土石坝外文翻译
水利水电工程专业英语词汇和句子
设计阶段(design stage)河流规划river planning选址selecting damsite预可行性研究pre-feasibility study可行性研究feasibility study初步设计preliminary design技施设计tech—construction design招标设计tender design施工详图设计detail construction drawing design 水工建筑物(hydraulic structure)水利枢纽hydroproject枢纽布置layout of hydroproject挡水建筑物water retaining structure取水建筑物water intake structure泄水建筑物water release structure输水建筑物water conveyance structure通航建筑物navigation structure过鱼建筑物fish pass structure永久性建筑物permanent structure临时性建筑物temporary structure水工建筑物(hydraulic structure)水利枢纽hydroproject枢纽布置layout of hydroproject挡水建筑物water retaining structure取水建筑物water intake structure泄水建筑物water release structure输水建筑物water conveyance structure通航建筑物navigation structure过鱼建筑物fish pass structure永久性建筑物permanent structure临时性建筑物temporary structure•主坝main dam•副坝auxiliary dam•坝轴线dam axis•坝高high dam•坝长length of dam•坝顶dam crest•坝底dam base•坝坡dam slope•坝间dam abutment•坝踵dam heel•坝趾dam toe•坝段dam monolith重力坝gravity dam实体重力坝solid gravity dam混凝土重力坝concrete gravity dam碾压混凝土坝roller compacted concrete dam浆砌石重力坝masonry gravity dam空腹重力坝hollow gravity dam宽缝重力坝slotted gravity dam预应力重力坝prestressed gravity dam溢流重力坝overflow gravity dam灌浆廊道grouting gallery排水廊道drainage gallery检查廊道inspection gallery•拱坝arch dam•拱轴线centerline of arch•单曲拱坝single curvature arch dam•双曲拱坝double curvature arch dam•抛物线拱坝parabolic arch dam•椭圆形拱坝elliptical arch dam•薄拱坝thin arch dam•重力拱坝gravity arch dam•空腹重力拱坝hollow gravity arch dam•溢流拱坝overflow arch dam•支墩坝buttress dam•平板坝flat slab buttress dam•大头坝massive—head dam•连拱坝mutiple—arch dam•土石坝earth—rock dam•土坝earth dam•均质土坝homogeneous earth dam•粘土心墙土石坝clay core earthrock dam•沥青混凝土心墙土石坝asphaltic concrete core earth—rock dam •粘土斜墙土石坝sloping core earth-rock dam•沥青混凝土面板土石坝asphaltic concrete facing earth-rock dam •溢流土石坝overflow earth-rock dam•钢筋混泥土面板堆石坝reinforced concrete facing rockfill dam 防浪墙wave wall (parapet)护坡slope protection防渗铺盖impervious blanket棱体排水prism drainage反滤层filter溢洪道spillway开敞式溢洪道open channel spillway正常溢洪道main spillway非常溢洪道emergency spillway陡槽式溢洪道chute spillway虹吸式溢洪道siphon spillway•进水渠entrance channel•闸门gate•泄槽chute•跳流鼻坎flip bucket;deflecting bucket•出水渠outlet channel•冲刷坑scour hole; washout•水工隧洞hydraulic tunnel•导流隧洞diversion tunnel•泄洪隧洞spillway tunnel•发电隧洞power tunnel•灌溉隧洞irrigation tunnel•放空隧洞emptying tunnel•有压隧洞pressure tunnel•无压随洞free—flow tunnel•不衬砌随洞unlined tunnel•排水随洞drainage tunnel•涵洞culvert•填埋管buried pipeline•沟埋管trenched pipeline•钢性管rigid pipe•柔性管flexible pipe•钢筋混凝土管reinforced concrete pipe•塔式进水口tower intake•竖井式进水口shaft intake•沉沙池sedimentation basin•渡槽aqueduct (fiume)•倒虹吸管inverted siphon•落差建筑物drop structure•通航建筑物navigation structure•船闸navigation lock (ship lock)•多级船闸muti—line lock (mutiple lock)•Electrical energy can be stored in two metal plates separated by an insulating medium。
水工建筑物英语词汇
岸墙?land wall ?? ?? ???坝顶?dam crest,dam top 坝踵?dam heel 坝趾?dam toe 板桩?sheet pile 边墩?side pier,land pier 变形模量?deformation modulus鼻坎?bucket lip毕肖普法?Bishop method冰压力?ice pressure 剥离?desquamation侧槽式溢洪道?side channel?? Spillway 沉降?settlement齿墙?cut-off trench 冲沙闸(排沙闸)?silt-releasing Sluice纯拱法?independent arch method 刺墙?key-wall大头坝?massive-head buttress dam ??? *buttress?是扶壁的意思单宽流量?discharge per unit width单曲拱坝?single-curvature arch dam挡潮闸?tidal sluice 导流隧洞?river diversion tunnel倒悬度?Overhang degree 底流消能?energy dissipation by underflow 地震作用?earthquake action 垫座?cushion abutment动水压力?hydrodynamic pressure断层?fault堆石坝?rock-fill dam多拱梁法?multi-arch beam method阀门?valve gate防浪墙?wave wall防渗铺盖?impervious blanket非常溢洪道?emergency spillway分洪闸?flood diversion sluice副坝?auxiliary dam?刚体极限平衡法?limit equilibrium method for rigid block拱坝?arch dam 拱冠梁?crown cantilever拱冠粱法?crown cantilever method 工作桥?service bridge固结灌浆?consolidation grouting 灌溉隧洞?irrigation tunnel灌浆帷幕?grout curtain 管涌?piping 海漫?apron extension横缝?transverse joint 虹吸式溢洪道?siphon spillway蝴蝶阀?butterfly valve 护坡?slope protection 护坦?apron弧形闸门?radial gate 滑雪道式溢洪道?ski-jump spillway化学管涌?chemical piping 混凝土防渗墙?concrete cut-off wall 混凝土面板堆石坝?concrete faced rock-fill dam基本断面?primary section 简化毕肖普法?simplified Bishop method 浆砌石拱坝?stone masonry arch dam 交通桥?traffic bridge 接触冲刷?contact scouring 接触灌浆?contact grouting 浆砌石重力坝?stone masonry gravity dam 接缝灌浆?joint grouting截水槽?cut-off trench节制闸?check sluice 进水口?water inlet进水闸?inlet sluice 井式溢洪道?shaft spillway静水压力?hydrostatic pressure均质坝?homogeneous earth dam抗滑稳定分析?analysis of stability against sliding抗滑稳定性?stability against sliding空腹重力坝?hollow gravity dam 空化?cavitation空蚀?cavitation erosion空注阀?hollow jet valve宽缝重力坝?slotted gravity dam宽尾墩?flaring pier廊道?gallery浪压力?wave force理论计算?theoretical computation拦河闸?river sluice 沥青混凝土?asphalt concrete连拱坝?multiple-arch dam流土soil flow流网法?flow net method锚杆?anchor rod 面板?face slab面流消能?energy dissipation by surface flow模型试验?model experiment泥沙压力?silt pressure碾压混凝土坝?Roller Compacted Concrete Dam牛腿?Corbel排沙隧洞?silt-releasing tunnel排水?drainage排水闸?outlet sluice喷混凝土?sprayed concrete平板坝?flat slab buttress dam平面闸门?plane gate破碎带?crushed zone铺盖?blanket 砌石护坡?stone pitching人工材料面板坝?artificial material faced dam人工材料心墙坝?artificial material-core dam溶洞?solution cavern 软基重力坝?gravity dam on soft foundation软弱夹层?soft intercalated layer 实用断面?practical section试载法?trial-load method 双曲拱坝?double-curvature arch dam水工建筑物?hydraulic structure水工隧洞?hydraulic tunnel,waterway tunne水力发电隧洞?hydropower tunnel 水利枢纽?hydro-complex水力学方法?hydraulics method 水平施工缝horizontal joint水闸?sluice弹性模量?elastic modulus挑流消能?energy dissipation by trajectory jet土工膜?geomembrane土石坝?earth-rock dam土质斜墙坝?earth dam with inclined soil wall土质斜心墙坝?earth dam with inclined soil core土质心墙坝?earth dam with soil core 帷幕灌浆?curtain grouting温度荷载?temperature load温度控制?temperature control 温度应力?temperature stress温度作用?temperature action 无压隧洞?free level tunnel消力池?stilling pool消力戽?roller bucket消能工?energy dissipater泄洪隧洞?spillway tunnel泄水建筑物?discharge structure泄水孔?outlet hole新奥法?NATM(New Austrian Tunneling Method)胸墙?breast wall 扬压力?uplift溢洪道spillway水垫塘?plunge pool溢流坝?overflow dam、翼墙?wing wall 应力分析?stress analysis优化设计?optimization design 有限单元法?finite element method有压隧洞?pressure tunnel 闸墩?pier闸门?gate 闸门槽?gate slot 正槽式溢洪道?normal channel spillway整体式重力坝?monolithic gravity dam趾板?toe slab 支墩坝?buttress dam 重力坝?gravity dam重力墩?gravity abutment 周边缝?peripheral joint ?驻波?standing wave锥形阀?cone valve自由跌流?free drop自重?dead weight纵缝?longitudinal joint键槽?key strench伸缩缝?contraction joint施工缝?construction joint反弧段?flip bucket拦污栅?trash rack渐变段?transition?泄槽?chute发电进水口?powerintake通气管?air vent 检修门?bulkhead gate 事故门?emergencygate工作门?service gate 堰?weir通气管?air vent 胸墙?breastwall梁?beam柱?column 回填混凝土?backfill concrete 接地?earth一期混凝土?primary concrete 二期混凝土?secondary concrete叠梁门?stoplog 门机gantry crane 止水? waterstop钢筋?reinforcement模板?formwork围堰?cofferdam马道?bench;berm蜗壳?volute 水轮机?turbine 电站?power house车间?workshop 发电机?generator 变电站?transformer station副厂房?auxiliary power house 安装间?erection bay 尾水闸门?tail lock 尾水渠?tailrace 引水渠?approachchannel前池?fore bay 导墙?lead wall 隔墙?partition wall 接触灌浆?contact grouting回填混凝土?backfill concrete 帷幕灌浆?curtain grouting挡墙?retaining wall港口?harbour港口建筑物?port structure船闸?navigation lock 船闸充水和泄水系统 ?locking filling and emptying system船闸充水?lock filling船闸前池?upper pool船闸上下游水位差?locklift船闸闸首?lock head 升船机?ship elevator;ship lift 鱼道?fishcanal旁通管?by-pass 齿槽?cut-off wall。
土石坝介绍PPT课件
2、渗流→工作特点
防渗体 防渗体
B、透水性强
h1
坝体
坝基
排水 h2
坝体或坝基产生渗透变形,导致溃坝事故
26
1976年6月5日上午10:30
Teton坝渗流破坏过程
11:30
11:00
Te
to
n
坝
渗
12:00
流
破
坏
过
程
起因:坝肩发生渗透破坏 27
二、土石坝的工作特点及设计要求
2、渗流→工作特点 坝体溃口
瀑布沟大坝
水布垭大坝
5
一、概述
1、世界上应用最广泛的坝型
6
一、概述
1、世界上应用最广泛的坝型
土石坝的优点: 地形地质条件适应性好
7
一、概述
1、世界上应用最广泛的坝型
小浪底大坝位于70余m的覆盖层上。
8
一、概述
1、世界上应用最广泛的坝型
土石坝的优点: 地形地质条件适应性好 可就地取材
9
一、概述
护坡
坝面排水沟 33
二、土石坝的工作特点及设计要求
4、沉降→工作特点
D、压缩性大
坝体沉降 坝基沉降(土基) ➢ 过大的沉陷→坝顶高程不足 ➢ 不均匀的沉陷→坝体开裂,危及坝身安全
34
二、土石坝的工作特点及设计要求
4、沉降→设计要求 施工时要留有足够的沉降值 合理选择坝体土料 施工时土料压实,质量均一
小浪底 (154m) 紫坪铺 (156m) 天生桥I级 (178m) 瀑布沟 (186m) 水布垭 (233m)
17
一、概述
3、我国土石坝建设情况
清江水布垭(233m)
18
一、概述
水利水电英汉词汇1
水利水电工程地质常用词汇(汉英对照)2.岩性rock character 2.1 第四系沉积物quaternary deposit堆积物accumulation冲积物alluvium洪积物diluvium坡积物slope wash滑坡堆积物slide sediments 2.2 沉积岩sedimentary rock漂石erratic boulder孤石lonestone块石rock block卵石pebble碎石debris砾石gravel砂sand粉土silt砂壤土sandy loam壤土loam淤泥mud粘土clay填筑土backfill砾岩conglomerate砾砂岩conglomeratic sandstone 砂质粘土sandy clay粘土质砂clayey sand粘土质砂岩clayey sandstone锆石zircon电气石tourmaline红柱石andalusite绿柱石beryl堇青石cordierite 十字石staurolite黄玉topaz刚玉corundum金刚石diamond伊利石illite glimmerton4. 颜色(Colour)粉红色pink橙红色salmon pink浅粉红色baby pink鲜粉红色shocking pink褐色, 茶色brown灰褐色beige红褐色, 赭石色chocolate浅褐色sandy beige驼色camel琥珀色amber卡其色khaki褐红色maroon绿色green蓝色blue红色red紫色purple, violet白色white灰色gray6.4结构面性状平直Gentle波动起伏fluctuation,rolling,wave 光滑Smooth粗糙Rough7.物理地质现象7.1风化、蚀变、卸荷风化weathering风化带zone of weathering风化壳crust of weathering风化砂weathering sandstone风化程度weathering degree全风化completely weathered强风化highly weathered弱风化moderately weathered微风化slightly weathered新鲜fresh蚀变alteration物理蚀变physical alteration化学蚀变chemical alteration热液蚀变hydrothermal alteration 蚀变矿物altered mineral蚀变火山岩altered volcanic rocks 卸荷relaxation岩石松弛relaxation of rock应力松弛relaxation of stress卸载岩石,消除应力的岩石relaxed rock7.2崩塌、滑坡崩塌collapse滑坡landslide7.3岩溶(karst)岩溶地形karst topography岩溶[侵蚀]基准karst base level 岩溶景观karst landscape岩溶盆地karst basin 岩溶井karst well岩溶水karst water岩溶侵蚀karst erosion 8.水文地质8.1地下水类型地下水,潜水ground water地下水位,潜水位ground water level 地下水排泄区discharge area of ground water地下水位坡降gradient of water table 孔隙潜水pore groundwater裂隙潜水fissure groundwater裂隙承压水fissure artesian groundwater8.2渗流状态渗流,渗漏seepage渗流控制seepage control渗流区vadose region渗流速度percolation velocity渗流压力percolation pressure渗透性permeability渗透系数coefficient of permeability 渗透流量seepage discharge9.岩体力学指标9.1岩石力学参数强度strength抗压强度compressive strength 抗剪强度shear strength抗拉强度tensile strength抗弯强度,抗折强度bending strength 单轴抗压强度uniaxial compressive strength单轴抗拉强度uniaxial tensile strength 无侧限抗压强度unconfined compressive strength无排水抗剪强度undrained shear strength残余强度residual strength长期强度long term strength峰值(抗剪强度) peak value (of shearing strength)凝聚力,内聚力cohesion围压强度strength under peripheral pressure9.2土力学参数变形deformation 弹性变形elastic deformation塑性变形plastic deformation弹塑性变形elastic-plastic deformation粘弹性变形viscoelastic deformation 粘滞塑性变形,粘塑性变性visco-plastic deformation均匀变形homogeneous deformation 不均匀变形nonaffine deformation不可恢复变形,永久变形irreversible deformation屈服变形yield deformation徐变变形,蠕变变形creep deformation 渗透变形seepage deformation9.3岩体力学参数弹性模量elasticity modulus变形模量deformation modulus 剪切模量shear modulus粘弹性模量viscoelastic modulus 压缩模量modulus of compression 10. 建筑材料(construction material)天然骨料natural aggregate人工骨料artificial aggregate粗骨料coarse aggregate细骨料fine aggregate混凝土骨料concrete aggregate 人工砂artificial sand掺和料admixture配料batching石料rock material土料earth material开挖料excavation material渣料rock spoil天然砂砾料natural sand and gravel 粉煤灰fly ash碎石土debrisc soil砾质土gravelly soil粘性土cohesive soil; clayey soil 细度模数fineness modulus(FM) 骨料级配gradation间断级配gap gradation连续级配continuous gradation砂砾石sand and gravel针状颗粒needle-shaped particle 片状颗粒flake-shaped particle软弱颗粒soft particle平均粒径mean diameter比重specific gravity天然密度natural density干密度dry density 最大干密度maximum drydensity最优含水量optjmum water content 天然休止角nature angle of repose 堆积密度piling density紧密密度compation density石料场rock quarrying土料场soil borrow area存料场stockpile弃渣场spoil area有用层effective layer无用层unavailable layer剥离层overburden stripping formation 剥采比stripping ratio剥离量overburden amount开采quarry运输transportation质量quality储量reserve运距haul distance水泥cenment11. 试验(experiment)岩土现场测试field investigation of soils and rocks土工原位测试in-situ measurement of soils标准灌入试验standard penetration test动力触探试验dynamic cone penetration test静力触探试验static cone penetration test比灌入阻力specific penetration resistanc旁压试验pressuremeter test载荷试验plate bearing test十字板剪切试验vane shear test岩体原位测试in-situ measurement of rocks三维应力测试three-dimensional stess measurement地应力测量geostress survey应力解除法stress relief method应力恢复法stress restoration method 狭缝法(刻槽法)narrow slot method 收敛测量convergence measurement 现场直剪实验in-situ shear test承压板试验bearing plate test水力致裂法hydrofracturing method 声测井acoustic emission well (AEW) 现场监测field monitoring压水试验water-pressure test吕荣试验Lugeon test抽水试验pumping test注水试验water injection test 灌浆试验grouting test点荷载试验point-loading test回弹测试rebond hammar test实验室试验laboratory test取样sampling原状土样undisturbed soil sample扰动土样disturbed soil sample物理力学性试验physical and mechanic properties test颗粒分析grading analysis三轴试验triaxial test击实试验proctor compaction test崩解试验slaking test尺寸效应scale effect时间效应time effect长期观测long-term observation试验资料test data试验成果test result试验报告test report12.水工设计(hydraulic design)12.1设计阶段(design stage)河流规划river planning选坝selecting damsite预可行性研究pre-feasibility study可行性研究feasibility study初步设计preliminary design技施设计tech-construction design招标设计tender design施工详图设计detail construction drawing design12.2水工建筑物(hydraulic structure)水利枢纽hydroproject枢纽布置layout of hydroproject挡水建筑物water retaining structure 取水建筑物water intake structure泄水建筑物water release structure输水建筑物water conveyance structure通航建筑物navigation structure过鱼建筑物fish pass structure永久性建筑物permanent structure临时性建筑物temporary structure水工建筑物级别工程规模project scale主坝main dam副坝auxiliary dam坝轴线dam axis 坝高high dam坝长length of dam坝顶dam crest坝底dam base坝坡dam slope坝间dam abutment坝踵dam heel坝趾dam toe坝段dam monolith重力坝gravity dam实体重力坝solid gravity dam混泥土重力坝concrete gravity dam 碾压混泥土坝roller compacted concrete dam浆砌石重力坝masonry gravity dam 预应力重力坝prestressed gravity dam 溢流重力坝overflow gravity dam灌浆廊道grouting gallery排水廊道drainage gallery检查廊道inspection gallery交通廊道access gallery拱坝arch dam拱轴线centerline of arch单曲拱坝single curvature arch dam 双曲拱坝double curvature arch dam 抛物线拱坝parabolic arch dam椭圆形拱坝elliptical arch dam薄拱坝thin arch dam重力拱坝gravity arch dam空腹重力拱坝hollow gravity arch dam溢流拱坝overflow arch dam支墩坝buttress dam平板坝flat slab buttress dam大头坝massive-head dam连拱坝mutiple-arch dam土石坝earth-rock dam土坝earth dam均质土坝homogeneous earth dam粘土心墙土石坝clay core earth-rock dam沥青混凝土心墙土石坝asphaltic concrete core earth-rock dam粘土斜墙土石坝sloping core earth-rock dam沥青混凝土面板土石坝asphaltic concrete facing earth-rock dam溢流土石坝overflow earth-rock dam 钢筋混泥土面板堆石坝reinforced concrete facing rockfill dam防浪墙wave wall (parapet)护坡slope protection防渗铺盖impervious blanket棱体排水prism drainage 反滤层filter溢洪道spillway开敞式溢洪道open channel spillway 正常溢洪道main spillway非常溢洪道emergency spillway陡槽式溢洪道chute spillway虹吸式溢洪道siphon spillway进水渠entrance channel闸门gate泄槽chute跳流鼻坎flip bucket;deflecting bucket 出水渠outlet channel冲刷坑scour hole; washout水工隧洞hydraulic tunnel导流隧洞diversion tunnel泄洪隧洞spillway tunnel发电隧洞power tunnel灌溉隧洞irrigation tunnel放空隧洞emptying tunnel有压隧洞pressure tunnel无压随洞free-flow tunnel不衬砌随洞unlined tunnel排水随洞drainage tunnel涵洞culvert填埋管buried pipeline沟埋管trenched pipeline钢性管rigid pipe柔性管flexible pipe钢筋混凝土管reinforced concrete pipe塔式进水口tower intake竖井式进水口shaft intake沉沙池sedimentation basin渡槽aqueduct(fiume)倒虹吸管inverted siphon落差建筑物drop structure通航建筑物navigation structure船闸navigation lock (ship lock)多级船闸muti-line lock (mutiple lock) 13.地质图件和图表13.1地质图件第四纪地质图quaternary geology map, quaternary geology plan 覆盖层地质图drift map, overburden map, drift plan基岩地质图bedrock map, bedrock plan构造地质图geological structure map, geological structure plan地质剖面图geological section, geological profile实测地质剖面图field-acquired geological profile横剖面图transverse profile, cross-section 纵剖面图longitudinal profile综合柱状图composite columnar section立体投影图fence diagram钻孔柱状图geological log of drill hole , borehole log平硐展视图geological log of adit 水文地质图hydrogeological map 渗透剖面seepage profile等水位线图water table contour map实际材料图primitive data map, primitive data plan赤平投影图stereogram极点图point diagram等密图contour diagram节理玫瑰图rose diagram of joints, rosette joint diagram, strike diagram of joints区域地质图regional geological map水库地质图geological map of reservoir枢纽区工程地质图engineering geological plan of project area坝址区工程地质图engineering geological plan of damsite area引水渠尾水渠工程地质图engineering geological plan of Diversion and Tailwater channel厂房工程地质图engineering geological plan of power house浸没区及防护区工程地质图geological plan of immersion area and protection area天然建筑材料产地分布图distribution plan of a quarry and borrow areas for natural construction 坝址区实际材料图location plan of in-situ exploratory works on damsite心滩天然砂砾料场地质图geological plan of Xinta sand and gravel borrow area料场分布图 A distribute plan of borrow area土料场地质平面图geological plan of soil borrow area石料场地质平面图geological plan of rock quarry土料场地质剖面图geological section of soil borrow area石料场地质剖面图geological section of rock quarry坝轴线工程地质剖面图engineering geological profile of dam axis坝趾板线工程地质剖面图engineering geological section along dam plinth厂房机组中心线工程地质剖面图engineering geological profile along central line of turbo generator units坝轴线防渗帷幕水文地质剖面图hydrologic engineering geological profile along imrervious curtain on dam axis右岸引航道轴线工程地质剖面图engineering geological profile along right-bank navigation approach channel axis河床地质纵剖面图geological longitudinal profile of river bed上游围堰工程地质剖面图engineering geological profile upstream cofferdam下游围堰工程地质剖面图engineering geological profile downstream cofferdam上游子围堰轴线工程地质剖面图engineering geological section along axis of upstream cofferdam下游子围堰轴线工程地质剖面图engineering geological section along axis of downstream cofferdam施工大桥轴线工程地质剖面图engineering geological profile along proposed construction ridge axis防护堤工程地质剖面engineering geological profile along protection embankment心滩天然砂砾料场地质剖面图geological profile of xintan sand and gravel area引水渠工程地质纵剖面图engineering geological lognitudinal profile along approach channel厂房工程地质横剖面图engineering geological transverse section of powerhouse厂房纵1工程地质剖面图engineering geological longitvpinal profile Ⅰof poweehouse土料场工程地质剖面图engineering geological profile of soilmaterial borrow area导流洞工程地质纵剖面图engineering geological section along diversion tunnel放空隧洞工程地质纵剖面图engineering geological section along intermediate outlet tunnel溢洪道工程地质纵剖面图engineering geological section along spillway route溢洪道工程地质横剖面图engineering geological cross section of spillway区域主干断裂及强震带分布图Distribution of the regional major faults and pleistoseismic zones工程区外围地震危险区active seismic zones around the project area 枢纽区Ⅱ、Ⅲ级结构面走向玖瑰图Strike rose diagram of discontinuity plane class Ⅱ、Ⅲin the project area 枢纽区Ⅱ、Ⅲ级结构面极点等密图Pole contour diagram of discontinuity plane classⅡ、Ⅲin the project area 枢纽区f、g极点等密图Pole contour diagram of f and g on the project area枢纽区左岸节理极点等密图Pole contour diagram of joints on the left bank in project area左岸坝肩上、下游侧边坡开挖示意图The schematic diagram of upstream and downstream side slop excavating on the left abutment砂砾层天然砂颗分曲线图Gradation curve of natural sand in sand and gravel layer心滩天然砂砾料场初勘探布置示意图Sketch map of exploratory arrangement during detailed exploration for Xintan sand and gravel borrow area天然含水量随深度变化图Variation of natural Moisture content with depth左岸颗粒分析粒配曲线图Grain size distribution curve of the left bank 左岸料区ρd~ω关系曲线图Left bank borrow area ρd ~ ωrelationship curves孔隙比(e)与(p)关系图Relationship between void ratio (e) and pressure (p)抗剪强度与垂直压力的关系曲线图Relationship curves between shear strength and vertical pressure物探工作布置图Layout of geophysical prospecting workA剖面地震勘探成果图Results of seismic prospecting on A profile PD2平洞锤击法Vp成果图V P results of hammer-blow survey on left wall of PD2aditZK14钻孔电阻率测井柱状图Log of comprehensive logging of ZK14 drillhole尾水渠开挖线excavation line of tailwater channel开采线excavation depth开挖线excavation line原地面线natural ground工程建筑物轮廓线outline of engineering structure正常蓄水位线normal storage water level设计蓄水位线design storage level 正常蓄水位normal WL.死水位min operating WL.百年洪水位100-tear flood WL. 正常尾水位normal TWL.最低尾水位min TWL.校核洪水位check flood WL.设计洪水位design flood WL.水库蓄水位线及高程storage leave and elevation of reservoir料场范围线boundary of borrow area or quarry area普查范围线boundary line of general survey初查储量计算范围线boundary line of preliminarily investigated reserves风化界线boundary of weathered zones地下水位线groundwater level相对隔水层界线boundary of relative confining bed坝基开挖线及高程dam foundation excavation line and EL.厂房开挖线及高程powerhouse excavation line and EL.剖面线及编号geological section line and numbed, profile line and No. 端点end point 转点transition测量控制点control point of survey接图表index to adjoining sheets 交厂横cross section of plant location 交纵1 cross profile 1剖面交点cross point of profile剖面距离distance勘探深度depth勘探间距spacing剖面方向direction13.2地质图表料场概况一览表summary of borrow areas and quarry ones with construction各坝料颗粒分析级配曲线gradation curves of rock fill materials 表3-1泉水类型及流量Table 3-1 type and discharge of springs钻孔地下水位Groundwater level in drill holes钻孔压水试验单位吸水量汇总Summerized unit leakage rate value of water pressure test in drill holes钻孔岩芯试验室试验成果Laboratory testing of drill corn冲积层砂砾石试验成果Test results of alluvial gravel and sands冲积层粘土试验成果Test results of alluvial clay现场承压板变形模量试验成果In-situ plate-bearing test results现场剪力试验成果In-situ shear test resultsVp测定成果Results of Vp measurements现场地应力测量成果In-situ stress measurement results土料试验成果汇总表Test results of earth material土料试验成果表Test results of soil物理力学性试验成果Physical and mechanical test results显微镜鉴定矿物组成结果Mineral composition determined by microscope化学分析成果Results of chemical analysis岩石试验综合成果表Physical and mechanical properties化学分析结果Results of chemical analysis砂桨膨胀率试验成果Test results of mortar expansion ratio 化学试验结果Result of chemical tests节理统计表Summary of join可行性研究阶段完成钻探工作量统计表Completed drilling work quantities at feasibility study stage可行性研究阶段完成坑、槽探工作量统计表Completed test pits and trenches prospecting work quantities at feasibility study stage岩石力学现场试验项目及工作量统计表Field rock test items and their work quantities可行性研究阶段钻孔地下水位长期观测汇总表summary of long-term groundwater table observations in the drill holes at feasibility study in the project area工作量统计表Summary of work quantity本区地震统计表seismic summary in the region历史地震对坝址影响烈度表Influence intensity of the historic earthquake on the damsite工程区断层主要特征表Main characteristics of the fault in the project area库区滑坡、崩塌体特征表Characteristics landslide and collapse in reservoir area库区褶皱形态特征表Characteristics of fold form in reservoir area库区断裂汇总表Summary of faults in reservoir area水库库岸分段特征及稳定性评价表Evaluation on stability and divisional characteristics on reservoir banks库区断裂破裂长度与诱发地震强度关系表The relationship between the induced earthquake magnitudeand the fractured length of the reservoir fault景洪水电站枢纽区结构面分级表Classification of discontinuity planesin project area枢纽区主要断层、挤压带汇总表Summary of major faults and compressive zones in project area枢纽区f、g发育特征表Dereloped characteristics of f and g in the project area枢纽区断层、挤压带(面)破碎带矿物分析成果表Mineral analysis results of the faults andcompressive zone (planes) in project area枢纽区断层、挤压带(面)破碎带物质化学分析成果表Chemical analysis results of mineral from faults and compressive zones (planes) in project area枢纽区滑坡、松动体特征表Characteristics of landslide and loosened mass in project area枢纽区主要冲沟特征汇总表summary of characteristics of major gully in project area景洪水电站岩体风化程度分级表Classification of the weathering degree of rock mass of the Jinghong hydropower project枢纽区覆盖层及风化深度表Overburden layer and weathering depth in project area景洪水电站坝址区水质简分析成果汇总表Summary of simple analysis of water quality in dam area of Jionghong hydropower project枢纽区地下水水位长期观测资料统计表Summary of long-term observation data for groundwater table in project area枢纽区风化带、破碎带透水性统计表Permeability of the weathered and fractured zone in the project area岩石物理力学性试验成果汇总表Summary of test results of physico-mechanical property of rock 岩体现场变形试验成果表Results of in-situ deformation test of rock mass枢纽区各类岩体M、E建议值Recommended value of M & E of various type of the rock mass in the project area枢纽区各类岩体抗剪强度指标建议值Recommended value of indexes of the shear strength of various type of the rock mass in the project area枢纽区现场抗剪试验成果汇总表Summary of results of In-situ shear-resisting test in project area原位剪切试验成果(结构面)In sit shear test results (discontinuities)枢纽区混凝土/基岩抗剪强度指标建议值Recommended value of indexes of the shear strength for concrete on bedrock in the project area 枢纽区平洞岩体纵波波速成果表Results of the longitudinal wave velocity of the rock mass at the adits in the project area枢纽区钻孔岩体纵波波速成果表Results of the longitudinal wave velocity of the rock mass at the drillholes in the project area枢纽区岩体结构类型划分表Classification of type of rock structure in project area坝(厂)基岩岩体质量分级表Classification of bedrock quality at dam (powerhouse) foundation for jinghong hydropower project枢纽区不同岩体结构类型百分比统计表Various type of rock structure in project areaⅠ、Ⅱ坝轴线方案坝基风化层深度对比表A comparison of the weathered layer depth at the dam foundation between dam axisⅠandⅡalternatives坝(厂)基河床冲积层厚度表Thickness of the alluvium in the riverbed at the dam and the owerhouse foundation坝(厂)基主要断层、挤压带汇总表Summary of main faults and compressive zones at dam and (powerhouse) foundationG48各揭露点挤压带性状汇总表Summary of G48 compressive zone behaviour exposed points坝基f、g平均发育间距汇总表Summary of f and g developed spacing in average at the dam foundation坝(厂)基各部位节理组发育情况汇总表Summary of the developed condition of the join sets at the various parts of the dam (powerhouse) foundati坝(厂)基勘探平洞缓倾角节理汇总表(∠30°)Summary of lower angle (<30°) joints in exploratory adits on dam (and power house) foundatio坝(厂)基缓倾角节理连通率统计汇总表Summary of lower angle join continuity at the dam (powerhouse) foundation坝(厂)基风化带及覆盖层底界埋深表Depth of different weathering zone and overburden at dam and powerhouse foundation坝(厂)基地段岩体卸荷裂隙发育深度表Summary of the stress relieved fissure developed depth in the rock mass at the dam (powerhouse) foundation area坝基地段极微透水层(ω〈0.01l/min.m.m) Depth of very little permeable layer总体埋藏深度(w<0.011/min.m.m(<1 lugeon)) at the dam foundation area左坝肩各部位开挖深度表Excavation depth at the various parts on the right dam abutment右坝肩各部位开挖深度表Excavation depth at the various parts on the left dam abutment心滩砂砾料场勘探资料一览表Exploratory data at Xintan borrow area 天然建筑材料需求量表Requiredengineering quantity of natural construction material心滩天然砂砾料场砂砾层试验成果汇总表Summary of test results of sand and gravel layer of Xintan natural and grave borrow area混凝土粗骨料质量技术要求与Concrete coarse aggregate comparison of quality technical试验值(加权平均值)对比表requirements with the test value (weightaverage value)混凝土细骨料质量技术要求与Concrete fine aggregate comparison of quality technical试验值(加权平均值)对比表requirements with the test value (weightaverage value)砂砾层天然砂颗分级配(加权平均值)表Grading of natural sand in sand and gravel layer (weighted average value)储量计算成果表results of reserves calculations石料场勘探资料汇总表Summary of exploratory data in quarry area右岸料区天料含水量、天然密度汇总表Natural moisture content and natural density in the right bank borrow area颗粒级配百分含量统计表Grain composition土料分散度统计表Soil dispersity test results 天然含水量与击实、可塑性关系表Relationship between natural moisture content, compactness and plasticity土料定名统计表Classification of earth materials压缩系数a v(0.1-0.3)统计表Compression factor a v(0.1~0.3)摩擦角及凝聚力统计表Friction angle and cohesion渗透系数统计表Permeability coefficients现场原状土样湿化试验统计表In-situ undisturbed soil sample slaking test results扰动土样湿化试验统计表Disturbed soil sample slaking test results化学分析统计表Chemical analysis results胀缩性试验统计表Swelling-shrinkage test resultsⅠ号土料场天然含水量、天然Summary of natural moisture content and natural density密度试验成果汇总表test results of No.1 borrow area天然含水量、天然密度与击实、Natural moisture content, density, compaction,Liquid液塑限试验成果统计表Limit and plastic limit test results土壤分类统计表Soil classification土料压缩系数,压缩模量统计表Compressibility coefficient andcompression modulus of soil material 土料直剪强度Ф、С值统计表Direct shear strength ( and C values) of earth material samples土料渗透试验成果统计表Results of permeability test on soil samples土料湿化试验成果统计表Slake durability test results of soil material土料有机质、易溶盐试验成果表Organic matter and strongly soluble salt content test results of soil material 土料胀缩性试验成果统计表Swelling shrinkage test results of soil material物理性及易溶盐含量统计表Physical property and soluble salt content test results soil material颗粒分析、渗透系数及力学性统计表Grain Size analysis, permeability coefficient and mechanical property test results of earth material砂料视比重及吸水率统计表Sand apparent specific gravity and absorption rate砂干松密度及空隙率统计表Min. sand dry density and porosity砂颗粒级配百分含量统计表Sand grain composition (%)砂粒度模数及平均粒径统计表Grain size modulus and average grain size砂云母含量及含泥量统计表Mica and silt content 砂硫化物(SO3)及水溶盐含量统计表达式Sulphide (SO3) content and dissolved salt content砾石比重及吸水率统计表Gravel specific gravity and absorption rate砾石干松密度及空隙率统计表gravel min. density and porosity砾石颗粒全级配百分含量统计表Full grading of gravel砾石5~150MM粒径颗粒级配百分含量统计表Grading of gravel (5 mm~150 mm)软弱颗粒含量统计表Soft particle content针片状颗粒含量统计表Needle-shaped & flake-shaped grain content砾石含泥量统计表Silt content test results砂、砾石骨料碱活性试验成果表Alkali aggregate reaction test results岩石物理性试验成果汇总表Summary of physical properties test results of rock samples岩石物理力学性试验成果汇总表Rock physical and mechanical properties test results岩石力学性试验成果统计表Laboratory rock mechanical test results岩石三轴抗剪强度、直剪强度试验成果表R ock triaxial shear strength & direct shear strength test results岩石力学性试验成果统计表Rock physical and mechanicalproperties test results原状土样试验成果统计表Test results of undisturbed soil samples颗粒分析及抗剪强度统计表Grading analysis and shear strength test results物探工作量统计表达式Geophysical prospecting work quantities地震勘探成果表Seismic prospecting results声波测试岩体分类标准表Rock mass classification criteria by acoustic test平洞岩体分类成果表Classification results of adit Rock mass14.其它14.1地形、地貌等高线contour等高距contour interval高程elevation绝对高程absolute elevation相对高程relative elevation地形land form地貌geomorphy平原plain丘陵地hill山地mountain高地highland垭口col河谷river valley 峡谷gorge纵谷longitudinal横谷transverse分水岭waterdivide, watershed河漫滩floodplain阶地terrace侵蚀阶地erosional terrace堆积阶地constructional terrace 基座阶地bedrock seated terrace 牛轭湖ox-bow lake古河道ancient river course准平原peneplain夷平面planation surface残丘inselberg洪积扇proluvial fan三角洲delta冲积平原alluvial plain河流阶地fluvial terrace冲积扇alluvial fan洪积扇diluvial fan坡积裙talus apron坳沟shallow flat ravine冲沟gully岩溶地貌karst land feature, karst landform土洞karstic earth cave14.2 地震地震区seismic area, earthquake area 震源seismic source, seismic focus震源深度focus depth震中epicenter地震波seismic wave主震main shock前震foreshock余震aftershock震源机制focusmechanism地震前兆premonitory symptom 地震区划seismic zoning纵波longitudinal wave横波transverse wave水库诱发地震reservoir impounding induced seismicity, reservoir induced earthquake地震震级earthquake magnitude 地震烈度seismic intensity, earthquake intensity场地烈度site intensity设计烈度design intensity地震反应谱seismic response spectrum震陷earthquake subsidence砂土液化liquefaction of sand液化指数liquefaction index地震系数seismic coefficient地震影响系数coefficient of seismic effect地震小区划seismic microzonation, seismic microzoning地震危险性分析earthquake hazard evaluation等震线isoseismals罗氏烈度rossi-forel intensity麦加利烈度mercalli intensity里氏震级richter magnitude修正麦氏烈度modified mercalli intensity 14.3 地应力地应力ground stress, geostatic stress初始应力initial stress构造应力tectonic stress残余应力residual stress感生应力induced stress地应力场ground stress field, geostatic stress field自重应力self-weight stress岩土体中的应力stresses in soil-rock mass附加应力superimposed stress应力水平stress level应力路径stress path应力历史stress history有效应力effective stress初始应力状态initial stress state 侧压力系数lateral pressure coefficient周围压力(三轴压力室围压)confining pressure , ambient pressure 基底压力foundation pressure ,gross loading intensity岩体初始应力(地应力,天然应力)initial stress of rock mass岩体应力重分布stress redistribution周边应力circumferential stress应力集中系数stress concentration factor岩芯饼化现象formation of disk-shaped rock cores岩体中的静水压力状态hydrostatic pressure hypothesis岩体原位测试in-situmeasurement of rocks应力解除法stress relief method 应力恢复法stree restoration method狭缝法(刻槽法)narrow slot method水力破裂法hydrofracturing method土体的沉降及变形计算settlement and deformation calculation of soil mass地基沉降ground settlement最终沉降量ultimate settlement 不均匀沉降differential settlement, unequal settlement沉降计算经验系数empirical coefficient of settlement calculation瞬时沉降initial settlement固结沉降consolidation settlement次固结沉降secondary consolidation settlement初始压缩曲线initial compression curve, virgin compression curve现场初始压缩曲线field initial compression curve容许变形(允许变形)allowable deformation湿陷系数coefficient of collapsibility湿陷起始压力initial collapse pressure自重湿陷系数coefficient of collapsibility due to overburden pressure围岩应力secondary stress state, surrounding rock stress围岩应力集中系数factor of stress-concentration in surrounding rock岩石压力rock pressure应力松弛stress relaxation松动区loosened zone, loose zone 围岩偏压non-uniform rock pressure内水压力internal water pressure 外水压力external water pressure14.4 边坡岩土边坡earth slope and rock slop边坡稳定slope stability边坡临界高度critical height of slop边界条件boundary condition, edge condition休止角angle of repose岩体结构structure of rock mass 结构面structural plane, discontinuity结构体structural mass, structural body, structural element滑动面slip plane拉裂面pull apart plane切割面cutting plane临空面free surface硬性结构面rigid structural plane软弱结构面soft structural plane 贯通结构面through structural plane非贯通结构面disconnected structural plane平直结构面flat structural plane 波状结构面wavy structural plane 台阶结构面step structural plane 起伏度waviness软弱夹层weak intercalation泥化夹层siltized intercalation块状结构massive structure碎裂结构clastic structure镶嵌结构interlocked structure层状结构stratified structure 14.5 基础基础foundation, footing浅基础shallow foundation, shallow footing深基础deep foundation埋深embedment depth扩展基础spread footing条形基础strip foundation, strip footing筏形基础raft foundation, mat foundation板式基础slab foundation格排基础grillage foundation, grillage raft联合基础combined footing箱形基础box foundation补偿基础floating foundation, compensated foundation 沉井open caisson沉箱caisson地梁foundation beam, grade beam桩基础pile foundation, piled foundation群桩pile group桩承台pile cap高桩承台highrise pile cap低桩承台buried pile cap摩擦桩friction pile端承桩end bearing pile嵌岩桩socketed pile排土桩displacement pile少排土桩small displacement pile 不排土桩nondisplacement pile预制混凝土桩precast concrete pile板桩sheet pile旋喷桩jet-grouted pile灌注桩cast-in-place pile沉管灌注桩driven cast-in-place pile法兰基灌注桩Franki pile墩pier扩底墩belled pier, under-reamed pier被动桩passive pile支护桩soldier pile, tangent pile 地下边续墙diaphragm wall,slurry wall支撑bracing井点降水well-point dewatering 桩极限承载力ultimate bearing capacity of pile。
土石坝1
影响渗流因素
1、材料的性质与地质条件:筑坝材料级配越差, 渗流量越大,地基条件越差,地基渗流量越大。 所以量采用级配良好的土料,地基地质条件差时 应作地基处理以减小渗流流量。 2、防渗排水设备:防渗排水设备可降低坝体浸润 线,从而减小渗流量。
浸润线的概念:渗流在坝体内的自由水面叫浸润面,它与垂直于坝轴线的 剖面的交线—浸润线(Infiltration Curve)。浸润线与上游边坡垂直,与 上游水位相交,浸润线与下游坝面相切。切点为渗流逸出点,逸事出点高 于下游水面,高于下游的距离称为逸出高度。设计土坝时应尽量采用有效 的防渗排水设备。
四、沉陷问题(The Problem of Settlement)
还是因为土坝是由散粒体结构材料组成,颗粒与颗粒间 存在孔隙,且土粒间易发生相对位移,在坝体自重及水压 力的作用下,坝体坝基都会由于压缩而产生沉陷。 沉陷包括坝身沉陷和坝基沉陷,皆会造成坝高不够。不均 匀沉陷会引起坝体产生裂缝影响大坝运行安全,据水利部 统计1000起土坝事故中,因大坝裂缝引起的事故占129起, 而这其中90%以上都是由于不均匀沉降引起的。 所以在设计土坝时,要注意坝顶高程问题,应使施工时 的坝顶高程大于设计的坝顶高程,另为防止不均匀沉陷必 须加强压实,特别注意接头处漏夯,漏压。
最高的土石坝为塔吉克斯坦的罗贡坝325m。
世界土石坝按国家或地区分类统计图
南 美 印 度 629 998 日 本 1484 欧洲(含俄 罗斯) 1918 中 国 17475 美 国 4694 其 他 2778
表1 世界大坝按坝型分类统计
坝 型 已建坝数量 %
土石坝 重力坝
拱 坝
29974 4180
242m(Canada),
Chicoasen(奇柯森) 240m(Mexico)。
水利专业英语课文标题
Lesson 1 importance of water 水的重要性Lesson 2 the Hydrologic Cycle 水循环Lesson 3 hydrology 水文学Lesson 4 underground water 地下水Lesson 5 what causes flooding洪水是怎样形成的Lesson 6 nature of water pollution 水污染的性质Lesson 7 Planning for water resources development水资源开发规划Lesson 8 reservoirs 水库Lesson 9 Properties of concrete混凝土的特性Lesson 10 basic concepts of reinforced concrete钢筋混凝土基本概念Lesson 11 dams 坝Lesson 12 embankment dams 土石坝Lesson 13 concrete gravity dam on rock foundations 岩基上的混凝土重力坝Lesson 14 Arch dams 拱坝Lesson 15 spillways溢洪道Lesson 16 design forces 设计作用力Lesson 17 Significance of infiltration and process of infiltration入渗重要性及过程Lesson 18 evapotranspiration 腾发量Lesson 19 irrigation methods 灌溉方法Lesson 20 irrigation canals灌溉渠道Lesson 21 land drainage 耕地排水Lesson 22 methods of applications of drip irrigation systems滴灌系统的应用方法Lesson 23 hydraulic turbines水轮机Lesson 24 hydro-electric power 水力发电Lesson 25 differential leveling 水准测量(微差水准测量)Lesson 26 construction and equipment施工和设备Lesson 27 engineering economy in water resources planning水利规划中工程经济Lesson 28 soil erosion and soil conservation 土壤侵蚀与土壤保持Lesson 29 groundwater and climate change地下水与气候变化Lesson 30 irrigation performance evaluation 灌溉运行评价Lesson 31 bidding, bid opening and award of contract招标、开标和授予合同Lesson 32 how to write a scientific paper如何撰写科技论文。
水工建筑物_土石坝_
h R e A
hm 2
A R
坝 顶
静 位 水
e
hm 2
α
R——波浪爬高;e——风雍高度;A——安全加高
Y
土石坝
2、坝顶宽度
• 根据坝高、构造施工、交通和防汛抢险要求确定。 • 如无特殊要求,中低坝顶宽可为5-10m,高坝可为1015m。 • 满足心墙或斜墙顶部及反滤层布置厚度要求。
3、坝坡 ——影响坝坡的主要因素: 坝型、坝高、筑坝材料的性质、地质条件及地震等。
土石坝
缺点: 1 坝顶不能溢流; 2 施工导流不如混凝 土坝方便; 3 粘土防渗体施工受 气候影响。
土石坝
二、 土石坝的类型 按施工方法分:
(1)碾压式土石坝-应用最多
(2)抛填式堆石坝 (3)定向爆破堆石坝 (4)水中填土坝 广东南水定向爆破堆石坝 (81.3m)
土石坝
按土石料在坝体中的配置及防渗设施位置和材料分: (1)均质坝 - 绝大部分由一种土料组成
•
接触流失、接触冲刷等。
-28-
土石坝
•管涌:坝体或地基中的土壤细颗粒被渗透水流带走,并 逐步形成渗流通道的现象。在缺乏中间粒径的非粘性土 中极易发生。
•流土:渗透坡降足够大时,渗流出逸处的土体被掀动浮 起的现象。它主要发生在粘性土及均匀非粘性土体的渗 流出口处。
-29-
土石坝
•接触流失:渗流垂直于渗透系数相差较大的接触面流动 时,将渗透系数较小土层中的细颗粒带入渗透系数较大 的另一土层。
土石坝
• 坝型——心墙坝上游坡一般比同等条件下的斜墙坝陡,
下游坡则相反。 • 坝高——坝高超过10-30m时,可从上到下分级放缓,变 坡处设马道。每隔15-20m变坡一次。 • 地质条件——地质条件较差时,坡度应缓些。
水利水电专业英语
施工总平面布置Construction general layout 施工组织Construction Programming施工组织设计construction planning施工坐标系(建筑坐标系)constructioncoordinate system湿化变形soaking deformation湿润比percentage of wetted area湿润灌溉wetting irrigation湿室型泵房wet-pit type pump house湿陷变形系数soaking deformation coefficient湿陷起始压力initial collapse pressure湿陷系数(湿陷变形系数) coefficient of collapsibility湿周wetted perimeter十字板剪切试验vane shear test石袋honeycomb时均流速time average velocity时均能量time average energy时效硬化(老化) age hardening (ageing)时针式喷灌系统(中心支轴自走式系统) central pivot sprinkler system实测放大图surveyed amplification map实腹柱solid column实际材料图primitive data map实时接线分析real time connection analysis 实时控制real-time control实时数据和实时信息real time data and real time information实体坝solid dike实体重力坝solid gravity dam实物工程量real work quantity实验站experimental station实用堰practical weir示流信号器liquid-flow annunciator示坡线slope indication line示误三角形error triangle示踪模型tracer model事故failure (accident)事故备用容量reserve capacity for accident 事故低油压tripping lower oil pressure事故音响信号emergency signal(alarmsignal)事故运行方式accident operation mode 事故闸门emergency gate事故照明accident lighting事故照明切换屏accident lighting change-over panel势波potential wave势流potential flow势能potential energy势涡(自由涡) potential vortex视差parallax视差法测距(基线横尺视差法)subtensemethod with horizontal staff视差角parallactic angle视准线法collimation line method视准轴(照准轴)coolimation axis试验处理treatment of experiment试验端子test terminal试验项目Testing item试验小区experimental block试运行test run试运行test run收敛测量convergence measurement收敛约束法convergence-confinementmethod收缩断面vena-contracta收缩缝(温度缝) contraction joint (temperature joint)收缩水深contracted depth手动[自动]复归manual [automatic] reset手动[自动]准同期manual [automatic] precise synchronization手动调节manual regulation手动控制manual control手动运行manual operation手工电弧焊manual arc welding首曲线(基本等高线)standard contour首子午线(本初子午线,起始子午线)prime meridian受油器oil head枢纽布置layout of hydroproject疏浚dredging输电系统transmission system输电线transmission line输入功率试验input test输沙量sediment runoff输沙率sediment discharge输水钢管steel pipe for water conveyance输水沟conveyance ditch输水建筑物water conveyance structure输水渠道water conveyance canal鼠道mole drains鼠道犁mole plough鼠笼型感应电动机squirrel cage induction motor竖井定向测量shaft orientation survey竖井贯流式水轮机pit turbine竖井联系测量shaft connection survey竖井排水drainage well竖井式进水口shaf tintake竖轴弧形闸门radial gate with vertic alaxes 数字地面模型digital terrain model(DTM)数字化测图digitized mapping数字通信digital communication数字图像处理digital image processing数字仪表digital instrument甩负荷load dump (load rejection,load shutdown)甩负荷试验load-rejection test (load-shutdowntest)双层布置double storey layout双调节调速器dual-regulation governor双扉闸门double-leaf gate双回线double-circuit line双击式水轮机cross flow turbine,Banki turbine双极高压直流系统bipolar HVDC system双金属标bimetal bench mark双列布置double row layout双母线接线double-bus connection双曲拱坝double curvature arch dam双曲拱渡槽double curvature arch aqueduct 双室式调压室double-chamber surge shaft双吸式离心泵double-suction pump双向挡水人字闸门bidirectional retaining mitre gate水泵[水泵水轮机的水泵工况]的反向最大稳态飞逸转速steady state reverse runaway speed of pump水泵比转速specific speed of pump 水泵并联扬程曲线head curve of parallelpumping system水泵参数与特性Parameters and characteristics of pump水泵串联扬程曲线head curve of series pumping system水泵的最大[最小]输入功率maximum[minimum] input power of pump水泵电动机机组Motor-pump unit水泵反常运行pump abnormal operating水泵工况(抽水工况) pump operation水泵工作点(水泵工况点) pump operatingpoint水泵供水water feed by pump水泵机械效率mechanical efficiency of pump水泵机组pump unit水泵类型Classification of pumps水泵零部件Components of pumps水泵流量pump discharge水泵容积效率volumetric efficiency of pump水泵输出功率output power of pump水泵输入功率(水泵轴功率) input powerof pump水泵水力效率hydraulic efficiency of pump水泵水轮机Pump-turbine水泵无流量输入功率no-discharge power ofpump水泵效率pump efficiency水泵扬程(水泵总扬程) total head of pump水泵站Pumping Station水泵装置pump system水锤(水击) water hammer水锤泵站hydrauli cram pump station水锤波(水击波) wave of water hammer水锤波波速wave velocity of water hammer水电站Hydroelectric Station水电站(水力发电站) Hydroelectric station(hydroelectric power station)水电站保证出力firm power, firm output水电站厂房(发电厂房) power house水电站厂房的类型Types of power house ofhydroelectric station水电站出力power output of hydropowerstation水电站出力和发电量Power and energyoutput of hydropower station水电站的水头、流量、水位Waterhead, discharge, water lever of hydropower station 水电站发电成本generation cost of hydropower station水电站发电量energy output of hydropower station水电站建筑物hydroelectric station structure 水电站经济指标Economie index of hydropower station水电站类型Types of hydroelectric station水电站引用流量quotative discharge of hydropower station水电站装机容量installed capacity of hydropower station水电站自动化automation of hydroelectric station水跌hydraulic drop水动力学Hydrodynamics水斗bucket水斗式水轮机(贝尔顿式水轮机) pelton turbine水工建筑物hydraulic structure水工建筑物的类别及荷载Classification and load of hydraulic structures水工建筑物级别grade of hydraulic structure水工金属结构及安装Metal Structures and Their Installation水工隧洞hydraulic tunnel水工隧洞Hydraulic tunnels水工隧洞构造Components of hydraulic tunnel水工隧洞类型Classification of hydraulic tunnels水管冷却pipe cooling水柜water pool水环真空泵liquid ring pump水灰比water-cement ratio水窖(旱井) water callar(dry wall)水静力学Hydrostatics水库并联运用operation of parallel-connected resertvoir 水库测量reservoir survey水库串联运用operation of serial-connectedreservoirs水库调度reservoir operation水库调度图graph of reservoir operation水库回水变动区fluctuating back water zone of reservoir水库浸没reservoir immersion水库控制缓洪controlled flood retarding水库库底清理cleaning of reservoir zone水库泥沙Reservoir sediment水库泥沙防治Prevention of sediment水库年限ultimate life of reservoir水库渗漏reservoir leakage水库水文测验reservoir hydrometry水库塌岸bank ruin of reservoir水库特征库容Characteristic capacity ofreservoir水库特征水位Characteristic level of reservoir水库泄空排沙sediment releasing by emptying reservoir水库蓄清排浑clear water impounding and muddy flow releasing水库淹没补偿compensation for reservoir inundation水库淹没处理Treatment of reservoirinundation水库淹没处理范围treatment zone of reservoir inundation水库淹没界线测量reservoir inundation line survey水库淹没区zone of reservoir inundation水库淹没实物指标material index of reservoir inundation水库异重流density current in reservoir水库异重流排沙sediment releasing bydensity current水库诱发地震reservoir induced earthquake水库淤积Sediment deposition in reservoir水库淤积测量reservoir accretion survey水库淤积极限limit state of sedimentdeposition in reservoir水库淤积平衡比降equilibrium slope ofsediment deposition in reservoir水库淤积上延(翘尾巴) upward extensionof reservoir deposition水库淤积纵剖面longitudinal profile of deposit in reservoir水库滞洪排沙flood retarding and sediment releasing水库自然滞洪free flood retarding水冷式空压机water-cooled compressor水力半径hydraulic radius水力冲填hydraulic excavation and filling水力冲填坝hydraulic fill dam水力冲洗式沉沙池hydraulic flushing sedimentation basin水力粗糙度hydraulic roughness水力粗糙区hydraulic roughness region水力共振hydraulic resonance水力光滑区hydraulic smooth水力机械Hydraulic Machinery水力机械与电气设备HYDRAULIC MACHINERY AND ELECTRIC EQUIPMENT水力机组hydropower unit水力机组测试Measurement and test for hydropower unit水力机组的安装和试运行Installation and starting operation of hydropower unit水力机组调节系统Regulating system of hydropower unit水力机组辅助系统Auxiliary system for hydropower unit水力开挖hydraulic excavation水力坡降(水力比降) hydraulic slope (energy gradient)水力破裂法(水力致裂法) hydro fracturing method水力侵蚀(水蚀) water erosion水力学Hydraulics水力要素(水力参数) hydraulic elements水力指数hydraulic exponent水力自动闸门hydraulic operating gate水力最优断面optimal hydraulic crosssection水利工程经营管理management and administration of water project水利计算Computation of water conservancy 水利区划zoning of water conservancy水利枢纽hydroproject水利水电工程等别rank of hydroproject水利水电工程规划PLANNING OF HYDROENGINEERING水利水电工程技术术语标准Standard of Technical Terms on Hydroengineering水工建筑物专业英语词汇岸墙land wall坝顶dam crest,dam top坝踵dam heel坝趾dam toe板桩sheet pile边墩side pier,land pier变形模量deformation modulus鼻坎bucket lip毕肖普法Bishop method冰压力ice pressure剥离desquamation侧槽式溢洪道side channel Spillway沉降settlement齿墙cut-off trench冲沙闸(排沙闸)silt-releasing Sluice纯拱法independent arch method刺墙key-wall大头坝massive-head buttress dam *buttress 是扶壁的意思单宽流量discharge per unit width单曲拱坝single-curvature arch dam挡潮闸tidal sluice导流隧洞river diversion tunnel倒悬度Overhang degree底流消能energy dissipation by underflow地震作用earthquake action垫座cushion abutment动水压力hydrodynamic pressure断层fault堆石坝rock-fill dam多拱梁法multi-arch beam method阀门valve gate防浪墙wave wall防渗铺盖impervious blanket非常溢洪道emergency spillway分洪闸flood diversion sluice副坝auxiliary dam刚体极限平衡法limit equilibrium method for rigid block拱坝arch dam拱冠梁crown cantilever拱冠粱法crown cantilever method工作桥service bridge固结灌浆consolidation grouting灌溉隧洞irrigation tunnel灌浆帷幕grout curtain管涌piping海漫apron extension横缝transverse joint虹吸式溢洪道siphon spillway蝴蝶阀butterfly valve护坡slope protection护坦apron弧形闸门radial gate滑雪道式溢洪道ski-jump spillway化学管涌chemical piping混凝土防渗墙concrete cut-off wall混凝土面板堆石坝concrete faced rock-fill dam基本断面primary section简化毕肖普法simplified Bishop method浆砌石拱坝stone masonry arch dam浆砌石重力坝stone masonry gravity dam交通桥traffic bridge接触冲刷contact scouring接触灌浆contact grouting接缝灌浆joint grouting截水槽cut-off trench节制闸check sluice进水口water inlet进水闸inlet sluice井式溢洪道shaft spillway静水压力hydrostatic pressure均质坝homogeneous earth dam抗滑稳定分析analysis of stability against sliding 抗滑稳定性stability against sliding空腹重力坝hollow gravity dam空化cavitation空蚀cavitation erosion空注阀hollow jet valve宽缝重力坝slotted gravity dam宽尾墩flaring pier廊道gallery浪压力wave force理论计算theoretical computation拦河闸river sluice沥青混凝土asphalt concrete连拱坝multiple-arch dam流土soil flow流网法flow net method锚杆anchor rod面板face slab面流消能energy dissipation by surface flow 模型试验model experiment泥沙压力silt pressure碾压混凝土坝Roller Compacted Concrete Dam牛腿Corbel排沙隧洞silt-releasing tunnel排水drainage排水闸outlet sluice喷混凝土sprayed concrete平板坝flat slab buttress dam平面闸门plane gate破碎带crushed zone铺盖blanket砌石护坡stone pitching人工材料面板坝artificial material faced dam人工材料心墙坝artificial material-core dam 溶洞solution cavern软基重力坝gravity dam on soft foundation 软弱夹层soft intercalated layer实用断面practical section试载法trial-load method双曲拱坝double-curvature arch dam水工建筑物hydraulic structure水工隧洞hydraulic tunnel,waterway tunnel 水力发电隧洞hydropower tunnel水利枢纽hydro-complex水力学方法hydraulics method水平施工缝horizontal joint水闸sluice弹性模量elastic modulus挑流消能energy dissipation by trajectory jet 土工膜geomembrane土石坝earth-rock dam土质斜墙坝earth dam with inclined soil wall 土质斜心墙坝earth dam with inclined soil core土质心墙坝earth dam with soil core帷幕灌浆curtain grouting温度荷载temperature load温度控制temperature control温度应力temperature stress温度作用temperature action无压隧洞free level tunnel消力池stilling pool消力戽roller bucket消能工energy dissipater泄洪隧洞spillway tunnel泄水建筑物discharge structure泄水孔outlet hole新奥法NA TM(New Austrian Tunneling Method)胸墙breast wall扬压力uplift溢洪道spillway水垫塘plunge pool溢流坝overflow dam、翼墙wing wall应力分析stress analysis优化设计optimization design有限单元法finite element method有压隧洞pressure tunnel闸墩pier闸门gate闸门槽gate slot正槽式溢洪道normal channel spillway整体式重力坝monolithic gravity dam趾板toe slab支墩坝buttress dam重力坝gravity dam 重力墩gravity abutment周边缝peripheral joint驻波standing wave锥形阀cone valve自由跌流free drop自重dead weight纵缝longitudinal joint键槽key strench伸缩缝contraction joint施工缝construction joint反弧段flip bucket拦污栅trash rack渐变段transition泄槽chute发电进水口power intake通气管air vent检修门bulkhead gate事故门emergency gate工作门service gate堰weir通气管air vent胸墙breast wall梁beam柱column回填混凝土backfill concrete 接地earth一期混凝土primary concrete 二期混凝土secondary concrete 叠梁门stoplog门机gantry crane止水waterstop钢筋reinforcement模板formwork围堰cofferdam马道bench;berm蜗壳volute水轮机turbine电站power house车间workshop发电机generator变电站transformer station副厂房auxiliary power house 安装间erection bay尾水闸门tail lock尾水渠tailrace引水渠approach channel前池fore bay导墙lead wall隔墙partition wall接触灌浆contact grouting回填混凝土backfill concrete帷幕灌浆curtain grouting挡墙retaining wall港口harbour港口建筑物port structure船闸navigation lock船闸充水lock filling船闸充水和泄水系统locking filling and emptying system船闸前池upper pool船闸上下游水位差lock lift船闸闸首lock head升船机ship elevator;ship lift鱼道fish canal旁通管by-pass齿槽cut-off wall水工建筑物专业词汇岸墙land wall坝顶dam crest,dam top坝踵dam heel坝趾dam toe板桩sheet pile边墩side pier,land pier变形模量deformation modulus鼻坎bucket lip毕肖普法Bishop method冰压力ice pressure剥离desquamation侧槽式溢洪道side channel Spillway沉降settlement齿墙cut-off trench冲沙闸(排沙闸)silt-releasing Sluice纯拱法independent arch method刺墙key-wall大头坝massive-head buttress dam *buttress 是扶壁的意思单宽流量discharge per unit width 单曲拱坝single-curvature arch dam挡潮闸tidal sluice导流隧洞river diversion tunnel倒悬度Overhang degree底流消能energy dissipation by underflow地震作用earthquake action垫座cushion abutment动水压力hydrodynamic pressure断层fault堆石坝rock-fill dam多拱梁法multi-arch beam method阀门valve gate防浪墙wave wall防渗铺盖impervious blanket非常溢洪道emergency spillway分洪闸flood diversion sluice副坝auxiliary dam刚体极限平衡法limit equilibrium method for rigid block拱坝arch dam拱冠梁crown cantilever拱冠粱法crown cantilever method工作桥service bridge固结灌浆consolidation grouting灌溉隧洞irrigation tunnel灌浆帷幕grout curtain管涌piping海漫apron extension横缝transverse joint虹吸式溢洪道siphon spillway蝴蝶阀butterfly valve护坡slope protection护坦apron弧形闸门radial gate滑雪道式溢洪道ski-jump spillway化学管涌chemical piping混凝土防渗墙concrete cut-off wall混凝土面板堆石坝concrete faced rock-fill dam基本断面primary section简化毕肖普法simplified Bishop method浆砌石拱坝stone masonry arch dam浆砌石重力坝stone masonry gravity dam交通桥traffic bridge接触冲刷contact scouring接触灌浆contact grouting接缝灌浆joint grouting截水槽cut-off trench节制闸check sluice进水口water inlet进水闸inlet sluice井式溢洪道shaft spillway静水压力hydrostatic pressure均质坝homogeneous earth dam抗滑稳定分析analysis of stability against sliding抗滑稳定性stability against sliding空腹重力坝hollow gravity dam空化cavitation空蚀cavitation erosion空注阀hollow jet valve宽缝重力坝slotted gravity dam宽尾墩flaring pier廊道gallery浪压力wave force理论计算theoretical computation拦河闸river sluice沥青混凝土asphalt concrete连拱坝multiple-arch dam流土soil flow流网法flow net method锚杆anchor rod面板face slab面流消能energy dissipation by surface flow 模型试验model experiment泥沙压力silt pressure碾压混凝土坝Roller Compacted Concrete Dam牛腿Corbel排沙隧洞silt-releasing tunnel排水drainage排水闸outlet sluice喷混凝土sprayed concrete平板坝flat slab buttress dam平面闸门plane gate破碎带crushed zone铺盖blanket砌石护坡stone pitching 人工材料面板坝artificial material faced dam人工材料心墙坝artificial material-core dam 溶洞solution cavern软基重力坝gravity dam on soft foundation 软弱夹层soft intercalated layer实用断面practical section试载法trial-load method双曲拱坝double-curvature arch dam水工建筑物hydraulic structure水工隧洞hydraulic tunnel,waterway tunnel 水力发电隧洞hydropower tunnel水利枢纽hydro-complex水力学方法hydraulics method水平施工缝horizontal joint水闸sluice弹性模量elastic modulus挑流消能energy dissipation by trajectory jet 土工膜geomembrane土石坝earth-rock dam土质斜墙坝earth dam with inclined soil wall 土质斜心墙坝earth dam with inclined soil core土质心墙坝earth dam with soil core帷幕灌浆curtain grouting温度荷载temperature load温度控制temperature control温度应力temperature stress温度作用temperature action无压隧洞free level tunnel消力池stilling pool消力戽roller bucket消能工energy dissipater泄洪隧洞spillway tunnel泄水建筑物discharge structure泄水孔outlet hole新奥法NA TM(New Austrian Tunneling Method)胸墙breast wall扬压力uplift溢洪道spillway水垫塘plunge pool溢流坝overflow dam、翼墙wing wall应力分析stress analysis优化设计optimization design有限单元法finite element method有压隧洞pressure tunnel闸墩pier闸门gate闸门槽gate slot正槽式溢洪道normal channel spillway 整体式重力坝monolithic gravity dam 趾板toe slab支墩坝buttress dam重力坝gravity dam重力墩gravity abutment周边缝peripheral joint驻波standing wave锥形阀cone valve自由跌流free drop自重dead weight纵缝longitudinal joint键槽key strench伸缩缝contraction joint施工缝construction joint反弧段flip bucket拦污栅trash rack渐变段transition泄槽chute发电进水口power intake通气管air vent检修门bulkhead gate事故门emergency gate工作门service gate堰weir通气管air vent胸墙breast wall梁beam柱column回填混凝土backfill concrete接地earth一期混凝土primary concrete二期混凝土secondary concrete叠梁门stoplog门机gantry crane止水waterstop钢筋reinforcement 模板formwork围堰cofferdam马道bench;berm蜗壳volute水轮机turbine电站power house车间workshop发电机generator变电站transformer station副厂房auxiliary power house安装间erection bay尾水闸门tail lock尾水渠tailrace引水渠approach channel前池fore bay导墙lead wall隔墙partition wall接触灌浆contact grouting回填混凝土backfill concrete帷幕灌浆curtain grouting挡墙retaining wall港口harbour港口建筑物port structure船闸navigation lock船闸充水lock filling船闸充水和泄水系统locking filling and emptying system船闸前池upper pool船闸上下游水位差lock lift船闸闸首lock head升船机ship elevator;ship lift鱼道fish canal旁通管by-pass齿槽cut-off wall。
英文翻译
The choice of the type of a damThe choice of the type of a dam depends largely on the foundation conditions and availability of materials. where solid bedrock is at or near the surface, a concrete gravity dam may be the logical choice . where bedrock is a considerable distance below the suface ,an arch dam may be the best solution. Where large quantities of rock are found,or become available for channel and powerhouse excavation,a rock-fill dam may be considered. All other factors being the same,particularly the factors of safety ,the least costly dam is the most desirable. Itis not unusual that the choice of the type of a dam can only be made after a number of different ,preliminary,dam designs and cost estimates have been worked out.Gravity dam the following forces must be considered in the design of gravity dams (1)weight of the dam (2)hydrostatic (3)uplift force (4)ice force (5)earthquake force (6) reactionLet it be assumed that the height of the dam has been established and tha t a trial cross-section as been assumed .the fist problem ,then ,is to determine the magnititude of the five active forces listed.the next step is to determin the sixth force ,namely the reaction from the foundation upon the dam .the last and most important problem is to judge the stability of the dam, given teh magnitude and the line of the line of action of the sixth force ,acting upon the dam.Earth dams a few decades ago ,earth dams were only used for relatively small reservoirs, and were considered unsuitable for high head developments .however ,the recent advances in soil mechanics and construction methods have resulted in earth dams being bulit to a height of several hundred feet ,and these dams are now considered as safe as any other type of dam .The main problem in the design of earth dams is to select such a compositionof materials and such side slops that ,with the given foundation conditions , no failure of the dam or any part of the dam will occur.since the function of the dam is to hold back water ,and since all earth is pervious to some extent ,we may expect that this problem of slope stability is intimately associated with promble of water movement through and under the dam .Rock fill dams it was noted earlier that the choice of the type of a dam denpends very much on the materials that are available .incase where large quantities of rock have to be excavated for other purposes ,a rock-fill dam might be economical Than a concrete or earth dam .rock-fill dams must ,of course ,include an imperviours element. This may be an impervious core ,as in an earth dam ,or it may be an imperviours layer of clay near the upsteam face ,or it may be a concrete slab on the top of upsteam face .one of the main requirements of a rock-fill dam is the availability of sound rock or the fill.sound rock may be described as rock which will not disintergrate in the quarry nor in the handling, which is strong enough to sustain the weight of the dam and the water load and which will not disintegrate rapidly when exposed to weather.The design of a rock-fill dam is relatively simple. A triangular rock section is dumped at the natural angle of repose .an impervious earth core at the upstream slop pervents the seepage of water .a suitable filter of coarse sand ,gravel ,and small rock prevents the migration of the impervious material into the large void of the rock-fill.The foundation should be solid enough to withstand the vertical pressure ,and should have sufficient resistance against horizntal sliding .if necessary,a grout curtain mus be provided between the impervious core of the dam and the imprvious rock in the foundaion.英文翻译水坝的种类主要取决于地基础条件和材料的可用性。
土石坝外文翻译---土石坝及溢洪道设计
土石坝外文翻译---土石坝及溢洪道设计When XXX。
XXX types of embankment dams: XXX embankment type depends on the available XXX。
It is importantto note that rockfills can sometimes overlap with soil fills。
XXX。
while hard rocks that do not break down XXX.XXX XXX designer。
It is an empirical process。
and us methods of XXX。
In the end。
the designer must make a n based on their expertise and the available data.XXX is the vertical distance een the crest of the dam and the maximum water level。
It is XXX the safety of the dam。
The amount of freeboard required depends on the consequences of failure。
the expected flood magnitude。
and XXX。
Part 2 SpillwaysSpillways are an essential component of an XXX and potential failure of the dam。
The design of a spillway involves determining its capacity。
selecting its type。
and determining its n.The capacity of a spillway is determined by the maximum flood that the dam is expected to XXX.There are several types of spillways。
水利水电工程专业英语 - 副本供参考学习
Lession 11 danms坝The first dam for which there are reliable records was built on the Nile River sometime before 4000B.C. it is used to divert the Nile and provide a site for the ancient city of Memphis. 据可靠记载,世界上第一座坝是公元前4000年以前在尼罗河上修建的。
他使尼罗河改道,并为古老的孟菲斯城提供城址。
The oldest dam still in use is the Almanza Dam in Spain, which was constructed in the sixteenth century. With the passage of time, materials and methods of construction have improved, making possible the erection of such large dams as the Nurek Dam which is being constructed in the Former Soviet Union on the Vaksh River near the border of Afghanistan. This dam will be 1017 ft (333m)high,of earth and rock fill. 至今仍在使用的最古老的坝是16世纪修建的西班牙阿尔曼扎坝。
随着岁月的流逝,各种建筑材料和施工方法得到了改善,修建列努克这样的大坝才成为可能。
该坝正在前苏联境内靠近阿富汗边界的瓦赫什河上施工,是一座高达1017英尺(333米)的土石坝。
The failure of a dam may cause serious loss of life and property; consequently, the design and maintenance of dams are commonly under government surveillance. In the United States over 30,000 dams are under the control of state authorities. The 1972 Federal Dam Safety Act (PL 92-267)requires periodic inspections of dams by qualified experts. The failure of the Teton Dam in Idaho in June 1976 added to the concern for dam safety in the United States. 大坝失事可能造成生命财产的严重损失。
外文翻译---土石坝的施工
外文翻译---土石坝的施工In recent decades。
XXX constructing high dams XXX。
as well as extensive testing of dams。
the scope of materials available for XXX。
This has led to the development of more extensive embankment dam models。
which XXX necessary to fill the lack of low XXX quality and safe n.2 XXX Embankment DamsXXX increase efficiency and speed up the n process。
This includes the use of XXX to ce the time and cost required for n.3 n Quality and Safe nXXX。
it is XXX quality and safe n。
This requires XXX。
XXX the long-term safety and stability of the embankment dam.4 nXXX。
embankment dams XXX on quality or safety。
Thiswill help to accelerate the progress of n and ensure the long-term stability and safety of the embankment dam.Also known as an embankment dam。
this type of dam is constructed using XXX on site。
making the process more efficient。
土石坝外文翻译---土石坝及溢洪道设计
The Design of Earth-Rock Dam and SpillwaysPart 1 Embankment DamsSelection of embankment type:In general, there are two types of embankment dams: earth and rockfill. The selection is dependent upon the usable materials from the required excavation and available borrow. It should be noted that rockfills can shade into soil fills depending upon the physical character of the rock and that no hard and fast system of classification can be made. Rocks which are soft and will easily break down under the action of excavation and placement can be classified with earthfills. Rocks which are hard and will not break down significantly are treated as rockfills.The selection and the design of earth embankment are based upon the judgment and experience of the designer and is to a large extent of an empirical nature. The various methods of stability and seepage analyses are used mainly to confirm the engineer’s judgment.Freeboard :All earth dams must have sufficient extra height known as freeboard to prevent overtopping by the pool. The freeboard must be of such height that wave action, wind setup, and earthquake effects will not result in overtopping of the dam. In addition to freeboard, an allowance must be made for settlement of the embankment and the foundation which will occur upon completion of the embankment.Top width :The width of the earth dam top is generally controlled by the required width of fill for ease of construction using conventional equipment. In general, the top width should not be less than 30 ft. If a danger exists of an overtopping wave caused either by massive landslides in the pool or by seismic block tipping, then extra top width of erosion resistive fill will be required.Alignment :construction costs but such alignment should not be such as to encourage sliding or cracking of the embankment. Normally the shortest straight line across the valley will be satisfactory, but local topographic and foundation conditions may dictate otherwise. Dams located in narrow valleys often are given an alignment which is arched upstream so that deflections of the embankment under pool load will put the embankment in compression thus minimizing transverse cracking,Abutments :Three problems are generally associated with the abutments of earth dams:①seepage,②instability, and ③transverse cracking of the embankment. If the abutment consists of pervious soils it may be necessary to construct an upstream impervious blanket and downstream drainage measures to minimize and control abutment seepage.Where steep abutments exist, especially with sudden changes of slopes or with steep bluff, there exists a danger of transverse cracking of the embankment fills, This can be treated by excavation of the abutment to reduce the slope, especially in the imperious and transition zones. The transition zones, especially the upstream, should be constructed of fills which have little or no cohesion and a well-distributed gradation of soils which will promote self-healing should transverse cracking occur.Stage construction :It is often possible and in some cases necessary, to construct the dam embankment in stages. Factors dictating such a procedure are :①a wide valley permitting the construction of the diversion or outlet works and part of the embankment at the same time; ②a weak foundation requiring that the embankment not be built too rapidly to prevent overstressing the foundation soils;③a wet borrow area which requires a slow cases it may construction to permit an increase in shear strength through consolidation of the fill. In some cases it may be necessary to provide additional drainage of the foundation or fill by means of sand drain wells or by means of horizontal pervious drainage blankets.Embankment soils :Most soils are suitable for use for embankment construction, however, there are physical and chemical limitations, soils which contain excessive salts or other soluble materials should not be used. Substantial organic content should not exist in soils. Lignite sufficiently scattered through the fill to prevent the danger of spontaneous combustion, is not objectionable. Fat clays with high liquid limits may prove difficult to work and should be avoided.Compaction requirements :The strength of the impervious and semi-impervious soils depends upon he compacted densities. These depend in turn upon the water content and weight of the compacting equipment. The design of the embankment is thus influenced by the water content of the fill or after placement practicable alternations to the water content either prior to placement of the fill or after placement but prior to rolling. If the natural water content is too high, then it may be reduced in borrow area by drainage, or by harrowing. If the soil is too dry it should be moistened in the borrow area either by sprinkling or by ponding and then permitted to stabilize the moisture content before use. The range of placement water content is generally between 2 percent dry to 2 or 3 percent wet of the standard Proter optimum water content. Pervious soils should be conpacted to at least 80 percent of relative density.If necessary, test fills should be constructed with variations in placement water content, lift thickness, number of roller passes and type of rollers. For cases of steep abutment, the fill must be placed in thin lifts and compacted by mechanical hand tampers. All overhangs should either be removed or filled with lean concrete prior to fill placement.Types of instruments :The type of instrumentation depends upon the size and complexity of the project. The devices in common use are :①piezometers; ②surface movements; ③settlementgages; ④inclinometers; ⑤internal movement and strain indicators; ⑥pressure cells;⑦movement indicators at conduit joints and other concrete structures.Part 2 SpillwaysA spillway is the safety valve for a dam. It must be designed to discharge maximum flow while keeping the reservoir below a predetermined level. A safe spillway is extremely important. Many failures of dams have resulted from improperly designed spillways or spillways of insufficient capacity. Spillway size and frequency of use depend on the runoff characteristics of the drainage basin and the nature of the project. The determination and selection of the reservoir inflow design flood must be based on an adequate study of the hydrologic factors of basin. The routing of the flow past the dam requires a reasonably conservative design to avoid loss of life and property damage.Space limitations do not permit an adequate hydrologic treatment of flood flows. However, data are supplied for estimates of maximum flows for the initial project studies. A more detailed hydrologic analysis is necessary for the utilization of the annual and long-turn stream flow in a proper project formulation.The study of stream or river flows involves:①the determination of the amount of water available throughout a period of years;and ②the determination of the maximum volumes of water that must be handled for spillway design and dam safety.In the first aspect, the flow is studied for periods of drought and programmed into this study. A mass curve of the stream runoff over a period of years is developed to determine the available water. The mass curve is the accumulative total of the volume of flow past a given point on the stream over a period of time. Unfortunately, most of the small streams do not have sufficient records to develop the hydrologic information. The engineer usually develops synthetic curves from neighboring stream data and rainfall information. However, methods are available in various texts, journals, and reports to estimate stream flow.The second aspect involves estimating maximum flood flow to determine spillway requirement and dam safety. Studies show that flood flows are associated with frequency of the event of the risk of floods causing damage by exceeding the estimated design flow.If failure of the dam would result in loss of life, the spillway must have sufficient capacity to prevent failure when the maximum probable flood is routed through the reservoir. This is particularly important in rock and earthfill dam that may be overtopped during a flood. Concrete dams can generally withstand some overtopping without failure if the structural analysis adheres to the generally accepted safety factors.The case of dam failure that does not endanger life may be justified if the organization involved fully realizes the risks and ensuing damages. This situation may exist on low, small reservoir-type dams.A quick estimates of maximum probable flow can be obtained from a figure. Discharge determined from these curves should be modified by application of hydrologic data pertinent to the area. The curves are based records of unusual flood discharges for unregulated streams.The engineer should not accept the flood peak established from these experience curves without first bringing the data up to date to show all recent flood events and those pertinent to the area of study.An advanced procedure to estimate the maximum flood is to transpose storm producing great floods in the region over the drainage basin. The resulting flood is analyzed to determine the peak flow and the hydrograph. The hydrograph is the relationship of discharge and time for precipitation when combined with other flood-contributing of the basin (including melting snow)to produce the flood hydrograph.Flood less than maximum may be used for structures where loss of human life is not involved. In minor structures with insignificant storage, where it is permissible to anticipate failure within the useful life of the project, a 50-year or 100-year frequency flood may be used for the inflow design flood.Site conditions greatly influence the location, type, and components of the spillway. The type of dam construction is also influenced by the type of spillway and spillway requirements.There are six general categories of spillways: ①overflow ,②through or chute,③side channel, ④shaft or glory hole, ⑤siphon, ⑥gated. The designer may use oneor a combination of types to fulfill the project needs.Some designs will use one type of spillway for normal operation and for flood peaks up to a 50-year or 100-year frequency storm. An emergency spillway provides additional safety if emergencies arise that was not covered by normal design assumptions. Such situations could result from floods above a certain level, malfunctioning spillway gates, or enforced shutdown of outlet works. The emergency spillway prevents overtopping the main portion of the dam and is particularly needed for earth and rock embankments.The overflow spillway is well suited to concrete dams. It is commonly used where dams have sufficient crest length for the desired discharge capacity and where the foundation material is solid or can be protected against scouring. Some dams use a free overflow or non-supported type; others incorporate a chute or through to carry the flow to the downstream channel.Chute spillways are often used for earth dams or where there are poor downstream foundation materials. Slide channels and shaft spillways are readily adapted to narrow canyons where space is limited. Limitations on crest length or maintaining a constant headwater level fit the flow characteristics of a siphon spillway. Gated spillways are used when it is desirable to limit the effects of the dam during high flows and prevent excessive flooding.The spillway may be part of the dam or a separate structure. Its function must be integrated with the dam. The location, size, and other dam features influence the spillway location and arrangement. The final plan is governed by the overall economy and hydraulic sufficiency of the spillway.───This literature is from《Hydraulic Engineering Specialty English》土石坝及溢洪道设计1 土石坝的设计坝型的选择:一般来说,土石坝有两种类型:土坝和堆石坝。
外文翻译---土石坝的施工
外文翻译Rapid construction of the earth-rock damAbstract :In recent decades, the soil core rockfill dam has gradually become the world's construction of the high dam-one of the mainstream, With the new earth and the huge investments in machinery and construction technology of filling a higher level, Meanwhile dams in-depth testing, greatly expanding the earth-rock dam scope of the materials and the use of materials for model for more extensive earth-rock dam will provide favorable conditions to change the long-standing earth-rock dam with a long construction period, Filling the lack of low intensity, and further accelerate the progress of the construction, Filling in ensuring construction quality and safe operation under the premise to explore the rapid construction of earth-rock dams it is very necessary thing.Key words : earth-rock dam Rapid construction Construction1 OverviewAlso known as the earth-rock dam dam local materials, the necessary soil in situ stone mining in general, but can also make full use of the excavated material. having to basic requirements, low deformation based on the character, filling construction, and can be divided into RCC-grade. Fill-rockfill dam, directional blasting rockfill dam, the hydraulic fill dams, hydro-filled dam and masonry dam in different ways. Parabolic which administered rockfill dam no longer, directional blasting rockfill dam late settlement exist, not be planted within the dam prototype observation equipment shortage, which are rarely used, hydraulic fill dams, Fill the water main in a special area of the lower dam height of the small and medium projects, the masonry dam strictly speaking belongs masonry dam category, At present, the extensive use of thin sections and the hierarchical compaction roller compacted earth-rock dam.2 The need for rapid constructionWith the dam construction technology, concrete gravity dam dam the technology continues to improve, while the rubber dam and other new dam-constant use, there is a traditional earth-rock dam filling a large quantity of a long time to build the shortcomings become extremely prominent, how to fully exploit the technology itself earth-rock dam low, right foundation adaptability, full use of local materials to the traditional advantages to speed up the construction schedule, as Pa-an important option. Filling in ensuring the quality of construction and safe operation of the rapid construction premise is that the parties are concerned.2.1 Based on the uncertainty, the need to accelerate the progress of measuresWith the hydropower development progress in basic bad place to build a large earth-rock dams, In order to meet the capacity and infrastructure foundation impervious to the needs, often based on the completion of treatment can only be reclaimed after construction, however, foundation of a more complicated, especially in deep-cover construction projects, infrastructure projects are large, unpredictable factors, often need cutoff Vibroflotation, curtain grouting, grouting consolidation of the foundation for the integrated treatment, handling difficult and complex examination, Based on the number of projects, foundation treatment completion and handover of face time is often more work plan by the time lag. Filling started causing delay and the next gate or the completion of water storage often not be adjusted, resulting in an effective filling time, Construction units have had to resort to quick construction of measures will be scheduled according to the contract (or even ahead of) completion of the project.2.2 Hydro-meteorological, filling intensity of the proposed new standardsearth-rock dam of the hydro-meteorological factors are extremely sensitive and in the rainy season, soil moisture greatly influenced, directly restricts dam reclamation, construction intensity will be affected; winter, the soil on the cold, and if it does not take active measures is impossible to filling and filling winter rainy season, there is a high input, low output of the predicament, Construction units are often reluctant to assume, therefore, take full advantage of filling the "golden season," try to avoid winter construction of the rainy season (or reduce the amount of filling winter rainy season), the construction unit is the first choice of the relative, the "golden season," filling the quantity of work is often very substantial. Rapid construction can be avoided winter rainy season generous amount of filling the most important issue.2.3 New Construction equipment and materials massive expansion of the scope of application is the basis for rapid constructionWith the improvement in the degree of mechanization, large capacity of earth and equipment used in construction, improved ergonomics, thus laid for the rapid construction of the necessary material foundation for the formation of materials to expand the scope of application. the original dam material unsuitable materials can also be used as filling material, this rapid filling of the earth-rock dam with a new pillar.3 Field data miningYard of the earth-rock dam importance is self-evident, it is also most likely to affect the smooth filling of the dam weaknesses, according to engineering practice. Generally, the material yard depth of geological exploration work is far less dam, especially the largestvolume filling of rockfills. Several exploratory often alone or topographic survey conducted geological description of the venue, and changes in the tender documents is a great possibility, or geological conditions undergone major changes. tender documents into useful information useless information, or mining area is smaller, to create large-scale mining (or stairs mining), is not conducive to large-scale mining machinery. can directly control dam Regular filling, grading sound, but also can affect the dam fast filling the key In impermeable soil, the water level of the dam could also become the key to rapid filling, therefore, sound and carefully reviewed for yard work and rehabilitation investigation it is particularly important to do a good job yard rechecking and reserve calculation, be aware of. If those conditions for the best in the dam filling part of the former reserves expected to peak lowering finished Pinggu.3.1 Road ConstructionTo meet the need for rapid construction of a large number of machinery and equipment investment is inevitable, At present, more and more vehicles to transport large tonnage trends, the number of transport vehicles also require a corresponding increase on the road increasingly high demand, the practice has proven that better roads, transport vehicles higher attendance, Filling a corresponding increase efficiency, the saying goes, "is the road repair, road construction is progress" is the reason, General projects have adopted the mud stone pavement, if those conditions for the local traffic is heavy use lots of concrete pavement, will greatly improve transport efficiency on the road layout, as far as the actual layout of the Central Bank into a two-lane, vehicles to avoid interference and improve the efficiency of cycling.3.2 Rapid construction of the main methods and attention to the matterCompleted all the preparations have reclaimed conditions, the construction units, as planned dam filling. strengthen the convergence process, reduce intermediate links, is the rapid construction of the highest priority.3.2.1 Reasonable zoning routine dam, filling work is the key to rapid constructionBecause it was larger than the earth-rock dam for the dam surface area routine provided the necessary scenes, generally be divided into processes Shop filling materials, paving, watering and compaction, quality control, etc., If impermeable soil surface planing will be conducted hair, according to the actual situation, the Section will be divided into several processes with a few, If Section few equal to the number of manufacturing processes, people, machines, not idle; If the number is greater than Section several processes, people, planes idle, and idle; If the section of less than a few processes, people, machines leisure, not idle land, not the normal routine, Section conducted a number of operations and the number ofidentified and classified, there are several ways. Because of the reclamation works before the situation is not very clear, generally use existing equipment to their calculation, by the demands and routine matters preliminary to draw up the number of processes, the working of the area and the number of Section, According to pre-filling equipment and the running time of the statistics, further amendments to ensure an orderly manner.3.2.2 Ping filling up with the Provisional Section FillingTo speed up the construction schedule, the general-use starting filling construction and construction - has several advantages : reducing the seams, then Singapore, cutting processes, ensuring the quality of filling; ensure the greatest possible surface rock filling, benefits large mechanized construction; to continue after filling in when entering the layout of the material impervious road construction; Transport filter materials and transition material is not large dump truck across the impermeable material; to reduce errors and materials sector-adjacent material when filling up the inter-linking of RCC; Construction of the dam balanced strength, In impermeable soil and filter material filling transition relations, after the first soil and sand sand soil first two practices, In order to accelerate progress and the control of borders, in general, are used in the construction of sand soil.3.2.3 Large equipment investmentDam filling in volume under certain circumstances, to shorten the filling time, it is inevitable to increase filling strength, Filling the strength and ability to achieve the desired purpose, equipment investment is very important, although the new equipment, keep large equipment into projects, but the present belongs to the overall construction of water conservancy vicious competition, the successful low-cost environment, in a project into a large number of new equipment, equipment for the construction of high-intensity more difficult, therefore, We can see that in many projects, small and medium-sized projects with a construction equipment to complete the construction of major projects. Practice has shown that this small carts of malathion does not guarantee the dam fast, the normal construction, For example, the RCC advanced equipment, shop rockfill material thickness can reach 1.5 m or even 2m, and regular use of the 16 plane crushed not only RCC ~ 1.0 m 0.8% obviously filling equipment to see the progress of the impact.3.2.4 Winter Construction strengthen research and organizations, is to speed up the dam filling a directionBecause of the winter, Dam filling (especially impermeable soil sites) are often at the stage of filling or not filling very low intensity, Filling caused by the dam, in general, in southern China, the impact of Winter Construction 2 ~ 3, and the North, Winter Construction longerthan the South, and how to maintain a normal winter construction accelerate the dam filling a matter of orientation, as this issue is a breakthrough, Quick filling earth-rock dam will bring a qualitative leap.Therefore, rapid construction, it should be the owners and the construction of a correct view of the issues, such as settlement and the arch effect, use finite element analysis and prototype observation equipment laid for the actual measurement, and to monitor stress and deformation of the dam; Dam to aggregate gradation control, good size distribution during the construction period to try and fill dense lower late settlement; use large, The vibration of heavy rolling equipment, and improve the degree of compaction to reduce porosity measures; In order to achieve a balanced construction, parties should be from a scientific point of view, comprehensive and accurate analysis and reasonable period to maximize the use of resources to achieve the goals, It is not a simple high demand, speed and efficiency, in order to achieve rapid construction, property owners and construction units, a "win-win" goal.References :[1] earth-rock dam during flooding period of construction characteristics and strength of the construction mitigation measures Libing[2] Xiaolangdi dam filling construction technology and construction Wangbi[3] Sichuan water conservancy earth-rock dam with the dam construction materials brief Luenxi[3] Chang Reservoir dam after the closure of the rapid construction Xinyuqing土石坝的施工摘要:近几十年来,土质心墙堆石坝已逐渐成为世界上高坝建设的主流坝型之一,随着新型土石方机械的大量投入及填筑施工工艺水平不断提高,同时筑坝材料试验的深入,极大地拓宽了土石坝的用料范围和用料模式,为土石坝更广泛地提供了有利条件,改变了土石坝长期存在着建设工期长、填筑强度低的不足,进一步加快了施工进度,在确保填筑施工质量及安全运行的前提下探讨土石坝的快速施工很有必要的事情。
石头河土石坝
石头河土石坝 - 防渗处理
坝基防渗处理方面,在河床砂卵石覆盖层较薄处采用明挖至基岩,浇筑混凝土齿墙后,回填黏土,形成截水槽;在左、右侧深槽部位,明挖到一定深度后,再用人工支撑开挖窄槽至基岩,浇筑厚3m的混凝土防渗墙,墙底深入新鲜岩石0.5m,再在墙顶浇筑混凝土齿墙,对明挖部位回填黏土,形成截水槽。两岸岸坡均沿心墙结合槽中部基岩上设混凝土齿墙,与河床段齿墙连接。在右岸阶地长224m的坝段,采用混凝土连续固壁的倒挂井分层开挖至基岩,最大挖深60m,倒挂井内浇筑混凝土的高度最大为30m,其上回填黄土。在防渗结构与基岩接触范围内所有断层带采用深开挖和混凝土塞处理。对基岩进行帷幕灌浆,主帷幕最大深度65m,为预防坝体裂缝,采取了一些工程措施,如岸坡段的心墙防渗体适当加大;下游侧反滤层适当加厚;坝肩两岸岩石削成平顺的坡度;结合坝肩削坡挖除大部分湿陷性黄土和设置适应心墙变形的塑性土区等。土石坝采用综合机械化施工保证了坝体填筑质量和工程进度。
石头河土石坝 - 地质结构
坝址控制流域面积673km2,占石头河河谷出口以上流域面积的98.1%,多年平均流量为14.1m3/s。坝址河谷底宽约200m,河床砂卵石覆盖厚度一般为4m~10m,左右深槽内覆盖层厚达25m~28m。两岸坝肩为三级、四级阶地。坝址基岩为绿泥石云母石英片岩,河谷中部有辉长岩侵入体,坝基除两条较大的顺河断层外,裂隙、断层破碎带一般规模较小。工程按100年一遇洪水设计,1000年一遇洪水校核,按可能最大暴雨分析计算,确定保坝洪水流量为8000m3/s,水库总库容1.47亿m3。
石头河土石坝 - 简介
石头河土石坝(Shitouhe Earth-rock Dam) 位于中国陕西省眉县斜峪关上游1.5km,是石头河水利枢纽工程的主要组成部分,也是黄河水系渭河南岸支流石头河上的一项大型水利工程。工程于1974年6月开工,1976年6月开始坝体填筑,1982年12月拦河坝建成,1989年11月全部工程竣工。工程具有以灌溉(设计灌溉面积8.53万hm2)为主、结合发电和防洪的功能。20世纪90年代以来,增加了城市供水任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EPPALOCK水库大坝的安全修复学生:王鑫指导老师:乔娟三峡大学科技学院论文摘要:EPPALOCK水库大坝坝顶出现裂缝的情况已经很多年了,但随着近年来库区旱季引起的水库内部运动加剧使得EPPALOCK水库大坝安全情况逐步开始恶化。
更为严重的是,调查发现EPPALOCK水库大坝所用的粘性过滤材料会加快裂缝的传播。
在1999 年,一个对大坝的紧急修复工程迅速实施。
修复工程重新对大坝上下游常遭破坏的过滤层进行设计和布置。
同时为保证水库正常运行和控制工程风险,实施修复工程的墨累水公司采用创新的方案进行大坝修复,更新和保护下游的护坡,并新设置一个多功能过滤层。
关键词:EPPALOCK水库大坝裂缝安全修复1简介EPPALOCK水库大坝是一座高47m的土石坝,由粘土心墙,上下游反滤层和堆石体组成。
EPPALOCK水库大坝始建于1962年,地点位于澳大利亚维多利州的Campaspe河上。
通过岩土工程勘察对EPPALOCK水库大坝性能进行评价发现大坝主体垂直沉降达到850mm及横向变形达到750mm。
原因是当年建设水库大坝为了控制建设成本,所修建的边坡比较陡,同时坝体石料也没有压实,而密实度不佳坝体石料没有提供给坝体足够的密实度和高强度的核心约束。
随着近年来大坝坝顶的裂缝不断延伸,加之严重的旱灾使水库水位已经降到历史最低水位,致使成坝体沉陷加速。
监测报告还显示每次水库水位降低都会加剧坝体沉陷和裂缝的产生,最糟糕的结果是可能会导致EPPALOCK水库大坝失事。
经过进一步调查发现,由于大坝反滤层所含的细骨料太多,大坝的防渗措施也出现问题。
通过观察裂缝发现如果形成穿越心墙的渗径,那么就会引发灾难性的管涌危险,给下游造成严重破坏并可能造成人员伤亡,这是令人担心和苦恼的问题。
不过万幸的是裂缝开裂方向是沿纵向轴坝线方向,然而也观察到部分具有向上游坝体倾向的裂缝和至少有4m深的软化粘性土表面,但目前情况是大坝裂缝本身不会引起严重的管涌风险,需要担心的问题是下游过滤层覆盖的粘性材料不能阻止坝体内部所产生的裂缝的产生。
因此为解决这个问题,墨累水公司在1999年实施的紧急修复工程中,在稳定与兼容的前提下对大坝坝体设置了多层过滤层和过渡区。
这项双管齐下的大坝修复工程不仅在考虑坝体稳定性分析、单独坝体变形分析等多方面分析的情况下成功完成安全修复,同时作为工程实施方墨累水公司有效的对工程进行科学管理,在规定时间和施工预算内高效完成这项修复工程,避免潜在的施工风险和高昂工程索赔。
2设计、建设及其构造澳大利亚国家流域水利委员会从1960年到1964年设计并建造这座土石坝,并在在1965年正式竣工。
当时澳大利亚建造这座土石坝采用相对较新颖的工程设计,即较厚重的粘土心墙和较薄石土壳混合构造,但由于作为坝壳的土石料很脏没有经过清洗,同时倾倒土石料时又没有压实,因此只是建造了一个松散可压缩粘土心墙硬壳。
虽然这座土石坝通过常规安全检测并以正常安全状态持续运行35年,但近年来出现坝顶纵向开裂的现象和运动向量从下游向上游的转移都可以从研究报告中看到了大坝安全问题的恶化。
3变形特征EPPALOCK水库大坝主要的变形特征主要受以下两种机制控制:1)土石坝坝面的长期变形造成粘土心墙向下的抗力和拉张裂缝。
2)水库大坝上游不安定因素造成:●雨水流进大坝裂缝造成一种坝体内部的破坏应力和粘土心墙的软化。
●水库区下的地下水流动。
●当地下水流动时,反滤层的排水能力达不到要求。
●大坝相对较低的拉升强度和未压实的土石块组成不密实的坝体。
●堆石体、反滤层及其粘土材料的蠕动变形和变形所造成的粘土心墙软化。
4关注管涌问题当符合正常指标的大坝反滤层暴露出粘性过滤材料时,应该密切关注大坝是否可能会出现管涌问题,以免造成恶劣的安全影响。
与此同时,在大坝的施工建设期间,粘性的过滤材料来源也变得更加困难,因此大坝的工程预算也随之增加。
人们曾经担心引起路基裂缝的不稳定或不均匀的变形是从粘土心墙开始扩展和开裂,裂缝会一直穿过反滤层,并沿着坝肩一直延续到大坝下游。
另一问题是,虽然符合正常标准的反滤层材料是经过优良的分级过滤,能修复劣质的反滤层和兼容未经冲刷的脏土石,但被侵蚀的粘土心墙可能由于粘土的分散而持续导致更多即将开裂的裂纹。
更让人担心的危险是如果裂缝来自地基沉降和地震,那么将会引起大坝严重的安全问题。
5施工福克斯在2000年出版的施工手册提供了EPPALOCK水库大坝修复工程的建设关键的项目细则。
从施工手册提供详细工程设计来看,该工程施工存在了一系列的挑战,比如施工期间现场处理、如何有效地对工程施工的进行科学管理已达到最终目的等种种问题。
虽然大坝内部运动和裂缝产生是工程建设意料之中的情况,但是在大坝工程建设过程中还是需要对大坝进行必要的工程检测措施以保证大坝的安全,尤其是从现场来看该水库水位接近历史低位水平。
一个多方面的研究调查和监测方案为大坝施工提供了一个清晰明了的工期安排,并证明之前预测变形特征与大坝内部运动之间的联系。
大坝内部运动的粘土心墙是由坝体纵向裂缝引起,从研究调查中可以看到最显著的体现。
在坝顶开挖时,在粘土心墙上2m处发现大量的历史性裂缝。
坝顶表面裂缝的密封需要使用到沥青和各种固体泡沫剂,以防止雨水渗入。
这种代替灌浆修复暴露的缺陷的方法不是破坏区域进行拆除,也不是用球芯材料密封并保持在2%以上的最佳含水量的程度上进行压实,这种方法实际上可能会对粘土心墙实际上可能会对粘土心墙导致额外破坏。
在施工建设过程中,下游暴露的粘土心墙的干燥密封是由沥青喷洒和铺盖来成功完成。
下游的开挖结果表明与当初大坝设计图纸来看,现有大坝反滤层的位置与当初有显著的偏差,工程还需要进行额外的开挖,减少下游临时粘土心墙边坡的宽度,尤其是有些地方只保留一米左右。
通过这个修复后还需要对大坝的稳定进行性密切监测,并在开挖数小时内对外露粘土心墙材料进行处理,以减小不稳定的风险。
额外的下游开挖同时也缓解一些下游施工区域的压力。
然而,在设置的下游堆石体的施工时会导致少量间隙造成材料流失,特别是在过渡区域与堆石体界面之间。
为了防止过渡区域材料过度流失成为散土石,必须提高过渡区域材料处理方法,像过度区域土石处理方法的介绍一样,对过渡区域碎土石进行更细的分级。
这些措施就能有效地提高材料使用率。
在水库水位接近历史最低水平,预测大坝施工后的变形是一项十分重要的工作,重新评估坝顶路面弹性系数以及减少多层次粗骨料基层的“裂缝还原”现象。
另外,重新设置一种防渗衬垫在粘土心墙的上面,以防止雨水通过第二层保护渗入到任何粘土心墙缺陷的路面。
同时一个重要施工风险是当施工遭遇洪水时,大坝下游的粘土心墙在没有反滤层的保护下容易暴露被洪水冲刷。
因为应急材料储备应该在任何时候都不能缺少,尤其在下游开挖到低于194m AHD需要紧急回填的时候。
6修复后水库效果维多利亚州的长期干旱情况已经对安全修复后的EPPALOCK水库大坝进行直接测试。
在2000年5月水库水位下降到一个新的历史低点182.3m,较前期施工期间低了1m,但是对修复完成的大坝进行变形分析预测,却从报告中发现粘土心墙变形从25mm降低到15mm。
同时,只要一旦水库稳定,再对堆石体外壳变形进行分析预测,会发现裂缝的长生已经停止,并确认坝顶路基满足设计要求,即使路面有些开裂,但通过加固土石格栅能成功控制其变形。
水库一旦返回到正常运行水平,那么最后道路的密封和安全修复改造项目都将完成。
7结论EPPALOCK水库大坝安全修复工程项目体现了我们自己分析研究复杂的土石坝工程的能力,并快速完成水库大坝安全修复,以确保可持续性的农田灌溉安全保障。
虽然工程建设方法是相当复杂的,但是修复工程本着科学和合乎常理的原则进行,这是解决设计和实施补救工程计划的最重要的原因和保证。
8致谢感谢墨累水公司和澳大利亚水坝委员会的众多学者和工作人员为这篇论文的成功发表做出贡献,包括Ian Howley领导的分析工作团队、David Stewart领导的大坝安全工作团队、Michele Cowan领导的联合研究审议小组和Steven Fox领导的建设团队。
同时Robin Fell教授提供宝贵的意见和建议,墨累水公司的J.Barry Cooke 和PhilCarter对文章进行审阅。
9参考文献1.Foster, M. and Fell, R.,1999,“Filtering testing for dams-no andcontinuing erosion boundaeies”8th ANZ Conference on Geomechanics, Hobart. Vol. 2,pp. 501-511.2.Fox, S.D. and Fyfe, G.E.,2000,“Its More Fun When You Do ItYouself-Constructing the Lake Eppalock Main Embankment Remedial Works Project.”ANCOLD 2000 Conference on Dams.3.Heitlinger, M.,Moffat,T.S.and Little, D.J.,1965,“Design andConstruction of Eppalock Earth and Rockfill Dam,and Turbine Pumping Station, on the Campaspe River , Victoria”, J.IEAust. Oct-Nov 1965.4.Sherard,J.L.,and Cooke ,J.B.,1987,“Concrete Face Rockfill Dams:IAssessment,JASCE, Geotech Eng.Vol.113,No.10,1096-1122.5.Sherard,J.L.,Woodward,R.J.,Gizienski,S.F.andClevenger,B.S.,1963,“Earth and Earth-Rock Dams”,John Wiley&Sons,New York.6.Woodward-Clyde 1999,“Lake Eppalock Main Embankment Remdial Works DesignReport”, 8March.。