半导体:本征、P型、N型教程文件

合集下载

半导体整套课件完整版电子教案最全PPT整本书课件全套教学教程

半导体整套课件完整版电子教案最全PPT整本书课件全套教学教程
1.正向特性 图1-10所示曲线①部分为正向特性。在二极管两端加正向
电压较低时,由于外电场较弱,还不足以克服PN结内电场 对多数载流了扩散运动的阻力,所以正向电流很小,几乎为 零。此时二极管呈现出很大的电阻。
上一页 下一页 返回
1.2 半导体二极管
2.反向特性 图1-10所示曲线②部分为反向特性。二极管两端加上反向
电压时,由于少数载流子漂移而形成的反向电流很小,且在 一定的电压范围内基本上不随反向电压而变化,处于饱和状 态,所以这一段电流称为反向饱和电流IR。硅管的反向饱和 电流约在1μA至几十微安,锗管的反向饱和电流可达几百微 安,如图1-10的OC(OC’)段所示。 3.反向击穿特性 如图1-10中曲线③部分所示,当反向电压增加到一定数值 时,反向电流急剧增大,这种现象称为一极管的反向击穿。 此时对应的反向击穿电压用UBR表示。
1.4.2 晶体三极管的工作原理
三极管有两个按一定关系配置的PN结。由于两个PN结之间 的互相影响,使三极管表现出和单பைடு நூலகம்PN结不同的特性。三 极管最主要的特性是具有电流放大作用。下面以NPN型二极 管为例来分析。
1.电流放大作用的条件 三极管的电流放大作用,首先取决于其内部结构特点,即发
射区掺杂浓度高、集电结面积大,这样的结构有利于载流子 的发射和接收。而基区薄且掺杂浓度低,以保证来自发射区 的载流子顺利地流向集电区。其次要有合适的偏置。三极管 的发射结类似于二极管,应正向偏置,使发射结导通,以控 制发射区载流子的发射。而集电结则应反向偏置,以使集电 极具有吸收由发射区注入到基区的载流子的能力,从而形成 集电极电流。
1.1 半导体基础知识
1.1.1本征半导体
不含杂质且具有完整品体结构的半导体称为本征半导体。最 常用的本征半导体是锗和硅品体,它们都是四价元素,在其 原子结构模型的最外层轨道上各有四个价电子。在单品结构 中,由于原子排列的有序性,价电子为相邻的原子所共有, 形成了如图1-1所示的共价键结构,图中的+4表示四价元素 原子核和内层电子所具有的净电荷。本征半导体在温度 T=0K(热力学温度)目没有其他外部能量作用时,其共价键 中的价电子被束缚得很紧,不能成为自由电子,这时的半导 体不导电,在导电性能上相当于绝缘体。但是,当半导体的 温度升高或给半导体施加能量(如光照)时,就会使共价键中 的某些价电子获得足够的能量而挣脱共价键的束缚,成为自 由电子,同时在共价键中留下一个空位,这个现象称为本征 激发,如图1-2所示,自由电子是本征半导体中可以参与导 电的一种带电粒子,叫做载流子。

半导体:本征、P型、N型

半导体:本征、P型、N型

半导体:本征、P型、N型之邯郸勺丸创作
创作时间:二零二一年六月三十日
本征半导体:完全不含杂质且无晶格缺陷的纯洁半导体称为本征半导体.实际半导体不成能绝对地纯洁, 本征半导体一般是指导电主要由资料的本征激发决定的纯洁半导体.
P型半导体:
如果杂质是周期表中第Ⅲ族中的
一种元素, 例如硼或铟, 它们的价电
子带都只有三个电子, 而且它们传导
带的最小能级低于第Ⅳ族元素的传导
电子能级.因此电子能够更容易地由
锗或硅的价电子带跃迁到硼或铟的传
导带.在这个过程中, 由于失去了电子而发生了一个正离子, 因为这对其它电子而言是个“空位”, 所以通常把它叫做“空穴”, 而这种资料被称为“P”型半导体.在这样的资料中传导主要是由带正电的空穴引起的, 因而在这种情况下电子是“少数载流子”. N型半导体:
如果掺入的杂质是周期表第V族中的某种元素例如砷或锑, 这些元素的价电子带都有五个电子, 然而, 杂质元素价电子的最年夜能级年夜于锗或硅的最年夜能级, 因此电子很容易从这个能级进入第Ⅳ族元素的传导带.这些资料就酿成了半导体.因为传导性是由于有过剩的负离子引起的, 所以称为“N”型.也有些资料的
传导性是由于资料中有过剩的正离子, 但主要还是由于有年夜量的电子引起的, 因而电子被称为“大都载流子”.。

P型半导体与N型半导体

P型半导体与N型半导体
例1
例2
本征半导体是一种有趣的材料,只要在掺入少量、定量的特定掺杂质原子后,就显示半导体的真正能力,能明显地改变半导体的电化学特性。掺入杂质的半导体称为非本征半导体。半导体中的杂质可以分为施主杂质和受主杂质,也可分为浅能级杂质和深能级杂质。
*
理论分析认为
由于杂质和缺陷的存在,会使严格按周期排列的原子所产生的周期性势场受到破坏,有可能在禁带中引入允许电子存在的能量状态(即能级),从而对半导体的性质产生决定性的影响。
情况一
*
情况二
当NA»ND时,施主能级上的全部电子跃迁到受主能级上后,受主能级还有(NA-ND)个空穴,它们可以跃迁到价带成为导电空穴,所以,p=NA-ND ≈NA,半导体是P型的
*
有效杂质浓度
经过补偿之则(ND-NA)为有效施主浓度; 当NA >ND时,则(NA-ND)为有效受主浓度。
间隙式杂质
替位式杂质
*
两种杂质的特点
间隙式杂质 原子半径一般比较小,如锂离子(Li+)的半径为0.68 Å,所以锂离子进入硅、锗、砷化镓后以间隙式杂质的形式存在。 替位式杂质 原子的半径与被取代的晶格原子的半径大小比较相近,且它们的价电子壳层结构也比较相近。如硅、锗是Ⅳ族元素,与Ⅲ、Ⅴ族元素的情况比较相近,所以Ⅲ、Ⅴ族元素在硅、锗晶体中都是替位式杂质。
利用杂质补偿的作用,就可以根据需要用扩散或离子注入等方法来改变半导体中某一区域的导电类型,以制备各种器件。
若控制不当,会出现ND≈NA的现象,这时,施主电子刚好填充受主能级,虽然晶体中杂质可以很多,但不能向导带和价带提供电子和空穴,(杂质的高度补偿)。这种材料容易被误认为是高纯度的半导体,实际上却含有很多杂质,性能很差。
*

半导体的n型和p型概要

半导体的n型和p型概要
因五价杂质原子中只有四个价电 子能与周围四个半导体原子中的 价电子形成共价键,而多余的一 个价电子因无共价键束缚而很容 易形成自由电子。
在N型半导体中自由电子是多数载流子,它主要由杂 质原子提供;空穴是少数载流子, 由热激发形成。
10
模拟电子技术基础
掺入少量五价杂质元素磷 +4 +4 +4
P
+4
+4
22
3.杂质半导体
杂质半导体的示意图
多子—空穴 P型半导体 多子—电子 N型半导体

- - 少子—电子
- - -


- -
+
+ +
+
+ +
+ + +
+ + +
- -
少子—空穴
多子浓度——与杂质浓度有关
少子浓度——与温度有关
23
4.掺杂工艺简介
杂质掺杂的实际应用主要是改变半导体的电特性。扩 散和离子注入是半导体掺杂的两种主要方式。 高温扩散:一直到20世纪70年代,杂质掺杂主要是由 高温的扩散方式来完成,杂质原子通过气相源或掺杂 过的氧化物扩散或淀积到硅晶片的表面,这些杂质浓 度将从表面到体内单调下降,而杂质分布主要是由高 温与扩散时间来决定。 离子注入:掺杂离子以离子束的形式注入半导体内, 杂质浓度在半导体内有个峰值分布,杂质分布主要由 离子质量和注入能量决定。 扩散和离子注入两者都被用来制作分立器件与集成电 路,因为二者互补不足,相得益彰。
14
3.杂质半导体
应当注意,通过增加施主原子数可以提高半导 体内的自由电子浓度,由此增加了电子与空穴 的复合几率,使本征激发产生的少子空穴的浓 度降低。由于电子与空穴的复合,在一定温度 条件下,使空穴浓度与电子浓度的乘积为一常 数,即 pn = pini 式中pini分别为本征材料中的空穴浓度和电子 浓度,可以得到如下关系式: pn = ni2

第三章 P型半导体和N型半导体接触

第三章 P型半导体和N型半导体接触

分布.对图(a)及(b)表示的一维p-n结和对应的热平衡能带图,
空 间 电 荷 分 布 和 静 电 电 势 的 特 定 关 系 可 由 泊冶松金结方 程 式
(Poisson’s equation)得到,
d 2
dx 2
dE dx
s s
q
s
(ND
N A p n)
p p

冶金结 n
电 势
n
这里假设所有的施主和受主皆已电离 (a) 冶金结中突变掺杂的p-n结
在 远 离 冶 金 结 (metallurgical
(a) 冶金结中突变掺杂的p-n结
junction)的区域,电荷冶金保结持中性 ,且总空间电p 荷密度为零.对n这些 中性区域,上式可简化为
d 2
dx 2
0 (a)即冶金N结D中突N变A掺杂p的p-nn结 0
Jp
J(p 漂移) J(p 扩散) q p pE qDp
dp dx
q p
p( 1 q
dE场用了 E
1 q
dEC dx
1 q
dEi dx
和爱因斯坦关系式 Dp
kT q
p
由空穴浓度的关系式和其导数
p
ni
exp(
Ei
EF kT
)
dp p ( dEi dEF ) dx kT dx dx
热平衡状态下的p-n结
将上式,即
dp p ( dEi dEF ) 代入下式,即
Jp
dx kT dx dx
J(p 漂移) J(p 扩散) q p pE qDp
dp dx
q p
p( 1 q
dEi dx
)
kT p
dp dx

第三章P型半导体和N型半导体接触

第三章P型半导体和N型半导体接触

变成
热平衡状态下的p-n结
例 1: 计算一硅 p-n 结在 300K 时 的内建电势,其 NA = 1018cm-3 和ND=1015cm-3. 解 由式
0.8 0.6 0.4 Si 0.2 0 1014 1015 1016 1017 N A或N D / cm 3 1018 300K
kT N AND Vbi n p ln( 2 ) q ni
d 2 qND 2 dx s
0 x xn
半导体的总电荷中性要求 p 侧每单位面积总负空间电荷必须 精确地和n侧每单位面积总正空间电荷相同:
N A x p N D xn
总耗尽层宽度W即为
W x p xn
耗尽区

d 2 qNA 2 dx s xp x 0 和
将上式,即
得到净空穴电流密度为
dEF J p p p 0 dx

dEF 0 dx
dEF dn n n 0 dx dx
同理可得净电子电流密度为
J n J(漂移) J(扩散) q n nE qDn n n
因此,对净电子和空穴电流密度为零的情况,整个样品上的费 米能级必须是常数(亦即与x无关),如前图所示的能带图。
p型中性区 p型中性区 过渡区 过渡区 耗尽区 耗尽区 N D-N A n型中性区 N D- NA n型中性区 x 0 x 过渡区 0 过渡区 未补偿的杂质离子 未补偿的杂质离子 所造成的电荷密度 所造成的电荷密度 p型中性区 p型中性区
xp xp
N D-N A
n型中性区 N D-N An型中性区
对图a及b表示的一维pn结和对应的热平衡能带图空间电荷分布和静电电势的特定关系可由泊松方程式poissonsequation得到dxdedx冶金结a冶金结中突变掺杂的pn结biqvb在热平衡下突变结的能带图c空间电荷分布d空间电荷的长方形近似图45耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子冶金结a冶金结中突变掺杂的pn结biqvbiqvb在热平衡下突变结的能带图c空间电荷分布d空间电荷的长方形近似图45耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子冶金结a冶金结中突变掺杂的pn结biqvb在热平衡下突变结的能带图c空间电荷分布d空间电荷的长方形近似图45耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子冶金结a冶金结中突变掺杂的pn结biqvbiqvb在热平衡下突变结的能带图c空间电荷分布d空间电荷的长方形近似图45耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子冶金结a冶金结中突变掺杂的pn结biqvb在热平衡下突变结的能带图c空间电荷分布d空间电荷的长方形近似图45耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子冶金结a冶金结中突变掺杂的pn结biqvbiqvb在热平衡下突变结的能带图c空间电荷分布d空间电荷的长方形近似图45耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子耗尽区型中性区过渡区过渡区所造成的电荷密度未补偿的杂质离子metallurgicaljunction的区域电荷保持中性且总空间电荷密度为零

(完整word版)半导体基础知识

(完整word版)半导体基础知识

1.1 半导体基础知识概念归纳本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。

电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。

绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。

绝缘体导电性:极差。

如惰性气体和橡胶.半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧.半导体导电性能:介于半导体与绝缘体之间.半导体的特点:★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。

★在光照和热辐射条件下,其导电性有明显的变化.晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。

共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。

自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子.空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。

电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。

空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。

本征半导体的电流:电子电流+空穴电流.自由电子和空穴所带电荷极性不同,它们运动方向相反。

载流子:运载电荷的粒子称为载流子。

导体电的特点:导体导电只有一种载流子,即自由电子导电。

本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。

本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发.复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。

动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。

载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。

《电子技术基础》ppt课件

《电子技术基础》ppt课件
PN结内部载流子基本为零,因此导电率很低,相当于介质。 但PN结两侧的P区和N区导电率很高,相当于导体,这一点和 电容比较相似,所以说PN结具有电容效应。
半导体基础与常用器件
电子技术基础
PN结的单向导电性
PN结的上述“正向导通,反向阻断”作用,说明它具有单 向
导电性,PN结的单PN向结导中电反性向是它电构流成的半讨导论体器件的基础。
3. 空间电荷区的电阻率很高,是指其内电场阻碍多数载流子扩 散运动的作用,由于这种阻碍作用,使得扩散电流难以通过空 间电荷区,即空间电荷区对扩散电流呈现高阻作用。
4. PN结的单向导电性是指:PN结正向偏置时,呈现的电阻很小 几乎为零,因此多子构成的扩散电流极易通过PN结;PN结反向 偏置时,呈现的电阻趋近于无穷大,因此电流无法通过被阻断。
由于热激发而在晶体中出现电子空穴对的现象称为本征激发。
本征激发的结果,造成了半导体内部自由电子载流子运动的产 生,由此本征半导体的电中性被破坏,使失掉电子的原子变成带 正电荷的离子。
由于共价键是定域的,这些带正电的离子不会移动,即不能参 与导电,成为晶体中固定不动的带正电离子。
半导体基础与常用器件
电子技术基础
内部几乎没有自由电子, 因此不导电。
半导体基础与常用器件
电子技术基础
(3) 半导体
半导体的最外层电子数一般为4个,在常温下存在的自 由电子数介于导体和绝缘体之间,因而在常温下半导体的 导电能力也是介于导体和绝缘体之间。
常用的半导体材料有硅、锗、硒等。

原子核
半导体的特点:
导电性能介于导体和绝缘体之 间,但具有光敏性、热敏性和参 杂性的独特性能,因此在电子技 术中得到广泛应用。
光敏性——半导体受光照后,其导电能力大大增强;

半导体及其常用器件

半导体及其常用器件
章目录
电工电子技术 (3)热击穿 当PN结两端加的反向电压过高时,反向电流会继续急剧 增长,PN结上热量不断积累,引起结温升高,载流子增 多,反向电流一直增大下去,结温一再持续升高循环,超 过其容许值时,PN结就会发生热击穿 热击穿而永久损坏。 热击穿的过程是不可逆的,所以应尽量避免发生。
空间电荷区的 电阻率为什么很 高? 试述雪崩击穿和齐纳击穿 的特点。 的特点。这两种击穿能否造 成PN结的永久损坏 ? 结的永久损坏
PN结内部载流子基本为零,因此导电率很低,相当于介质。 但PN结两侧的P区和N区导电率很高,相当于导体,这一点和 电容比较相似,所以说PN结具有电容效应。
章目录
电工电子技术
4. PN结的单向导电性
章目录
电工电子技术
PN结反向偏置时的情况
章目录
电工电子技术
PN结的单向导电性
PN结的上述“正向导通,反向阻断”作用,说明它具有单 单 向 导电性,PN结的单向导电性是它构成半导体器件的基础。 导电性
章目录
电工电子技术
2. 本征半导体和杂质半导体
(1)本征半导体 最常用的半导体为硅(Si)和锗(Ge)。它们的共同特征是四价 元素,即每个原子最外层电子数为4个。
+
Si(硅原子)
Si +4 Ge +4
+
Ge(锗原子)
因为原子呈电中性, 因为原子呈电中性,所 以简化模型图中的原子 核只用带圈的+4 +4符号表 核只用带圈的+4符号表 示即可。 示即可。
一般情况下,杂质半导体中的多数载流子的数量可达到少数 载流子数量的1010倍或更多,因此,杂质半导体比本征半导体 的导电能力可增强几十万倍。 掺入三价元素的杂质半导体,由于空穴载流子的数量大大于自 由电子载流子的数量而称为空穴型半导体,也叫做P型半导体。 在P型半导体中,多数载流子是空穴,少数载流子是自由电 子,而不能移动的离子带负电。

P型和N型半导体

P型和N型半导体

P型和N型半导体如果杂质是周期表中第Ⅲ族中的一种元素──受主杂质,例如硼或铟,它们的价电子带都只有三个电子,并且它们传导带的最小能级低于第Ⅳ族元素的传导电子能级。

因此电子能够更容易地由锗或硅的价电子带跃迁到硼或铟的传导带。

在这个过程中,由于失去了电子而产生了一个正离子,因为这对于其它电子而言是个“空位”,所以通常把它叫做“空穴”,而这种材料被称为“P”型半导体。

在这样的材料中传导主要是由带正电的空穴引起的,因而在这种情况下电子是“少数载流子”。

如图1所示。

N型半导体如果掺入的杂质是周期表第V族中的某种元素──施主杂质,例如砷或锑,这些元素的价电子带都有五个电子,然而,杂质元素价电子的最大能级大于锗(或硅)的最大能级,因此电子很容易从这个能级进入第Ⅳ族元素的传导带。

这些材料就变成了半导体。

因为传导性是由于有多余的负离子引起的,所以称为“N”型。

也有些材料的传导性是由于材料中有多余的正离子,但主要还是由于有大量的电子引起的,因而(在N型材料中)电子被称为“多数载流子”。

如图2所示。

P型和N型半导体的应用由P型半导体或N型半导体单体构成的产品有热敏电阻器、压敏电阻器等电阻体。

由P型与N型半导体结合而构成的单结半导体元件,最常见的是二极管;此外,FET也是单结元件。

PNP或NPN以及形成双结的半导体就是晶体管。

(1)用于LEDLED在20世纪60年代诞生后就被认定是荧光灯管、灯泡等照明设备的终结者,甚至有人认为LED将会开创一个新的照明时代,最终出现在所有需要照明的场合。

LED的工作原理和我们常见的白炽灯、荧光灯完全不同,LED从本质上来说是一种半导体器件。

LED的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体的交界面就会出现一个具有特殊导电性能的薄层,也就是常说的PN结(PN Junction Transistors)。

PN结可以对P型半导体和N型半导体中多数载流子的扩散运动产生阻力,当对PN结施加正向电压时,电流从LED的阳极流向阴极,而在PN结中少数载流子与多数载流子进行复合,多余的能量就会转变成光而释放出来。

半导体的基本知识

半导体的基本知识
(1)N型半导体
在本征半导体硅(或锗)中掺入微量五价元素磷,由于磷原子有5个价电 子,它与周围的硅原子组成共价键时,多余的一个价电子很容易摆脱原子核 的束缚成为自由电子。这种半导体导电主要靠电子,所以称为电子型半导体 或N型半导体,如下图所示。N型半导体中,自由电子是多子,空穴是少子。
第8页
半本
导征
电 工 电 子 技 术
过渡页
第2页
半导体的基本知识
• 1.1 半导体的基本特性 • 1.2 本征半导体和杂质半导体



的 基 本 知
半 导 体 的 基
识本
物质大体可分为导体、绝缘体和半导体 三大类。其中,容易导电、电阻率小于10-4Ω·cm的物质称为导体,如铜、铝、 银等金属材料;很难导电、电阻率大于104Ω·cm的物质称为绝缘体,如塑料、 橡胶、陶瓷等材料;导电能力介于导体和绝缘体之间的物质称为半导体,如 硅、锗、硒及大多数金属氧化物和硫化物等。
半导体之所以被作为制造电子器件的主要材料在于它具有热敏性、 光敏性和掺杂性。 ➢ 热敏性:是指半导体的导电能力随着温度的升高而迅速增加的特性。利 用这种特性可制成各种热敏元件,如热敏电阻等。 ➢ 光敏性:是指半导体的导电能力随光照的变化有显著改变的特性。利用 这种特性可制成光电二极管、光电三极管和光敏电阻等。 ➢ 掺杂性:是指半导体的导电能力因掺入微量杂质而发生很大变化的特性。 利用这种特性可制成二极管、三极管和场效应管等。
导 体 和 杂 质
识半


1.2
本征半导体在绝对温度T=0K和 没有外界影响的条件下,价电子全部 束缚在共价键中。当温度升高或受光 照时,半导体共价键中的价电子会从 外界获得一定能量,少数价电子将挣 脱共价键的束缚,成为自由电子,同 时在原来共价键的相应位置上留下一 个空位,这个空位称为空穴,如右图 所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体:本征、P
型、N型
精品文档
半导体:本征、P型、N型
本征半导体:完全不含杂质且无晶格缺陷的纯净半导
体称为本征半导体。

实际半导体不可能绝对地纯净,
本征半导体一般是指导电主要由材料的本征激发决定
的纯净半导体。

P型半导体:
如果杂质是周期表中第Ⅲ族中的一种元
素,例如硼或铟,它们的价电子带都只有三
个电子,并且它们传导带的最小能级低于第
Ⅳ族元素的传导电子能级。

因此电子能够更
容易地由锗或硅的价电子带跃迁到硼或铟的
传导带。

在这个过程中,由于失去了电子而
产生了一个正离子,因为这对于其它电子而
言是个“空位”,所以通常把它叫做“空
穴”,而这种材料被称为“P”型半导体。


这样的材料中传导主要是由带正电的空穴引
起的,因而在这种情况下电子是“少数载流
子”。

N型半导体:
如果掺入的杂质是周期表第V族中的某
种元素例如砷或锑,这些元素的价电子带都
有五个电子,然而,杂质元素价电子的最大
能级大于锗或硅的最大能级,因此电子很容
易从这个能级进入第Ⅳ族元素的传导带。


些材料就变成了半导体。

因为传导性是由于
有多余的负离子引起的,所以称为“N”型。

也有些材料的传导性是由于材料中有多余的
正离子,但主要还是由于有大量的电子引起
的,因而电子被称为“多数载流子”。

收集于网络,如有侵权请联系管理员删除。

相关文档
最新文档