十年真题-概率-全国高考理科数学
【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)
2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。
十年高考理科数学真题 专题十一 概率与统计 三十三 回归分析与独立性检验及答案
专题十一 概率与统计第三十三讲 回归分析与独立性检验一、选择题1.(2017山东)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆy bx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为A .160B .163C .166D .1702.(2015福建)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归本线方程ˆˆˆybx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为A .11.4万元B .11.8万元C .12.0万元D .12.2万元 3.(2014重庆)已知变量x 与y 正相关,且由观测数据算得样本的平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为A .$0.4 2.3y x =+B .$2 2.4y x =-C .$29.5y x =-+D .$0.3 4.4y x =-+ 4.(2014湖北)根据如下样本数据得到的回归方程为ˆybx a =+,则 A .0a >,0b < B .0a >,0b > C .0a <,0b < D .0a <,0b > 5.(2012新课标)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为A .−1B .0C .12D .16.(2014江西)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是7.(2012湖南)设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x -85.71,则下列结论中不正确...的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg 8.(2011山东)某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程ˆˆˆy bx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元二、解答题9.(2018全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5=-+yt ;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5=+yt . (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.10.(2016年全国III)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:719.32ii y==∑,7140.17i i i t y ==∑,721()0.55ii y y =-=∑,7≈2.646.参考公式:相关系数12211()()()(yy)ni ii n ni ii i t t y y r t t ===--=--∑∑∑,回归方程y a bt =+)))中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑),=.a y bt -)))11.(2015新课标1)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw821()ii x x =-∑821()ii w w =-∑81()()iii x x yy =--∑81()()iii w w yy =--∑46.65636.8289.8 1.61469 108.8表中i i w x =w =1881i i w =∑.(Ⅰ)根据散点图判断,y a bx =+与y c x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为0.2z y x =-.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,⋅⋅⋅,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为121()()ˆ()niii nii u u v v u u β==--=-∑∑,ˆˆv u αβ=-. 12.(2014新课标2)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121nii i ni i tty y b t t ∧==--=-∑∑,ˆˆay bt =- 13.(2012辽宁)电视传媒公司为了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(I )根据已知条件完成下面22⨯列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷 体育迷 合计 男 女合计(II )将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性.若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.21212211222112)(++++-=n n n n n n n n n χ, 附:专题十一 概率与统计第三十三讲 回归分析与独立性检验答案部分1.C 【解析】因为22.5x =,160y =,所以$160422.570a=-⨯=,42470166y =⨯+=,选C .2.B 【解析】∵10.0x =,8.0y =,ˆ0.76b=,∴ˆ80.76100.4a =-⨯=, ∴回归方程为ˆ0.760.4yx =+,把15x =代入上式得, )(2k P ≥χ 0.050.01k3.841 6.635ˆ0.76150.411.8y=?=(万元),选B . 3.A 【解析】由题意可知,相应的回归直线的斜率应为正,排除C 、D .且直线必过点(3,3.5),代入A 、B 得A 正确.4.A 【解析】画出散点图知0,0b a <>.5.D 【解析】因为所有的点都在直线上,这组样本数据完全正相关,故其相关系数为1,故选D.6.D 【解析】因为222152(6221410)5281636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯,222252(4201612)521121636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯,222352(824128)52961636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯,222452(143062)524081636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯,则有22224231χχχχ>>>,所以阅读量与性别关联的可能性最大.7.D 【解析】由回归方程为$y =0.85x -85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()ybx a bx y bx a y bx =+=+-=-, 所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确.8.B 【解析】样本中心点是(3.5,42),则ˆˆ429.4 3.59.1ay bx =-=-⨯=,所以回归方程是ˆ9.49.1yx =+,把6x =代入得ˆ65.5y =. 9.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为ˆ30.413.519226.1y=-+⨯=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为ˆ9917.59256.5y=+⨯=(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t =-+上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆ9917.5yt =+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 10.【解析】(Ⅰ)由折线图这数据和附注中参考数据得4=t ,28)(712=-∑=i i t t ,55.0)(712=-∑=i iy y,40.1749.32 2.89==-⨯=,99.0646.2255.089.2≈⨯⨯≈r .因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关相当高,从而可以用线性回归模型拟合y 与t 的关系.(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得71721()()2.89ˆ0.10328()ii i ii tt y y b tt ==--==≈-∑∑, 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a. 所以,y 关于t 的回归方程为:t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.11.【解析】(Ⅰ)由散点图可以判断,y c =+适宜作为年销售量y 关于年宣传费x 的回归方程类型.(Ⅱ)令w =y 关于w 的线性回归方程,由于81821()()108.8ˆ681.6()iii ii w w y y dw w ==--===-∑∑. ˆˆ56368 6.8100.6cy dw =-=-⨯=, 所以y 关于w 的线性回归方程为ˆ100.668y w =+,因此y 关于x 的回归方程为ˆ100.6y=+ (Ⅲ)(ⅰ)由(Ⅱ)知,当49x =时,年销售量y 的预报值ˆ100.6576.6y=+= 年利润z 的预报值ˆ576.60.24966.32z=⨯-=. (ⅱ)根据(Ⅱ)得结果知,年利润z 的预报值ˆ0.2(100.620.12zx x =+-=-+.13.66.82==,即46.24x =时,ˆz取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. 12.【解析】(I ) 由所给数据计算得17t =(1+2+3+4+5+6+7)=4 17y =(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3 7211()t tt =-∑=9+4+1+0+1+4+9=287111()()t tt y y =--∑=(3)( 1.4)(2)(1)(1)(0.7)-⨯-+-⨯-+-⨯-00.110.520.93 1.614+⨯+⨯+⨯+⨯=71117211()()140.528()t t tt y y btt ==--===-∑∑$,$ 4.30.54 2.3ay bt =-=-⨯=$. 所求回归方程为$0.5 2.3y t =+.13.【解析】(I)由频率颁布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:由2×2列联表中数据代入公式计算,得:222112212211212()100(30104515)100 3.0307525455533n n n n n x n n n n ++++-⨯-⨯==≈⨯⨯⨯因为3.030<3.841,所以,没有理由认为“体育迷”与性别有关.(II )由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的基本事件空间12132311{(,),(,),(,),(,)a a a a a a a b Ω=12212231,(,),(,),(,),(,),a b a b a b a b3212(,),(,)}a b b b 其中i a 表示男性,1,2,3i =.j b 表示女性,1,2j =.Ω由10个基本事件组成,而且这些事件的出现时等可能的.用A 表示“任选2人中至少有1名是女性”这一事件,则11122122313212{(,),(,),(,),(,),(,),(,),(,)}A a b a b a b a b a b a b b b = ∴7()10P A =。
十年高考真题分类汇编(2010-2019) 数学 专题14 概率与统计
十年高考真题分类汇编(2010—2019)数学专题14概率与统计1.(2019·全国1·理T6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻 “”和阴爻“”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116【答案】A【解析】由题可知,每一爻有2种情况,故一重卦的6个爻有26种情况.其中6个爻中恰有3个阳爻有C 63种情况,所以该重卦恰有3个阳爻的概率为C 6326=516,故选A .2.(2019·全国2·文T4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15【答案】B【解析】设测量过该指标的3只兔子为a,b,c,剩余2只为A,B,则从这5只兔子中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{c,A,B},{b,A,B}共10种,其中恰有2只测量过该指标的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}共6种,所以恰有2 只测量过该指标的概率为610=35,故选B .3.(2019·全国3·文T3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) 【答案】D【解析】两位男同学和两位女同学排成一列,共有24种排法.两位女同学相邻的排法有12种,故两位女同学相邻的概率是12.故选D.4.(2019·全国1·文T6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生 【答案】C【解析】由已知得将1 000名新生分为100个组,每组10名学生,用系统抽样46号学生被抽到,则第一组应为6号学生,所以每组抽取的学生号构成等差数列{an},所以an=10n-4,n ∈N*, 若10n-4=8,则n=1.2,不合题意; 若10n-4=200,则n=20.4,不合题意; 若10n-4=616,则n=62,符合题意; 若10n-4=815,则n=81.9,不合题意. 故选C.5.(2019·全国2·理T5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差【答案】A【解析】设9位评委的评分按从小到大排列为x1<x2<x3<x4<…<x8<x9.对于A,原始评分的中位数为x5,去掉最低分x1,最高分x9后,剩余评分的大小顺序为x2<x3<…<x8,中位数仍为x5,故A 正确;对于B,原 始评分的平均数x =19(x 1+x 2+…+x 9),有效评分的平均数x '=17(x 2+x 3+…+x 8),因为平均数受极端值影响较大,所以x 与x '不一定相同,故B 不正确;对于C,原始评分的方差s 2=19[(x 1-x )2+(x 2-x )2+…+(x 9-x )2],有效评分的方差s'2=17[(x 2-x ')2+(x 3-x ')2+…+(x 8-x ')2],由B 易知,C 不正确;对于D,原始评分的极差为x9-x1,有效评分的极差为x8-x2,显然极差变小,故D 不正确. 6.(2018·全国2·理T8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112 B.114C.115D.118【答案】C【解析】不超过30的素数有“2,3,5,7,11,13,17,19,23,29”共10个.其中和为30的有7+23,11+19,13+17共3种情况,故P=3C 102=115.7.(2018·全国2·文T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.3 【答案】D【解析】设2名男同学为男1,男2,3名女同学为女1,女2,女3,则任选两人共有(男1,女1),(男1,女2),(男1,女3),(男1,男2),(男2,女1),(男2,女2)(男2,女3)(女1,女2),(女1,女3),(女2,女3)共10种,其中选中两人都为女同学共(女1,女2),(女1,女3)、(女2,女3)3种,故P=310=0.3.8.(2018·全国1·理T10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( ) A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 【答案】A【解析】∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC,S Ⅲ=π8BC 2-12AB ·AC,S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC ,S Ⅲ=π8BC 2-12AB ·AC , S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.9.(2018·江苏·T3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .【答案】90【解析】由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为89+89+90+91+915=90.10.(2018·全国1·理T3文T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设建设前经济收入为1,则建设后经济收入为2,建设前种植收入为0.6,建设后种植收入为2×0.37=0.74,故A 不正确;建设前的其他收入为0.04,养殖收入为0.3,建设后其他收入为0.1,养殖收入为0.6,故B,C 正确;建设后养殖收入与第三产业收入的总和所占比例为58%,故D 正确,故选A. 11.(2018·浙江·T7)设0<p<1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( )A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小 【答案】D【解析】由题意可知,E(ξ)=0×(1-p 2)+1×12+2×p 2=12+p,D(ξ)=(0-12-p)2×1-p 2+(1-12-p)2×12+(2-12-p)2×p2=12(-2p 2+2p +12)=-(p 2-p +14-12) =-(p -12)2+12,p ∈(0,1).故当p 在(0,1)内增大时,D(ξ)先增大后减小.12.(2018·全国3·理T8)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 【答案】B【解析】由题意,得DX=np(1-p)=10p(1-p)=2.4,∴p(1-p)=0.24,由p(X=4)<p(X=6)知C 104p 4·(1-p)6<C 106p 6(1-p)4,即p2>(1-p)2,∴p>0.5,∴p=0.6(其中p=0.4舍去).13.(2018·全国3·文T5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 【答案】B【解析】设不用现金支付的概率为P,则P=1-0.45-0.15=0.4.14.(2017·全国3·理T3文T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由题图可知2014年8月到9月的月接待游客量在减少,故A错误.15.(2017·山东·文T8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5B.5,5C.3,7D.5,7【答案】A【解析】甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.16.(2017·全国1·理T2文T4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为2,则圆半径为1,正方形的面积为2×2=4,圆的面积为π×12=π.由图形的对称性,可知图中黑色部分的面积为圆面积的一半,即12πr 2=12π,所以此点取自黑色部分的概率为π24=π8.17.(2017·全国2·文T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110 B .15C .310D .25【答案】D【解析】从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图所示.总共有25种情况,其中第一张卡片上的数大于第二张卡片上的数的情况有10种,故所求的概率为1025=25. 18.(2017·天津·文T3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45 B.35C.25D.15【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,共有(红黄),(红蓝),(红绿),(红紫),(黄蓝),(黄绿),(黄紫),(蓝绿),(蓝紫),(绿紫)10种不同情况,记“取出的2支彩笔中含有红色彩笔”为事件A,则事件A 包含(红黄),(红蓝),(红绿),(红紫)4个基本事件,则P(A)=410=25.故选C.19.(2017·山东·理T5)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归 直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4,该班某学生的脚长为24,据此估计其身高为( ) A.160B.163C.166D.170【答案】C【解析】由已知得x =110∑i=110x i =22.5,y =110·∑i=110y i =160,又b ^=4,所以a ^=y −b ^x =160-4×22.5=70,故当x=24时,y ^=4×24+70=166.故选C .20.(2016·全国1·文T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56【答案】C【解析】总的基本事件是红黄,白紫;红白,黄紫;红紫,黄白,共3种.满足条件的基本事件是红黄,白紫;红白,黄紫,共2种.故所求事件的概率为P=23.21.(2016·全国3·文T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130【答案】C【解析】密码的前两位共有15种可能,其中只有1种是正确的密码,因此所求概率为115.故选C.22.(2016·北京·文T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.925【答案】B【解析】从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为410=25.23.(2016·全国1·理T4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【答案】B【解析】这是几何概型问题,总的基本事件空间如图所示,共40分钟,等车时间不超过10分钟的时间段为7:50至8:00和8:20至8:30,共20分钟,故他等车时间不超过10分钟的概率为P=2040=12,故选B.24.(2016·全国2·理T10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2nmC.4mnD.2mn【答案】C【解析】利用几何概型求解,由题意可知,14S圆S正方形=14π×1212=mn,所以π=4mn.25.(2016·山东·理T3文T3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120D.140【答案】D【解析】自习时间不少于22.5小时为后三组,其频率和为(0.16+0.08+0.04)×2.5=0.7,故人数为200×0.7=140,选D.26.(2016·全国2·文T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310【答案】B【解析】因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.27.(2016·全国3·理T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个【答案】D【解析】由题图可知,0 ℃在虚线圈内,所以各月的平均最低气温都在0 ℃以上,A正确;易知B,C正确;平均最高气温高于20 ℃的月份有3个,分别为六月、七月、八月,D错误.故选D.28.(2015·全国2·理T3文T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【答案】D【解析】由柱形图知,2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.29.(2015·陕西·理T2文T2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167【答案】C【解析】由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).故选C.30.(2015·北京·理T8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】对于选项A,从图中可以看出乙车的最高燃油效率大于5,故A项错误;对于选项B,同样速度甲车消耗1升汽油行驶的路程比乙车、丙车的多,所以行驶相同路程,甲车油耗最少,故B项错误;对于选项C,甲车以80千米/小时的速度行驶,1升汽油行驶10千米,所以行驶1小时,即行驶80千米,消耗8升汽油,故C项错误;对于选项D,速度在80千米/小时以下时,相同条件下每消耗1升汽油,丙车行驶路程比乙车多,所以该市用丙车比用乙车更省油,故D 项正确.31.(2015·湖北·理T2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1 365石【答案】B【解析】由条件知254粒内夹谷28粒,可估计米内夹谷的概率为28254=14127,所以1 534石米中夹谷约为14127×1 534≈169(石).32.(2015·陕西·理T11)设复数z=(x-1)+yi(x,y ∈R),若|z|≤1,则y ≥x 的概率为( ) A.34+12π B.12+1πC.12−1π D.14−12π【答案】D【解析】由|z|≤1,得(x-1)2+y2≤1.不等式表示以C(1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=14π×12-S △OAC=14π-12×1×1=π4−12.故所求事件的概率P=S 阴S圆=π4-12π×12=14−12π. 33.(2015·山东·文T7)在区间[0,2]上随机地取一个数x,则事件“-1≤lo g 12(x +12)≤1”发生的概率为( ) A.34 B.23C.13D.14【答案】A【解析】由-1≤lo g 12(x +12)≤1,得lo g 122≤lo g 12(x +12)≤lo g 1212,所以12≤x+12≤2,所以0≤x ≤32.由几何概型可知,事件发生的概率为32-02-0=34.34.(2015·福建·文T8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f(x)={x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14C.38D.12【答案】B【解析】如图,设f(x)与y 轴的交点为E,则E(0,1). ∵B(1,0),∴yC=1+1=2.∴C(1,2). 又四边形ABCD 是矩形, ∴D(-2,2).∴S △DCE =12×[1-(-2)]×1=32.又S 矩形=3×2=6,∴由几何概型概率计算公式可得所求概率P=326=14.故选B .35.(2015·湖北·文T4)已知变量x 和y 满足关系y=-0.1x+1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关 【答案】A【解析】由y=-0.1x+1知y 与x 负相关,又因为y 与z 正相关,故z 与x 负相关.36.(2015·湖北·文T8)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12B.p 1<12<p 2 C.p 2<12<p 1 D.12<p 2<p 1【答案】B【解析】设点P 的坐标为(x,y),由题意x,y ∈[0,1], 所以点P 在正方形OABC 内,S 正方形OABC=1×1=1. 画出直线x+y=12与正方形交于D ,E 两点,画出曲线xy=12与正方形交于M,N两点.而Rt△OAC的面积S=12.由图可知:S△OED<S△OAC<S曲边形OCMNA,所以p1<12<p2.故选B.37.(2015·全国1·文T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120【答案】C【解析】从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为110.38.(2015·广东·文T7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.1【答案】B【解析】设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.39.(2015·湖南·文T2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3B.4C.5D.6【答案】B【解析】依题意,应将35名运动员的成绩由好到差排序后分为7组,每组5人.然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰好是第3,4,5,6组,因此,成绩在该区间上的运动员人数是4.40.(2015·北京·文T4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90B.100C.180D.300【答案】C【解析】由已知分层抽样中青年教师的抽样比为3201600=15, 由分层抽样的性质可得老年教师的抽样比也等于15, 所以样本中老年教师的人数为900×15=180.故选C.41.(2015·安徽·理T6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( ) A.8 B.15C.16D.32【答案】C【解析】设数据x 1,x 2,…,x 10的平均数为x ,标准差为s,则2x 1-1,2x 2-1,…,2x 10-1的平均数为2x -1,方差为[(2x 1-1)-(2x -1)]2+[(2x 2-1)-(2x -1)]2+…+[(2x 10-1)-(2x -1)]210=4(x 1-x )2+4(x 2-x )2+…+4(x 10-x )210=4s 2,因此标准差为2s=2×8=16.故选C.42.(2015·全国1·理T4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 【答案】A【解析】由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C 320.62(1-0.6)+C 330.63=0.648.43.(2015·湖北·理T4)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)【答案】C【解析】由曲线X的对称轴为x=μ1,曲线Y的对称轴为x=μ2,可知μ2>μ1.∴P(Y≥μ2)<P(Y≥μ1),故A错;由图象知σ1<σ2且均为正数,∴P(X≤σ2)>P(X≤σ1),故B错;对任意正数t,由题中图象知,P(X≤t)≥P(Y≤t),故C正确,D错.44.(2015·山东·理T8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%【答案】B【解析】由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ-2σ<ξ<μ+2σ)-P(μ-σ<ξ<μ+σ)2=13.59%.=95.44%-68.26%245.(2014·陕西·文T9)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s2【答案】D【解析】由题意,得x=x1+x2+…+x1010,y i=x i+100,所以y1,y2,…,y10的均值为x+100,方差不变.故选D.46.(2014·重庆·文T3)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.250【答案】A【解析】由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.47.(2014·湖南·文T3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3【答案】D【解析】由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3.48.(2014·广东·文T6)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20【答案】C【解析】由题意知分段间隔为100040=25,故选C.49.(2014·全国1·理T5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78【答案】D【解析】4名同学各自在周六、周日两天中任选一天参加活动的情况有24=16(种),其中4名同学都在周六或周日参加活动各有1种情况.所以所求概率为P=16-216=78.50.(2014·陕西·文T6)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.45【答案】B【解析】设正方形的四个顶点为A,B,C,D,中心为O,从这5个点中任取2个点,一共有10种不同的取法:AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,其中这2个点的距离小于该正方形边长的取法共有4种:AO,BO,CO,DO.因此由古典概型概率计算公式,可得所求概率P=410=25,故选B.51.(2014·湖南·文T5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.15【答案】B【解析】由几何概型的概率公式可得P(X≤1)=35,故选B.52.(2014·辽宁·文T6)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8【答案】B【解析】所求概率为S半圆S长方形=12π×122×1=π4,故选B.53.(2014·全国2·理T5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.45【答案】A【解析】设某天空气质量为优良为事件A,随后一天空气质量为优良为事件B,由已知得P(A)=0.75,P(AB)=0.6,所求事件的概率为P(B|A)=P(AB)P(A)=0.60.75=0.8,故选A.54.(2013·陕西·理T5)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是()A .1-π4B .π2-1C .2-π2D .π4【答案】A【解析】S 矩形ABCD =1×2=2,S 扇形ADE =S 扇形CBF =π4.由几何概型可知该地点无信号的概率为P=S矩形ABCD-S扇形ADE-S扇形CBFS矩形ABCD=2-π22=1-π4.55.(2013·四川·理T9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A.14 B.12C.34D.78【答案】C【解析】设两串彩灯第一次闪亮的时刻分别为x,y,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x,y)||x-y|≤2},由图示得,该事件概率P=S阴影S正方形=16-416=34.56.(2013·湖南·文T9)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB =( ) A.12B.14C.√32D.√74【答案】D【解析】如图,设AB=2x,AD=2y. 由于AB 为最大边的概率是12,则P 在EF 上运动满足条件,且DE=CF=12x ,即AB=EB 或AB=FA.∴2x=√(2y )2+(32x)2,即4x 2=4y 2+94x 2,即74x 2=4y 2,∴y 2x 2=716.∴y x =√74.又AD AB =2y 2x =y x =√74,故选D .57.(2013·全国1·文T3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A .12B .13C .14D .16【答案】B【解析】由题意知总事件数为6,分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为1358.(2013·全国1·理T3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样【答案】C【解析】因为学段层次差异较大,所以宜采用按学段分层抽样.59.(2013·江西·理T4文T5)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01【答案】D【解析】选出的5个个体的编号依次是08,02,14,07,01,故选D.60.(2013·陕西·理T4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A.11B.12C.13D.14【答案】B【解析】840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l,则第k 段抽取的号码为l+(k-1)·20,1≤l ≤20,1≤k ≤42.令481≤l+(k -1)·20≤720,得25+1-l20≤k≤37-l20.由1≤l≤20,则25≤k≤36.满足条件的k 共有12个.61.(2012·山东·理T4)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 ( ) A.7 B.9 C.10 D.15【答案】C【解析】由题意可得,抽样间隔为30,区间[451,750]恰好为10个完整的组,所以做问卷B 的有10人,故选C.62.(2012·北京·理T2)设不等式组{0≤x ≤2,0≤y ≤2表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22C.π6D.4-π4【答案】D【解析】由题意知此概型为几何概型,设所求事件为A,如图所示,边长为2的正方形区域为总度量μΩ,满足事件A 的是阴影部分区域μA,故由几何概型的概率公式得P (A )=22-14×π×2222=4-π4.63.(2012·辽宁·文T11)在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20 cm2的概率为( ) A.16 B.13C.23D.45【答案】C【解析】此概型为几何概型,由于在长为12 cm 的线段AB 上任取一点C,因此总的几何度量为12,满足矩形面积大于20 cm2的点在C1与C2之间的部分,如图所示. 因此所求概率为812,即23,故选C .64.(2012·安徽·文T10)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于 ( )。
十年高考真题分类汇编(2010-2019) 数学 专题14 概率与统计 Word版含解析
十年高考真题分类汇编(2010—2019)数学专题14概率与统计1.(2019·全国1·理T6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻 “”和阴爻“”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116【答案】A【解析】由题可知,每一爻有2种情况,故一重卦的6个爻有26种情况.其中6个爻中恰有3个阳爻有C 63种情况,所以该重卦恰有3个阳爻的概率为C 6326=516,故选A .2.(2019·全国2·文T4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15【答案】B【解析】设测量过该指标的3只兔子为a,b,c,剩余2只为A,B,则从这5只兔子中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{c,A,B},{b,A,B}共10种,其中恰有2只测量过该指标的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}共6种,所以恰有2 只测量过该指标的概率为610=35,故选B .3.(2019·全国3·文T3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) 【答案】D【解析】两位男同学和两位女同学排成一列,共有24种排法.两位女同学相邻的排法有12种,故两位女同学相邻的概率是12.故选D.4.(2019·全国1·文T6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生 【答案】C【解析】由已知得将1 000名新生分为100个组,每组10名学生,用系统抽样46号学生被抽到,则第一组应为6号学生,所以每组抽取的学生号构成等差数列{an},所以an=10n-4,n ∈N*, 若10n-4=8,则n=1.2,不合题意; 若10n-4=200,则n=20.4,不合题意; 若10n-4=616,则n=62,符合题意; 若10n-4=815,则n=81.9,不合题意. 故选C.5.(2019·全国2·理T5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差【答案】A【解析】设9位评委的评分按从小到大排列为x1<x2<x3<x4<…<x8<x9.对于A,原始评分的中位数为x5,去掉最低分x1,最高分x9后,剩余评分的大小顺序为x2<x3<…<x8,中位数仍为x5,故A 正确;对于B,原 始评分的平均数x =19(x 1+x 2+…+x 9),有效评分的平均数x '=17(x 2+x 3+…+x 8),因为平均数受极端值影响较大,所以x 与x '不一定相同,故B 不正确;对于C,原始评分的方差s 2=19[(x 1-x )2+(x 2-x )2+…+(x 9-x )2],有效评分的方差s'2=17[(x 2-x ')2+(x 3-x ')2+…+(x 8-x ')2],由B 易知,C 不正确;对于D,原始评分的极差为x9-x1,有效评分的极差为x8-x2,显然极差变小,故D 不正确. 6.(2018·全国2·理T8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112 B.114C.115D.118【答案】C【解析】不超过30的素数有“2,3,5,7,11,13,17,19,23,29”共10个.其中和为30的有7+23,11+19,13+17共3种情况,故P=3C 102=115.7.(2018·全国2·文T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.3 【答案】D【解析】设2名男同学为男1,男2,3名女同学为女1,女2,女3,则任选两人共有(男1,女1),(男1,女2),(男1,女3),(男1,男2),(男2,女1),(男2,女2)(男2,女3)(女1,女2),(女1,女3),(女2,女3)共10种,其中选中两人都为女同学共(女1,女2),(女1,女3)、(女2,女3)3种,故P=310=0.3.8.(2018·全国1·理T10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( ) A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 【答案】A【解析】∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC,S Ⅲ=π8BC 2-12AB ·AC,S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=1AB ·AC ,S Ⅲ=πBC 2-1AB ·AC , S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.9.(2018·江苏·T3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .【答案】90【解析】由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为89+89+90+91+91=90.10.(2018·全国1·理T3文T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设建设前经济收入为1,则建设后经济收入为2,建设前种植收入为0.6,建设后种植收入为2×0.37=0.74,故A 不正确;建设前的其他收入为0.04,养殖收入为0.3,建设后其他收入为0.1,养殖收入为0.6,故B,C 正确;建设后养殖收入与第三产业收入的总和所占比例为58%,故D 正确,故选A. 11.(2018·浙江·T7)设0<p<1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( )A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小 【答案】D【解析】由题意可知,E(ξ)=0×(1-p 2)+1×12+2×p 2=12+p,D(ξ)=(0-12-p)2×1-p 2+(1-12-p)2×12+(2-12-p)2×p2=12(-2p 2+2p +12)=-(p 2-p +14-12) =-(p -12)2+12,p ∈(0,1).故当p 在(0,1)内增大时,D(ξ)先增大后减小.12.(2018·全国3·理T8)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 【答案】B【解析】由题意,得DX=np(1-p)=10p(1-p)=2.4,∴p(1-p)=0.24,由p(X=4)<p(X=6)知C 104p 4·(1-p)6<C 106p 6(1-p)4,即p2>(1-p)2,∴p>0.5,∴p=0.6(其中p=0.4舍去).13.(2018·全国3·文T5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 【答案】B【解析】设不用现金支付的概率为P,则P=1-0.45-0.15=0.4.14.(2017·全国3·理T3文T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由题图可知2014年8月到9月的月接待游客量在减少,故A错误.15.(2017·山东·文T8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5B.5,5C.3,7D.5,7【答案】A【解析】甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.16.(2017·全国1·理T2文T4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为2,则圆半径为1,正方形的面积为2×2=4,圆的面积为π×12=π.由图形的对称性,可知图中黑色部分的面积为圆面积的一半,即12πr 2=12π,所以此点取自黑色部分的概率为π24=π8.17.(2017·全国2·文T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110 B .15C .310D .25【答案】D【解析】从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图所示.总共有25种情况,其中第一张卡片上的数大于第二张卡片上的数的情况有10种,故所求的概率为1025=25. 18.(2017·天津·文T3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45 B.35C.25D.15【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,共有(红黄),(红蓝),(红绿),(红紫),(黄蓝),(黄绿),(黄紫),(蓝绿),(蓝紫),(绿紫)10种不同情况,记“取出的2支彩笔中含有红色彩笔”为事件A,则事件A 包含(红黄),(红蓝),(红绿),(红紫)4个基本事件,则P(A)=4=2.故选C.19.(2017·山东·理T5)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归 直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4,该班某学生的脚长为24,据此估计其身高为( ) A.160B.163C.166D.170【答案】C【解析】由已知得x =110∑i=110x i =22.5,y =110·∑i=110y i =160,又b ^=4,所以a ^=y −b ^x =160-4×22.5=70,故当x=24时,y ^=4×24+70=166.故选C .20.(2016·全国1·文T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56【答案】C【解析】总的基本事件是红黄,白紫;红白,黄紫;红紫,黄白,共3种.满足条件的基本事件是红黄,白紫;红白,黄紫,共2种.故所求事件的概率为P=23.21.(2016·全国3·文T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130【答案】C【解析】密码的前两位共有15种可能,其中只有1种是正确的密码,因此所求概率为115.故选C.22.(2016·北京·文T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.925【答案】B【解析】从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为410=25.23.(2016·全国1·理T4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【答案】B【解析】这是几何概型问题,总的基本事件空间如图所示,共40分钟,等车时间不超过10分钟的时间段为7:50至8:00和8:20至8:30,共20分钟,故他等车时间不超过10分钟的概率为P=2040=12,故选B.24.(2016·全国2·理T10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2nmC.4mnD.2mn【答案】C【解析】利用几何概型求解,由题意可知,14S圆S正方形=14π×1212=mn,所以π=4mn.25.(2016·山东·理T3文T3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120D.140【答案】D【解析】自习时间不少于22.5小时为后三组,其频率和为(0.16+0.08+0.04)×2.5=0.7,故人数为200×0.7=140,选D.26.(2016·全国2·文T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.7B.5C.38D.310【答案】B【解析】因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.27.(2016·全国3·理T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个【答案】D【解析】由题图可知,0 ℃在虚线圈内,所以各月的平均最低气温都在0 ℃以上,A正确;易知B,C正确;平均最高气温高于20 ℃的月份有3个,分别为六月、七月、八月,D错误.故选D.28.(2015·全国2·理T3文T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【答案】D【解析】由柱形图知,2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.29.(2015·陕西·理T2文T2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167【答案】C【解析】由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).故选C.30.(2015·北京·理T8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】对于选项A,从图中可以看出乙车的最高燃油效率大于5,故A项错误;对于选项B,同样速度甲车消耗1升汽油行驶的路程比乙车、丙车的多,所以行驶相同路程,甲车油耗最少,故B项错误;对于选项C,甲车以80千米/小时的速度行驶,1升汽油行驶10千米,所以行驶1小时,即行驶80千米,消耗8升汽油,故C项错误;对于选项D,速度在80千米/小时以下时,相同条件下每消耗1升汽油,丙车行驶路程比乙车多,所以该市用丙车比用乙车更省油,故D 项正确.31.(2015·湖北·理T2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1 365石【答案】B【解析】由条件知254粒内夹谷28粒,可估计米内夹谷的概率为28254=14127,所以1 534石米中夹谷约为14127×1 534≈169(石).32.(2015·陕西·理T11)设复数z=(x-1)+yi(x,y ∈R),若|z|≤1,则y ≥x 的概率为( ) A.34+12π B.12+1πC.12−1π D.14−12π【答案】D【解析】由|z|≤1,得(x-1)2+y2≤1.不等式表示以C(1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=14π×12-S △OAC=14π-12×1×1=π4−12.故所求事件的概率P=S 阴S圆=π4-12π×12=14−12π. 33.(2015·山东·文T7)在区间[0,2]上随机地取一个数x,则事件“-1≤lo g 12(x +12)≤1”发生的概率为( ) A.34 B.23C.13D.14【答案】A【解析】由-1≤lo g 12(x +12)≤1,得lo g 122≤lo g 12(x +12)≤lo g 1212,所以12≤x+12≤2,所以0≤x ≤32.由几何概型可知,事件发生的概率为32-02-0=34.34.(2015·福建·文T8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f(x)={x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14C.38D.12【答案】B【解析】如图,设f(x)与y 轴的交点为E,则E(0,1). ∵B(1,0),∴yC=1+1=2.∴C(1,2). 又四边形ABCD 是矩形, ∴D(-2,2).∴S △DCE =12×[1-(-2)]×1=32.又S 矩形=3×2=6,∴由几何概型概率计算公式可得所求概率P=326=14.故选B .35.(2015·湖北·文T4)已知变量x 和y 满足关系y=-0.1x+1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关 【答案】A【解析】由y=-0.1x+1知y 与x 负相关,又因为y 与z 正相关,故z 与x 负相关.36.(2015·湖北·文T8)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12B.p 1<12<p 2 C.p 2<12<p 1 D.12<p 2<p 1【答案】B【解析】设点P 的坐标为(x,y),由题意x,y ∈[0,1], 所以点P 在正方形OABC 内,S 正方形OABC=1×1=1. 画出直线x+y=12与正方形交于D ,E 两点,画出曲线xy=12与正方形交于M,N两点.而Rt△OAC的面积S=12.由图可知:S△OED<S△OAC<S曲边形OCMNA,所以p1<12<p2.故选B.37.(2015·全国1·文T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120【答案】C【解析】从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为110.38.(2015·广东·文T7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.1【答案】B【解析】设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.39.(2015·湖南·文T2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3B.4C.5D.6【答案】B【解析】依题意,应将35名运动员的成绩由好到差排序后分为7组,每组5人.然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰好是第3,4,5,6组,因此,成绩在该区间上的运动员人数是4.40.(2015·北京·文T4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90B.100C.180D.300【答案】C【解析】由已知分层抽样中青年教师的抽样比为3201600=15, 由分层抽样的性质可得老年教师的抽样比也等于15, 所以样本中老年教师的人数为900×15=180.故选C.41.(2015·安徽·理T6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( ) A.8 B.15C.16D.32【答案】C【解析】设数据x 1,x 2,…,x 10的平均数为x ,标准差为s,则2x 1-1,2x 2-1,…,2x 10-1的平均数为2x -1,方差为[(2x 1-1)-(2x -1)]2+[(2x 2-1)-(2x -1)]2+…+[(2x 10-1)-(2x -1)]210=4(x 1-x )2+4(x 2-x )2+…+4(x 10-x )210=4s 2,因此标准差为2s=2×8=16.故选C.42.(2015·全国1·理T4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 【答案】A【解析】由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C 320.62(1-0.6)+C 330.63=0.648.43.(2015·湖北·理T4)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)【答案】C【解析】由曲线X的对称轴为x=μ1,曲线Y的对称轴为x=μ2,可知μ2>μ1.∴P(Y≥μ2)<P(Y≥μ1),故A错;由图象知σ1<σ2且均为正数,∴P(X≤σ2)>P(X≤σ1),故B错;对任意正数t,由题中图象知,P(X≤t)≥P(Y≤t),故C正确,D错.44.(2015·山东·理T8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%【答案】B【解析】由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ-2σ<ξ<μ+2σ)-P(μ-σ<ξ<μ+σ)2=13.59%.=95.44%-68.26%245.(2014·陕西·文T9)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s2【答案】D【解析】由题意,得x=x1+x2+…+x1010,y i=x i+100,所以y1,y2,…,y10的均值为x+100,方差不变.故选D.46.(2014·重庆·文T3)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.250【答案】A【解析】由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.47.(2014·湖南·文T3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3【答案】D【解析】由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3.48.(2014·广东·文T6)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20【答案】C【解析】由题意知分段间隔为100040=25,故选C.49.(2014·全国1·理T5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78【答案】D【解析】4名同学各自在周六、周日两天中任选一天参加活动的情况有24=16(种),其中4名同学都在周六或周日参加活动各有1种情况.所以所求概率为P=16-216=78.50.(2014·陕西·文T6)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.45【答案】B【解析】设正方形的四个顶点为A,B,C,D,中心为O,从这5个点中任取2个点,一共有10种不同的取法:AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,其中这2个点的距离小于该正方形边长的取法共有4种:AO,BO,CO,DO.因此由古典概型概率计算公式,可得所求概率P=410=25,故选B.51.(2014·湖南·文T5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.15【答案】B【解析】由几何概型的概率公式可得P(X≤1)=35,故选B.52.(2014·辽宁·文T6)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8【答案】B【解析】所求概率为S半圆S长方形=12π×122×1=π4,故选B.53.(2014·全国2·理T5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.45【答案】A【解析】设某天空气质量为优良为事件A,随后一天空气质量为优良为事件B,由已知得P(A)=0.75,P(AB)=0.6,所求事件的概率为P(B|A)=P(AB)P(A)=0.60.75=0.8,故选A.54.(2013·陕西·理T5)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是()A .1-π4B .π2-1C .2-π2D .π4【答案】A【解析】S 矩形ABCD =1×2=2,S 扇形ADE =S 扇形CBF =π4.由几何概型可知该地点无信号的概率为P=S矩形ABCD-S扇形ADE-S扇形CBFS矩形ABCD=2-π22=1-π4.55.(2013·四川·理T9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A.14 B.12C.34D.78【答案】C【解析】设两串彩灯第一次闪亮的时刻分别为x,y,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x,y)||x-y|≤2},由图示得,该事件概率P=S阴影S正方形=16-416=34.56.(2013·湖南·文T9)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB =( ) A.12B.14C.√32D.√74【答案】D【解析】如图,设AB=2x,AD=2y. 由于AB 为最大边的概率是12,则P 在EF 上运动满足条件,且DE=CF=12x ,即AB=EB 或AB=FA.∴2x=√(2y )2+(32x)2,即4x 2=4y 2+94x 2,即74x 2=4y 2,∴y 2x 2=716.∴y x =√74.又AD AB =2y 2x =y x =√74,故选D .57.(2013·全国1·文T3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A .12B .13C .14D .16【答案】B【解析】由题意知总事件数为6,分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为158.(2013·全国1·理T3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样【答案】C【解析】因为学段层次差异较大,所以宜采用按学段分层抽样.59.(2013·江西·理T4文T5)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01【答案】D【解析】选出的5个个体的编号依次是08,02,14,07,01,故选D.60.(2013·陕西·理T4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A.11B.12C.13D.14【答案】B【解析】840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l,则第k 段抽取的号码为l+(k-1)·20,1≤l ≤20,1≤k ≤42.令481≤l+(k -1)·20≤720,得25+1-l 20≤k≤37-l20.由1≤l≤20,则25≤k≤36.满足条件的k 共有12个.61.(2012·山东·理T4)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 ( ) A.7 B.9 C.10 D.15【答案】C【解析】由题意可得,抽样间隔为30,区间[451,750]恰好为10个完整的组,所以做问卷B 的有10人,故选C.62.(2012·北京·理T2)设不等式组{0≤x ≤2,0≤y ≤2表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22C.π6D.4-π4【答案】D【解析】由题意知此概型为几何概型,设所求事件为A,如图所示,边长为2的正方形区域为总度量μΩ,满足事件A 的是阴影部分区域μA,故由几何概型的概率公式得P (A )=22-14×π×2222=4-π4.63.(2012·辽宁·文T11)在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20 cm2的概率为( ) A.16 B.13C.23D.45【答案】C【解析】此概型为几何概型,由于在长为12 cm 的线段AB 上任取一点C,因此总的几何度量为12,满足矩形面积大于20 cm2的点在C1与C2之间的部分,如图所示. 因此所求概率为812,即23,故选C .64.(2012·安徽·文T10)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于 ( )。
概率统计选填题【2023高考必备】2013-2022十年高考数学真题分类汇编(全国通用版)(解析版)
A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大
C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大
若两数不互质,不同的取法有: ,共7种,
故所求概率 .故选:D.
【题目栏目】概率\古典概型与几何概型\古典概型
【题目来源】2022新高考全国I卷·第5题
4.(2021年新高考全国Ⅱ卷·第6题)某物理量的测量结果服从正态分布 ,下列结论中不正确的是()
A. 越小,该物理量在一次测量中在 的概率越大
B. 越小,该物理量在一次测量中大于10 概率为0.5
讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;
讲座后问卷答题的正确率的极差为 ,
讲座前问卷答题的正确率的极差为 ,所以 错.
故选:B.
【题目栏目】统计\用样本估计总体\用样本的数字特征估计总体的数字特征
【题目来源】2022年全国甲卷理科·第2题
故选:B.
【点睛】本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件 对应的区域面积,即可顺利解出.
C.乙与丙相互独立D.丙与丁相互独立
【答案】B
解析: ,
故选B.
【题目栏目】概率\事件与概率\事件的关系及运算
【题目来源】2021年新高考Ⅰ卷·第8题
6.(2020年新高考I卷(山东卷)·第5题)某中学的学
生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()
10年高考123及山东新课标真题概率与统计选填题理科
大数据之十年高考真题(2011-2020)与最优模拟题(新课标理科与山东卷)专题15概率统计与计数原理选择填空题本专题考查的知识点为:概率统计与计数原理,历年考题主要以选择填空题题型出现,重点考查的知识点为:随机抽样问题,概率问题的求解,分布列及其应用,排列组合问题,二项式定理问题,预测明年本考点题目会有所变化,备考方向以随机抽样问题,分布列问题,排列组合问题为重点较佳.1.【2020年全国1卷理科05】某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,⋯,20)得到下面的散点图:由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+b e x D.y=a+blnx)(x+y)5的展开式中x3y3的系数为()2.【2020年全国1卷理科08】(x+y2xA.5B.10C.15D.203.【2020年全国2卷理科03】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者() A .10名 B .18名 C .24名 D .32名4.【2020年全国3卷理科03】在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑p i 4i=1=1,则下面四种情形中,对应样本的标准差最大的一组是() A .p 1=p 4=0.1,p 2=p 3=0.4 B .p 1=p 4=0.4,p 2=p 3=0.1 C .p 1=p 4=0.2,p 2=p 3=0.3 D .p 1=p 4=0.3,p 2=p 3=0.25.【2020年山东卷03】6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有() A .120种B .90种C .60种D .30种6.【2020年山东卷05】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是() A .62% B .56% C .46% D .42%7.【2019年新课标3理科03】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.88.【2019年新课标3理科04】(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12B .16C .20D .249.【2019年全国新课标2理科05】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数B .平均数C .方差D .极差10.【2019年新课标1理科06】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.111611.【2018年新课标1理科03】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半12.【2018年新课标1理科10】如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p313.【2018年新课标2理科08】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.11814.【2018年新课标3理科05】(x2+2x)5的展开式中x4的系数为()A.10B.20C.40D.8015.【2018年新课标3理科08】某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.316.【2017年新课标1理科02】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π417.【2017年新课标1理科06】(1+1x2)(1+x)6展开式中x2的系数为()A.15B.20C.30D.3518.【2017年新课标2理科06】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种19.【2017年新课标3理科03】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳20.【2017年新课标3理科04】(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80B.﹣40C.40D.8021.【2016年新课标1理科04】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.3422.【2016年新课标2理科05】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.923.【2016年新课标2理科10】从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn24.【2016年新课标3理科04】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个25.【2015年新课标1理科04】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.31226.【2015年新课标1理科10】(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.6027.【2015年新课标2理科03】根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关28.【2014年新课标1理科05】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.18B.38C.58D.7829.【2014年新课标2理科05】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.4530.【2013年新课标1理科03】为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样31.【2013年新课标1理科09】设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.832.【2013年新课标2理科05】已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.﹣4B.﹣3C.﹣2D.﹣133.【2012年新课标1理科02】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种34.【2011年新课标1理科04】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.3435.【2011年新课标1理科08】(x+ax )(2x−1x)5的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40B.﹣20C.20D.4036.【2020年山东卷12】信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为1,2,⋯,n,且P(X =i)=p i >0(i =1,2,⋯,n),∑p i n i=1=1,定义X 的信息熵H(X)=−∑p i ni=1log 2p i .()A .若n =1,则H (X )=0B .若n =2,则H (X )随着p 1的增大而增大C .若p i =1n (i =1,2,⋯,n),则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P(Y =j)=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y ) 37.【2020年全国2卷理科14】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.38.【2020年全国3卷理科14】(x 2+2x )6的展开式中常数项是__________(用数字作答).39.【2019年全国新课标2理科13】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 .40.【2019年新课标1理科15】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 . 41.【2018年新课标1理科15】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种.(用数字填写答案)42.【2017年新课标2理科13】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X 表示抽到的二等品件数,则DX = .43.【2016年新课标1理科14】(2x +√x )5的展开式中,x 3的系数是 10 .(用数字填写答案)44.【2015年新课标2理科15】(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a = .45.【2014年新课标1理科13】(x ﹣y )(x +y )8的展开式中x 2y 7的系数为 .(用数字填写答案) 46.【2014年新课标2理科13】(x +a )10的展开式中,x 7的系数为15,则a = .47.【2013年新课标2理科14】从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n = .48.【2012年新课标1理科15】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .。
概率统计解答题(理科)(解析版)- 十年(2014-2023)高考数学真题分项汇编(全国通用)
Cm2 m3
)
(Cmn22
Cm2 n1
)]
=
m 1
Cm2 n2
.
民间解答:(1) 7C36 4C74 7 20 4 35 0 ;
(2)对任意的 m N* ,
①
当 n m 时,左边 m 1 Cmm
m
1
,右边
m
1
Cm2 m2
m 1,等式成立,
② 假设 n k k ≥ m 时命题成立,
题型一:二项式定理
1.(2019·江苏·第24题)设 (1 x)n a0 a1x a2 x2 an xn , n 4, n N* .已知 a32 2a2a4 . (1)求 n 的值;(2)设 (1 3)n a b 3 ,其中 a,b N* ,求 a2 3b2 的值. 【答案】见解析
PK2 k
0.050
0.010
0.001
k
3.841
6.635
10.828
【答案】(1)答案见解析
(2)(i)证明见解析;(ii) R 6 ;
解析:(1)由已知 K 2
n(ad bc)2
= 200(4090 6010)2
(a b)(c d)(a c)(b d) 50150100100
6
2
24
解得 n 5 .
(2)由(1)知, n 5 .
(1 3)n (1 3)5
C50 C15 3 C52 ( 3)2 C53 ( 3)3 C54 ( 3)4 C55 ( 3)5 ab 3. 解法一:因为 a,b N* ,所以 a C50 3C52 9C54 76,b C15 3C35 9C55 44 , 从而 a2 3b2 762 3 442 32 .
都为 1 , 2
十年高考理科数学真题 专题十一 概率与统计 三十二 统计初步(1)及答案
专题十一概率与统计第三十二讲统计初步2019年1 (2019全国II理5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差2(2019全国II理13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.3(2019全国III理17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).4(2019浙江7)设0<a<1,则随机变量X的分布列是则当a在(0,1)内增大时A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大5.(2019江苏5)已知一组数据6,7,8,8,9,10,则该组数据的方差是.2010-2018年一、选择题1.(2018全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2017新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳3.(2017江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(2016年山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56 B.60 C.120 D.1405.(2016年全国III)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。
十年真题(2010_2019)高考数学真题分类汇编专题14概率统计理(含解析)
专题14概率统计历年考题细目表历年高考真题汇编1.【2019年新课标1理科06】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m20,则该重卦恰有3个阳爻的概率p.故选:A.2.【2018年新课标1理科03】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项,故选:A.3.【2018年新课标1理科10】如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【解答】解:如图:设BC=2r1,AB=2r2,AC=2r3,∴r12=r22+r32,∴SⅠ4r2r3=2r2r3,SⅢπr12﹣2r2r3,SⅡπr32πr22﹣SⅢπr32πr22πr12+2r2r3=2r2r3,∴SⅠ=SⅡ,∴P1=P2,故选:A.4.【2017年新课标1理科02】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S,则对应概率P,故选:B.5.【2016年新课标1理科04】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P,故选:B.6.【2015年新课标1理科04】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为0.648.故选:A.7.【2014年新课标1理科05】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为.故选:D.8.【2013年新课标1理科03】为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.9.【2011年新课标1理科04】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P,故选:A.10.【2010年新课标1理科06】某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选:B.11.【2019年新课标1理科15】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.【解答】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.12.【2012年新课标1理科15】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A),P(B)P(C)=P(AB)=P(A)P(B)故答案为13.【2019年新课标1理科21】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i﹣1+bp i+cp i+1(i=1,2,…,7),其中a=P(X =﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1﹣p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.【解答】(1)解:X的所有可能取值为﹣1,0,1.P(X=﹣1)=(1﹣α)β,P(X=0)=αβ+(1﹣α)(1﹣β),P(X=1)=α(1﹣β),∴X 的分布列为:(2)(i )证明:∵α=0.5,β=0.8, ∴由(1)得,a =0.4,b =0.5,c =0.1.因此p i =0.4p i ﹣1+0.5p i +0.1p i +1(i =1,2,…,7),故0.1(p i +1﹣p i )=0.4(p i ﹣p i ﹣1),即(p i +1﹣p i )=4(p i ﹣p i ﹣1),又∵p 1﹣p 0=p 1≠0,∴{p i +1﹣p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )解:由(i)可得,p 8=(p 8﹣p 7)+(p 7﹣p 6)+…+(p 1﹣p 0)+p 0,∵p 8=1,∴p 1,∴P 4=(p 4﹣p 3)+(p 3﹣p 2)+(p 2﹣p 1)+(p 1﹣p 0)+p 0p 1.P 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.14.【2018年新课标1理科20】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p),∴,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f(p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.15.【2017年新课标1理科19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得9.97,s0.212,其中x i为抽取的第i 个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,0.09.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由9.97,s≈0.212,得μ的估计值为9.97,σ的估计值为0.212,由样本数据可以看出一个零件的尺寸在之外,因此需对当天的生产过程进行检查.剔除之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为0.09.16.【2016年新课标1理科19】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2,P(X=17),P(X=18)=()2+2()2,P(X=19),P(X=20),P(X=21),P(X=22),∴X的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18).P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19).∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19).买19个所需费用期望:EX1=200(200×19+500)(200×19+500×2)(200×19+500×3)4040,买20个所需费用期望:EX2(200×20+500)(200×20+2×500)4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.17.【2015年新课标1理科19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i)2(w i)2(x i)(y i)(w i)i表中w i i,(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1v1),(u2v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:,.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w,先建立y关于w的线性回归方程,由于68,563﹣68×6.8=100.6,所以y关于w的线性回归方程为100.6+68w,因此y关于x的回归方程为100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值100.6+68576.6,年利润z的预报值576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值0.2(100.6+68)﹣x=﹣x+13.620.12,当 6.8时,即当x=46.24时,年利润的预报值最大.18.【2014年新课标1理科18】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.19.【2013年新课标1理科19】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)(Ⅱ)X可能的取值为400,500,800,并且P(X=800),P(X=500),P(X=400)=1,故X的分布列如下:故EX=400500800506.2520.【2012年新课标1理科18】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)0.1,P(X=70)0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝21.【2011年新课标1理科19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为22.【2010年新课标1理科19】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:K2.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.考题分析与复习建议本专题考查的知识点为:随机抽样,用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,古典概型,几何概型,离散型随机变量及其分布列,二项分布及其应用,离散型随机变量的均值与方差,正态分布等,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:随机抽样,用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,古典概型,几何概型,离散型随机变量及其分布列,二项分布及其应用,离散型随机变量的均值与方差,等,预测明年本考点题目会比较稳定,备考方向以知识点用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,离散型随机变量及其分布列,二项分布及其应用,离散型随机变量的均值与方差等为重点较佳.最新高考模拟试题1.如图是1990年-2017年我国劳动年龄(15-64岁)人口数量及其占总人口比重情况:根据图表信息,下列统计结论不正确的是( )A .2000年我国劳动年龄人口数量及其占总人口比重的年增幅均为最大B .2010年后我国人口数量开始呈现负增长态势C .2013年我国劳动年龄人口数量达到峰值D .我国劳动年龄人口占总人口比重极差超过6% 【答案】B 【解析】解:A 选项,2000年我国劳动年龄人口数量增幅约为6000万,是图中最大的,2000年我国劳动年龄人口数量占总人口比重的增幅约为3%,也是最多的.故A 对.B 选项,2010年到2011年我国劳动年龄人口数量有所增加,故B 错.C 选项,从图上看,2013年的长方形是最高的,即2013年我国劳动年龄人口数量达到峰值,C 对,D 选项,我国劳动年龄人口占总人口比重最大为11年,约为74%,最小为92年,约为67%,故极差超过6%.D 对. 故选:B .2.一试验田某种作物一株生长果个数x 服从正态分布()290,N σ,且()700.2P x <=,从试验田中随机抽取10株,果实个数在[]90,110的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( ) A .3 B .2.1 C .0.3 D .0.21【答案】B 【解析】∵290(),x N δ~,且()700.2P x <=,所以()1100.2P x >=∴()901100.50.20.3P x <<=-=, ∴()10,0.3X B ~,X 的方差为()100.310.3 2.1⨯⨯-=.故选B .3.小张刚参加工作时月工资为5000元,各种用途占比统计如下面的条形图.后来他加强了体育锻炼,目前月工资的各种用途占比统计如下面的拆线图.已知目前的月就医费比刚参加工作时少200元,则目前小张的月工资为( )A .5500B .6000C .6500D .7000【答案】A 【解析】由条形图可知,刚参加工作的月就医费为:500015%750⨯=元 则目前的月就医费为:750200550-=元∴目前的月工资为:55010%5500÷=元本题正确选项:A4.若,a b 是从集合{}1,1,2,3,4-中随机选取的两个不同元素,则使得函数()5ab f x x x =+是奇函数的概率为( )A .320B .310C .925D .35【答案】B 【解析】从集合{}1,1,2,3,4-中随机选取的两个不同元素共有2520A = 种要使得函数()5ab f x x x =+是奇函数,必须,a b 都为奇数共有236A = 种则函数()5ab f x x x =+是奇函数的概率为632010P == 故选B5.某企业的一种商品的产量与单位成本数据如下表:若根据表中提供的数据,求出y 关于x 的线性回归方程为ˆ 1.1528.1yx =-+,则a 的值等于( ) A .4.5 B .5C .5.5D .6【答案】B 【解析】1416182022901855x ++++===1210733255a a y +++++==()x y , 在线性回归方程ˆ 1.1528.1yx =-+上 1.151828.1=7.4y \=-?则32=7.45a+解得5a = 故选B6.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[)50,60的同学有30人,则n 的值为( )A .100B .1000C .90D .900【答案】A 【解析】由频率分布直方图可知,支出在[)50,60的同学的频率为:0.03100.3⨯=301000.3n ∴== 本题正确选项:A7.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为( ) A .56B .45C .34D .23【答案】B 【解析】设A 为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数2615n C ==,恰好抽到2幅不同种类包含的基本事件个数21132212m C C C ==,则恰好抽到2幅不同种类的概率为()124155m P A n ===. 故选:B .8.若即时起10分钟内,305路公交车和202路公交车由南往北等可能进入二里半公交站,则这两路公交车进站时间的间隔不超过2分钟的概率为( ) A .0.18 B .0.32 C .0.36 D .0.64【答案】C【解析】设305路车和202路车的进站时间分别为x 、y ,设所有基本事件为:W 010010x y ≤≤⎧⎨≤≤⎩,“进站时间的间隔不超过2分钟”为事件A ,则{(,)|010,010,||2}A x y x y x y =≤≤≤≤-≤,画出不等式表示的区域如图中阴影区域,则10108836S =⨯-⨯=,则36()0.36100A S P A S Ω===. 选C .9.一个盒子中放有大小相同的4个白球和1个黑球,从中任取两个球,则所取的两个球不同色的概率为_______. 【答案】25【解析】设4个白球编号为:1,2,3,4;1个黑球为:A从中任取两个球的所有可能结果为:12、13、14、1A 、23、24、2A 、34、3A 、4A ,共10种 所取的两个球不同色的有:1A 、2A 、3A 、4A ,共4种∴所求概率为:42105P == 本题正确结果:2510.已知某中学高三理科班学生共有800人参加了数学与物理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,003,…,800进行编号。
2010-2018全国1卷概率统计真题汇总有答案
2010年全国卷1理数(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想. 【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.(18)(本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望.2011全国卷1理数4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A.13 B.12 C.23 D.34答案:A19.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生成的一件产品的利润y(单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩, 从用B 配方生产的产品中任取一件,其利润记为X (单位:元),求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率) (19)解(Ⅰ)由试验结果知,用A 配方生产的产品中优质的平率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3。
【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用):概率统计解答题(解析版)
解析:(1)设甲在三个项目中获胜的事件依次记为 A, B,C ,所以甲学校获得冠军的概率为
P P ABC P ABC P ABC P ABC
0.5 0.4 0.8 0.5 0.4 0.8 0.5 0.6 0.8 0.5 0.4 0.2 0.16 0.16 0.24 0.04 0.6 . (2)依题可知, X 的可能取值为 0,10, 20,30 ,所以,
P X 0 0.5 0.4 0.8 0.16 ,
P X 10 0.5 0.4 0.8 0.5 0.6 0.8 0.5 0.4 0.2 0.44 ,
P X 20 0.5 0.6 0.8 0.5 0.4 0.2 0.5 0.6 0.2 0.34 ,
P X 30 0.5 0.6 0.2 0.06 .
i=1
, 1.896 1.377 .
n
n
(xi x)2 ( yi y)2
i=1
i=1
【答案】(1) 0.06m2 ; 0.39m3
(2) 0.97
(3)1 2 0 9 m 3
解析:【小问 1 详解】
样本中 10 棵这种树木的根部横截面积的平均值 x 0.6 0.06 10
样本中 10 棵这种树木的材积量的平均值 y 3.9 0.39 10
得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间 [20,70) 的概率; (3)已知该地区这种疾病的患病率为 0.1% ,该地区年龄位于区间[40, 50) 的人口占该地区总人口的 16% .从该地区中任选一人,若此人的年龄位于区间[40, 50) ,求此人患这种疾病的概率.(以样本数
十年真题(2010_2019)高考数学真题分类汇编专题14概率统计理(含解析)
专题14概率统计历年考题细目表题型年份考点试题位置单选题2019 概率2019年新课标1理科06单选题2018 统计2018年新课标1理科03单选题2018 概率2018年新课标1理科10单选题2017 概率2017年新课标1理科02单选题2016 概率2016年新课标1理科04单选题2015 概率2015年新课标1理科04单选题2014 概率2014年新课标1理科05单选题2013 统计2013年新课标1理科03单选题2011 概率2011年新课标1理科04单选题2010 概率2010年新课标1理科06填空题2019 概率2019年新课标1理科15填空题2012 概率2012年新课标1理科15解答题2019 概率统计综合题2019年新课标1理科21解答题2018 概率统计综合题2018年新课标1理科20解答题2017 概率统计综合题2017年新课标1理科19解答题2016 概率统计综合题2016年新课标1理科19解答题2015 概率统计综合题2015年新课标1理科19解答题2014 概率统计综合题2014年新课标1理科18解答题2013 概率统计综合题2013年新课标1理科19解答题2012 概率统计综合题2012年新课标1理科18解答题2011 概率统计综合题2011年新课标1理科19解答题2010 概率统计综合题2010年新课标1理科19历年高考真题汇编1.【2019年新课标1理科06】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m20,则该重卦恰有3个阳爻的概率p.故选:A.2.【2018年新课标1理科03】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项,故选:A.3.【2018年新课标1理科10】如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【解答】解:如图:设BC=2r1,AB=2r2,AC=2r3,∴r12=r22+r32,∴SⅠ4r2r3=2r2r3,SⅢπr12﹣2r2r3,SⅡπr32πr22﹣SⅢπr32πr22πr12+2r2r3=2r2r3,∴SⅠ=SⅡ,∴P1=P2,故选:A.。
2010年-2016年全国卷数学高考试题—概率统计
2010年-2016年全国卷数学高考试题—概率统计 2010年(14)设函数()y f x =为区间(]0,1上的图像是连续不断的一条曲线,且恒有()01f x ≤≤,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面积,先产生两组i 每组N 个,区间(]0,1上的均匀随机数1, 2.....n x x x 和1, 2.....n y y y ,由此得到N 个点),,)((N 321i , =i i y x 。
再数出其中满足)3,2,1)(N i x f y i i =≤(的点数1N ,那么由随机模拟方法可得S 的近似值为___________(19)(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附:=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )K 26.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12C .23D .3419.(本小题满分12分) 某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:(I )分别估计用A 配方,B 配方生产的产品的优质品率;(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 (A )-1 (B )0 (C )12 (D )118.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
十年真题概率全国高考理科数学.doc
真题2008-20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.2009-19(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。
已知前2局中,甲、乙各胜1局。
(1)求甲获得这次比赛胜利的概率;(2)设ε表示从第3局开始到比赛结束所进行的局数,求ε的分布列及数学期望。
2010-18( 12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列及期望.2011-19(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B 配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)2012-18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。
十年真题_概率_全国高考理科数学
如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易
损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,
5/14
十年真题_概率_全国高考理科数学
得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的
4
222
P(X2)C0.4(10.4)0.3456,
4
9/14
十年真题_概率_全国高考理科数学
33
P(X3)C0.4(10.4)0.1536,
4
4
P(X4)0.40.0256.
期望EX40.41.6.
2011-19
(Ⅰ)由实验结果知,用A配方生产的产品中优质的
平率为
228
100
=0.3
,所以用A配方生产的产品的优质
(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关
系式为
从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分
布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质
量指标值落入相应组的概率)
2/14
十年真题_概率_全国高考理科数学
2012-18.(12分)
P(ξ=)2=P(A3A4+B3B4)=0.52
P(ξ=)3=1﹣P(ξ=)2=1﹣0.52=0.48
∴Eξ=2×0.52+3×0.48=2.48.
2010-18
(Ⅰ)记A表示事件:稿件能通过两位初审专家的评审;
B表示事件:稿件恰能通过一位初审专家的评审;
C表示事件:稿件能通过复审专家的评审;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真题2008-20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.2009-19(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。
已知前2局中,甲、乙各胜1局。
(1)求甲获得这次比赛胜利的概率;(2)设ε表示从第3局开始到比赛结束所进行的局数,求ε的分布列及数学期望。
2010-18( 12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列及期望.2011-19(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B 配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)2012-18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n (单位:枝,n N)的函数解析式。
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率。
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。
2013-20 (12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望.2014-18从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图所示的频率分布直方图:第18题图(ZX063)(1)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (2)μσ,,其中μ近似为样本平均数,2σ近似为样本方差2s . (i)利用该正态分布,求P (187.8<Z <212.2);(ii)某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX .12.2.若Z ~N (μ,2σ),则p (μ-σ<Z <μ+σ)=0.682 6,p (μ-2σ<Z <μ+2σ)=0.954 4.2015-19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(Ⅰ)根据散点图判断,y =a +bx 与y =c +哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:年宣传费x =49时,年销售量及年利润的预报值是多少?表中i i x w =,∑==ni iw w 181.年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据),(,),,(),,(2211n n v u v u v u ,其回归直线的u v βα+=斜率和截距的最小二乘估计分别为.ˆˆ,)())((ˆ121u v u u v v u u ni i ni i i βαβ-=---=∑∑==2016-19(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?2017-19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得19.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布2(,)N μσ,则(33)0P Z μσμσ-<<+=,16≈.0.997 40.959 2=,0.09答案2008-20解:(Ⅰ)对于甲:对于乙:⨯+⨯+⨯+⨯=.0.20.40.20.80.210.210.64(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8Eξ=⨯+⨯+⨯=.2009-19【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.2010-18(Ⅰ)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则 D=A+B ·C, ()0.50.50.25,()20.50.50.5,P A P B P C =⨯==⨯⨯== ()()P D P A B C=+=()()P A P B C + =()()()P A P B P C + =0.25+0.5×0.3 =0.40.(Ⅱ)~(4,0.4)X B ,其分布列为:4(0)(10.4)0.1296,P X ==-= 134(1)0.4(10.4)0.3456,P X C ==⨯⨯-= 2224(2)0.4(10.4)0.3456,P X C ==⨯⨯-= 334(3)0.4(10.4)0.1536,P X C ==⨯⨯-= 4(4)0.40.0256.P X ===期望40.4 1.6EX =⨯=.2011-19(Ⅰ)由实验结果知,用A 配方生产的产品中优质的平率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3。
由实验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42(Ⅱ)用B 配方生产的100件产品中,其质量指标值落入区间[)[)[]90,94,94,102,102,110的频率分别为0.04,,054,0.42,因此P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42, 即X 的分布列为X 的数学期望值EX=2×0.04+2×0.54+4×0.42=2.682012-18(1)当16n ≥时,16(105)80y =⨯-=当15n ≤时,55(16)1080y n n n =--=-得:1080(15)()80(16)n n y n N n -≤⎧=∈⎨≥⎩(2)(i )X 可取60,70,80 (60)0.1,(70)0.2,(80P X P X P X ====== X 的分布列为600.1700.2800.7EX =⨯+⨯+⨯= 222160.160.240.744DX =⨯+⨯+⨯=(ii )购进17枝时,当天的利润为(14535)0.1(15525)0.2(16515)0.161750.5476.4y =⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯=76.476> 得:应购进17枝2013-20解:(1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”. 则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14. (2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)·P (A 3)=18,P (X =2)=P (1B ·B 3)=P (1B )P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1151848--=,EX =0·P (X=0)+1·P (X =1)+2·P (X =2)=98.2014-18【测量目标】考查平均数和方差及正态分布【考查方式】给出频率分布直方图求平均数和方差,利用正态分布求概率. 【试题解析】(1)抽取产品的质量指标值的样本平均数和样本方差2s 分别为:平均数=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200.2s =2(30)-×0.02+2(20)-×0.09+2(10)-×0.22+0×0.33+210×0.24+220×0.08+230×0.02=150.(2)(i)由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B (100,0.682 6),所以EX =100×0.682 6=68.26. 【难易程度】中等题2015-19(I)由散点图可以判断,y c =+y 关于年宣传费x 的回归方程类型 ……2分(II)令w =y 关于w 的线性回归方程。