智能循迹小车报告

合集下载

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车___设计报告设计报告:智能循迹小车一、设计背景智能循迹小车是一种能够通过感知地面上的线条进行导航的小型机器人。

循迹小车可以应用于许多领域,如仓库管理、物流配送、家庭服务等。

本设计旨在开发一款功能强大、性能稳定的智能循迹小车,以满足不同领域的需求。

二、设计目标1.实现循迹功能:小车能够准确地识别地面上的线条,并按照线条进行导航。

2.提供远程控制功能:用户可以通过无线遥控器对小车进行控制,包括前进、后退、转向等操作。

3.具备避障功能:小车能够识别和避开遇到的障碍物,确保行驶安全。

4.具备环境感知功能:小车能够感知周围环境,包括温度、湿度、光照等参数,并将数据传输给用户端。

5.高稳定性和可靠性:设计小车的硬件和软件应具备较高的稳定性和可靠性,以保证长时间的工作和使用。

三、设计方案1.硬件设计:(1) 采用Arduino控制器作为主控制单元,与传感器、驱动器等硬件模块进行连接和交互。

(2)使用红外传感器作为循迹传感器,通过检测地面上的线条来实现循迹功能。

(3)使用超声波传感器来检测小车前方的障碍物,以实现避障功能。

(4)添加温湿度传感器和光照传感器,以提供环境感知功能。

(5)将无线模块与控制器连接,以实现远程控制功能。

2.软件设计:(1) 使用Arduino编程语言进行程序设计,编写循迹、避障和远程控制的算法。

(2)设计用户界面,通过无线模块将控制信号发送给小车,实现远程控制。

(3)编写数据传输和处理的程序,将环境感知数据发送到用户端进行显示和分析。

四、实施计划1.硬件搭建:按照设计方案中的硬件模块需求,选购所需元件并进行搭建。

2.软件开发:根据设计方案中的软件设计需求,编写相应的程序并进行测试。

3.功能调试:对小车的循迹、避障、远程控制和环境感知功能进行调试和优化。

4.性能测试:使用不同场景和材料的线条进行测试,验证小车的循迹性能。

5.用户界面开发:设计用户端的界面,并完成与小车的远程控制功能的对接。

循迹小车实习报告

循迹小车实习报告

一、实习背景随着科技的发展,自动化技术在各个领域得到了广泛应用。

智能循迹小车作为自动化技术的一个重要应用,具有广泛的前景。

为了提高我们的实践能力,培养我们的创新精神,我们参加了智能循迹小车实习课程。

通过本次实习,我们学习了智能循迹小车的设计、制作和调试方法,了解了其工作原理,提高了我们的动手能力和团队协作能力。

二、实习目的1. 熟悉智能循迹小车的结构、原理和功能。

2. 掌握智能循迹小车的制作方法,提高动手能力。

3. 学习电路设计、传感器应用、单片机编程等知识。

4. 培养团队协作精神,提高沟通能力。

三、实习内容1. 智能循迹小车原理及结构智能循迹小车主要由以下几部分组成:车体、驱动电机、传感器、单片机、控制电路等。

车体是智能循迹小车的承载部分,驱动电机负责提供动力,传感器用于检测路面信息,单片机负责处理传感器信息,控制电路负责将单片机的指令转换为电机驱动信号。

2. 电路设计电路设计主要包括以下几个方面:(1)电源电路:为智能循迹小车提供稳定的电源。

(2)驱动电路:将单片机的控制信号转换为电机驱动信号。

(3)传感器电路:将传感器信号转换为单片机可识别的信号。

(4)控制电路:对单片机输出的控制信号进行放大、滤波等处理。

3. 传感器应用智能循迹小车主要采用红外传感器进行路面检测。

红外传感器具有体积小、成本低、安装方便等优点。

在制作过程中,我们需要对红外传感器进行调试,使其能够准确检测路面信息。

4. 单片机编程单片机编程是智能循迹小车实现智能控制的关键。

我们主要学习了C语言编程,掌握了单片机的基本指令、函数、中断等知识。

在编程过程中,我们需要编写程序,使单片机能够根据传感器信息控制小车行驶。

5. 调试与优化在制作过程中,我们需要对智能循迹小车进行调试,使其能够稳定、准确地行驶。

调试过程中,我们需要对电路、传感器、单片机等部分进行调整,以达到最佳效果。

四、实习成果通过本次实习,我们成功制作了一台智能循迹小车,并使其能够稳定、准确地行驶。

智能寻迹小车实验报告

智能寻迹小车实验报告

智能寻迹小车实验报告
实验目的:
设计一个智能寻迹小车,能够依据环境中的黑线自主行驶,并避开障碍物。

实验材料:
1. Arduino开发板
2. 电机驱动模块
3. 智能车底盘
4. 红外传感器
5. 电源线
6. 杜邦线
7. 电池
实验步骤:
1. 按照智能车底盘的说明书将车底盘组装起来。

2. 将Arduino开发板安装在车底盘上,并与电机驱动模块连接。

3. 连接红外传感器到Arduino开发板上,以便检测黑线。

4. 配置代码,使小车能够依据红外传感器检测到的黑线自主行驶。

可以使用PID控制算法来控制小车的速度和方向。

5. 测试小车的寻迹功能,可以在地面上绘制黑线,观察小车是否能够准确地跟随黑线行驶。

6. 根据需要,可以添加避障功能。

可以使用超声波传感器或红外避障传感器来检测障碍物,并调整小车的行驶路线。

实验结果:
经过实验,可以发现小车能够依据红外传感器检测到的黑线自主行驶,并能够避开障碍物。

小车的寻迹功能和避障功能能够实现预期的效果。

实验总结:
本次实验成功设计并实现了智能寻迹小车。

通过使用Arduino 开发板、电机驱动模块和红外传感器等材料,配合合适的代码配置,小车能够准确地跟随黑线行驶,并能够避开障碍物。

该实验展示了智能小车的基本原理和应用,为进一步研究和开发智能车提供了基础。

智能循迹小车实验报告

智能循迹小车实验报告

智能循迹小车实验报告第一篇:智能循迹小车实验报告摘要本设计主要有单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。

本次设计采用STC公司的89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模块由L298N芯片和两个直流电机构成,组成了智能车的动力系统,电源采用7.2V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。

关键词智能小车单片机红外光对管 STC89C52 L298N 1 绪论随着科学技术的发展,机器人的设计越来越精细,功能越来越复杂,智能小车作为其的一个分支,也在不断发展。

在近几年的电子设计大赛中,关于小车的智能化功能的实现也多种多样,因此本次我们也打算设计一智能小车,使其能自动识别预制道路,按照设计的道路自行寻迹。

设计任务与要求采用MCS-51单片机为控制芯片(也可采用其他的芯片),红外对管为识别器件、步进电机为行进部件,设计出一个能够识别以白底为道路色,宽度10mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹并能沿该轨迹行进的智能寻迹机器小车。

方案设计与方案选择3.1 硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。

3.1.1 单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。

由于以前自己开发板使用的是ATMEL公司的STC89C52,所以让然选择这个芯片作为控制核心部件。

STC89C52是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。

其程序和数据存储是分开的。

3.1.2 传感器模块方案一:使用光敏电阻组成光敏探测器采集路面信息。

阻值经过比较器输出高低电平进行分析,但是光照影响很大,不能稳定工作。

方案二:使用光电传感器来采集路面信息。

循迹小车的实验报告

循迹小车的实验报告

循迹小车的实验报告循迹小车的实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够通过感知地面上的黑线,实现自主导航。

本次实验旨在探索循迹小车的工作原理及其应用,并对其性能进行评估。

一、实验背景循迹小车作为一种智能机器人,广泛应用于工业自动化、仓储物流、智能家居等领域。

其基本原理是通过光电传感器感知地面上的黑线,根据传感器信号控制电机的转动,从而实现沿着黑线行进。

二、实验过程1. 实验器材准备本次实验所需器材有循迹小车、黑线地毯、计算机等。

通过连接计算机和循迹小车,可以实现对小车的控制和数据传输。

2. 实验步骤(1)将黑线地毯铺设在实验场地上,并保证地毯表面光滑清洁。

(2)将循迹小车放置在地毯上,确保其底部的光电传感器与黑线接触。

(3)通过计算机控制循迹小车的启动,观察小车是否能够准确跟踪黑线行进。

(4)记录小车在不同条件下的行进速度、转弯半径等数据,并进行分析。

三、实验结果1. 循迹性能评估通过实验观察和数据记录,我们发现循迹小车在较为平整、光线充足的黑线地毯上表现较好,能够准确跟踪黑线行进。

然而,在黑线不明显、光线较暗的情况下,小车的循迹性能会有所下降。

2. 行进速度与转弯半径根据实验数据分析,循迹小车的行进速度受到多种因素的影响,包括地面摩擦力、电机功率等。

在实验中,我们发现增加电机功率可以提高小车的行进速度,但同时也会增大转弯半径。

3. 应用前景循迹小车作为一种智能机器人,具有广泛的应用前景。

在工业自动化领域,循迹小车可以用于物料搬运、装配线操作等任务;在仓储物流领域,循迹小车可以实现货物的自动分拣、运输等功能;在智能家居领域,循迹小车可以作为家庭服务机器人,提供家居清洁、送餐等服务。

四、实验总结通过本次实验,我们深入了解了循迹小车的工作原理和应用前景。

循迹小车的循迹性能受到地面条件和光线影响,需要进一步优化。

在实际应用中,循迹小车可以广泛应用于工业自动化、仓储物流和智能家居等领域,为人们的生活和工作带来便利。

智能循迹避障小车实习报告

智能循迹避障小车实习报告

智能循迹避障小车实习报告一、实习背景及目的随着科技的不断发展,嵌入式系统在各个领域的应用越来越广泛。

智能小车作为一种典型的嵌入式系统应用产品,不仅可以锻炼学生的动手能力,还能深入理解嵌入式系统的原理和应用。

本次实习旨在让学生通过设计制作智能循迹避障小车,掌握嵌入式系统的基本原理,提高动手实践能力,培养创新意识和团队协作精神。

二、实习内容与过程1. 实习准备在实习开始前,我们先学习了嵌入式系统的基本原理,了解了微控制器(如STM32)的工作原理和编程方法。

同时,我们还学习了如何使用相关开发工具(如Keil、CubeMX)进行程序开发和仿真。

2. 设计思路根据实习要求,我们确定了智能循迹避障小车的主要功能:远程控制、循迹、避障。

为了实现这些功能,我们需要选用合适的微控制器、传感器、电机驱动模块等硬件,并编写相应的软件程序。

3. 硬件设计我们选用了STM32F103C8T6作为主控制器,它具有高性能、低功耗的特点。

为了实现循迹功能,我们采用了红外传感器来检测地面上的黑线。

为了实现避障功能,我们采用了超声波传感器来检测前方的障碍物。

此外,我们还选用了两个直流电机来驱动小车行驶,并通过L298N驱动模块来控制电机转动。

4. 软件设计软件设计主要包括初始化配置、循迹算法实现、避障算法实现和远程控制实现。

我们使用了CubeMX工具对STM32的硬件资源进行配置,包括时钟、GPIO、ADC、PWM 等。

然后,我们编写了循迹算法和避障算法,通过不断地读取红外传感器和超声波传感器的数据,调整小车的行驶方向和速度,实现循迹和避障功能。

最后,我们通过蓝牙模块实现了手机APP对小车的远程控制。

5. 实习成果经过一段时间的紧张设计与制作,我们的智能循迹避障小车终于完成了。

在实习总结会议上,我们进行了演示,展示了小车的循迹、避障和远程控制功能。

通过实习,我们不仅掌握了嵌入式系统的设计方法,还提高了团队协作能力。

三、实习收获与反思通过本次实习,我们深入了解了嵌入式系统的设计原理,学会了使用相关开发工具和硬件设备,提高了动手实践能力。

模拟循迹小车实验报告

模拟循迹小车实验报告

一、实验目的1. 理解循迹小车的工作原理,掌握模拟循迹技术。

2. 学习使用传感器检测道路情况,并根据检测结果进行小车控制。

3. 提高嵌入式系统设计和编程能力。

二、实验原理循迹小车是一种能够按照预设轨迹运行的智能小车。

其工作原理是:通过安装在车身上的传感器检测道路情况,并将检测到的信息传输给单片机,单片机根据接收到的信息对小车进行控制,使小车按照预设轨迹运行。

本实验中,我们采用红外对管作为传感器,通过检测红外对管对光线反射的强弱来判断小车是否偏离预设轨迹。

当红外对管检测到光线反射较强时,表示小车偏离了预设轨迹;当红外对管检测到光线反射较弱时,表示小车位于预设轨迹上。

三、实验器材1. 单片机开发板(如STC89C52)2. 红外对管传感器3. 电机驱动模块4. 电机5. 轮胎6. 跑道7. 电阻、电容等电子元件8. 编程软件(如Keil)四、实验步骤1. 硬件连接:将红外对管传感器连接到单片机的I/O口,将电机驱动模块连接到单片机的PWM口,将电机连接到电机驱动模块。

2. 编程:编写程序,实现以下功能:(1)初始化红外对管传感器和电机驱动模块;(2)读取红外对管传感器的状态,判断小车是否偏离预设轨迹;(3)根据红外对管传感器的状态,控制电机驱动模块使小车按照预设轨迹运行。

3. 调试:将程序烧录到单片机中,进行调试。

观察小车是否能够按照预设轨迹运行。

五、实验结果与分析1. 实验结果:经过调试,小车能够按照预设轨迹运行。

2. 分析:(1)红外对管传感器能够有效地检测道路情况,判断小车是否偏离预设轨迹;(2)单片机能够根据红外对管传感器的状态,及时调整电机的转速,使小车按照预设轨迹运行;(3)电机驱动模块能够稳定地驱动电机,使小车运动平稳。

六、实验总结通过本次实验,我们掌握了模拟循迹小车的工作原理,学会了使用传感器检测道路情况,并根据检测结果进行小车控制。

同时,我们还提高了嵌入式系统设计和编程能力。

七、改进建议1. 可以尝试使用其他类型的传感器,如光电传感器、红外线传感器等,以提高循迹精度。

智能小车实验报告心得(3篇)

智能小车实验报告心得(3篇)

第1篇一、引言随着科技的不断发展,人工智能技术逐渐渗透到我们生活的方方面面。

作为人工智能的一个典型应用,智能小车实验为我们提供了一个将理论知识与实践操作相结合的平台。

在本次智能小车实验中,我深刻体会到了理论知识的重要性,同时也感受到了动手实践带来的乐趣和成就感。

以下是我对本次实验的心得体会。

二、实验目的本次实验旨在通过设计、搭建和调试智能小车,让学生掌握以下知识:1. 传感器原理及在智能小车中的应用;2. 单片机编程及接口技术;3. 电机驱动及控制;4. PID控制算法在智能小车中的应用。

三、实验过程1. 设计阶段在设计阶段,我们首先对智能小车的功能进行了详细规划,包括自动避障、巡线、遥控等功能。

然后,根据功能需求,选择了合适的传感器、单片机、电机驱动器等硬件设备。

2. 搭建阶段在搭建阶段,我们按照设计图纸,将各个模块连接起来。

在连接过程中,我们遇到了一些问题,如电路板布局不合理、连接线过多等。

通过查阅资料、请教老师,我们逐步解决了这些问题。

3. 编程阶段编程阶段是本次实验的核心环节。

我们采用C语言对单片机进行编程,实现了小车的基本功能。

在编程过程中,我们遇到了许多挑战,如传感器数据处理、电机控制算法等。

通过查阅资料、反复调试,我们最终完成了编程任务。

4. 调试阶段调试阶段是检验实验成果的关键环节。

在调试过程中,我们对小车的各项功能进行了测试,包括避障、巡线、遥控等。

在测试过程中,我们发现了一些问题,如避障效果不稳定、巡线精度不高、遥控距离有限等。

针对这些问题,我们再次查阅资料、调整程序,逐步优化了小车的性能。

四、心得体会1. 理论与实践相结合本次实验让我深刻体会到了理论与实践相结合的重要性。

在实验过程中,我们不仅学习了理论知识,还通过实际操作,将所学知识应用于实践,提高了自己的动手能力。

2. 团队合作在实验过程中,我们充分发挥了团队合作精神。

在遇到问题时,我们互相帮助、共同探讨解决方案,最终完成了实验任务。

智能寻迹小车实习报告

智能寻迹小车实习报告

智能寻迹小车实习报告一、实习背景与目的随着科技的不断发展,机器人技术在各行各业中得到了广泛的应用。

智能寻迹小车作为一种典型的移动机器人平台,具有在复杂环境中自主导航、避障和完成任务的能力。

本次实习旨在通过设计和制作智能寻迹小车,掌握电子元器件的识别、传感器、电机在控制作用下的具体机械构架,以及单片机控制原理等知识,提高自己在电子技术、机器人技术等方面的实际操作能力。

二、实习内容与过程1. 设计思路本次实习的智能寻迹小车主要通过单片机控制,利用红外线传感器检测地面上的特定标记(如黑线),实现寻迹功能。

同时,通过超声波传感器检测前方障碍物的距离,实现避障功能。

在保证小车能够准确跟随线路的同时,使其能够自动避开障碍物。

2. 硬件设计(1)单片机:选用高性能、低功耗的单片机作为核心控制器,负责处理传感器数据、执行避障和循迹算法,以及控制小车的运动。

(2)传感器模块:红外线传感器用于检测地面上的特定标记,实现寻迹功能。

超声波传感器用于检测前方障碍物的距离,实现避障功能。

(3)电机驱动模块:负责驱动小车的运动,包括前进、后退、转向等。

3. 软件设计软件设计主要涉及系统初始化、线路检测与循迹、避障检测与控制以及控制算法等。

通过编程实现对单片机的控制,使小车能够根据红外线传感器的信号准确跟随线路,并在遇到障碍物时能够自动避开。

4. 实习过程在实习过程中,首先进行了电子元器件的识别和学习,掌握了各种传感器、电机等元器件的工作原理和应用方法。

然后,根据设计思路,进行了硬件电路的搭建和调试,包括单片机、传感器、电机驱动模块等。

最后,进行了软件编程调试,使小车能够实现智能寻迹和避障功能。

三、实习成果与总结通过本次实习,我成功设计和制作了一款智能寻迹小车,掌握了电子元器件的识别、传感器、电机在控制作用下的具体机械构架,以及单片机控制原理等知识。

在实习过程中,我学会了如何将理论知识运用到实际操作中,提高了自己在电子技术、机器人技术等方面的实际操作能力。

智能寻迹小车实验报告

智能寻迹小车实验报告

DIY 达人赛基于STC89C52单片机智能寻迹小车实验报告参赛队伍:队员:2014 年 4 月一、引言我们所处的这个时代是信息革命的时代,各种新技术、新思想层出不穷,纵观世界范围内智能汽车技术的发展,每一次新的进步无不是受新技术新思想的推动。

随着汽车工业的迅速发展,传统的汽车的发展逐渐趋于饱和。

伴随着电子技术和嵌入式技术的迅猛发展,这使得汽车日渐走向智能化。

智能汽车由原先的驾驶更加简单更加安全更加舒适,逐渐的向智能驾驶系统方向发展。

智能驾驶系统相当于智能机器人,能代替人驾驶汽车。

它主要是通过安装在前后保险杠及两侧的红外线摄像机,对汽车前后左右一定区域进行不停地扫描和监视。

计算机、电子地图和光化学传感器等对红外线摄像机传来的信号进行分析计算,并根据道路交通信息管理系统传来的交通信息,代替人的大脑发出指令,指挥执行系统操作汽车。

1、来源汽车的智能化是21 世纪汽车产业的核心竞争力之一。

汽车的智能化是以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科交叉的科技。

2、智能汽车国外发展情况从20 世纪70 年代开始,美国、英国、德国等发达国家开始进行无人驾驶汽车的研究,目前在可行性和实用化方面都取得了突破性的进展。

目前日本、欧美已有企业取得实用化成果。

与国外相比,国内在智能车辆方面的研究起步较晚,规模较小,开展这方面研究工作的单位主要是一些大学和研究所,如国防科技大学、清华大学、吉林大学、北京理工大学、长安大学、沈阳自动化所等。

我国从20 世纪80 年代开始进行无人驾驶汽车的研究,国防科技大学在1992 年成功研制出我国第一辆真正意义上的无人驾驶汽车。

先后研制出四代无人驾驶汽车。

第四代全自主无人驾驶汽车于2000 年 6 月在长沙市绕城高速公路上进行了全自主无人驾驶试验,试验最高时速达到75.6Km/h。

3、我们的小车我们做的是基于STC 8 9 C52单片机开发,主要是研究3轮小车的路径识别及其遥控运动。

循迹小车实验报告

循迹小车实验报告

循迹小车实验报告循迹小车实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够根据环境中的光线变化来调整行进方向。

本实验旨在通过搭建一个循迹小车模型,探索其原理和应用。

一、实验材料和方法本次实验所需材料包括Arduino开发板、直流电机、光电传感器、电池组等。

首先,我们将Arduino开发板与直流电机、光电传感器等器件进行连接,确保电路正常。

然后,将循迹小车放置在一个光线变化较大的环境中,例如黑白相间的地面。

最后,通过编写程序,使循迹小车能够根据光电传感器的信号来判断行进方向,并实现自动循迹。

二、实验过程和结果在实验过程中,我们首先对光电传感器进行了校准,以确保其能够准确地感知光线的变化。

然后,我们编写了一段简单的程序,使循迹小车能够根据光电传感器的信号来判断行进方向。

当光线较亮时,循迹小车向左转;当光线较暗时,循迹小车向右转。

通过不断调试程序,我们成功实现了循迹小车的自动循迹功能。

在实验过程中,我们还发现了一些有趣的现象。

例如,当循迹小车行进到黑白相间的地面上时,光电传感器能够准确地感知到黑白色块的变化,并根据信号进行相应的调整。

这说明循迹小车的循迹原理基于光线的反射和吸收,具有一定的环境适应性。

三、实验结果分析通过本次实验,我们深入了解了循迹小车的原理和应用。

循迹小车通过光电传感器感知环境中的光线变化,从而判断行进方向,实现自动循迹。

这种智能机器人在工业生产、仓储物流等领域具有广泛的应用前景。

然而,循迹小车也存在一些局限性。

首先,其循迹能力受到环境光线的影响较大,当环境光线较弱或过强时,循迹小车的准确性会受到一定的影响。

其次,循迹小车只能在特定的地面上进行循迹,对于其他类型的地面可能无法正常运行。

因此,在实际应用中,需要根据具体情况进行合理选择和调整。

四、实验总结通过本次实验,我们对循迹小车的原理和应用有了更深入的了解。

循迹小车作为一种基于光电传感器的智能机器人,具有自动循迹的功能,可以在工业生产、仓储物流等领域发挥重要作用。

我的智能循迹小车报告

我的智能循迹小车报告

目录摘要 (3)1引言 (4)2.方案选择与论证 (4)2.1循迹模块 (5)2.2 车体设计 (5)2.3 控制器模块 (6)2.4电源模块 (6)2.5 循迹传感器模块 (6)2.6 电机模块 (7)2.7 电机驱动模块 (7)3.硬件实现与单元电路设计 (7)3.1.为控制器模块设计 (7)3.2 光电对管电路设计 (8)3.3 循迹光电对管安装 (8)3.4电机驱动的设计 (9)4.软件设计 (9)4.1软件设计的思想 (9)4.2程序流程图........................................................................ 错误!未定义书签。

5.结论 (11)参考文献 (12)附录1系统总体 (13)附录2车体整图 (14)摘要智能作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等等的用途。

智能循迹小车就是其中的一个体现。

本次设计的智能循迹小车,采用AT89S52单片机作为小车的检测和控制核心;采用红外对管TCRT5000来检测路上黑线,从而把反馈到的信号送单片机,单片机根据反馈回的信号作出判断,单片机采用定时中断实现对直流电机的PWM控制,实现小车左右轮子速度的控制,从而使得小车能够按照已给定的轨迹行走。

最终制作出来的小车能够按照给定的比赛轨道圆滑运行,而且小车速度也有所提高。

但是小车的功能稳定性还有待改进。

关键词:智能车AT89S52 单片机直流电机PWM控制1. 引言图1 小车赛道车辆从起跑线出发(出发前,车体不得超出起跑线)。

小车沿着黑线行驶一周,其间要走过2个S型的赛道和两次十字交叉路,其它都为直线与曲线圆滑交接的路。

小车在整个过程中既要最求速度,又要保持其完好的循迹圆滑度。

2图2系统框图根据设计要求,本系统主要由控制器模块、电源模块、寻迹传感器模块、直流电机及其驱动模块、电压比较模块等模块构成。

智能循迹小车实验报告

智能循迹小车实验报告

智能循迹小车实验报告一、实验目的本次实验旨在设计并实现一款能够自主循迹的智能小车,通过传感器检测路径信息,控制小车的运动方向,使其能够沿着预定的轨迹行驶。

通过本次实验,深入了解自动控制、传感器技术和单片机编程等方面的知识,提高实际动手能力和问题解决能力。

二、实验原理1、传感器检测本实验采用红外传感器来检测小车下方的黑线轨迹。

红外传感器由红外发射管和接收管组成,当发射管发出的红外线照射到黑色轨迹时,反射光较弱,接收管接收到的信号较弱;当照射到白色区域时,反射光较强,接收管接收到的信号较强。

通过比较接收管的信号强度,即可判断小车是否偏离轨迹。

2、控制算法根据传感器检测到的轨迹信息,采用 PID 控制算法(比例积分微分控制算法)来计算小车的转向控制量。

PID 算法通过对误差(即小车偏离轨迹的程度)进行比例、积分和微分运算,得到一个合适的控制输出,使小车能够快速、准确地回到轨迹上。

3、电机驱动小车的动力由直流电机提供,通过电机驱动芯片(如 L298N)来控制电机的正反转和转速。

根据控制算法计算出的转向控制量,调整左右电机的转速,实现小车的转向和前进。

三、实验器材1、硬件部分单片机开发板(如 STM32 系列)红外传感器模块直流电机及驱动模块电源模块小车底盘及车轮杜邦线、面包板等2、软件部分Keil 等单片机编程软件串口调试助手四、实验步骤1、硬件搭建将红外传感器模块安装在小车底盘下方,使其能够检测到黑线轨迹。

将直流电机与驱动模块连接,并安装在小车底盘上。

将单片机开发板、传感器模块、驱动模块和电源模块通过杜邦线连接起来,搭建好实验电路。

2、软件编程使用单片机编程软件,编写传感器检测程序、控制算法程序和电机驱动程序。

通过串口调试助手,将编写好的程序下载到单片机开发板中。

3、调试与优化启动小车,观察其在轨迹上的行驶情况。

根据小车的实际行驶情况,调整 PID 控制算法的参数,优化小车的循迹性能。

不断测试和改进,直到小车能够稳定、准确地沿着轨迹行驶。

智能循迹小车报告

智能循迹小车报告

西京学院自动化1002班概要本寻迹小车是以万能板为车架,STC12C5A60S2单片机为控制核心,将各传感器的信号传至单片机分析处理,从而控制L293D电机驱动,控制小车,速度由单片机提供的PWM波控制。

利用红外传感器检测黑线,红外对管来实现循迹功能,利用超声波传感器进行检测避障。

整个系统的电路结构简单,可靠性能高。

根据小车各部分功能,模块化硬件电路,并调试电路。

将调试成功的各个模块逐个地“融合”成整体,再进行软件编程调试,直到完成。

关键词:STC12C5A60S2 直流电机红外对管传感器寻迹小车L293D电机驱动1一、循迹小车的系统的要求和总体方案设计1.1设计要求1.1.1 基本要求利用单片机实验板,并制作一定的外围电路,编写程序设计制作一个智能循迹壁障的小车,具体要求如下:(1)具有启动、停止功能;(2)能够完成前进、后退、左转、右转单独动作和复合动作;(3)能按照规定路线循迹行驶;1.1.2 发挥要求利用超声波或红外等方式实现避障功能1.2智能循迹小车的工作原理我们知道小车的循迹原理是根据实现电位的高低来实现对前进方向的控制的。

在这里我们设定了白色和黑色的通道界面来行驶,而根据我们所学的知识通常采取的方法是红外探测法。

红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。

单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。

通过查资料我们知道红外探测器探测距离有限,一般最大不应超过3cm。

1.2.1恒压恒流桥式驱动芯片L293D驱动电机原理本L293D 驱动模块,采用ST 公司原装全新的L293D 芯片,采用SMT工艺稳定性高,采用高质量铝电解电容,使电路稳定工作。

可以直接驱动4路3-16V直流电机,并提供了5V输出接口(输入最低只要6V),可以给5V单片机电路系统供电(低纹波系数),支持3.3V MCUARM控制,可以方便的控制直流电机速度和方向,也可以控制2相步进电机,5线4相步进电机,是智能小车必备利器。

最新智能循迹小车实训报告

最新智能循迹小车实训报告

最新智能循迹小车实训报告
本报告详细介绍了一款最新的智能循迹小车,以及开发过程中的重点工作和结果。

该智能循迹小车在物理结构、电气控制、及人工智能三个方面就具有较高水平的集成性能和功能性能。

1、物理结构。

循迹小车的整体物理结构采用双桨式结构,结构紧凑,重量轻,机身尺寸小,可以根据需要进行调节。

、内部由两个舵机控制重心位置,以保证有利于车身机动性的布局。

机身还配备了运动控制芯片、感知模块、无线传输模块、直流电机驱动系统等组成部分。

2、电气控制。

主要包括电机驱动系统、无线通信模块、ADC/DAC模块、单片机系统、传感器模块等;其中最重要的是控制系统,以便根据用户的要求实现相应的控制。

主要包括Xilinx FPGA平台、定时器模块、PWM控制模块及延时模块等。

3、人工智能。

采用机器学习和自我改进的人工智能技术,具有高效的算法,可以从环境中自动收集信息,并在环境发生改变时快速响应应对。

人工智能技术实现了比传统系统更有效率、更完善的控制模型,实现自主循迹、避障等功能,提供完整的信息结构,以及更高性能的机电一体化数字控制。

本次实训完成了一款智能循迹小车的开发,实现了高效、低成本的机电一体化控制,具有良好的环境适应能力和自主动作能力。

实训采用了多个组件,经过系统集成进行了实际测试,结果表明智能循迹小车具有良好的性能和稳定性。

综上所述,本报告详细介绍了新一代智能循迹小车开发实训的过程,在物理结构、电气控制、人工智能三个方面对其进行了设计、组装和实验,验证了其良好的环境适应能力与自主动作能力。

本实训还为今后改进智能循迹小车提供了参考意见,拓展了研究领域。

``。

智能循迹小车实验报告

智能循迹小车实验报告

简单电子系统设计报告---------智能循迹小车学号201009130102年级10学院理学院专业电子信息科学与技术姓名马洪岳指导教师刘怀强摘要本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。

采用与白色地面色差很大的黑色路线引导小车按照既定路线前进,在意外偏离引导线的情况下自动回位。

本设计采用单片机STC89C51作为小车检测、控制、时间显示核心,以实验室给定的车架为车体,两直流机为主驱动,附加相应的电源电路下载电路,显示电路构成整体电路。

自动寻迹的功能采用红外传感器,通过检测高低电平将信号送给单片机,由单片机通过控制驱动芯片L298N驱动电动小车的电机,实现小车的动作。

关键词:STC89C51单片机;L298N;红外传感器;寻迹一、设计目的通过设计进一步掌握51单片机的应用,特别是在控制系统中的应用。

进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。

二、设计要求该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制,绕跑到行驶一周。

三、软硬件设计硬件电路的设计1、最小系统:小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。

主要包括:时钟电路、电源电路、复位电路。

其中各个部分的功能如下:(1)、电源电路:给单片机提供5V电源。

(2)、复位电路:在电压达到正常值时给单片机一个复位信号。

图1 单片机最小系统原理图2、电源电路设计:模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。

在本设计中,51单片机使用5V电源,电机及舵机使用5V电源。

考虑到电源为电池组,额定电压为4.5V,实际充满电后电压则为4-4.5V,所以单片机及传感器模块采用最小系统模块稳压后的5V电源供电,舵机及电机直接由电池供电。

智能化循迹小车实训报告

智能化循迹小车实训报告

智能循迹小车实训报告系别班级:城信系16车辆一班姓名:叶舒凡学号:20163010314随着素质教育的越来越被重视,我们学校将制作电子智能作品作为我们电子技术根底科目的期末考试内容。

学生通过手动实践能提高解决实际问题的能力,我觉得智能小车是一个不错的硬件平台,它生动有趣而且涉及机械构造、电子根底、传感器原理、自动控制等等,于是我选择了智能循迹小车。

下面对智能循迹小车做实训报告。

1、元件清单2、电路原理图工作原理简介:LM393随时比拟着两路光敏电阻的大小,当出现不平衡时〔例如一侧压黑色跑道〕立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一个闭环控制,因此能快速灵敏地控制。

3、安装说明:本着从简到繁的原那么,我们首先来制作一款由数字电路来控制的智能循迹小车,在组装过程中我们不但能熟悉机械原理还能逐步学习到:光电传感器、电压比拟器、电机驱动电路等相关电子知识。

光敏电阻器件这就是光敏电阻,它能够检测外界光线的强弱,外界光线越强光敏电阻的阻值越小,外界光线越弱阻值越大,当红色LED 光投射到白色区域和黑色跑道时因为反光率的不同,光敏电阻的阻值会发生明显区别,便于后续电路进展控制。

LM393比拟器集成电路LM393是双路电压比拟器集成电路,由两个独立的精细电压比拟器构成。

它的作用是比拟两个输入电压,根据两路输入电压的上下改变输出电压的上下。

输出有两种状态:接近开路或者下拉接近低电平,LM393采用集电极开路输出,所以必须加上拉电阻才能输出高电平。

带减速齿轮的直流电机直流电机驱动小车的话必须要减速,否那么转速过高的话小车跑得太快根本也来不及控制,而且未经减速的话转矩太小甚至跑不起来,我们专门定做的这种电机已经集成了减速齿轮大大降低了制作难度非常适合我们使用。

LM393随时比拟着两路光敏电阻的大小,当出现不平衡时〔例如一侧压黑色跑道〕立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一个闭环控制,因此能快速灵敏地控制。

循迹小车实训报告范文

循迹小车实训报告范文

循迹小车实训报告一、引言随着科技的不断发展,嵌入式系统在各个领域的应用越来越广泛。

循迹小车作为嵌入式系统的一个典型应用,具有很高的实用价值。

本次实训旨在通过设计和制作循迹小车,让学生掌握嵌入式系统的基础知识和实践技能,提高学生的动手能力和创新意识。

二、项目背景循迹小车是一种基于传感器和单片机控制的小型移动机器人,能够在预设的轨道上自动行驶。

它由传感器模块、单片机控制模块、电机驱动模块和舵机控制模块等组成。

循迹小车广泛应用于工业自动化、物流搬运、环境监测等领域。

三、项目目标1. 掌握循迹小车的工作原理和设计方法;2. 学会使用传感器、单片机、电机驱动模块和舵机等硬件;3. 熟悉C语言编程,编写循迹小车的控制程序;4. 培养团队合作精神和创新意识。

四、项目内容1. 硬件设计(1)传感器模块:采用红外对管作为传感器,用于检测轨道线。

(2)单片机控制模块:采用51单片机作为控制核心,负责处理传感器信号,控制电机驱动模块和舵机控制模块。

(3)电机驱动模块:采用L298N电机驱动芯片,驱动两个直流电机。

(4)舵机控制模块:采用SG90舵机,用于控制小车转向。

2. 软件设计(1)主程序:初始化各个模块,读取传感器信号,根据信号判断小车位置,控制电机驱动模块和舵机控制模块。

(2)中断服务程序:处理传感器中断,实时调整小车行驶方向。

3. 系统调试(1)硬件调试:检查电路连接是否正确,确保各个模块正常工作。

(2)软件调试:通过程序调试,使小车能够准确循迹。

五、项目实施1. 硬件制作(1)根据电路图,焊接传感器、单片机、电机驱动模块和舵机等元器件。

(2)搭建循迹小车车体,连接各个模块。

2. 软件编程(1)编写主程序,实现小车循迹功能。

(2)编写中断服务程序,实现小车转向功能。

3. 系统调试(1)调试硬件电路,确保各个模块正常工作。

(2)调试软件程序,使小车能够准确循迹。

六、项目成果1. 成功制作了一辆循迹小车,能够准确地在预设轨道上行驶。

循迹小车报告精选全文完整版

循迹小车报告精选全文完整版

可编辑修改精选全文完整版创新制作循迹小车制作报告班级:学号:姓名:一、设计方案路面检测模块电路检测路面信息,区分黑色与白面,并形成相对应的高电平与低电平提供给单片机;单片机对路面循迹模块提供的高低电平进行分析,并形成相应的对策(直行、左转、右转和停止等),并将其转化成对应的电压输出给电机驱动模块;电机驱动模块根据单片机提供的电压信号驱动对应的电机,得到与对策相同的执行动作;电源模块电路为三个模块提供所需要的电。

电路框图如下图所示:电路框图二、路面检测模块工作原理一对光电开光的发射管不停的发射红外光,经过路面发射回来的被接受管接收到。

因为白色路面和黑线对光的反射不同,所以正对白色路面的光电对管的接收管接收到更多的红外光,而正对黑线的光电对管的接收管收到较少的红外光。

经过光电开关的接收电路将接收到红外光的多少转化为正相关的电流大小,并进一步转化成接收电路的输出电压(A点电压)的较小值和较大值。

输出电压的较小值和较大值进一步与一个居中的基准电压分别进行比较,对应比较器的输出端(C点)分别为高电平还是低电平,并进一步输出给单片机,同时对应指示发光管的不亮与亮。

路面循迹模块电路如下图所示:D1路面循迹模块电路三、单片机最小系统单片机最小系统包括了时钟电路和复位电路。

时钟电路为单片机工作提供基本时钟,复位电路用于将单片机内部各电路的状态恢复到初始值。

单片机是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号下严格地按时序进行工作。

时钟电路用于产生单片机工作所需要的时钟信号。

时钟信号的产生是在MCS-51系列单片机内部有一个高增益反相放大器,其输入端引脚为XTAL1,其输出端引脚为XTAL2。

只要在XTAL1和XTAL2之间跨接晶体振荡器和微调电容,就可以构成一个稳定的自己振荡器。

复位电路由一个按键、电解电容和电阻组成,它是使CPU 和系统中的其他功能部件都恢复到一个确定的初始状态,并从这个状态开始工作。

智能循迹小车报告

智能循迹小车报告

西京学院自动化1002班概要本寻迹小车是以万能板为车架,STC12C5A60S2单片机为控制核心,将各传感器的信号传至单片机分析处理,从而控制L293D电机驱动,控制小车,速度由单片机提供的PWM波控制。

利用红外传感器检测黑线,红外对管来实现循迹功能,利用超声波传感器进行检测避障。

整个系统的电路结构简单,可靠性能高。

根据小车各部分功能,模块化硬件电路,并调试电路。

将调试成功的各个模块逐个地“融合”成整体,再进行软件编程调试,直到完成。

关键词:STC12C5A60S2 直流电机红外对管传感器寻迹小车L293D电机驱动 1一、循迹小车的系统的要求和总体方案设计1.1设计要求1.1.1 基本要求利用单片机实验板,并制作一定的外围电路,编写程序设计制作一个智能循迹壁障的小车,具体要求如下:(1)具有启动、停止功能;(2)能够完成前进、后退、左转、右转单独动作和复合动作;(3)能按照规定路线循迹行驶;1.1.2 发挥要求利用超声波或红外等方式实现避障功能1.2智能循迹小车的工作原理我们知道小车的循迹原理是根据实现电位的高低来实现对前进方向的控制的。

在这里我们设定了白色和黑色的通道界面来行驶,而根据我们所学的知识通常采取的方法是红外探测法。

红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。

单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。

通过查资料我们知道红外探测器探测距离有限,一般最大不应超过3cm。

1.2.1恒压恒流桥式驱动芯片L293D驱动电机原理本L293D 驱动模块,采用ST 公司原装全新的L293D 芯片,采用SMT工艺稳定性高,采用高质量铝电解电容,使电路稳定工作。

可以直接驱动4路3-16V 直流电机,并提供了5V输出接口(输入最低只要6V),可以给5V单片机电路系统供电(低纹波系数),支持3.3V MCUARM控制,可以方便的控制直流电机速度和方向,也可以控制2相步进电机,5线4相步进电机,是智能小车必备利器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子信息专业实验报告课程电子信息系统综合设计实验MCU部分实验题目智能机器小车设计实验总分学生姓名学号学生姓名学号学生姓名学号实验时间地点分组电子信息学院专业实验中心目录一、摘要二、题目要求三、软硬件设计方案四、各部分电路的作用及电路工作原理分析五、系统调试与实验结果六、实验结果七、拓展功能八、参考资料九、附录一、摘要摘要:智能循迹小车主要由单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。

本次设计我们采用STC89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够识别黑白两色路面,电机模块由L293D芯片和两个减速直流电机构成,组成了智能车的动力系统,电源采用7.2V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。

关键词智能小车STC89C52单片机L293D芯片红外光对管二、题目要求“智能寻迹机器小车设计”,要求采用MCS-51单片机为控制芯片,设计出一个能够识别并沿着以白底为道路色,宽度5mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹行进的智能寻迹机器小车。

三、软硬件设计方案1、硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。

1.1、单片机模块单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。

本次小车的设计我们小组采用的是ATMEL公司的STC89C52RC单片机。

STC89C52RC是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。

其程序和数据存储是分开的。

STC89C52RC单片机介绍:上图为STC89C52RC引脚图。

STC89C52RC引脚功能说明:VCC(40引脚):电源电压VSS(20引脚):接地P0端口(P0.0~P0.7,39~32引脚):P0口是一个漏极开路的8位双向I/O口。

作为输出端口,每个引脚能驱动8个TTL负载,对端口P0写入“1”时,可以作为高阻抗输入。

在访问外部程序和数据存储器时,P0口也可以提供低8位地址和8位数据的复用总线。

此时,P0口内部上拉电阻有效。

在Flash ROM编程时,P0端口接收指令字节;而在校验程序时,则输出指令字节。

验证时,要求外接上拉电阻。

P1端口(P1.0~P1.7,1~8引脚):P1口是一个带内部上拉电阻的8位双向I/O口。

P1的输出缓冲器可驱动(吸收或者输出电流方式)4个TTL输入。

对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这是可用作输入口。

P1口作输入口使用时,因为有内部上拉电阻,那些被外部拉低的引脚会输出一个电流。

P2端口(P2.0~P2.7,21~28引脚):P2口是一个带内部上拉电阻的8位双向I/O端口。

P2的输出缓冲器可以驱动(吸收或输出电流方式)4个TTL输入。

对端口写入1时,通过内部的上拉电阻把端口拉到高电平,这时可用作输入口。

P2作为输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。

P3端口(P3.0~P3.7,10~17引脚):P3是一个带内部上拉电阻的8位双向I/O端口。

P3的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。

对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。

P3做输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输入一个电流。

RST(9引脚):复位输入。

当输入连续两个机器周期以上高电平时为有效,用来完成单片机单片机的复位初始化操作。

看门狗计时完成后,RST引脚输出96个晶振周期的高电平。

特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。

DISRTO默认状态下,复位高电平有效。

30引脚:地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。

在Flash 编程时,此引脚也用作编程输入脉冲。

29引脚:外部程序存储器选通信号,当AT89C51RC从外部程序存储器执行外部代码时,在每个机器周期被激活两次,而访问外部数据存储器时,将不被激活。

31引脚:访问外部程序存储器控制信号。

为使能从0000H到FFFFH的外部程序存储器读取指令,必须接GND。

XTAL1(19引脚):振荡器反相放大器和内部时钟发生电路的输入端。

XTAL2(18引脚):振荡器反相放大器的输入端。

1.2 传感器模块我们小组使用光电传感器来采集路面信息。

使用红外光电对管,其结构简明,实现方便,成本低廉,没有复杂的图像处理工作,因此反应灵敏,响应时间少。

但也存在不足,它能获取的信息是不完全的,容易受很多扰动(如背景光源,高度等)的影响,抗干扰能力较差。

但本次实验要求精度并不是太高,出于成本和设计复杂度方面考虑,我们决定采用红外对管来完成传感器模块。

图中仅以一对光电管示例1.3 电机控制模块我们本次实验采用的是直流减速电机电机,其转过的角度可以精确定位,可实现小车行进过程的精确定位,驱动部分我们则采用的是采用专用芯片L293D作为电机驱动芯片其操作方便,稳定性好,性能优良。

一片L293D就可以分别控制两个步进电机工作。

1.4 电源模块电源模块的作用是给整个系统稳定供电以保持其正常工作,包括7.2V的电源以及转5V部分,其中7.2V 的是给步进电机和其驱动供电,5V的用来驱动单片机及其他芯片。

硬件各个部分的连接图如下:2、软件部分2.1程序流程图本系统采用的是STC89C52单片机,再根据硬件连接,通过相应的软件来完成对信号的采集和数据的分析,再控制小车的运行状态,以下为主程序流程图:2.2程序设计思路2.2.1寻迹模块程序通过传感器获得路面信息然后反馈给单片机,再通过单片机来实现相应的功能。

2.2.2电机驱动模块程序控制两个直流电机,实现前进、后退、前左转、前右转、停车等功能。

四、各部分电路的作用及电路工作原理分析1、电机驱动模块1.1、电机工作原理本次我们的小车动力部分采用的是直流减速电机,又叫齿轮减速电机,是在普通直流电机的基础上,加上配套齿轮减速箱。

齿轮减速箱的作用是,提供较低的转速,较大的力矩。

同时,齿轮箱不同的减速比可以提供不同的转速和力矩。

这大大提高了,直流电机在自动化行业中的使用率。

减速电机是指减速机和电机(马达)的集成体。

这种集成体通常也可称为齿轮马达或齿轮电机。

通常由专业的减速机生产厂进行集成组装好后成套供货。

减速电机广泛应用于钢铁行业、机械行业等。

使用减速电机的优点是简化设计、节省空间。

减速机部分:主要有齿轮,轴承,蜗轮,蜗杆等。

电机部分:定子:主磁极+换向极+机座+电刷装置转子:电枢铁心+电枢绕组+换向器+转轴i直流电机工作原理:直流电机是智能车行进的动力部件,它的转动是通过给它加载直流电压来实现的,下面介绍它的工作原理。

f直流电机由定子、转子和电刷组成。

当给电刷加一直流电压,转子上的绕组线圈中就有电流流过,由毕-萨电磁力定律可知:一个通电流的导体,在磁场中要受到力的作用,这个力叫电磁力。

电磁力的大小由下式决定电磁力f=Bli电磁力方向由左手定则判定如图4.1.1所示。

根据毕-萨电磁力定律可知,当磁密度和绕组线圈长度一定时,电磁力的大小只和流过绕组线圈的电流的大小有关图4.1.2是直流电机分析物理模型图,它表示了一台最简单的两极直流电机模型,它的固定部分(定子)由一对NS相对的永磁磁铁和一对电刷组成,旋转部分(转子)则由电枢线圈绕组和一对相互隔离的圆弧形铜片做成的换向片组成,两换向片分别接到电枢线圈绕组的A、B端,换向片与转轴之间是互相绝缘的。

定子与转子之间要有一定的气隙空间,流过转子上电枢线圈绕组的电流由定子部分的电刷与换向片接触导通来实现。

当电刷A与换向片A相接触时如果我们通以正向电流,如图4.2.2所示,电流从线圈绕组的A端流入,根据电磁力方图4.1.2向左手定则可知会产生一个向左的切线方向的电磁力,使得转子逆时针旋转。

当旋转到90°时,电刷A 与换向片A脱离接触而与换向片B接触,同时电刷B也与换向片B脱离而与换向片A接触,虽然电枢旋转后电枢线圈绕组的位置发生了改变,但是由于换向片的作用,电流虽然是从电枢线圈绕组的B电流入,但是电流的方向没有改变,根据电磁力方向左手定则,电磁力的方向依然是向左的切线方向,因此转子在一直向左的电磁力的作用下就会不断的逆时针旋转。

同理当改变加载在换向片两边的电压极性时,因为改变了流入电机绕组的电流方向,根据电磁力方向左手定则可知转子会沿顺时针方向旋转。

如果加载在电机两端的电压,根据欧姆定律流过电枢线圈绕组的电流就会增大,由毕-萨电磁力定律:电磁力f=Bli可知,当磁场强度和导线长度一定时,电磁力只和流过电枢线圈的电流有关,电流越大电磁力越大,那么电机就转得越快。

现在除了有刷电机外还有无刷直流电机,无刷直流电机的原理和有刷的差不多,简单地说就是把把定子和转子换了一个位置,转子是永磁体,定子是绕组,电刷由永磁体担任,换向片由霍尔元件和换成了电子换向器组成。

1.2、驱动部分原理及电路图L293D提供双向驱动电流高达600毫安,电压是从4.5 V至36 V的。

两个设备是专为驱动等感性负载继电器,电磁阀,直流双极步进和马达,也可以给其他高电流/高电压提供电源负载。

兼容所有的TTL输入,每个输出都是推拉式驱动电路,与达林顿三极管和伪达林源。

启用1,2 EN驱动器和3,4 EN 驱动器。

当使能输入为高电平时,相关联的驱动器被启用和他们的输出处于活动状态,并在其输入端的同相。

当使能输入为低,这些驱动器被禁用其输出关闭,在高阻抗状态。

工作温度是从0℃到70℃。

L293D引脚和驱动电路图:L293D的输入输出部分原理图如下:驱动和电机相连接的电路图如下(左边引脚分别于单片机相应引脚相连)。

2、信号采集模块智能小车在运行之后是不需要人来操控的,因此信号采集模块是非常重要的,本系统采用的是红外对管来采集路面信息,红外发射管会定时的发射红外光,当前面路面是黑色时,大部分的光被吸收,红外接收管接收到微弱的发射信号,反馈给控制系统信号“1”,当前面的路面是白色时,大部分的光被反射,红外接收管接收到较强的信号,反馈给控制系统信号”0”,这样就通过传感器系统收集到了路面信息,接下来由信号处理系统来分析处理,从而判断小车的运动情况。

传感器部分电路原理图如下所示:红外发射接收管的电路连接装配图:LM393双电压比较器集成电路内部原理图:3、信号处理模块检测到白色路面的红外接收头处理后送出的是低电平(“0”),而检测到黑色路线的检测头送出的是高电平(“1”),由此可根据这2个红外接收头的高低电平判断路线情况而调整小车前进方向。

具体情况有如下几种:a 检测到 0 0 小车直走b 检测到 1 0 小车左转c 检测到 0 1 小车右转d 检测到 1 1 小车停止主芯片的电路:USB转串口电路:MAX232芯片是美信(MAXIM)公司专为RS-232标准串口设计的单电源电平转换芯片,使用+5v单电源供电。

相关文档
最新文档