液压系统的设计步骤与设计要求

合集下载

液压系统设计小结

液压系统设计小结

液压系统设计小结液压系统设计是现代机械制造中重要的一环。

液压系统能够实现力、速度的集成控制,并且在一些特殊工作场合,液压系统有其它传动方式无法替代的工作效果。

对于液压系统设计来说,设计方案要不仅要能够满足工作要求,还要考虑力、速、功的匹配,以及可靠性和安全性。

液压系统设计包括以下几个步骤:需求分析、系统参数确定、元件选型、系统方案设计、回路图绘制、系统试验和运行调试。

(1) 需求分析:液压系统设计的前提是了解工程技术需求。

设计人员需要与机器操作者交流,以了解系统的工作要求。

同时,还需要了解系统的工作环境、操作方式和安全要求等方面的信息。

(2) 系统参数确定:系统参数的确定对液压系统的设计有着决定性的影响。

例如,液压缸的直径、工作行程、工作半径以及工作压力等参数都需要根据实际需求进行确定。

此外,液压泵、阀门和控制器等元件的型号、安装位置以及内部参数也需要确定,以保证系统能够正常工作。

(3) 元件选型:根据系统参数和工作要求,选择合适的液压元件。

液压元件的选择需要考虑以下因素:① 额定工作压力:液压元件的额定工作压力需要大于系统工作压力。

一般规定元器件的最高工作压力应为系统工作压力的1.5-2倍。

② 流量:液压元件的流量必须满足系统工作要求。

③ 控制方式:液压元件控制方式的选择也需要针对不同情况进行调整。

电磁液压阀是常用的控制元件之一,其具有控制精度高、动作迅速等优点。

但是,所需的控制电路、电源等辅助设备比较复杂。

此外,气控和电控柔性操作和链式安全回路等也是常用的控制方式。

(4) 系统方案设计:按照选定的元件进行系统方案的设计。

系统方案的设计需要结合系统参数、工作要求以及应用环境的特点,制定相应的方案。

在系统方案确定后,应绘制液压回路图便于检查和维护。

(5) 回路图绘制:对液压回路图进行精确定位和编写。

在编写液压回路图时,应注意以下几个方面:① 正确绘制液压回路图。

按照系统方案进行液压回路图的绘制。

液压系统的设计

液压系统的设计

液压系统的设计液压系统设计是液压主机设计的重要组成部分,也是对前面各章内容的概括总结和综合应用。

本章主要阐述液压系统设计的一般步骤,设计内容和设计计算方法,并通过实例来说明液压系统的设计过程。

9.1 液压系统的设计步骤液压系统设计与主机的设计是紧密联系的,两者往往同时进行,互相协调。

设计液压系统时应首先明确主机对液压系统在动作、性能、工作环境等方面的要求,如执行元件的运动方式、行程、调速范围、负载条件、运行平稳性和精度、工作循环及周期、工作环境、安装空间大小、结构简单、工作安全可靠、效率高、使命寿命长、经济性好、使用维修方便等设计原则。

液压系统设计步骤大体上可按图9-1所示的内容和流程进行。

这里除了最后一项(8)外,均属性能设计范围。

这些步骤是相互关联,相互影响的,必须经反复修改才能完成。

设计步骤及方法介绍如下。

9.1.1 明确系统的设计要求设计液压系统时,首先要对液压主机的工况进行分析,明确主机对液压系统的要求,具体包括:1)主机的用途、主体布局、对液压装置的位置和空间尺寸的限制。

2)主机的工作循环,液压系统应完成的动作、动作顺序或互锁要求,以及自动化程度的要求。

3)液压执行元件的负载和运动速速的大小及其变化范围,运动平稳性、定位精度及转化精度等的要求。

4)液压系统的工作环境和工作条件。

5)工作效率、安全性、可靠性及经济性等要求。

9.1.2 分析系统工况,确定主要参数1.工况分析工况分析,就是分析主机在工作过程中各执行元件的运动速度和负载的变化规律。

它是拟定液压系统方案,选择或设计液压元件的依据。

工况分析包括动力参数分析和运动参数分析两个部分,即:1)动力参数分析就是通过计算液压执行元件的载荷大小和方向,并分析各执行元件在工作过程中可能产生的冲击、振动及过载等。

对于动作较复杂的机械设备,根据工艺要求,将各执行元件在各阶段所需克服的负载用图9-2a所示的负载-位移(F-L)曲线表示,称为负载图。

液压系统设计篇

液压系统设计篇

液压系统设计篇----4ffaa03a-7161-11ec-876d-7cb59b590d7d液压传动系统设计,除了应符合其主机在动作循环和静、动态性能等方面所提出的要求外,还必须满足结构简单、使用维护方便、工作安全可靠、性能好、成本低、效率高、寿命长等条件。

液压传动系统的设计一般依据流程图见图4-1的步骤进行设计。

图4-1液压传动系统设计流程图第一节明确设计要求要设计一个新的液压系统,首先必须明确机器对液压系统的动作和性能要求,并将这些技术要求作为设计的出发点和基础。

需要掌握的技术要求可能包括:1.机器的特性(1)充分了解主机的结构和总体布置,机构与从动件之间的连接条件和安装限制,以及其用途和工作目的。

(2)负载种类(恒定负载、变化负载及冲击负载)及大小和变化范围;运动方式(直线运动、回转运动、摆动)及运动量(位移、速度、加速度)的大小和要求的调节范围;惯性力、摩擦力、动作特性、动作时间和精度要求(定位精度、跟踪精度、同步精度)。

(3)原动机类型(电机、内燃机等)、容量(功率、速度、扭矩)和稳定性。

(4)操作方式(手动、自动)、信号处理方式(继电器控制、逻辑电路、可编程控制器、微机程序控制)。

(5)系统中每个执行器的动作顺序和动作时间之间的关系。

2.使用条件(1)设置地点。

(2)环境温度、湿度(高温、寒带、热带),粉尘种类和浓度(防护、净化等),腐蚀性气体(所有元件的结构、材质、表面处理、涂覆等),易爆气体(防爆措施),机械振动(机械强度、耐振结构),噪声限制(降低噪声措施)。

(3)维护程度和周期;维修人员的技术水平;保持空间、可操作性和互换性。

3.适用的标准和规则根据用户要求采用相关标准、法则。

4.安全性、可靠性(1)用户在安全方面是否有特殊要求。

(2)指定保修期和条件。

5.经济不能只考虑投资费用,还要考虑能源消耗、维护保养等运行费用。

6.工况分析液压系统的工况分析是为了找出各执行机构在各自工作过程中的速度和负载变化规律。

液压动力控制系统的设计

液压动力控制系统的设计

液压动力控制系统的设计简介液压动力控制系统广泛应用于各种机械设备中,其设计和优化对于提高设备的性能和效率至关重要。

本文将讨论液压动力控制系统的设计原理、关键组件以及设计步骤。

设计原理液压动力控制系统的设计原理基于流体力学和控制工程的基本原理。

系统通过控制流体的流量、压力和方向来实现对机械设备的运动控制。

设计时需要考虑的主要因素包括系统的负载要求、速度调节范围、响应时间和能源效率等。

关键组件液压动力控制系统的关键组件包括液压泵、液压马达、控制阀、油箱和油液过滤器等。

液压泵负责将机械设备所需的压力液体供应到系统中,而液压马达则将液压能量转化为机械能,驱动设备运动。

控制阀用于控制液压系统中的液压液体流动,从而实现对设备的运动控制。

油箱用于储存液压液体,并保持其所需的温度和压力。

油液过滤器则负责过滤液压液体中的杂质和颗粒,以保证系统正常运行。

设计步骤液压动力控制系统的设计步骤可以概括为以下几个方面:1. 确定设备的动力要求和性能指标:根据机械设备的工作要求和负载要求,确定系统需要提供的动力、速度范围和精度等指标。

2. 选择合适的液压元件:根据系统的动力要求和性能指标,选择合适的液压泵、液压马达和控制阀等元件,并进行组合配置。

3. 设计液压回路:根据设备的运动需要和控制要求,设计液压回路结构,确定液压元件的连接方式和控制阀的位置。

4. 进行流体力学分析:使用流体力学模拟软件对设计的液压回路进行分析,验证系统的运动性能和控制精度。

5. 进行系统集成和调试:将各个液压元件组装到一起,并进行系统集成和调试,确保系统正常运行并满足设计要求。

结论液压动力控制系统的设计对于提高机械设备的性能和效率非常重要。

通过合理选择液压元件和设计优化液压回路,可以实现对设备运动的精确控制。

在进行设计过程中,需要充分考虑负载要求、速度范围、响应时间和能源效率等因素,以获得最佳的设计方案。

液压系统研制实施方案

液压系统研制实施方案

液压系统研制实施方案一、引言液压系统是一种利用液体传递能量的动力传动系统,广泛应用于工程机械、航空航天、军事装备等领域。

液压系统具有传动效率高、传动力矩大、动作平稳等优点,因此备受青睐。

本文将针对液压系统的研制实施方案进行深入探讨,以期为相关领域的工程师提供参考。

二、液压系统研制的基本要求1. 性能要求:液压系统的研制首先需要满足其设计性能要求,包括传动效率、工作压力、流量等指标。

2. 可靠性要求:液压系统在实际工作中需要具有较高的可靠性,能够保证长时间稳定运行。

3. 经济性要求:在满足性能和可靠性的前提下,液压系统的研制还需要考虑成本控制,以提高其经济性。

三、液压系统研制的技术方案1. 液压元件的选型:液压系统的研制首先需要根据设计要求选择合适的液压元件,包括液压泵、液压阀、液压缸等。

在选型时需要考虑元件的性能、品质、价格等因素。

2. 液压系统的布局设计:液压系统的布局设计需要考虑元件之间的连接方式、管路的布置方式、油箱的容积等因素,以保证系统的紧凑性和稳定性。

3. 液压系统的控制策略:液压系统的研制还需要考虑控制策略的制定,包括开环控制、闭环控制、比例控制等方式,以实现对系统的精准控制。

4. 液压系统的试制与调试:在研制过程中需要进行系统的试制与调试工作,以验证设计方案的可行性,并对系统进行性能优化。

四、液压系统研制的实施步骤1. 确定研制目标:明确液压系统的使用环境、工作条件、性能要求等,为研制工作奠定基础。

2. 设计方案制定:根据研制目标,制定液压系统的设计方案,包括选型、布局、控制策略等内容。

3. 元件采购与加工:根据设计方案,采购所需的液压元件,并进行加工制造。

4. 系统组装与调试:将液压元件进行组装,并进行系统的调试工作,验证系统的性能。

5. 系统性能测试:对研制的液压系统进行性能测试,以验证其满足设计要求。

6. 系统优化与改进:根据性能测试结果,对系统进行优化与改进,以提高其性能和可靠性。

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计一、引言随着工业技术的不断进步,液压系统在机械设备中的应用越来越广泛。

专用铣床是一种常见的机械设备,其液压系统是确保其正常运行的重要组成部分。

本课程设计将对专用铣床液压系统进行设计,以确保其在工作过程中具有稳定、高效的性能。

二、液压系统设计原理液压系统是通过液体传递能量来实现机械运动的系统。

在专用铣床中,液压系统主要用于控制铣刀的进给、主轴的转速和位置,以及工作台的移动等。

液压系统的设计需要考虑以下几个方面:1. 工作压力:根据铣床的工作需求和液压元件的承载能力,确定液压系统的工作压力。

通常,专用铣床的工作压力在10-20MPa之间。

2. 流量需求:根据铣床的工作速度和移动距离,确定液压系统的流量需求。

流量的大小直接影响液压系统的响应速度和工作效率。

3. 液压元件的选择:根据液压系统的工作压力和流量需求,选择适当的液压元件,如液压泵、液压阀、液压缸等。

液压元件的选择要考虑其工作性能、可靠性和维护成本等因素。

4. 液压系统的控制方式:根据铣床的工作需求,确定液压系统的控制方式。

常见的控制方式有手动控制、自动控制和数控控制等。

三、液压系统设计步骤1. 确定系统要求:根据专用铣床的工作特点和要求,明确液压系统的工作压力、流量需求和控制方式等。

2. 选择液压元件:根据系统要求,选择合适的液压元件。

液压泵的选择要考虑其流量和压力特性;液压阀的选择要考虑其控制特性和可靠性;液压缸的选择要考虑其负载能力和运动特性等。

3. 绘制液压系统图:根据系统要求和液压元件的选择,绘制液压系统图。

液压系统图应包括液压泵、液压阀、液压缸等液压元件的连接关系和管路布置。

4. 计算液压系统参数:根据系统要求和液压元件的特性,计算液压系统的参数,如泵的流量和压力、液压缸的负载和速度等。

5. 设计液压系统控制装置:根据系统要求和控制方式,设计液压系统的控制装置。

控制装置可以采用手动操作、电气控制或计算机控制等方式。

上料机液压系统设计

上料机液压系统设计

上料机液压系统设计液压系统在上料机中的设计是非常重要的,它是实现上料机正常工作的关键组成部分。

本文将从液压系统的组成、工作原理、设计要求及优化等方面进行详细介绍。

一、液压系统组成液压系统主要由液压源、执行元件、控制元件、辅助元件及液压工作介质等组成。

1.液压源:通常由液压泵提供动力,将机械能转化为液压能。

2.执行元件:主要有液压缸、液压马达等。

在上料机中,液压缸用于实现上料斗的升降和倾斜等动作。

3.控制元件:包括阀门、阀芯、阀座等。

通过对液压油流进行控制和调节,实现液压系统各个部件的协调工作。

4.辅助元件:主要有油箱、滤清器、冷却器等。

油箱提供液压油的贮存和冷却,滤清器用于过滤液压油中的杂质,冷却器用于降低液压油的温度。

5.液压工作介质:通常采用液压油作为液压系统的工作介质。

液压油具有一定的粘度和热稳定性,能够在高温和高压力下正常工作。

二、液压系统工作原理液压系统的工作原理是基于帕斯卡定律。

即压力在静态液体中传递时,作用在液体上的力是与所受面积成正比的。

根据这一原理,液压系统通过控制液压油的流量和压力,实现对液压缸的控制。

当液压系统启动时,液压泵将液压油从油箱中吸入,在压力作用下,向执行元件(液压缸)提供动力。

通过控制元件的控制,可以实现液压油的流向和压力调节,从而实现上料斗的升降和倾斜等动作。

三、液压系统设计要求1.性能要求:液压系统在上料机中的设计应保证系统的工作性能稳定可靠,具有较高的工作效率和运行平稳性。

2.安全要求:液压系统设计应考虑到系统的安全性,包括液压元件的强度和稳定性,系统的漏油及漏压检测与报警等。

3.节能要求:液压系统设计应尽可能降低能源损耗,提高系统的能源利用率。

4.维修保养要求:液压系统的设计应便于维修和保养,包括易于检修和更换液压元件,便捷的油液更换与滤清以及液压系统的保养周期等。

四、液压系统设计优化针对上述设计要求,可以通过以下方式对液压系统进行优化设计:1.选择合适的液压元件:根据上料机的工作条件和需求,选择适合的液压泵、液压缸和控制阀等元件,保证其质量和性能符合要求。

液压系统的设计计算步骤和内容

液压系统的设计计算步骤和内容
• 对于复杂的液压系统,如有若干个执行元件同时或分别完成不同的工 作循环,则有必要按上述各阶段计算总负载力,并根据上述各阶段的 总负载力和它所经历的工作时间t(或位移s),按相同的坐标绘制液压缸 的负载时间(F―t)或负载位移(F―s)图。如图9.l所示为某机床主液压缸 的速度图和负载图。
• 最大负载值是初步确定执行元件工作压力和结构尺寸的依据。 • 液压马达的负载力矩分析与液压缸的负载分析相同,只需将上述负载
设计计算
步骤和内容
4~5
>5~7
18
系统工作压力的确定
表9-3 按主机类型选择系统工作压力
设备 类型
磨床
机床
组合机床 牛头刨床
插床 齿轮加工
机床
车床 铣床 镗床
珩磨 拉床 机 龙门 床 刨床
农业机械 汽车工业 小型工程 机械及辅 助机械
工程机械 重型机械 锻压设备 液压支架
船用 系统
压力 /MPa
摆动缸
单叶片缸转角小于300°,双叶片缸转角小于150°
往复摆动运动
齿轮、叶片马达 轴向柱塞马达 径向柱塞马达
结构简单、体积小、惯性小 运动平稳、转大、转速范围宽 结构复杂、转大、转速低
设计计算
步骤和内容
高速小转矩回转运动 大转矩回转运动 低速大转矩回转运动
7
负载分析
• 负载分析就是通过计算确定各液压执行元件的负载大小和方向,并分 析各执行元件运动过程中的振动、冲击及过载能力等情况。
设计计算
步骤和内容
2
1.1 液压系统的设计依据和工况分析
液压系统的设计依据
• 设计要求是进行工程设计的主要依据。设计前必须把主机对液压系统 的设计要求和与设计相关的情况了解清楚,一般要明确下列主要问题:

液压系统的设计毕业设计

液压系统的设计毕业设计

液压系统的设计毕业设计液压系统的设计毕业设计引言液压系统是一种利用液体传递能量的技术,广泛应用于各个领域,如工业、农业、航空航天等。

在液压系统的设计中,需要考虑多个因素,包括系统的结构、元件的选择、流体的性质等。

本文将探讨液压系统的设计过程,并介绍一些常见的设计原则和方法。

一、液压系统的基本原理液压系统的基本原理是利用液体在封闭的管路中传递力和能量。

液压系统由液压泵、执行元件、控制阀等组成。

液压泵通过机械能转化为液压能,将液体压入管路中。

控制阀通过控制液体的流动方向和流量来实现对执行元件的控制。

执行元件将液体的能量转化为机械能,完成所需的工作。

二、液压系统的设计步骤1. 确定系统的需求:在进行液压系统的设计之前,需要明确系统的工作要求和目标。

例如,需要确定系统的工作压力、流量需求、工作环境等。

2. 选择液压元件:根据系统的需求,选择合适的液压元件,包括液压泵、执行元件、控制阀等。

在选择液压元件时,需要考虑元件的性能参数、可靠性、成本等因素。

3. 设计管路布局:根据系统的工作需求和元件的选择,设计合理的管路布局。

管路布局应考虑液体的流动路径、压力损失、泄漏等因素,以确保系统的稳定性和效率。

4. 进行系统分析:通过数学模型和仿真软件对系统进行分析,评估系统的性能和可靠性。

分析过程中需要考虑液体的性质、流动特性、压力变化等因素。

5. 进行系统优化:根据系统分析的结果,对系统进行优化。

优化的目标可以包括提高系统的效率、减少能量损失、降低成本等。

6. 进行系统测试:设计完成后,进行系统的实际测试。

测试过程中需要检查系统的各个部件是否正常工作,是否满足设计要求。

三、液压系统设计的原则和方法1. 简化系统结构:在液压系统的设计中,应尽量简化系统的结构,减少元件的数量和复杂性。

简化系统结构可以提高系统的可靠性和维护性。

2. 选择合适的元件:在选择液压元件时,应考虑元件的性能参数、可靠性、成本等因素。

选择合适的元件可以提高系统的性能和效率。

第九章液压系统的设计与计算

第九章液压系统的设计与计算

按各执行元件在工作中的速度v以及位移s或经历的时间t 绘制v-s或v-t速度循环图。
三、确定液压系统的主要参数
液压系统的主要参数——工作压力和流量是选择液压元 件的主要依据,而系统的工作压力和流量分别取决于液压执 行元件工作压力、回路上压力损失和液压执行元件所需流量 、回路泄漏,所以确定液压系统的主要参数实质上是确定液 压执行元件的主要参数。 1. 初选液压系统的主要参数 执行元件工作压力是确定其结构参数的重要依据。工作 压力选得低一些,对液压系统工作平稳性、可靠性和降低噪 声等都有利,但对液压系统和元件的体积、重量就相应增大 ;工作压力选得过高,虽然液压元件结构紧凑,但对液压元 件材质、制造精度和密封要求都相应提高,制造成本也相应 提高。执行元件的工作压力一般可根据负载进行选择。
二、液压系统的工况分析和系统的确定
对执行元件负载分析与运动分析,也称为液压系统的工 况分析。工况分析就是分析每个液压执行元件在各自工作过 程中负载与速度的变化规律,一般执行元件在一个工作循环 内负载、速度随时间或位移而变化的曲线——用负载循环图 和速度循环图表示。 1. 负载分析 液压缸与液压马达运动方式不同,但他们的负载都是由 工作负载、惯性负载、摩擦负载、背压负载等组成的。 (1) 工作负载 FW 包括切削力、夹紧力、挤压力、重力等, 其方向与液压缸运动方向相反时为正,相同时为负;
2. 确定执行元件的主要结构参数 (1)确定液压缸主要结构参数 根据负载分析得到的最
大负载Fmax和初选的液压缸工作压力p,再设定液压缸回
油腔背压pb以及杆径比d/D,即可由第四章中液压缸的力 平衡公式来求出缸的内径D、活塞杆直径d和缸的有效工作
面积A,其中D、d值应圆整为标准值 。
(2)确定液压马达排量VM 排量VM 由马达的最大负载扭矩Tmax、

液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求液压系统是一种以液体为工作介质的动力传动系统,被广泛应用于机械、工程、冶金、航空等领域。

设计液压系统时,需要考虑以下几个步骤和设计要求。

设计步骤:1.确定液压系统的工作条件和要求:包括工作压力、流量、工作环境温度、振动等,以及工作循环和运行时间。

2.选择合适的液压元件:根据系统的工作条件和要求,选择适合的泵、阀门、缸、管路等液压元件。

液压元件的选型要考虑其工作压力、流量、工作温度范围、密封性能、耐腐蚀性等因素。

3.设计液压系统的管路布局:根据系统的功能和工作要求,设计液压系统的管路布局。

要考虑管路的布置方便性、管道直径、管路长度及弯曲程度等因素,以确保液压系统的工作效率和稳定性。

4.进行液压系统的水力计算:根据系统的工作条件和要求,进行液压系统的水力计算,包括流量、压力、液压功率等参数的计算。

通过水力计算,可以确定液压元件的尺寸和数量,以及泵的功率等参数。

5.进行液压系统的动力计算:根据系统的工作条件和要求,进行液压系统的动力计算,包括泵的功率、液压缸的速度和力矩等参数的计算。

通过动力计算,可以确定液压元件的尺寸和数量,以及泵的功率等参数。

6.进行液压系统的控制电路设计:根据系统的工作条件和要求,设计液压系统的控制电路。

要考虑液压系统的控制方式、工作状态、安全性等因素,以确保液压系统的可靠性和稳定性。

7.进行液压系统的安装和试验:按照设计要求,对液压系统进行安装和试验。

安装时要注意各液压元件的正确连接和固定,试验时要进行系统的各项功能和性能的测试,以确保液压系统的正常工作。

设计要求:1.选择合适的液体:要选择适合系统工作条件的液压介质,如矿物油、合成油、水等。

液体的选择要考虑其粘度、温度范围、密封性要求等因素。

2.保证系统的工作可靠性:要确保液压系统的各个元件和管路的安装质量和性能可靠性,保证系统的工作稳定性和高效性。

3.设计合理的液压缸:液压系统中的液压缸是关键元件之一,要根据工作条件和要求,设计合理优化液压缸的径向承载能力、轴向刚度、密封性能等。

液压系统设计方法

液压系统设计方法

液压系统设计方法液压系统是一种通过液体传递能量的系统,广泛应用于各种工业和机械设备中。

液压系统设计的目标是实现高效、可靠的能量传递和控制,同时满足系统的性能要求。

下面是液压系统设计的一般方法和步骤。

第一步:明确系统的工作要求在液压系统设计之前,首先需要明确系统的工作要求,包括工作条件、所需输出力或动力、速度和精度要求等。

这些要求将直接影响到系统的设计和选型。

第二步:选择液压元件在液压系统中,液压元件起到能量传递和控制的作用。

选择适合系统要求的液压元件是液压系统设计的核心步骤之一、常见的液压元件包括液压泵、阀门、缸体、马达等。

在选择液压元件时,需要考虑其技术参数、工作压力范围、流量要求、密封性能和可靠性等。

第三步:设计液压系统布局液压系统布局是指液压元件在系统中的位置和连接方式。

液压系统布局的设计直接影响液压系统的性能和工作效率。

在设计液压系统布局时,需要考虑以下几个因素:1.系统的可维修性和易操作性,便于维护和检修。

2.尽量减少管路的长度和对流动的阻力,提高系统的工作效率。

3.避免液压元件之间的相互干扰和干涉,确保系统的正常工作。

第四步:计算和选择液压元件参数在设计液压系统时,需要计算和选择液压元件的参数。

例如,液压泵的流量和压力选择要根据系统的工作需求来确定,阀门的开口面积需要根据所需流量来计算,缸体的尺寸和活塞面积需要根据所需输出力来选择等。

第五步:进行系统的动态和静态模拟在液压系统设计的过程中,进行系统的动态和静态模拟可以帮助工程师预测系统的性能和响应。

动态模拟可以用于分析系统的运动特性和响应时间,判断系统是否满足要求;静态模拟可以用于分析系统的压力分布和流动性能,优化设计。

第六步:进行系统的试验验证总结:。

液压系统设计步骤

液压系统设计步骤

液压系统设计的步骤大致如下:1.明确设计要求,进行工况分析。

2.初定液压系统的主要参数。

3.拟定液压系统原理图。

4.计算和选择液压元件。

5.估算液压系统性能。

6.绘制工作图和编写技术文件。

一、工况分析本机主要用于剪切工件装配时可通过夹紧机构来剪切不同宽度的钢板。

剪切机在剪切钢板时液压缸通过做弧形摆动提供推力。

主机运动对液压系统运动的要求:剪切机在剪切钢板时要求液压装置能够实现无级调速,而且能够保证剪切运动的平稳性,并且效率要高,能够实现一定的自动化。

该机构主要有两部分组成:机械系统和液压系统。

机械机构主要起传递和支撑作用,液压系统主要提供动力,它们两者共同作用实现剪切机的功能。

本次主要做液压系统的设计。

在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。

该系统的剪切力为400T剪切负载F=400×10000=4×106N一、运动分析主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。

1.位移循环图L—t图(1)为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。

该图清楚地表明液压机的工作循环分别由快速下行、运行压制、保压、泄压和快速回程五个阶段组成。

图(1)位移循环图2.速度循环图v—t(或v—L)工程中液压缸的运动特点可归纳为三种类型。

图(2)为种液压缸的v—t图,液压缸开始作匀加速运动,然后匀速运动,速度循坏图液压缸在总行程的一大半以上以一定的加速度作匀加速运动,然后匀减速至行程终点。

v—t图速度曲线,不仅清楚地表明了液压缸的运动规律,也间接地表明了三种工况的动力特性。

二、动力分析液压缸运动循环各阶段的总负载力。

液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求步骤1:系统规划与需求分析第一步是进行系统规划与需求分析,确定液压系统的工作范围和目标。

需要考虑的因素包括系统的功能要求、工作环境条件、工作压力范围、装置的预算等。

此步骤通常由工程师们与用户进行沟通,并综合考虑各个因素,确定系统的基本要求。

步骤2:组件选择和设计在此步骤中,需要选择合适的液压元件和装置。

这些组件包括液压泵、液压马达、液压缸、液压阀、液压管路等。

在选择时需要考虑到系统的压力、流量、负载以及环境因素等。

步骤3:系统布局和连接设计在这一步骤中,需要进行系统的布局和连接设计。

需要考虑到各个组件之间的连线和管路,以及系统中各个部件的安装位置和布局等。

合理的系统布局和连接设计可以提高系统的工作效率和可靠性。

步骤4:流量和压力的计算在液压系统的设计过程中,需要进行流量和压力的计算。

主要是根据系统的工作要求,计算出液压泵的流量和压力,并根据这些参数选择合适的液压元件和装置。

步骤5:系统调试和优化在液压系统的设计完成后,需要进行系统的调试和优化。

确定系统的工作参数,测试系统的性能,并进行必要的调整和改进。

此步骤通常需要通过实验和试验来完成。

1.安全性:液压系统的设计必须要保证系统在正常工作状态下的安全性,包括防止泄漏、爆炸和火灾等问题的发生。

2.可靠性:液压系统的设计要求系统能够长时间稳定地工作,能够承受额定工作压力和负荷,不易损坏,且能够满足系统的寿命要求。

3.效率:液压系统的设计要求系统能够高效地工作,具有较高的能量转换效率和工作效率,以及较低的能量损失。

4.环境适应性:液压系统的设计要求考虑到工作环境的特殊要求,包括温度、湿度、腐蚀性、振动和噪声等因素,确保系统在这些环境条件下能够正常工作。

5.经济性:液压系统的设计要求在满足系统功能要求的前提下,尽可能降低成本,选择合适的液压元件和装置,并兼顾系统的可维护性和维修成本。

6.可维护性:液压系统的设计要求考虑到系统的维护和维修问题,使得系统的维护工作变得简单、易操作,并且降低维修的时间和成本。

液压系统的设计与计算步骤

液压系统的设计与计算步骤

液压系统的设计与计算:
1、根据液压系统的要求设计液压系统,拟订油路图。

2、计算与选型
(1)油缸的工作压力、面积和流量
柱塞上的外部载荷P:(包括压板、板坯、密封阻力、工作载荷和柱塞)。

柱塞直径d:(柱塞总的工作面积F =P/p,每个缸子的柱塞面积为F/n)。

油缸的流量Q。

选型:
(2)油泵的选择
油泵工作压力的确定
低压泵工作压力(p d)的确定:(液压油流速取3.5m/s)
包括:板坯、压板、柱塞、摩擦阻力、局部压损和沿程压损。

高压泵工作压力(p g)的确定:
包括:主要指系统压力、板坯、压板、柱塞、摩擦阻力、局部压损和沿程压损。

油泵流量的确定:
总流量Q bz=K·Q z (k取1.2)
高压泵的流量:Q g=VxF/10(V取0.24m/min )
低压泵的流量:Q d= Q bz- Q g
根据流量和压力选型:
油泵电机功率的确定:
(3)阀的选择
(4)油管的计算(内径与壁厚)与选择
(5)液压系统性能的验算(包括压力损失的验算和系统发热的验算)
(6)柱塞缸壁厚的计算。

液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求

液压系统的设计步骤与设计要求液压系统的设计步骤与设计要求液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。

着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。

1.1 设计步骤液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。

一般来说,在明确设计要求之后,大致按如下步骤进行。

1)确定液压执行元件的形式;2)进行工况分析,确定系统的主要参数;3)制定基本方案,拟定液压系统原理图;4)选择液压元件;5)液压系统的性能验算;6)绘制工作图,编制技术文件。

1.2 明确设计要求设计要求是进行每项工程设计的依据。

在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。

1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等;2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何;3)液压驱动机构的运动形式,运动速度;4)各动作机构的载荷大小及其性质;5)对调速范围、运动平稳性、转换精度等性能方面的要求;6)自动化程序、操作控制方式的要求;7)对防尘、防爆、防寒、噪声、安全可靠性的要求;8)对效率、成本等方面的要求。

制定基本方案和绘制液压系统图3.1制定基本方案(1)制定调速方案液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。

方向控制用换向阀或逻辑控制单元来实现。

对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。

对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。

速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。

相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。

节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。

第9章液压系统设计与计算-

第9章液压系统设计与计算-
积)。
• 快进时:
差动系统
p F A1 A2
qv快 (A1A2)
非差动系统
p1

F A1
A2 A1
p2
q v快A1
P pq
•工进时:
p1
A2 A1
F pb A1
q v工A1
P p工q工
• 快退
p1
A2 A1
pb

F A1
qv快退A2
P pq
图9-2 组合机床执行元件工况图
Ff f FN
(9-2)
式中 FN——运动部件及外负载对支撑面的正压力; f——摩擦系数,分 静摩擦系数( fS≤0.2~0.3)和动摩擦系数(fd ≤0.05~0.1)。
(3)惯性负载 Fa 惯性负载是运动部件的速度变化时,由其惯性而产生的负
载,可用牛顿第二定律计算:
Fa
ma Gv g t
液压缸推力F(N)
F =( Ffs + FL ± Fg) /ηm F =( Ffd + FL +Fa± Fg) /ηm F =( Ffd + FL± Fg) /ηm F =( Ffd + FL — Fa± Fg) /ηm F =( Ffd + FL ± Fg) /ηm F =( Ffd + FL — Fa± Fg) /ηm F =( Ffs + Fa ± Fg) /ηm
来验பைடு நூலகம்,即
A q min v min
(9-5)
qmin—流量阀最小稳定流量。
液压马达:排量的计算式为
2T
V
p Mm
(9-6)
式中 T—液压马达的总负载转矩,N.m; ηMm—液压马达的机械效率; p—液压马达的工作压力,pa; V—所求液压马达的排量,m3/r。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。

着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。

设计步骤液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。

一般来说,在明确设计要求之后,大致按如下步骤进行。

1)确定液压执行元件的形式;2)进行工况分析,确定系统的主要参数;3)制定基本方案,拟定液压系统原理图;4)计算和选择液压元件;5)液压系统的性能验算;6)绘制工作图,编制技术文件。

明确设计要求设计要求是进行每项工程设计的依据。

在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。

1)主机的概况:用途、性能、工艺流程、作业环境(温度、湿度、振动冲击)、总体布局(及液压传动装置的位置和空间尺寸的要求)等;2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何;3)液压驱动机构的运动形式,运动速度;4)各动作机构的载荷大小及其性质;5)对调速范围、运动平稳性、换向定位精度等性能方面的要求;6)自动化程度、操作控制方式的要求;7)对防尘、防爆、防腐、防寒、噪声、安全可靠性的要求;8)对效率、成本等方面的要求。

主机的工况分析通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。

液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。

压力决定于外载荷。

流量取决于液压执行元件的运动速度和结构尺寸。

主机工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。

运动分析主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t) ,速度循环图(v—t) ,或速度与位移循环图表示,由此对运动规律进行分析。

1.位移循环图L —t液压机的液压缸位移循环图纵坐标L 表示活塞位移,横坐标t 表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。

该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。

2.速度循环图v —t(或v —L)工程中液压缸的运动特点可归纳为三种类型。

图为三种类型液压缸的v —t 图,第一种如图中实线所示,液压缸开始作匀加速运动,然后匀速运动,最后匀减速运动到终点;第二种,如图中虚线所示,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。

v —t 图的三条速度曲线,不仅清楚地表明了三种类型液压缸的运动规律,也间接地表明了三种工况的动力特性。

位移循环图速度循环图动力分析动力分析,是研究机器在工作过程中,其执行机构的受力情况,对液压系统而言,就是研究液压缸或液压马达的负载情况。

1.液压缸的负载及负载循环图(1)液压缸的负载力计算。

工作机构作直线往复运动时,液压缸必须克服的负载由六部分组成:F=Fc+Ff+Fi+FG+Fm+Fb (1)式中:Fc 为工作阻力;Ff 为摩擦阻力;Fi 为惯性阻力;FG 为重力;Fm 为密封阻力;Fb 为排油阻力。

①工作阻力Fc :为液压缸运动方向的工作阻力,对于机床来说就是沿工作部件运动方向的切削力,此作用力的方向如果与执行元件运动方向相反为正值,两者同向为负值。

该作用力可能是恒定的,也可能是变化的,其值要根据具体情况计算或由实验测定。

②摩擦阻力Ff :为液压缸带动的运动部件所受的导轨摩擦阻力,它与导轨的形状、放置情况和运动状态有关,其计算方法可查有关的设计手册。

图为最常见的两种导轨形式,其摩擦阻力的值为:平导轨:Ff=f∑Fn (2)V 形导轨:Ff=f∑Fn/[sin(α/2)] (3)式中:f 为摩擦因数;∑Fn 为作用在导轨上总的正压力或沿V 形导轨横截面中心线方向的总作用力;α为V 形角,一般为90°。

导轨形式③惯性阻力Fi 。

惯性阻力Fi 为运动部件在启动和制动过程中的惯性力,可按下式计算:(4)式中:m 为运动部件的质量(kg);a 为运动部件的加速度(m/s2) ;G 为运动部件的重量(N);g 为重力加速度,g= (m/s2) ;Δv 为速度变化值(m/s);Δt 为启动或制动时间(s),一般机床Δt =~,对轻载低速运动部件取小值,对重载高速部件取大值。

④重力F G :垂直放置和倾斜放置的移动部件,其本身的重量也成为一种负载,当上移时,负载为正值,下移时为负值。

⑤密封阻力F m :密封阻力指装有密封装置的零件在相对移动时的摩擦力,其值与密封装置的类型、液压缸的制造质量和油液的工作压力有关。

在初算时,可按缸的机械效率(ηm =考虑;验算时,按密封装置摩擦力的计算公式计算。

⑥排油阻力F b :排油阻力为液压缸回油路上的阻力,该值与调速方案、系统所要求的稳定性、执行元件等因素有关,在系统方案未确定时无法计算,可放在液压缸的设计计算中考虑。

(2)液压缸运动循环各阶段的总负载力。

液压缸运动循环各阶段的总负载力计算,一般包括启动加速、快进、工进、快退、减速制动等几个阶段,每个阶段的总负载力是有区别的。

①启动加速阶段:这时液压缸或活塞处于由静止到启动并加速到一定速度,其总负载力包括导轨的摩擦力、密封装置的摩擦力(按缸的机械效率ηm =计算) 、重力和惯性力等项,即:F=Ff+Fi±FG+Fm+Fb (5)②快速阶段:F=Ff±FG+Fm+Fb (6)③工进阶段:F=Ff+Fc±FG+Fm+Fb (7)④减速:F=Ff±FG-Fi+Fm+Fb (8)对简单液压系统,上述计算过程可简化。

例如采用单定量泵供油,只需计算工进阶段的总负载力,若简单系统采用限压式变量泵或双联泵供油,则只需计算快速阶段和工进阶段的总负载力。

(3)液压缸的负载循环图。

对较为复杂的液压系统,为了更清楚的了解该系统内各液压缸(或液压马达) 的速度和负载的变化规律,应根据各阶段的总负载力和它所经历的工作时间t 或位移L 按相同的坐标绘制液压缸的负载时间(F—t) 或负载位移(F—L) 图,然后将各液压缸在同一时间t(或位移) 的负载力叠加。

负载循环图图中所示为一部机器的F —t 图,其中:0~t1为启动过程;t1~t2为加速过程;t2~t3为恒速过程; t3~t4为制动过程。

它清楚地表明了液压缸在动作循环内负载的规律。

图中最大负载是初选液压缸工作压力和确定液压缸结构尺寸的依据。

2. 液压马达的负载工作机构作旋转运动时,液压马达必须克服的外负载为:M=Me+Mf+Mi (9)(1)工作负载力矩Me 。

工作负载力矩可能是定值,也可能随时间变化,应根据机器工作条件进行具体分析。

常见的载荷力矩有被驱动轮的阻力矩、液压卷筒的阻力矩等。

(2)摩擦力矩Mf 。

为旋转部件轴颈处的摩擦力矩,其计算公式为:Mf=fGR (N2m) (10)式中:G 为旋转部件的重量(施加于轴颈上的径向力)(N);f 为摩擦因数,启动时为静摩擦因数,启动后为动摩擦因数;R 为轴颈半径(m)。

(3)惯性力矩Mi 。

为旋转部件加速或减速时产生的惯性力矩,其计算公式为:(11)式中:ε为角加速度(rad/s2) ;Δω为角速度的变化(rad/s);Δt 为加速或减速时间(s);J 为旋转部件的转动惯量,J=1GD2/4g。

式中:GD 2为回转部件的飞轮效应(Nm2) 。

各种回转体的GD 2可查《机械设计手》。

根据式(9),分别算出液压马达在一个工作循环内各阶段的负载大小,便可绘制液压马达的负载循环图。

初选系统工作压力压力的选择要根据载荷大小和设备类型而定。

还要考虑执行元件的装配空间、经济条件及元件供应情况等的限制。

在载荷一定的情况下,工作压力低,势必要加大执行元件的结构尺寸,对某些设备来说,尺寸要受到限制,从材料消耗角度看出不经济;反之,压力选得太高,对泵、缸、阀等元件的材质、密封、制造精度也要求很高,必然要提高设备成本。

一般来说,对于固定的尺寸不太受限的设备,压力可以选低一些,行走机械重载设备压力要选得高一些。

制定基本方案和绘制液压系统图制定基本方案(1)制定调速方案液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。

方向控制用换向阀或逻辑控制单元来实现。

对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。

对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。

速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。

相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。

节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。

此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。

容积调速是靠改变液压泵或液压马达的排量来达到调速的目的。

其优点是没有溢流损失和节流损失,效率较高。

但为了散热和补充泄漏,需要有辅助泵。

此种调速方式适用于功率大、运动速度高的液压系统。

容积节流调速一般是用变量泵供油,用流量控制阀调节输入或输出液压执行元件的流量,并使其供油量与需油量相适应。

此种调速回路效率也较高,速度稳定性较好,但其结构比较复杂。

节流调速又分别有进油节流、回油节流和旁路节流三种形式。

进油节流起动冲击较小,回油节流常用于有负载荷的场合,旁路节流多用于高速。

调速回路一经确定,回路的循环形式也就随之确定了。

节流调速一般采用开式循环形式。

在开式系统中,液压泵从油箱吸油,压力油流经系统释放能量后,再排回油箱。

开式回路结构简单,散热性好,但油箱体积大,容易混入空气。

容积调速大多采用闭式循环形式。

闭式系统中,液压泵的吸油口直接与执行元件的排油口相通,形成一个封闭的循环回路。

其结构紧凑,但散热条件差。

(2)制定压力控制方案液压执行元件工作时,要求系统保持一定的工作压力或在一定压力范围内工作,也有的需要多级或无级连续地调节压力。

一般在节流调速系统中,通常由定量泵供油,用溢流阀调节所需压力,并保持恒定。

在容积调速系统中,用变量泵供油,用安全阀起安全保护作用。

在有些液压系统中,有时需要流量不大的高压油,这时可考虑用增压回路得到高压,而不用单设高压泵。

液压执行元件在工作循环中,某段时间不需要供油,而又不便停泵的情况下,需考虑选择卸荷回路。

在系统的某个局部,工作压力需低于主油源压力时,要考虑采用减压回路来获得所需的工作压力。

相关文档
最新文档