。切线长度是指切线与圆的切点之间的距离。
切线长定理的表述
切线长定理指出,在同一个圆上,相同弧所对的切线长度相等。
在机械设计中,切线长定理可以 帮助确定圆形零件的位置和运动 轨迹。
练习题及答案解析
1 练习题1
2 练习题2
3 答案解析
如图所示,在圆O中,AB 是切线,CD是弦, AB=8cm,CD=10cm,求 弦CD的长度。
已知圆O的半径为5cm, 切线AB与弦CD相交于点E, 且AB=7cm,求弦CD的长 度。
切线长定理的应用场景
几何问题
切线长定理可以帮助我们解决关于圆的几何问题,例如确定切点的位置。
物理应用
在光学中,切线长定理可以用于计算光线在界面上的折射与反射。
工程设计
在建筑和机械设计中,切线长定理可以帮助我们确定圆形零件的尺寸和位置。

切线长定理及应用

切线长定理及应用

切线长定理及应用切线长定理是解决几何问题中常用的定理之一,它在许多实际应用中发挥着重要的作用。

本文将介绍切线长定理的概念、证明以及一些实际应用。

一、切线长定理的概念切线长定理是指在一个圆上,从圆外一点引出的切线与半径的乘积等于切点到圆心的距离的平方。

换句话说,如果从圆外一点引出一条切线,那么切线与半径的乘积等于切点到圆心的距离的平方。

二、切线长定理的证明为了证明切线长定理,我们可以利用几何推理和一些基本的几何定理。

首先,我们可以通过连接圆心、切点和圆上的一个点,构成一个直角三角形。

然后,利用勾股定理和相似三角形的性质,我们可以得出切线长定理的结论。

三、切线长定理的应用切线长定理在实际应用中有着广泛的应用。

以下是一些常见的应用场景:1. 圆的切线问题:切线长定理可以帮助我们解决与圆相关的问题,例如确定切线的长度、判断两条切线是否相等等。

2. 几何建模:在几何建模中,切线长定理可以用于计算和确定物体表面的切线长度,从而帮助我们进行准确的建模和设计。

3. 光学问题:在光学问题中,切线长定理可以用于计算光线的传播路径和角度,从而帮助我们理解光的行为和性质。

4. 工程测量:在工程测量中,切线长定理可以用于计算和确定测量点与目标物之间的距离和位置关系,从而帮助我们进行精确的测量和定位。

5. 数学建模:在数学建模中,切线长定理可以用于建立数学模型,从而帮助我们解决各种实际问题,例如物体运动的轨迹、曲线的切线方程等。

总结:切线长定理是解决几何问题中常用的定理之一,它在圆的切线问题、几何建模、光学问题、工程测量和数学建模等领域都有着广泛的应用。

通过理解和应用切线长定理,我们可以更好地解决实际问题,提高问题求解的准确性和效率。

九年级上册数学精品课件: 切线长定理

九年级上册数学精品课件: 切线长定理

课堂小结
切线长 切线长 定理
三角形 内切圆
原理 作用
辅助线
有关概念 应用
图形的轴对称性
提供了证线段和 角相等的新方法
① 分别连接圆心和切点; ② 连接两切点; ③ 连接圆心和圆外一点.
内心概念及性质
运用切线长定理,将相等线段 转化集中到某条边上,从而建 立方程.
谢谢观看
证明:∵PA切☉O于点A,
O.
P
∴ OA⊥PA.
B
同理可得OB⊥PB.
∵OA=OB,OP=OP, ∴Rt△OAP≌Rt△OBP, ∴PA=PB,∠APO=∠BPO.
想一想:若连结两切点A、B,AB交
A
OP于点M.你又能得出什么新的结论? O. M
并给出证明.
P
OP垂直平分AB.
B
证明:∵PA,PB是⊙O的切线,点A,B是切点 ∴PA = PB ,∠OPA=∠OPB ∴△PAB是等腰三角形,PM为顶角的平分线 ∴OP垂直平分AB.
在Rt△OPA中,PA=5,∠POA=30°,
OP=5 3cm.
即铁环的半径为 5 3cm.
练一练
PA、PB是☉O的两条切线,A,B是切点,OA=3. (1)若AP=4,则OP=5 ; (2)若∠BPA=60 °,则OP= 6 .
A
O
P
B
二 三角形的内切圆及作法
互动探究
小明在一家木料厂上班,工作之余想对厂里的三 角形废料进行加工:裁下一块圆形用料,怎样才能 使裁下的圆的面积尽可能大呢?
BF=BD=AB-AF=13x(由cmB).D+CD=BC,可得
F E
O
(13-x)+(9-x)=14, C
D

切线长定理及应用

切线长定理及应用

切线长定理及应用切线长定理是指在一个圆上,从圆外一点引出两条直线与圆相切,这两条直线的切线长相等。

这是一个非常重要的几何定理,其应用广泛,并被用于解决各种与圆相关的问题。

下面我将详细解释切线长定理及其应用。

首先,我们来证明切线长定理。

考虑一个圆C和直线L1与L2,L1和L2分别与圆C相切于点A和点B。

我们需要证明切线长AP等于切线长BP。

假设圆C的半径为r,圆心为O。

连接OA和OB,与切线AP和BP相交于点C 和点D。

根据切线与半径的性质,我们可以发现∠OAB = ∠OBA = 90度(因为OA和OB分别是切线AP和BP所在直线上的半径)。

因此,三角形OAB是等腰直角三角形,所以OA = OB = r。

另外,我们注意到OC = OD (根据切线与直径的性质),以及O为圆心,所以OC = OD = r。

因此,我们可以得出OC = OD = r,OA = OB = r,根据SSS(边-边-边)准则,三角形OAC和三角形OBD是全等的三角形。

根据全等三角形的定义,对应的角相等,因此∠OCA = ∠ODB。

又因为∠OCA =∠OAB(根据直角三角形性质),所以∠OAB = ∠ODB。

考虑直角三角形AOB和三角形BOC,他们共有角∠OBA和∠OAB。

又根据三角形内角和为180度的性质,我们知道∠OAB + ∠OBA + ∠OBA + ∠OCB = 180度(∠OBA + ∠OBA是两个直角)。

将前面得到的∠OAB = ∠OBA代入,我们可以得到2∠OBA + ∠OCB = 180度。

注意到∠OCB是圆心角,且∠BOA是圆周角,如果我们将∠OCB表示为α,将∠BOA表示为β,根据圆周角和圆心角的关系,我们知道α= 2β。

将α= 2β代入之前的等式,我们得到2∠OBA + 2∠OBA = 180度,化简之后得到4∠OBA = 180度,即∠OBA = 45度。

现在,考虑三角形OAB。

我们可以知道∠OAB = 45度,且OB = OA = r。

切线长定理及其应用

切线长定理及其应用

切线长定理及其应用知识点一 切线长定义及切线长定理1. 切线长定义:过圆外一点作圆的切线,这点和 之间的线段长叫作这点到圆的切线长.注意切线长和切线的区别和联系:切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。

2. 切线长定理:过圆外一点引圆的两条切线,它们的切线长相等,即PA=PB.推论:(1)△PAB 是等腰三角形;(2)OP 平分△APB ,即△APO=△BPO ;(3)弧AM=弧BM ;(4)在Rt OAP ∆和Rt OBP ∆中,由AB OP ⊥,可通过相似得相关结论;如:222222,,OA OB OE OP AP BP PE PO AE BE OE EP ==⋅==⋅==⋅(5)图中全等的三角形有对,分别是:题型一 切线长定理的直接应用【例1】如图所示,△O 的半径为3cm ,点P 和圆心O 的距离为6cm ,经过点P 的两条切线与△O 切于点E 、F ,求这两条切线的夹角及切线长.【例2】如图,P A 、PB 、DE 分别切△O 于A 、B 、C ,△O 的半径长为6 cm ,PO =10 cm ,求△PDE 的周长.【例3】如图所示,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为__________.【过关练习】1.如图所示,PA、PB是△O的切线,A、B为切点,△OAB=30°.(1)求△APB的度数.(2)当OA=3时,求AP的长.2.如图所示,已知PA、PB、DE分别切O于A、B、C三点,△O的半径为5cm,△PED的周长为24cm,△APB=50°.求:(1)PO的长;(2)△EOD的度数.3.如图,在直角梯形ABCD 中,AB ∥CD,AB ⊥BC,以BC 为直径的△O 与AD 相切,点E 为AD 的中点,下列结论正确的个数是( )(1)AB+CD=AD;(2)DCE ABE BCE S S S △△△+=; (3)241BC CD AB =⋅; (4)∠ABE=∠DCE. A.1B.2C.3D.4知识点二 圆外切四边形1、四边形的内切圆定义:四边形的四条边都与圆相切,把这个四边形叫作圆外切四边形,把这个圆叫作圆的内切圆.2、圆外切四边形的性质:圆外切四边形两组对边之和.(如图,即AB +CD =AD +BC ) 题型一 四边形的内切圆计算【例1】已知四边形ABCD 的边AB 、BC 、CD 、DA 与△O 相切于P 、Q 、M 、N ,求证:AB+CD=AD+BC 。

切线长定理及其应用

切线长定理及其应用

知识点一切线长定义及切线长定理1. _____________________________________________________ 切线长定义:过圆外一点作圆的切线,这点和____________________________________________ 之间的线段长叫作这点到圆的切线长注意切线长和切线的区别和联系:切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。

2. 切线长定理:过圆外一点引圆的两条切线,它们的切线长相等,即PA=PB.推论:(1) △ PAB是等腰三角形;(2) OP 平分△ APB,即△ APO A BPO ;(3) 弧AM=弧BM ;(4)在Rt OAP和Rt OBP中,由AB OP,可通过相似得相关结论;如:OA2 OB2 OE OP, AP2 BP2 PE PO, AE2 BE2 OE EP(5)图中全等的三角形有对,分别是:题型一切线长定理的直接应用【例1】如图所示,AO的半径为3cm,点P和圆心O的距离为6cm,经过点P的两条切线与AO切于点E、F,求这两条切线的夹角及切线长.【例2】如图,FA、PB、DE分别切A0于A、B、C, A O的半径长为6 cm, PO= 10 cm,求APDE的周长.切线长定理及其应用【例3】如图所示,△ ABC中,/ C=90 , AC=3 , AB=5 , D为BC边的中点,以AD上一点0为圆心的O0和AB、BC均相切,则O 0的半径为 ______________ .£4【过关练习】1•如图所示,PA、PB是AO的切线,A、B为切点,△ OAB=30°.( 1)求厶APB的度数.(2)当0A=3时,求AP的长•2•如图所示,已知PA、PB、DE分别切e 0于A、B、C三点,AO的半径为5cm, △ PED的周长为24cm , △ APB=50°求:(1) P0 的长;(2) △ EOD 的度数•3•如图,在直角梯形 ABCD 中,AB // CD,AB 丄BC,以BC 为直径的 △ 与AD 相切,点E 为AD 的中点,下列结论 正确的个数是( )B1 2知识点二圆外切四边形1、四边形的内切圆定义:四边形的四条边都与圆相切,把这个四边形叫作圆外切四边形,把这个圆叫作圆的内切圆2、圆外切四边形的性质:圆外切四边形两组对边之和 __________________ .(如图,即AB+CD=AD+BC )题型一 四边形的内切圆计算【例1】已知四边形 ABCD 的边AB 、BC 、CD 、DA 与AO 相切于P 、Q 、M 、N ,求证:AB+CD=AD+BC 。

切线长定理乐乐课堂

切线长定理乐乐课堂

切线长定理乐乐课堂摘要:一、切线长定理的概念1.定义及作用2.常见图形中的应用二、切线长定理的证明方法1.一般证明方法2.特殊情况证明方法三、切线长定理在实际问题中的应用1.求解相关角度2.求解相关边长四、总结与拓展1.切线长定理的重要性2.与其他定理的联系与区别3.进一步学习的建议正文:一、切线长定理的概念切线长定理是几何学中一个非常重要的定理,它可以用来计算切线长度。

该定理的定义是:在圆或等腰三角形中,从切点到圆心或等腰三角形的顶点的连线长度等于切线长度。

简单来说,切线长定理描述了切线长度与相关点的连线长度之间的关系。

在实际应用中,切线长定理广泛应用于各种图形,尤其是圆和等腰三角形。

掌握了切线长定理,可以更加方便地计算相关角度和边长,从而解决更复杂的问题。

二、切线长定理的证明方法1.一般证明方法切线长定理的一般证明方法主要依赖于切线长度的定义和一些基本的三角函数。

首先,根据切线长度的定义,我们可以知道切线长度等于从切点到圆心或等腰三角形的顶点的连线长度。

然后,利用三角函数,我们可以将这个长度关系转化为角度关系,从而证明切线长定理。

2.特殊情况证明方法在某些特殊情况下,切线长定理的证明可以通过一些直观的方法完成。

例如,在等腰直角三角形中,由于直角边上的切线与斜边上的高重合,所以切线长度等于高的一半。

这种特殊情况下的证明方法更加简洁直观,有助于加深对切线长定理的理解。

三、切线长定理在实际问题中的应用1.求解相关角度在解决与切线相关的问题时,我们可以利用切线长定理求解相关角度。

例如,在求解一个圆的切线与半径所夹角度时,我们可以根据切线长定理计算出切线长度,然后利用三角函数求解角度。

2.求解相关边长切线长定理还可以用来求解与切线相关的边长。

例如,在求解一个等腰三角形底边上的高时,我们可以根据切线长定理计算出高与底边的比例,从而求解高的大小。

四、总结与拓展1.切线长定理的重要性切线长定理是几何学中的一个基本定理,对于解决与切线相关的问题具有重要意义。

切线长定理(用)

切线长定理(用)
设AD= x , BE= y ,CE= r
∵ ⊙O与Rt△ABC的三边都相切
∴AD=AF,BE=BF,CE=CD
则有
x+r=b y+r=a x+y=c
解:设Rt△ABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OA⊥AC,OE⊥BC,OF⊥AB。
解得
r=
a+b-c
2
设Rt△ABC的直角边为a、b,斜边为c,则Rt△ABC的 内切圆的半径 r= 或r=
拓展应用
练习5.AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过点E作⊙O的切线交AC的延长线于点D,试判断△AED的 形状,并说明理由.
拓展应用
练习5.AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过点E作⊙O的切线交AC的延长线于点D,试判断△AED的 形状,并说明理由.
Oቤተ መጻሕፍቲ ባይዱ
1

2
A
3
B
C
例1
已知,如图,PA、PB是⊙O的两条切线,A、B为切点.直线 OP 交 ⊙O 于点 D、E,交 AB 于 C. (1)写出图中所有的垂直关系; (2)写出图中所有的全等三角形. (3)如果 PA = 4 cm , PD = 2 cm , 求半径 OA 的长.
A
O
C
D
P
B
E
解:
(1) OA⊥PA , OB⊥PB , OP⊥AB
M
试一试
A
P
O

B
若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.
CA=CB
证明:∵PA,PB是⊙O的切线,点A,B是切点 ∴PA = PB ∠OPA=∠OPB ∴PC=PC ∴ △PCA ≌ △PCB ∴AC=BC

切线长定理的应用

切线长定理的应用

已知一条切线时,常有五个性质:1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径;3、切线垂直于过切点的半径;4、经过圆心垂直于切线的直线必过切点;5、经过切点垂直于切线的直线必过圆心。

A BPO。

切线长定理(如图)教学目标知识目标:1、理解切线长定理,懂得定理的产生过程;2、会灵活运用切线长定理探究一些结论,并应用定理解题。

能力目标:探求问题,寻求结论重点:切线长定理的应用难点:定理的探求、延伸阅读课文P118,思考下列问题:1、什么叫做圆外一点到圆的切线长?2、切线长定理的内容是什么?3、这个定理是怎样证明的?ABPO 。

切线长定理PA 、PB 分别切⊙O 于A 、B PA = PB∠OPA=∠OPB。

PABOC如图:PA、PB是⊙O的两条切线,A、B为切点。

思考:由切线长定理可以得出哪些结论?若已知圆的三条切线呢?A B C D E F 设△ABC 的BC=a ,CA=b ,AB=c ,内切圆I 和BC 、AC 、AB 分别相切于点D 、E 、F.I x y z y+z=ax+z=bx+y=c 分析:设AF=x ,BD=y ,CE=zx y z已知:在△ABC 中,BC=14,AC=9,AB=13,它的内切圆分别和BC 、AC 、AB 切于点D 、E 、F ,求AF 、BD 和CE 的长。

比一比看谁做得快.ABC a bc r r =a+b-c 2例:直角三角形的两直角边分别是5cm ,12cm 则其内切圆的半径为______。

D CE O如图:从⊙O 外的定点P 作⊙O的两条切线,分别切⊙O 于点A和B ,⑵∠DOE的大小是定值在弧AB 上任取一点C ,过点C 作⊙O 的切线,分别交PA 、PB 于点D 、E 。

试证:⑴△PDE 的周长是定值(PA+PB )(∠AOB/2)若∠P=40°,你能说出∠DOE 的度数吗?B F 如图:AE 、BF 分别切⊙O 于A 、B ,且AE∥BF,EF 切⊙O 于C 。

初中数学 切线长定理的应用有哪些

初中数学  切线长定理的应用有哪些

初中数学切线长定理的应用有哪些
切线长定理是初中数学中与圆相关的一个重要定理,它有广泛的应用。

下面我将详细介绍切线长定理的几个常见应用。

1. 判断切线的长度相等:
-已知一个圆上的两条切线与同一个角相交,且角的顶点在切点上,判断这两条切线的长度是否相等。

根据切线长定理可得:如果两条切线与同一个角相交,且角的顶点在切点上,那么这两条切线的长度相等。

2. 求解切点坐标:
-已知一个圆的方程及一条切线的方程,求解切点的坐标。

根据切线长定理的性质可得:切点的坐标可以通过将切线的方程与圆的方程联立求解得到。

3. 求解切线的斜率:
-已知一个圆的方程及切点的坐标,求解切线的斜率。

根据切线长定理的性质可得:切线的斜率可以通过切点的坐标和圆的方程求解得到。

4. 判断切线与其他直线的关系:
-已知一个圆和一条直线,判断这条直线与圆的关系。

根据切线长定理可得:如果一条直线与圆相交于一个点,并且这个点是圆的切点,那么这条直线是圆的切线。

5. 解决圆的切线问题:
-切线长定理可以用于解决与圆的切线相关的问题。

例如,求解切线的长度、判断切线的存在与位置关系、求解切线与角的关系等。

切线长定理在初中数学中有广泛的应用,可以帮助我们解决与切线和圆相关的问题,判断切线的长度相等、求解切点的坐标和切线的斜率,判断切线与其他直线的关系,以及解决圆的切线问题。

在应用切线长定理时,需要注意定理的性质和运用几何知识进行推理和分析。

希望以上内容能够满足你对切线长定理应用的了解。

圆的切线长定理

圆的切线长定理

圆的切线长定理圆的切线长定理是几何学中的重要定理之一,它描述了一个切线与圆的相交关系以及切线的长度和与圆的位置有关。

这个定理被广泛应用于各个领域,包括物理学、工程学和计算机图形学等。

本文将详细介绍圆的切线长定理及其应用。

一、圆的切线长定理的表述圆的切线长定理可以用以下方式表述:如果在圆上有一点P,并且通过这点作一条直线与圆相交于A、B两点,那么线段PA和线段PB 的乘积等于切线与圆心连线的长度的平方。

即PA * PB = PT^2,其中T是切点。

二、圆的切线长定理的证明要证明圆的切线长定理,可以使用几何推理和三角关系。

设圆的半径为r,圆心为O,切点为T,切线与圆心连线为OT。

连接OA、OB,得到△OAT和△OBT两个直角三角形。

由正弦定理可得:sin∠OAT = r / OTsin∠OBT = r / OT又因为∠OAT和∠OBT是互余角(补角),即∠OAT + ∠OBT = 90°,所以sin∠OAT = cos∠OBT。

将上述两个等式代入PA * PB = PT^2,得到:r * r = PA * PB因此,圆的切线长定理得证。

三、圆的切线长定理的应用圆的切线长定理可以应用于很多实际问题中。

以下是一些具体应用:1. 圆的切线长定理可以用于计算切线的长度。

如果已知圆的半径和切线与圆的位置,可以通过切线长定理计算切线的长度。

2. 圆的切线长定理可以用于求解与圆相切的直线方程。

通过已知切点和切线长度,可以确定切线的位置,从而求解与圆相切的直线方程。

3. 圆的切线长定理可以应用于计算切线与圆心连线的长度。

通过已知切线长度和切点,可以计算切线与圆心连线的长度。

4. 圆的切线长定理还可以用于解决几何问题。

例如,判断两个圆是否相切,可以通过切线长定理计算切线的长度,从而判断圆是否相切。

圆的切线长定理是几何学中的重要定理,它描述了切线与圆的相交关系以及切线的长度和与圆的位置的关系。

通过应用该定理,我们可以解决各种与圆相关的问题,从而推动几何学的发展和应用。

直线与圆的位置关系切线长定理

直线与圆的位置关系切线长定理

直线与圆的位置关系切线长定理在几何学中,直线与圆的位置关系一直是一个重要的研究课题。

其中,切线长定理是直线与圆的位置关系中的一个重要定理,它在解决直线与圆的位置关系问题时起着至关重要的作用。

本文将介绍切线长定理的定义、推导过程及其应用。

一、切线长定理的定义切线长定理是指直线与圆的位置关系中,一条直线与圆相切时,切线与切点之间的长度关系。

具体来说,切线长定理可以表述为:一条直线与圆相切时,切线与切点之间的长度平方等于切点到圆心的距离的平方减去圆的半径的平方。

切线长定理可以用公式表示为:PT^2 = PC^2 - r^2其中,PT表示切线与切点之间的长度,PC表示切点到圆心的距离,r表示圆的半径。

二、切线长定理的推导切线长定理的推导可以通过几何方法和代数方法来进行。

这里我们将介绍一种代数方法的推导过程。

假设圆的方程为(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心坐标,r为圆的半径。

直线的方程为y = kx + c,其中k为直线的斜率,c为直线的截距。

首先,我们要找到直线与圆相切的条件。

直线与圆相切的条件是直线与圆的切点只有一个,也就是直线与圆的方程组有且只有一个解。

将直线方程代入圆的方程中,得到一个关于x的二次方程:(x-a)^2 + (kx+c-b)^2 = r^2解这个方程,得到直线与圆相切的条件:Δ = (k^2+1)(c-b)^2 - (1+k^2)(a^2+b^2-r^2) = 0其中,Δ为方程的判别式。

当Δ=0时,直线与圆相切。

接下来,我们要求出切线与切点之间的长度。

设直线与圆的切点为P(x0, y0),则切点到圆心的距离为:PC^2 = (x0-a)^2 + (y0-b)^2切线与切点之间的长度为:PT^2 = (x-x0)^2 + (y-y0)^2将直线方程代入PT^2的表达式中,得到:PT^2 = (x-x0)^2 + (kx+c-y0)^2将PT^2和PC^2代入切线长定理的公式中,得到:(x-x0)^2 + (kx+c-y0)^2 = (x0-a)^2 + (y0-b)^2 - r^2 化简上式,得到切线长定理的公式:PT^2 = PC^2 - r^2三、切线长定理的应用切线长定理在解决直线与圆的位置关系问题时起着重要作用。

北师大版数学九年级下册第三章 3.7 切线长定理

北师大版数学九年级下册第三章 3.7 切线长定理

北师大版数学九年级下册第三章 3.7 切线长定理概述在数学中,切线是与曲线相切且只有一个交点的直线。

切线长定理指出了当直线与圆相切时,切线在圆上所切割的弧长与切线外部的剩余弧长之间存在着一种特殊的关系。

在本文中,我们将详细讨论切线长定理在数学中的应用。

切线长定理的表述设在平面直角坐标系中,原点为圆心,半径为r的圆的方程为x^2 + y^2 =r^2。

对于圆上的任意一点P(x, y),若以圆心O为顶点,OP的斜率为k且通过P 点,则切线的方程为y = kx + b,其中b为常数。

则点P处的切线在圆上所切割的弧长等于切点到圆心的距离所对应的圆心角的弧长的一半。

切线长定理的证明首先,我们先证明切线y = kx + b与圆x^2 + y^2 = r^2相切。

设点P(x, y)为圆上的一点。

由于切线与圆相切,则切线过点P且与圆的切点只有一个交点,也就是说切线与圆只有一个交点。

因此,我们可以通过解方程组来判断切线与圆是否相切。

将切线方程代入圆的方程中,得到(x^2 + (kx + b)^2) - r^2 = 0. 经过化简,得到(k^2 + 1)x^2 + 2bkx + (b^2 - r^2) = 0。

由于切线与圆只有一个交点,所以该方程只有一个解,即判别式D = (2bk)^2 - 4(k^2 + 1)(b^2 - r^2) = 0。

解方程D = 0,得到b = r^2 / (2k)。

代入切线方程y = kx + b,得到切线方程为y = kx + r^2 / (2k)。

同时,由于切线过点P(x, y),所以点P满足切线方程,即y = kx + r^2 / (2k)。

将此方程代入圆的方程x^2 + y^2 = r2中,得到x2 + (kx + r^2 / (2k))^2 = r2。

经过化简,得到x2 + k^2*x^2 + r22 / (4k^2) + 2k2x r2 / (2k) = r^2。

合并同类项,得到(k^2 + 1)x^2 + r22 / (4k^2) + k2r^2 = r^2。

《切线长定理》

《切线长定理》

与其他几何定理的区别
切线长定理是一个关于圆的定理,而其他几 何定理可能涉及不同的图形和结构。
05
切线长定理的现实意义和 价值
在教育中的意义和价值
要点一
强化几何概念的理解
切线长定理是几何学中的基本定理之一,对于学生理解 几何概念,尤其是与圆和切线相关的概念有重要帮助。
要点二
培养逻辑推理能力
通过证明和应用切线长定理,可以培养学生的逻辑推理 和证明能力,提高其思维严谨性。
切线长定理在其他领域的应用
物理学
在物理学中,切线长定理可以用于解决与 速度、加速度和力相关的物理问题。
工程学
在工程学中,切线长定理可以用于解决与 图形、结构和力学相关的设计问题。
与其他数学定理的关系和区别
与圆的性质定理的关系
切线长定理是圆的性质定理的一个推论,它 可以用于证明其他与圆有关的定理。
评价
切线长定理是几何学中的基础定理之一,它揭示了圆的 切线与半径之间的关系,为解决许多几何问题提供了重 要的工具。
未来研究的方向和展望
研究方向
在未来的研究中,可以进一步探讨切线长定理的应用,例如在三角函数、极坐标 系、光学、工程等领域的应用。同时,可以研究切线长定理与其他几何定理之间 的联系和区别。
展望
随着科学技术的发展,几何学的研究和应用将会更加深入和广泛。未来可以期待 在应用领域取得更多的突破,例如在计算机图形学、机械设计、建筑设计等领域 的应用。同时,对于切线长定理本身的研究也可以进一步深化和完善。
感谢您的观看
THANKS
在工程学中的应用
设计中的黄金分割原理 建筑学中的结构分析和优化
机械工程中的传动和润滑系统设计
04
切线长定理的推广和扩展
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切线长的应用
1.已知,如图,△ABC的三边长为AC=5,BC=6,AB=7,⊙O与△ABC的三边相切于D,E,F,
⑴求AE,BD,CF的长;
⑵若⊙O的半径为2,求△ABC的面积。

⑶若上图变为下图所示,PA,PB为⊙O的切线,DE与⊙O相切于点F,
①已知,PA=6,求△PDE的面积;
②∠P=400,求∠DME的度数。

2.如图,⊙O是直角△ABC的内切圆,已知AC=8.BC=6,∠C=900,求⊙O
的半径
若上题中的图形变为下图所示,⊙O与三角形的三边所在的直线都相切,
其余条件不变,求⊙O的半径
3.在△ABC中,AC=8.,∠C=900,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O
与AB,AC都相切,求⊙O的半径。

4,已知,等边三角形的边长为2,求这个三角形内切圆半径,外接圆半径。

5.如图所示,两等圆的半径为5,DC=16,求AD的长。

若上题图形变为下图所示,三个等圆两两外切,且与三角形的各边都相切,已知圆的半径为5,
求这个三角形的边长。

练习:
填空:
1.如图,P 是⊙O 外一点,PA.PB 分别与⊙O 相切于A.B 两点,C 是弧AB 上任意一点,过C 作⊙O 的切线,分别交PA.PB 于D.E,若△PDE 的周长为20cm,则PA 长为 。

2.如图,AB.AC 与⊙O 相切于B.C ∠A=50°,点P 是圆上异于B.C 的一动点,则∠BPC 的度数是 。

3.如图,若⊙O 的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D ,且⊙O 的半径为2,则CD 的长为 。

4.如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于B ,PA=4,OA=3,则co s ∠APO= .
5.已知,R t △ABC 中,∠C=90°,若AB=5,AC=3,则内切圆半径为 ,外接圆半径为 。

6.边长为6.8.10的三角形的内心与外心的距离为 。

7.若直角三角形斜边为12cm ,其内切圆半径为1cm ,则三角形的周长为 。

8.如图,在R t △ABC 中,∠A=90°,⊙O 分别与AB,AC 相切于E.F ,圆心O 在BC 上,若AB=a,AC=b,则⊙O 的半径为 。

A.ab B.
2b a + C.b a ab + D.ab
b
a + 9.已知,半圆O 的直径在梯形ABCD 的底边AB 上,且与其余三边BC.CD.DA 相切,若BC=a,DA=b,
则AB 的长是 。

10.△ABC 内切圆半径为2cm ,周长为10cm ,那么S △ABC= cm 2。

11.已知,等边△ABC 的边长为2,则这个三角形内切圆半径长为 ,外接圆半径为 。

12.已知,等边△ABC 的边长为1,则它的内切圆与外接圆组成的圆环面积为 。

13.如图,PA 为⊙O 的切线,A 为切点,PBC 为割线,若PB=2cm,BC=6cm,则PA= 。

14.如图,PA.PB 为⊙O 的两条切线,切点为A.B,若直径AC=12cm ,∠P=60°,则弦AB= 。

15.如图,四边形ABCD四条边都和⊙O相切,
且AB=16,CD=10,则四边形ABCD的周长为。

A.50
B.52
C.54
D.56
一.解答:
1.如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于D,AC=4,CD=1,求⊙O的半径。

2.点I是△ABC的内心,AI交BC于D,交△ABC的外接圆于E,求证:IE2=A E·DE
3.已知,梯形ABCD中,A D‖BC,∠A=900,以AB为直径的圆O与CD相切于点E,
求证:OA2=A D·BC
4.如图,已知⊙O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA=EC,
(1)求证:AC2=A E·AB
(2)延长EC到点P,连结PB,若试判断PB与⊙O的位置关系,说明理由。

5.已知,BC 是⊙O 的直径,直线L 是过C 点的切线,N 点是⊙O 上一点,直线BN 交L 于M ,过N 点的切线交L 于P,试证:PM=PN
(1) 若把上题中的L 向上平移,使之与⊙O 相交,且与直线BN 交于B.N 间的M 点,其
他条件不变,请画出图形,判断上述结论是否成立,请给于证明。

(2) 将直线继续向上平移,使之与⊙O 相交,且与直线BN 的延长线交于M 点,其他条件
不变,请画出图形,判断上述结论是否成立,请给于证明。

6.AD 是⊙O 的直径,BC 切⊙O 于D 点,AB.AC 与⊙O 相交于E.F, (1)求证:A E ·AB=A F ·AC (2)若将(1)中的直线BC 向上平移与⊙O 相交得图(2)或向下平移得图(3),此时A E ·AB=A F ·AC 是否仍成立,若成立请证明,若不成立,说明理由。

相关文档
最新文档