(完整版)中考圆知识点经典总结
圆中考 知识点总结
圆中考知识点总结圆是中学数学中的一个重要知识点,在中考数学中起着重要的作用。
因此,掌握圆的相关知识对于中考数学是非常重要的。
本文将对中考数学中关于圆的知识点进行总结,帮助学生更好地复习和掌握圆的相关知识。
知识点总结一、基本概念1. 圆的定义:圆是由平面上距离一个确定点一定距离的点的全体组成的集合。
2. 圆的要素:圆心、半径、直径、弧、圆周。
3. 圆的性质:圆的直径是圆周的两倍,圆周上任意两点与圆心的距离相等。
二、圆的相关公式1. 圆的周长公式:C=2πr。
2. 圆的面积公式:S=πr²。
三、圆的相关定理1. 直径定理:直径所对应的两个锐角为直角。
2. 圆的切线定理:过圆外一点引圆的切线与过该点作圆的半径垂直。
3. 圆的切线与弦的性质:相交弦定理、弦切定理。
4. 圆的内切与外切定理:内切定理、外切定理。
四、圆的相关应用1. 圆的面积和周长的应用:计算圆的面积、周长和扇形面积等。
2. 圆的几何关系:切线与圆的位置关系、相交弦的性质等。
3. 圆的倒影与旋转:圆的旋转变换、圆的倒影变换。
五、解题技巧1. 熟练掌握圆的相关公式和定理,能够正确应用公式和定理解题。
2. 多做练习,培养解决问题的能力,提高解题技巧。
3. 注意细节,正确理解题目的意思和要求,避免因理解错误而导致错误答案。
六、经典例题1. 已知AB是∠O的平分线,且AC⊥BC,求证:AC=BC。
2. 已知AB与CD是两条相交的直径,P是与AB、CD相交的一点,求证:PA²+PB²=PC²+PD²。
3. 如图,ΔABC是等边三角形,M、N分别是BC、AB的中点,P为AM的垂足,若PA=2,则求BP的长。
4. 四通五达服装公司要在正方形草坪内竖立一些旗杆,使得每个旗杆都最多不见这块草坪中心的五分之一。
那么最多可以竖立几个旗杆?结语通过对圆的相关知识点进行总结,我们可以更好地掌握圆的相关概念、公式、定理和应用。
初三圆知识点汇总
初三圆知识点汇总圆是初中数学中的一个重要内容,也是中考的必考知识点之一。
下面就为大家详细汇总初三圆的相关知识点。
一、圆的定义1、动态定义:在平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 所形成的图形叫做圆。
固定的端点 O 叫做圆心,线段 OA 叫做半径。
2、静态定义:圆是到定点的距离等于定长的点的集合。
二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。
2、直径:经过圆心的弦叫做直径,直径是圆中最长的弦。
3、弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧分为优弧、劣弧和半圆。
4、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
5、等圆:能够重合的两个圆叫做等圆。
6、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
三、圆的基本性质1、圆的对称性(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。
(2)圆是中心对称图形,对称中心为圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
3、圆心角、弧、弦之间的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
四、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:(1)点在圆外⇔ d > r;(2)点在圆上⇔ d = r;(3)点在圆内⇔ d < r。
2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:(1)直线与圆相离⇔ d > r;(2)直线与圆相切⇔ d = r;(3)直线与圆相交⇔ d < r。
中考圆 知识点总结
中考圆知识点总结一、圆的基本概念圆是平面上到一定点的距离等于给定长度的所有点的集合。
这个给定长度叫做圆的半径。
圆的一条封闭曲线叫做圆周,圆心到圆周上任一点的距离叫做半径。
二、圆的性质1. 圆的周长公式:C=πd 或C=2πr2. 圆的面积公式:S=πr²3. 圆心角:以圆心为顶点的角。
它对应的弧叫做这个角的弧4. 圆内接四边形:内接于同一个圆的四条边全是立交于一个点的四边形5. 圆外接四边形:其四顶点在同一个圆上的四边形6. 弧长:圆周上的一小段被称为弧,圆周的任一弧的长即弧长7. 弧度:弧长等于半径长的弧所对函数角的量度叫弧度8. 弧度制:把圆周长等分成361份,每段长为半径长的弧叫做1弧度9. 相似圆周:如果两个弧所对的圆心角的两个弧相等,则这两个arc的两个圆周叫做相似圆周三、圆的定理1. 两条平行余同一个圆的两条切线2. 如果两个arc和中各有一个相等的角的立交于同一条弧的平面内3. 弧与弧所对的角相关联4. 线段与圆相关联5. 邻角对角互补6. 梯形中角平分性质7. 环形中它的两个arc及两个对分-四、圆的变量方法常用的弧度制基本关系:1、1弧度=180/π度2、1度=π/180弧度常用的弧度制与直角度基本关系:1、180度=π弧度2、1度= π/180 弧度圆周率是一个无理数,近似值是3.1415926 。
圆的半径是r ,这样圆周长为C=2πr 。
圆的面积等于S= π(r^2)。
先看C=2πr的这半径(C是所求的圆周长,r是所需求的圆的半径,C=2 πr)由此得到半径的长。
继而计算圆的面积;S=π(r^2)。
五、圆的解析式方程解析式方程就是用$x$和$y$表示方程中的变量,利用解析式方程可以方便表示圆的位置、大小和形状。
圆的解析式方程一般是:$(x-a)^2+(y-b)^2=r^2$其中$(a,b)$为圆心坐标,r为半径。
圆的解析式方程与圆的位置有关。
若圆的圆心位于原点,圆的解析式方程为$x^2+y^2=r^2$,点$(x,y)$满足圆的解析式方程。
中考数学圆知识点总结
中考数学圆知识点总结一、圆的基本概念1.1 圆的定义圆是由平面上到定点到距离等于定值的所有点的集合。
这个定点叫做圆心,这个定值叫做圆的半径。
1.2 圆的元素圆的元素有圆心、半径、直径、弦、弧、扇形等。
1.3 圆的相关概念圆周率π:定圆的周长与直径的比值。
圆心角:以圆心为顶点的角。
圆周角:角的顶点在圆周上,并且角的两边都是圆上的弧。
1.4 圆的性质圆的性质有很多,比如半径相等的圆,直径相等的圆,弦长相等的圆等等。
二、圆的计算2.1 圆的周长圆的周长又叫做圆周长,也叫做圆的周长,通常用字母C表示。
圆的周长等于圆的直径乘以圆周率π。
C=πd2.2 圆的面积圆的面积是圆内部的所有点的集合,通常用字母A表示。
圆的面积等于圆心角的正弦值乘以半径的平方再乘以圆周率π。
A=πr²2.3 圆的相关角和弧长的求解在圆中,角和弧是密切相关的。
圆心角的度数等于它所对的弧所代表的圆周的长度所占整个圆周的比例。
所以我们可以利用这个性质来求解圆的相关问题。
三、圆的相关定理3.1 圆的切线与切点圆的切线与切点是圆的一个重要定理,它的性质有点多。
比如一个圆与直线相切,与圆外一点两切线为公切线或两切线的交点到原圆的距离相等。
3.2 圆的相交定理圆的相交定理也是圆的一个重要定理。
比如两个圆相交于两个不同的点,那么连接这两个交点和两个圆心就组成了一个四边形,并且它的对角线相交于一点。
3.3 圆的正接弦定理圆的正接弦定理是圆的一个重要定理。
它表示一个圆内部的一个锐角与它所对的正切弦之间的关系,这个定理在圆的相关计算中是非常重要的。
四、圆的应用圆在现实生活中有很多应用,比如钟面就是一个圆,轮胎也是一个圆,圆锥形的灯泡和圆球等等都是圆的应用。
而在数学中,圆也是几何图形中的一个重要内容,比如在三角函数中,圆和三角函数是密切相关的。
在平面几何中,圆与直线相交的问题也是经常出现的。
所以掌握圆的知识对于学生来说是非常重要的。
总之,圆是中考数学中的一个重要知识点。
中考圆的知识点总结总结
中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。
这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。
2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。
圆心角的度数等于对应的弧所对的圆周的度数。
如果圆心角的度数为360度,那么这个角就是周角。
(2)弧圆上的一段弧是圆周的一部分。
圆的周长就是圆周的长度,可以用角度和弧度来表示。
(3)切线和切点切线是一个直线,它与圆相切于一个点。
在圆上,切线与半径的夹角为90度。
(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。
同位角的性质也可以应用到圆上。
(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。
相似的圆的半径之比等于它们的直径之比。
二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。
2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。
3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。
4. 弧长定理同样的圆上,相对的圆周弧长相等。
5. 切线定理切线和半径的夹角为90度。
6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。
7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。
三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。
比如在工程测量中,需要计算环形的周长和面积。
2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。
3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。
四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。
1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。
中考圆形知识点总结
中考圆形知识点总结一、圆的定义圆是由平面上任意一点到圆心的距离都相等的一组点的集合,这个相等的距离就是圆的半径,用R或r表示。
如果把圆心用O表示,圆上一点用A表示,那么圆的表示就是O为圆心,R为半径的圆,通常写作O(R)。
二、圆的性质1. 圆的周长和面积圆的周长,即圆周长,也称为圆的周长。
由于圆是一个闭合曲线,所以圆的周长是指圆的周围的长度。
圆的周长L可以用公式L=2πr来表示,其中π取约等于3.14。
圆的面积A也和圆的半径r有关,圆的面积A=πr^2。
2. 圆的直径圆的直径是圆上任意两点之间经过圆心的线段的长度,它恰好是圆的半径的两倍,即d=2r。
3. 圆心角的度数圆心角是指以圆心为顶点的角,圆心角的度数可以用角度或弧度来表示。
圆心角的度数等于所对圆弧的中心角。
例如,一个圆的圆周角是360°,因此圆周角所对的圆弧的中心角也等于360°。
4. 圆锥相似圆锥相似是指对于两个圆,如果它们的半径之比相等,则这两个圆是相似的。
5. 圆内接四边形在一个圆中,如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。
在圆内接四边形中,相对的角相等,两对相对边之积相等。
6. 圆对称圆对称是指图形绕圆心旋转180°后,图形不变。
圆对称的图形具有很高的美感,例如很多具有圆对称的图案都可以被人们所接受和欣赏。
三、相关定理1. 圆心角定理圆心角定理是指圆心角的度数等于所对圆弧的中心角,即一个圆心角的度数等于它所对的圆弧的度数。
2. 弦长定理弦长定理是指一个圆上任意一条弦所对的两个弧的长度之和,等于这条弦的长度的平方。
3. 垂径定理垂径定理是指一个圆上的直径垂直于与之相交的弦,且中点与圆心和交点共线。
4. 弧长、扇形面积圆的弧长可以用弧度来表示,即弧长s=θr,其中r为半径,θ为圆心角的弧度。
圆的扇形面积也可以用弧度来表示,扇形的面积等于所对圆心角的弧度的一半乘以半径的平方。
四、计算题1. 计算圆的周长和面积计算圆的周长和面积是圆形题目中最基本的计算题,需要根据给定的半径或直径进行计算。
中考圆的知识点总结
中考圆的知识点总结一、圆的相关定义1. 圆的定义:圆是平面上到定点距离等于定长的点的集合。
2. 圆的要素:圆心、半径,圆周、圆内、圆外。
二、圆的相关定理1. 圆的周长和面积(1)周长:圆的周长等于圆的直径乘以π(π≈3.14)。
公式:周长=2πr(2)面积:圆的面积等于圆的半径平方乘以π。
公式:面积=πr²2. 圆心角和圆心角的度数(1)圆心角:以圆心为顶点的角叫做圆心角。
(2)度数:圆周的一份叫做圆周角,圆周角是度数。
一个完整的圆周角是360°。
3. 弧长和弧度(1)弧长:圆的一部分。
弧长的公式:弧长=2πr(圆的半径r乘以圆心角的度数除以360°)。
(2)弧度:圆心角所对应的弧长的长度。
1弧度=弧长/半径。
4. 直角三角形中的圆(1)直角三角形内切圆:直角三角形的内切圆的圆心在直角三角形的斜边上。
(2)直角三角形外切圆:直角三角形的外切圆的圆心在直角三角形的斜边上。
5. 圆与三角形的关系(1)正弦定理:a/sinA=b/sinB=c/sinC(2)余弦定理:a²=b²+c²−2bc⋅cosA(3)正弦定理:a/sinA=b/sinB6. 圆的相交和切线(1)相交:两个圆相交的情况有几种:相离(两个圆不相交)、内切(一个圆在另一个圆内部)、外切(一个圆在另一个圆外部)、内含(一个圆在另一个圆内部,但没有公共点)。
(2)切线:从圆外一点引一条与圆相切的线叫做切线。
7. 圆的应用(1)建筑中的圆:建筑中圆的形状、圆的结构。
(2)生活中的圆:轮胎、钟表、CD/DVD等。
三、圆的相关练习1. 计算圆的周长和面积。
2. 计算圆心角的度数和弧度。
3. 求解直角三角形内切圆和外切圆的问题。
4. 应用正弦定理、余弦定理和正切定理求解相关问题。
5. 求解相交圆的相交情况和切线的情况。
以上就是中考圆的相关知识点总结,希望对大家的学习有所帮助。
初中数学中考圆的知识点总结归纳(中考必备)
中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr^2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。
中考数学圆知识点归纳
中考数学圆知识点归纳一、圆的定义和性质:1.圆的定义:平面上的所有到圆心距离相等的点的集合。
2.圆的部分:弧、弦、弧长、弦长、圆心角、半径、直径、切线、弧度、坐标公式等。
二、圆的特殊位置和位置关系:1.圆上的点与圆心之间的关系:圆周角是直径的角为直角。
2.圆内外的点与圆心之间的关系:内接圆和外接圆。
三、圆的性质:1.半径相等的圆相等,直径相等的圆相等。
2.圆的直径是两个切点。
3.两圆相交,切点在弦上,切点与所对弧不在一条直径上。
4.圆上的切线与半径垂直,且只有一条。
(切线切圆问题)5.过圆外一点可以作无数条切线,其中只有一条切线与圆通过该点处的切线垂直。
(外切线和切线问题)四、圆的计算:1.圆的周长:C=2πr(其中r为半径)。
2.圆的面积:S=πr²(其中r为半径)。
3.弧长:L=2πr(对应圆心角为360°的弧)。
4.弧度制和角度制的转换:弧度=角度×(π/180°)角度=弧度×(180°/π)五、利用圆的知识解决问题:1.根据已知条件作出相关几何图形,运用定理和性质求解问题。
2.提取关键信息,运用圆的性质和公式进行计算。
3.运用切线的特性求解问题。
4.运用弧的性质,求解弧长、弦长、圆心角等问题。
5.运用角平分线和垂直平分线的性质,求解相关问题。
六、与圆相关的解题技巧:1.制图时,可以借助直角三角形和等腰三角形的性质。
2.运用圆的部分的特性,构造性质,使用类似全等三角形的方法求解问题。
3.运用余弦定理、正弦定理等三角函数的性质,结合圆的特性求解问题。
4.利用圆内切四边形的特性解决问题。
以上为中考数学圆知识点的归纳,希望对你复习和备考有所帮助。
中考圆专题知识点总结
中考圆专题知识点总结一、圆的概念圆是平面上一个集合,该集合中任意两点的距离都相等,并且距离都等于圆的半径。
圆的周长叫做圆的周长,圆的面积叫做圆的面积。
圆的半径为r,圆的直径为d。
二、圆的性质1. 圆的周长和面积:圆的周长C = 2πr圆的面积S = πr²2. 弧和圆心角:- 弧:两点间的曲线部分,圆的一部分。
- 弧长:弧的长度,记作L。
- 圆心角:以圆心为顶点的角叫做圆心角,圆心角的度数等于它所对的弧的弧度数。
3. 弧长公式:L = rθ(θ用弧度表示)4. 圆周角:圆周角是一条弧所对的圆心角。
圆周角的度数等于它所对的圆心角的两倍。
5. 切线和切点:切线是与圆只有一个交点的直线。
切线与圆相切的点叫做切点。
6. 相交弧、对应弧和交角:- 相交弧:两个圆相交的弧。
- 对应弧:两个圆相交的弧的对应部分。
- 交角:两个相交弧的交角。
7. 圆内接四边形:如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。
8. 圆的切线和割线:切线是与圆只有一个交点的直线,割线是与圆相交而不相切的直线。
切线和割线的切点到圆心的连线和圆的半径相垂直。
三、圆周角、圆心角和弧对应的关系1. 圆周角的度数等于所对的圆心角的两倍。
2. 圆周角的度数等于所对的弧的度数。
3. 圆心角的度数等于所对的弧的度数。
四、圆的性质定理证明1. 同弧或同角:弧对应的圆心角和圆周角以及弧的长度都相等。
2. 切线定理:若直线与圆相交,且交点在圆外,则直线与圆的切点连线垂直于直线。
3. 切线与弦定理:如果一条切线和一条弦相交于圆上的同一点,则切线上这个点的两个切线段相等。
五、常见的圆相关问题1. 圆与圆之间的位置关系:相离、外切、相交、内切、相切。
2. 圆的面积和周长问题:求圆的面积和周长。
3. 圆心角、圆周角和弧的问题:根据给定的信息计算圆心角、圆周角和弧的长度。
4. 切线和切点的问题:计算切线和切点的位置以及相关长度。
5. 圆的切线和割线问题:计算切线和割线的位置以及相关长度。
中考圆的复习资料(经典+全)
圆的知识点复习知识点1垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
题型1.在直径为1000mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=800mm,则油的最大深度为 mm.2. 如图,在△ABC中,∠C是直角,AC=12,BC=16,以C为圆心,AC为半径的圆交斜边AB于D,求AD的长。
3. 如图,弦AB垂直于⊙O的直径CD,OA=5,AB=6,求BC长。
CBDA4. 如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长。
知识点2 圆心角:顶点在圆心的角叫做圆心角。
弦心距:过圆心作弦的垂线,圆心与垂足之间的距离叫弦心距。
定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角度数相等,所对的弦相等。
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角度数相等,所对的弧相等。
题型1. 如果两条弦相等,那么()A.这两条弦所对的弧相等 B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等 D.以上答案都不对2.下列说法正确的是()A.相等的圆心角所对的弧相等 B.在同圆中,等弧所对的圆心角相等C.相等的弦所对的圆心到弦的距离相等 D.圆心到弦的距离相等,则弦相等3.线段AB是弧AB 所对的弦,AB的垂直平分线CD分别交弧AB、AC于C、D,AD的垂直平分线EF分别交弧AB、AB于E、F,DB的垂直平分线GH分别交弧AB、AB于G、H,则下面结论不正确的是()A.弧AC=弧CB B.弧EC=弧CG C.EF=FH D.弧AE=弧EC4. 弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____.5. 如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.6. 如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________.7. 如图,已知AB 、CD 为⊙O 的两条弦,弧AD =弧BC , 求证:AB =CD 。
中考圆形知识点总结归纳
中考圆形知识点总结归纳一、圆的定义及性质1. 定义:圆是平面上到一个定点的距离等于定长的点的全体构成的集合。
2. 圆心和半径:圆心是到圆上任一点的距离相等的点;半径是圆心到圆上任一点的距离。
3. 直径:通过圆心并且有圆上两点的线段叫做直径,直径的长度等于两倍的半径。
4. 切线和切点:在圆上的一点处与圆相切的直线叫做切线,切线与圆相切的点叫做切点。
二、圆的周长和面积1. 周长:圆的周长等于直径乘以π(π≈3.14)。
2. 面积:圆的面积等于半径的平方乘以π。
三、角与弧1. 圆心角与弧长的关系:圆心角的度数等于对应圆周的弧长所对应的圆心角的两倍。
2. 弧长的计算:弧长等于圆周长乘以所含圆心角的度数除以360度。
3. 弧度制:1弧度等于半径长所对应的圆心角的弧长。
4. 弧长与扇形面积的计算:扇形面积等于扇形对应的圆心角的弧度除以2π乘以圆的面积。
四、相交圆的位置关系1. 相交圆的位置关系:两个圆相交于两个不同的点,一个点,或者不相交。
2. 内切和外切圆:两个圆内切的位置关系就是一个圆在另一个圆内部,一个圆与另一个圆外切的位置关系就是一个圆的周长与另一个圆的圆心的距离相等。
五、圆的应用1. 圆的模型:圆在自然界中有丰富的应用,例如铁路辙、车轮、橱柜的拉手等都是圆形的。
2. 饼图:根据数据用圆形图示数据的比例和百分比,通过饼图可以直观的看出不同部分所占的比例。
综上所述,圆形是数学中重要的基本图形之一,在日常生活和工作中都有着广泛的应用,掌握圆形的基本概念和性质对于学习和生活都是非常有帮助的。
希望大家能够认真学习圆形知识,掌握相关的计算方法,提高自己的数学能力。
初三数学圆知识点总结完整版
初三数学圆知识点总结 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】初三数学圆知识点总结一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.【经典例题精讲】例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律.解:连结OP,P点为中点.小结:此题运用垂径定理进行推断.例2 下列命题正确的是( )A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆D.平分弦的直径垂直于弦.解:A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确.B.等弧就是在同圆或等圆中能重合的弧,因此B正确.C.三个点只有不在同一直线上才能确定一个圆.D.平分弦(不是直径)的直径垂直于此弦.故选B.例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.解:设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.x+2x+3x+2x=360°,x=45°.∴∠D=90°.小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.例4 为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解.解:.小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型.例5 已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距.解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂直平分AB,∴.又∵AB=16∴AC=8.在中,.在中,.故.(2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结.∵垂直平分AB,∴.又∵AB=16,∴AC=8.在中,.在中,.故.注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.三、相关定理:1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
(完整版)初三数学圆知识点复习专题经典
A
D
E
O
C
B
线长是这点到割
( 4 )割线定理 :从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等
(如上图) 。
即:在⊙ O 中,∵ PB 、 PE 是割线
∴PC PB PD PE
例 1. 如图 1,正方形 ABCD的边长为 1,以 BC为直径。在正方形内作半圆 于 E,求 DE: AE的值。
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称 1
推 3 定理,即上述四个结论中, 只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ; ③ OC OF ;④ 弧 BA 弧 BD
O A
C
E F D
∴C D
推论 2 :半圆或直径所对的圆周角是直角;圆周角是直角所对的弧
C
是半圆,所对的弦是直径。
即:在⊙ O 中,∵ AB 是直径
或∵ C 90
B
A
O
∴ C 90
∴AB 是直径
推论 3 :若三角形一边上的中线等于这边的一半,那么这个三角形是
C
直角三角形。
即:在△ ABC 中,∵ OC OA OB
B
A
推论 1:( 1 )平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结
中考数学圆知识点总结7篇
中考数学圆知识点总结7篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点叫做圆心,定长叫做半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转不变性,即围绕圆心旋转任意角度后,得到的图形仍然与原图形重合。
二、圆的性质1. 圆的直径是最大的弦,弦是连接圆上两点的直线段,直径是特殊的弦。
2. 圆心到圆上各点的距离都等于半径,即圆的半径是圆的长度单位,它决定了圆的大小。
3. 圆的周长与直径的比值叫做圆周率,是一个重要的数学常数,约等于3.1415926。
4. 圆的面积等于π乘以半径的平方,即圆的面积随着半径的增大而增大。
三、圆与直线的关系1. 直线与圆有三种位置关系:相交、相切、相离。
相交是指直线与圆有两个不同的交点;相切是指直线与圆有一个切点;相离是指直线与圆没有交点。
2. 圆的切线垂直于过切点的半径,即切线与半径是垂直关系。
3. 圆的两条平行弦所对的圆心角相等,即圆心角的大小只与弦的位置有关,与弦的长度无关。
四、圆与圆的位置关系1. 两个圆的位置关系有五种:外离、外切、相交、内切、内含。
外离是指两个圆没有公共点;外切是指两个圆有一个公共点;相交是指两个圆有两个不同的公共点;内切是指两个圆有一个公共点且两圆的圆心在公共点的两侧;内含是指两个圆的圆心在同一个大圆的内部。
2. 两个圆的圆心距等于两圆半径之和或差,即两圆的位置关系可以通过计算圆心距来判断。
3. 两个相交的圆,它们的交点叫做共点,共点将两圆分成四段弧,每段弧叫做一拱。
五、圆的幂和极坐标1. 圆的幂是指一个点到一个圆的距离的平方,即该点到圆心的距离乘以它自身。
圆的幂是该点的极坐标系中的ρ值。
2. 极坐标系是一种在平面中表示位置的方法,它使用一个角度和一个距离来表示一个点。
在极坐标系中,圆的幂可以通过ρ值来计算。
3. 通过计算圆的幂和极坐标系中的角度值,我们可以确定一个点是否在某个圆上或某个圆外。
篇2一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆初三知识点总结
圆初三知识点总结一、圆的定义圆指的是平面上的一组点,这些点到圆心的距离都相等,这个距离就是圆的半径。
具体来说,圆是由平面上离定点距离为固定数值的全部点的集合。
这个固定的距离叫做圆的半径,记作r,定点叫做圆心,记作O。
平面上每一点P到圆心O的距离等于半径r的点P都属于圆。
二、圆的性质1. 圆的周长和面积圆的周长C:C = 2πr其中,r为圆的半径,π的值为3.14。
圆的面积S:S = πr²其中,r为圆的半径,π的值为3.14。
2. 弧长和扇形面积弧长L:L = rθ这里的θ是圆心角的度数。
扇形面积A:A = (1/2)r²θ这里的θ是圆心角的度数。
3. 弧度制弧度制是一个由弧长除以半径所得到的角度单位。
用π表示的圆的周长等于2π,所以一周是2π弧度。
三、圆的相关定理1. 相交圆和内切圆(1)相交圆的性质两个圆相交于两个不同的点,这个时候我们就可以得到两个圆相交的两条弦的交点的连线。
定理:相交圆的两条相交弦所对应的两个弧相等。
(2)内切圆的性质一个圆和另一个圆相切,这个时候我们叫被包围的圆为内切圆。
定理:内切圆的半径是外切圆半径的一半。
2. 正多边形内接圆正多边形的内接圆是指把正多边形的每条边的中点连起来就得到内接圆的直径,内接圆的半径等于正多边形的边长的一半。
定理:正多边形的内接圆面积为正多边形的面积的1/2。
3. 切线(1)切线的定义圆外一条直线在与圆相交时,若交点是圆,这条直线就是圆的切线。
(2)切线的性质定理1:圆外的一条直线在与圆相交时,过切点的切线都是相同的。
定理2:(切线与半径的关系)切线和半径的夹角必定是90°。
四、圆的应用1. 圆环的问题圆环的宽度在题型中往往就是我们需要求解的未知量,利用切线的这个性质我们可以轻松地解决该问题。
2. 圆柱和圆锥的问题圆柱和圆锥问题往往考察的就是表面积和体积的问题,在应用的题型中往往需要我们利用圆的相关定理来求解。
3. 圆形花坛和草坪的题型圆形花坛和草坪的题型往往考察的就是表面积和面积的问题,也是需要我们利用圆的相关定理来求解。
中考数学圆知识点总结
中考数学圆知识点总结锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.下面是小编整理的相关内容,欢迎大家阅读参考!中考数学圆知识点总结(一)圆的定义:圆是一种几何图形。
当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
相关定义:1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。
这个定点叫做圆的圆心。
图形一周的长度,就是圆的周长。
2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。
4 连接圆上任意两点的线段叫做弦。
最长的弦是直径,直径是过圆心的弦。
5 圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,优弧是用三个字母表示。
小于半圆的弧称为劣弧,劣弧用两个字母表示。
半圆既不是优弧,也不是劣弧。
优弧是大于180度的弧,劣弧是小于180度的弧。
6 由两条半径和一段弧围成的图形叫做扇形。
7 由弦和它所对的一段弧围成的图形叫做弓形。
8 顶点在圆心上的角叫做圆心角。
9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
10 圆周长度与圆的直径长度的比值叫做圆周率。
它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。
11圆周角等于相同弧所对的圆心角的一半。
12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。
圆的集合定义:圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。
圆的字母表示:以点O为圆心的圆记作“⊙O”,读作O”。
圆—⊙ ;半径—r或R(在环形圆中外环半径表示的字母);弧—⌒ ;直径—d ;扇形弧长—L ;周长—C ;面积—S。
中考圆的知识点总结
中考圆的知识点总结中考数学中,圆是一个重要的几何图形,涉及的知识点较多。
在考试中,对圆的相关知识的理解和掌握是非常关键的。
本文将对中考数学中与圆有关的知识点进行总结和归纳,帮助考生理清思路,更好地备战中考数学。
1. 圆的定义圆是平面上到一个定点的距离等于定值的所有点构成的图形。
其中,定点叫做圆心,距离叫做半径。
2. 圆的性质(1)圆上任意两点之间的线段,叫做弧。
(2)圆的直径是圆上任意两点连线沿圆内部的最大距离,它的长度是半径的2倍。
(3)圆的周长是圆周上的所有点连成的折线的长度。
(4)圆内任意两点与圆心连线的夹角是等腰三角形的夹角。
3. 圆的相关公式(1)圆的周长公式:C = 2πr(其中,C表示周长,r表示半径,π取3.14)。
(2)圆的面积公式:A = πr²(其中,A表示面积)。
4. 圆的位置关系(1)相离:两个圆没有交点,且圆心之间的距离大于两个圆的半径之和。
(2)相切外切:两个圆有且仅有一个公共切点,且圆心之间的距离等于两个圆的半径之和。
(3)相交:两个圆有两个交点,且圆心之间的距离小于两个圆的半径之和。
(4)包含内切:一个圆完全包含另一个圆,且两个圆心之间的距离小于等于两个圆的半径之差。
5. 判定正方形和矩形的方法如果一个四边形的四个角都是直角,并且四条边的长度相等,就可以判定为正方形。
若四边形的对边相等且相邻边两两相等,则可以判定为矩形。
6. 圆锥的相关知识(1)圆锥的配准:当给出圆锥的高及底面的半径时,可以通过连接圆锥的顶点、底面圆心以及连接顶点和底面圆周上的一点构成一个直角三角形,从而确定圆锥的顶部的位置。
(2)圆锥的表面积公式:S = πr² + πrl(其中,S表示表面积,r 表示底面半径,l表示斜高)。
(3)圆锥的体积公式:V = 1/3πr²h(其中,V表示体积,r表示底面半径,h表示高)。
7. 圆柱的相关知识(1)圆柱的表面积公式:S = 2πrh + 2πr²(其中,S表示表面积,r表示底面半径,h表示高)。
中考数学圆知识点总结5篇
中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。
二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。
2. 切线性质:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。
4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。
圆锥椭圆的两焦点是圆锥的底面圆心和顶点。
双曲线类似。
三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。
如圆形广场、圆形剧场等。
2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。
这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。
3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。
这些元件的形状和布局对于电子设备的功能和性能有着重要影响。
4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。
对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。
四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。
我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。
2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。
3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆知识点学案考点一、圆的相关概念 1、圆的定义在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径。
2、圆的几何表示以点O 为圆心的圆记作“⊙O ”,读作“圆O ”考点二、弦、弧等与圆有关的定义 (1)弦连接圆上任意两点的线段叫做弦。
(如图中的AB )(2)直径经过圆心的弦叫做直径。
(如途中的CD )直径等于半径的2倍。
(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A ,B 为端点的弧记作“”,读作“圆弧AB ”或“弧AB ”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为: 过圆心 垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧考点四、圆的对称性 1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
考点五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弦心距从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
考点六、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
考点七、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:⇔d<r点P在⊙O内;d=r点P在⊙O上;⇔⇔d>r点P在⊙O外。
考点八、过三点的圆1、过三点的圆不在同一直线上的三个点确定一个圆。
2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。
考点九、直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O 的半径为r ,圆心O 到直线l 的距离为d,那么:直线l 与⊙O 相交d<r ;⇔直线l 与⊙O 相切d=r ;⇔直线l 与⊙O 相离d>r ;⇔考点十、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙中, ∵四边是内接四边形O ABCD ∴ 180C BAD ∠+∠=︒180B D ∠+∠=︒ DAE C∠=∠考点十一、切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可 即:∵且过半径外端MN OA ⊥MN OA ∴是⊙的切线MN O 2、性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
考点十二、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵、是的两条切线PA PB ∴;平分PA PB =PO BPA∠考点十三、圆幂定理1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙中,∵弦、相交于点,O AB CD P ∴PA PB PC PD⋅=⋅推论:如果弦与直径垂直相交,那么弦的一半是它分直径D B所成的两条线段的比例中项。
即:在⊙中,∵直径,O AB CD⊥∴2CE AE BE=⋅2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙中,∵是切线,是割线O PA PB∴2PA PC PB=⋅3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图)。
即:在⊙中,∵、是割线O PB PE∴PC PB PD PE⋅=⋅考点十四、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图:垂直平分。
12O O AB即:∵⊙、⊙相交于、两点1O2O A B∴垂直平分12O O AB考点十五、圆的公切线两圆公切线长的计算公式:(1)公切线长:中,;12Rt O O C∆221AB CO==(2)外公切线长:是半径之差;内公切线长:是半径之和2CO2CO考点十六、三角形的内切圆和外接圆1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
考点十七、圆和圆的位置关系1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定设两圆的半径分别为R 和r ,圆心距为d ,那么两圆外离d>R+r ⇔两圆外切d=R+r⇔两圆相交R-r<d<R+r (R ≥r)⇔两圆内切d=R-r (R>r )⇔两圆内含d<R-r (R>r )⇔4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
考点十八、圆内正多边形的计算1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
3、正三角形在⊙中△是正三角形,有关计算在中进行:O ABC Rt BOD ∆;::2OD BD OB =4、正四边形同理,四边形的有关计算在中进行,Rt OAE ∆::OE AE OA =5、正六边形同理,六边形的有关计算在中进行,.Rt OAB ∆::2AB OB OA =考点十九、与正多边形有关的概念 1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。
O3、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
考点二十、正多边形的对称性 1、正多边形的轴对称性正多边形都是轴对称图形。
一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。
2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法先用量角器或尺规等分圆,再做正多边形。
考点二十一、弧长和扇形面积 1、弧长公式n °的圆心角所对的弧长l 的计算公式为180r n l π=2、扇形面积公式lRR n S 213602==π扇其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。
3、圆锥的侧面积rlr l S ππ=∙=221其中l 是圆锥的母线长,r 是圆锥的地面半径。
考点二十二、内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c ,则内切圆的半径r=2cb a -+。
(3)S △ABC =,其中a ,b ,c 是边长,r 是内切圆的半径。
)(21c b a r ++(4 如图,BC 切⊙O 于点B ,AB 为弦,∠ABC 叫弦切角,∠ABC=∠D。
C考点二十三、反证法先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。