双闭环流量比值控制系统设计
过程控制课程设计
电气工程与自动化专业年级班一、设计题目双闭环流量比值控制二、主要内容熟悉THJ-2型高级过程控制系统实验装置,获取电动阀支路的流量和变频器-磁力泵支路的流量曲线,利用实验建模法求出它们的数学模型。
根据比值控制,选择合适的双回路调节器控制规律,并在Matlab 上进行仿真。
最终在过程控制系统实验装置平台上完成实际系统的调试,并说明两种方法的所得结果的差别。
三、具体要求1.从组成、工作原理上对工业型传感器、执行机构有一深刻的了解和认识。
2.分析控制系统各个环节的动态特性,从实验中获得各环节的特性曲线,建立被控对象的数学模型。
3.根据其数学模型,选择被控规律和整定调节器参数。
4.在Matlab上进行仿真,调节控制器参数,获得最佳控制效果。
5.了解和掌握自动控制系统设计与实现方法,并在THJ-2型高级过程控制系统平台上完成本控制系统线路连接和参数调试,得到最佳控制效果。
6.分析仿真结果与实际系统调试结果的差异,巩固所学的知识。
四、进度安排五、完成后应上交的材料课程设计报告。
六、总评成绩指导教师签名日期年月日系主任审核日期年月日目录一.设计任务分析…………………………………………………1.1 设计目的………………………………………………1.2 主要内容…………………………………………………1.3 设计要求………………………………………………二.总体方案设计…………………………………………………2.1 实验装置说明……………………………………………2.2 实验注意事项……………………………………………2.3 控制面板接线说明………………………………………三.控制方案设计…………………………………………………3.1双闭环比值控制系统的结构………………………………3.2双闭环比值控制系统的特点与分析………………………四.单回路参数整定……………………………………………4.1 被控对象特性测试………………………………………4.2 电动阀传递函数测试……………………………………4.3 变频器/磁力泵传递函数测试……………………………4.4 matlab 仿真……………………………………………4.5 比值控制系统参数的整定………………………………五.课程设计体会…………………………………………………六.参考文献……………………………………………………摘要过程控制通常是指石油、化工、电力、冶金、轻工、建材、核能等工业生产中连续的或按一定周期程序进行的生产过程自动控制,它是自动化技术的重要组成部分。
(涡轮流量计双闭环流量比值控制系统设计)
一、设计题目涡轮流量计双闭环流量比值控制系统设计二、设计任务该设计可在A3000-FS 实验台上完成。
图1中1#管流量Q1为主变量,2#管流量Q2为从变量,可设计串级调节器控制FV101满足系统要求。
表1 连接端配置 测量或控制量 测量或控制量标号1#涡轮流量计 FT101 2#涡轮流量计 FT102 电动调节阀FV101 ……以上连接图和仪表仅为本控制系统中的设计提供思路,并不完整,其它部分还需根据自己的设计思路添加。
三、功能要求1) 有组态界面,可观察控制效果,用户操作方便。
2) 可手动输入数据,比如主动量设置、流量比值设置等。
3) 工艺参数在线曲线,可观察控制系统的运行效果。
4) 可在线修改工艺参数。
5)对扰动有较好的抑制能力。
四、控制原理FT 1022#调节阀FV101FT 101比值器调节器Q 2Q 11#图1 比值控制原理示意图单回路控制系统解决了工艺生产过程自动化中大量的参数定值问题。
但是,随着现代工业生产的迅速发展,工艺操作条件的要求更加严格,对安全运行和经济性及对控制质量的要求也更高。
但回路控制系统往往不能满足生产工艺的要求,在这样的情况下,双闭环串级控制系统就应运而生。
双闭串级控制系统是改善控制质量的有效方法之一,在过程控制中得到广泛地应用,串级控制系统是指不止采用一个控制器,而是将两个或几个控制器相串级,是将一个控制器的输入作为下一个控制器设定值的控制系统。
双闭环串级控制系统,就其主回路来看是一个定值控制系统,而副回路则是一个随动系统,主调节器的输出能按照负荷和操作条件的变化而变化,从而不断改变副调节器的给定值,使副回路调节器的给定值适应负荷并随操作条件而变化,即具有一定的自适应能力。
正确合理地设计一个串级控制系统是要其能充分发挥如上所述系统的各种特点。
在系统设计时应包括主、副回路的设计,主、副调节器控制规律的选择及正、反作用方式的确定。
五、系统规划及详细设计1.控制方案根据设计要求,系统采用单闭环比值控制。
双闭环控制器设计方法
电流的直接控制电流直接控制,就是采用跟踪型的PWM 控制技术对电流波形的瞬时值进行反馈控制,可以采用滞缓比较方式,也可采用三角波比较方式,进行电流的直接控制.采用PWM 技术的直接控制方法从原理上来说可以有效地滤除系统中的无功电流和全部有害电流.与间接控制方法相比较,直接控制方法具有更高的响应速度和控制精度,但它要求开关频率高,因为大功率器件很难以高开关频率运行,因此不采用电流直接控制.一般来说,电流直接控制适合于小功率场合.但从目前世界上运行的无功补偿器的情况看来,电流直接控制在中、大容量系统也有应用.日本新农用于输电80Mvar 的SVG 和日本神户用于钢厂负荷补偿20Mvar 的SVG 均采用了电流直接控制方式.前者在电网严重不对称,甚至短路时仍可照常工作;后者对炼钢电极短路引起的电网电压闪变有很好的抑制作用.电流直接控制的SVG 控制系统有两种基本结构:1.滞环比较控制;2.电压电流双闭环控制.本文主要讨论电压电流双闭环控制方法.控制结构如图3.2所示,采用了dq 轴下的瞬时控制系统.SVG 发出的电流瞬时值经dq0坐标变换变为d i q i 0i ,与有功电流、无功电流参考值作比较后,经PI 调节器所得值,再经dq0反变换,得到三相电压信号,进行三角波比较电流跟踪型PWM 控制.其中,有功电流参考值由直流侧电压参考值与直流侧电容电压反馈值比较后经PI 调节器得到.由于参考值*d i 和*q i ,和反馈值d i q i 在稳态时均为直流信号,因此通过PI 调节器可以实现无稳态误差的电流跟踪控制.即此方法中采用了双闭环反馈控制,内环是电流环控制,外环是电压环控制.图3.3 电流电压双闭环控制原理图SVG 采用电流直接控制后,其响应速度和控制精度将比间接控制法有很大提高.在这种控制方法下,SVG 实际上相当于一个受控电流源.由于受电力半导体器件开关频率限制,这种控制方法对较小容量SVG 比较适用.还有一种电流直接控制方法为空间矢量调制控制方法,其原理可参考相关文献,本文不再给出.以上介绍了SVG 的两类控制方法,电流的间接控制和电流的直接控制.通过对比我们可以得出如下结论:<1>电流的间接控制方法相对简单,技术相对成熟,但间接控制与直接控制相比,控制精度较低,电流响应速度较慢.<2>电流直接控制法对电力半导体器件的开关频率要求高,因此适用于较小容量SVG 控制;间接控制法适用于较大容量的SVG 控制.<3>采用电流间接控制的大容量SVG 可采用多个变流器多重化联结、多电平技术或PWM 控制技术来减小谐波.而采用电流PWM 跟踪控制的直接控制方法电流谐波较少.3.3 控制系统参数计算将双闭环控制器设计方法用于SVG,只需要经过为数不多的几步简单计算,就可以确定控制器的参数,特别适合控制器参数的现场整定.另一特点是在频域设计控制器时,可以比较方便地将系统中诸如变换器延时,滤波延时等小滞后环节考虑进去.因此,在SVG 控制系统设计中,一般采用双环控制,即电压外环和电流内环.电压外环的作用主要是控制三相PWM 整流器直流侧电压,而电流内环的作用是要按电压外环输出的电流指令进行电流控制.电流内环控制系统设计如图2.2所示,在相坐标系VSR<d,q>中,其dq 模型可描述为:d d d q q de i u Lp R L e i L Lp R u ωω⎡⎤⎡⎤+-⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦ <3.5> ()32d d q q dc dc u i u i u i += <3.6> 式中d e 、q e ——电网电动势矢量dq E 的d 、q 分量d u 、q u ——三相VSR 交流侧电压矢量dq U 的d 、q 分量d i 、q i ——三相VSR 交流侧电流矢量dq I 的d 、q 分量P ——微分算子设dq 坐标系中q 轴与电网电动势矢量dq E 重合,则电网电动势矢量d 轴分量d e =0.从三相VSR dq 模型方程式<3.5>可看出,由于VSR d 、q 轴变量相互耦合,因而给控制器设计造成一定困难.为此,可采用前馈解耦控制策略,当电流调节器采用PI 调节器时,则d u 、q u 的控制方程如下:()iI q ip q q d q K u K i i Li e s ω**⎛⎫=-+--+ ⎪⎝⎭ 〔3.7〕()iI d ip d d q d K u K i i Li e s ω**⎛⎫=-+-++ ⎪⎝⎭〔3.8〕式中 ip K 、iI K ——电流内环比例调节增益和积分调节增益;q i *、d i *——q i 、d i 电流指令值;将式〔3.7〕〔3.8〕代入式〔3.6〕,并化简得:10iI ip d d d iI ip q q q iI ipK R K s i i i K L p K i i L s i K R K s L**⎡⎤⎡⎤⎛⎫-+⎢⎥⎢⎥ ⎪⎝⎭⎣⎦⎢⎥-⎡⎤⎡⎤⎡⎤⎛⎫⎢⎥=-+⎢⎥⎢⎥⎢⎥ ⎪⎢⎥⎡⎤⎝⎭⎛⎫⎢⎥⎣⎦⎣⎦⎣⎦-+⎢⎥⎢⎥ ⎪⎝⎭⎣⎦⎢⎥-⎣⎦〔3.9〕 显然式<3.9>表明:前馈的控制算法式<3.7>和<3.8>使三相VSR 电流内环()d q i i 实现了解耦控制,由于两电流内环的对称性,因而下面以q i 控制为例讨论电流调节器的设计.考虑电流内环信号采样的延迟和PWM 控制的小惯性特性,已解耦的q i 电流内环结构如图3.4所示:图3.4 无q e 扰动时的q i 电流内环简化结构图3.4中,s T 为电流内环电流采样周期〔即亦为PWM 开关周期〕,PWM K 为桥路PWM 等效增益.为简化分析将PI 调节器的传递函数写成零点形式,即:1ip iI i ip ip iI i iK K s K K K s s τττ+⨯==<3.10> 将小时间常数2sT 、s T合并.电流调节器设计方案有两种.当考虑电流内环需获得较快的电流跟随性能时,可按典型I 型系统设计电流调节器,从图3.4可看出,只需以PI 调节器零点抵消电流控制对象传递函数的极点即可,即i L Rτ=.校正后,电流内环的开环传递函数为:()()1.51ip PWM oi i s K K W s R s T τ=+ <3.11>由典型I 型系统参数整定关系,当取系统阻尼比ξ=0.707时,有:1.512s ip PWMiT K K R τ=<3.12> 求解得:3iip s PWMR K T K τ=〔3.13〕3ipiI is PWMK RK T K τ==〔3.14〕式〔3.13〕〔3.14〕即为电流内环PI 调节器控制参数计算公式.外环控制系统的设计由于电压外环的主要控制作用是稳定三相VSR 直流电压,故其控制系统整定时,应着重考虑电压环的抗扰性能.显然,可按典型∏型系统设计电压调节器,电压环的简化控制结构由图3.5所示:图3.5 三相VSR 电压环简化结构得电压环开环传递函数为:()()()20.7511u u ou u eu K T s W s CT s T s +=+ <3.15>由此,得电压环中频宽u h 为:uu euT h T =〔3.16〕 由典型∏型系统控制器参数整定关系得:220.7512u u u u euK h CT h T += 〔3.17〕 综合考虑电压环控制系统的抗扰性与跟随性,工程上一般取中频宽5uu euT h T ==,将5u h =代入〔3.17〕,计算得电压环PI 调节器参数为:()()55343u eu u s u u s T T T C K T ττ⎧==+⎪⎨=⎪+⎩〔3.18〕 另一方面,当采用典型∏型系统设计电压环时,电压环控制系统截止频率c ω为:1112c u eu T T ω⎛⎫=+⎪⎝⎭〔3.19〕 当取u s T τ=时,()5320u u eu u s s T h T T T τ==+= 〔3.20〕 将式〔3.20〕代入式〔3.19〕得:1113220420c s s s T T T ω⎛⎫=+=⎪⎝⎭〔3.21〕 则电压环控制系统频带宽度bv f 为:30.0242202c bv s s f f T ωππ≈=≈⨯ 〔3.22〕 式中s f ——PWM 开关频率.。
比例阀双闭环设计
比例阀双闭环设计比例阀是一种调节阀,广泛应用于工业控制系统中。
双闭环设计是指在比例阀控制系统中同时采用位置闭环和流量闭环控制。
位置闭环控制是通过对比实际位置和设定位置的差异,控制比例阀的阀芯移动,从而实现对流量的调节。
位置闭环控制主要通过传感器来获取实际位置,并与设定位置进行比较,得出误差。
然后通过控制电机或液压执行器移动阀芯,使误差减小至接近于零。
位置闭环控制主要关注的是流量的精确控制,可以提供较小的流量调节范围和较高的精度。
流量闭环控制是通过对比实际流量和设定流量的差异,控制比例阀的开度,从而实现对流量的调节。
流量闭环控制主要依靠流量传感器来获取实际流量,并与设定流量进行比较,得出误差。
然后通过控制比例阀的开度,使误差减小至接近于零。
流量闭环控制主要关注的是流量的稳定控制,可以提供较大的流量调节范围和较低的误差。
在比例阀双闭环设计中,位置闭环控制和流量闭环控制相互协调,共同实现对流量的精确和稳定控制。
位置闭环控制主要负责追踪设定位置,确保位置误差较小;流量闭环控制主要负责实现设定流量,确保流量误差较小。
双闭环设计能够充分利用位置闭环控制和流量闭环控制的优点,实现更精确、更稳定的流量控制。
双闭环设计需要合理选择位置传感器和流量传感器,确保传感器的测量范围和精度满足控制要求。
另外,还需要合理设计阀芯的移动机构和比例阀的开度控制机构,确保能够实现准确的位置和开度调节。
双闭环设计还需要合理配置控制器和算法,确保能够快速、准确地响应设定位置和设定流量的变化。
总之,比例阀双闭环设计能够充分利用位置闭环控制和流量闭环控制的优点,实现更精确、更稳定的流量控制。
通过合理选择传感器、设计阀芯移动机构和比例阀的开度控制机构,以及配置合适的控制器和算法,可以实现对比例阀的精确控制,提高工业控制系统的稳定性和可靠性。
双闭环流量比值控制系统设计最牛逼设计
目录1.前言 (1)2.总体方案设计 (2)2.1方案比较 (2)2.2 方案论证 (3)2.3 方案选择 (3)3.硬件部分设计 (4)3.1 三菱FX系列PLC (4)3.2 耐腐蚀泵 (5)3.3西门子MM440变频器 (5)3.3 计量螺旋 (6)4.PLC控制系统设计 (8)4.1 输入和输出 (8)4.2设定参数数据存储器地址 (8)4.3 变频器调节 (8)4.4 PID控制 (8)5.系统功能 (10)6.设计总结 (12)6.1 结论 (12)6.2 心得体会 (12)7.致谢 (13)8.参考文献 (14)1.前言工业生产过程中,要求两种或多种物料成一定比例关系,一旦比例失调,会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故,所以严格控制其比例,对于安全生产来说是十分重要的。
尤其在化工生产中,经常需要两种或两种以上的物料按一定比例混合或进行化学反应,如果比例失调,轻则造成产品质量不合格,重则会造成生产事故或发生人身伤害,给企业带来较大的损失。
例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否则将使燃烧反应不能正常进行,而煤气和空气比例超过一定的极限将会引起爆炸。
比值控制的目的就是为了实现几种物料符合一定比例关系,以使安全生产正常进行。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统.由于过程工业中大部分物料都是以气态,液态或混合的流体状态在密闭管道,容器中进行能量传递与物质交换,所以保持两种或几种物料的比例实际上是保持两种或几种物料的流量比例关系,因此比值控制系统一般是指流量比值控制系统.在需要保持比值关系的两种物料中,必有一种物料处于主导地位,这种物料称之为主物料,表征这种物料的参数称之为主动量。
由于在生产过程控制中主要是流量比值控制系统,所以主动量也称为主流量,用F1表示;而另一种物料按主物料进行配比,在控制过程中随主物料而变化;因此称为从物料,表征其特性的参数称为从动量或副流量,用F2表示。
基于PLC的流量比值控制系统设计
毕业设计开题报告摘要流量比值控制系统的设计,主要是用PLC控制液体的比例,以便提高工业的智能化,通过流量比值控制可以使得工业上液体的混合准确,能够更好地控制液体的比例,节约资源。
本设计采用PLC为核心对液体流量进行控制,通过合理的设计,提高流量控制水平,进而改善流量运行的稳定性,使其更加精确。
本文主要介绍了流量的比值控制系统总体方案设计、设计过程、组成、列出流量控制的流程图,并给出了系统组成框图,分析流量逻辑关系,提出了编程方法。
通过A/D采集模块接收流量计传感器的数据,对采集的相应数据进行处理分析并发出指令,该设计采用PID控制方法,通过PID控制的参数设定及自整定。
根据PI调节的输出与输入的偏差成正比,还与偏差对时间的积分成正比,消除了控制过程中产生的静差。
本设计实现了流量双闭环调节的精确控制,这种控制方法对流量的调节具有较好的稳定性和动态特性。
关键词:流量PLC比值PIDAbstractThe design of flow ratio control system, PLC is mainly used to control the ratio of liquid, in order to improve the intelligence industry, through flow ratio control can make industrial liquid mixing accurate, better able to control liquid ratio, save resources.This design uses PLC as the core of the liquid flow control, through reasonable design, improve the flow of control level, thereby improving the flow stability of ru nning, making them more precise. This paper mainly introduces the flow ratio contro l system scheme design, design process, composition, list the flow chart flow control, an d gives the block diagram of the system, analyzes the flow of logic relation, put fort the programming method. Receiving flow meter sensor through the A/D acquisition m odule data, the corresponding data processing analysis and instruction, the design adopt PID control method, setting and tuning the parameters of PID control. According to the deviation of output and input is proportional to the PI regulation, also with the deviati on on time is proportional to the integral, and eliminates the static error generated in the control process.This design realizes the accurate control of flow of double closed loop regulation, this control method has better stability and dynamic characteristics of flow regulation.Key words:Flow PLC Ratio PID目录第1章绪论 (1)1.1课题研究的目的意义 (1)1.2国内外研究现状 (1)1.3论文研究内容 (2)第2章系统控制方案设计 (3)2.1系统整体方案的设计 (3)2.1.1方案论证 (3)2.1.2方案选择 (4)2.1.3双闭环比值控制系统的结构 (4)2.2双闭环比值控制系统的特点与分析 (5)2.3控制方案的比较和确定 (6)2.4流量比值控制系统的组成及原理图 (6)2.5流量比值系统控制流程 (8)第3章系统的硬件设计 (9)3.1PLC的基本知识 (9)3.1.1PLC硬件介绍 (9)3.1.2编程语言 (10)3.2设备的选型 (10)3.2.1PLC及其转换模块的选型 (11)3.2.2变频器的选型 (13)3.2.3水泵电机的选型 (15)3.2.4电磁流量计的选型 (16)3.2.5调节阀的选型 (17)3.3系统主电路分析及其设计 (18)第4章系统的软件设计 (20)4.1流量比值控制逻辑图 (20)4.2系统I/O分配 (20)4.3系统I/O接线图 (21)4.4系统控制过程 (21)4.4.1程序初始化与故障分析 (21)4.4.2PID初始化及程序分析 (23)第5章仿真设计 (25)5.1组态王介绍 (25)5.2组态画面 (25)Ⅰ5.3监控画面 (25)第6章结论 (28)参考文献 (29)致谢 (30)附录 (31)附录A外文资料 (31)附录B电路总图 (42)附录C流程图 (43)附录D程序 (44)Ⅱ石家庄铁道大学四方学院毕业设计第1章绪论1.1 课题研究的目的意义在生产过程、科学研究和其他产业领域中,可编程序自动控制技术的应用都是十分广泛的,在自动控制的设备中,可编程序自动控制亦比其它的控制方法使用得更普遍。
双闭环流量比值控制比值的课程设计任务书
一、设计题目双闭环流量比值控制二、主要内容熟悉THJ-2型高级过程控制系统实验装置,获取电动阀支路的流量和变频器-磁力泵支路的流量曲线,利用实验建模法求出它们的数学模型。
根据串级控制,选择合适的调节器控制规律,并在Matlab上进行仿真。
最终在过程控制系统实验装置平台上完成实际系统的调试,并说明两种方法的所得结果的差别。
三、具体要求1.从组成、工作原理上对工业型传感器、执行机构有一深刻的了解和认识。
2.分析控制系统各个环节的动态特性,从实验中获得各环节的特性曲线,建立被控对象的数学模型。
3.根据其数学模型,选择被控规律和整定调节器参数。
4.在Matlab上进行仿真,调节控制器参数,获得最佳控制效果。
5.了解和掌握自动控制系统设计与实现方法,并在THJ-2型高级过程控制系统平台上完成本控制系统线路连接和参数调试,得到最佳控制效果。
6.分析仿真结果与实际系统调试结果的差异,巩固所学的知识。
四、进度安排第一周分组;查找资料;对象模型的获取,Matlab仿真第二周系统调试,撰写课程设计报告,答辩五、完成后应上交的材料课程设计报告。
六、总评成绩指导教师签名日期年月日系主任审核日期年月日目录一、被控对象以及仪器仪表的描述二、控制方案选择及其论述,控制系统方框图及其说明三、对象的特性曲线测试,对象的数学模型四、matlab仿真五、控制系统连线示意图及说明,并且记录最佳控制结果的调节器参数以及结果曲线六、心得体会一、被控对象以及仪器仪表的描述1.1系统简介“THJ-2型高级过程控制系统实验装置”是基于工业过程的物理模拟对象,它集自动化仪表技术,计算机技术,通讯技术,自动控制技术为一体的多功能实验装置。
该系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识,单回路控制,串级控制,前馈—反馈控制,比值控制,解耦控制等多种控制形式。
1.2被控对象由不锈钢储水箱、上、中、下三个串接有机玻璃圆筒形水箱、4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭式外循环不锈钢冷却锅炉夹套构成)、冷热水交换盘管和敷塑不锈钢管道组成。
流量比值控制系统的设计
流量比值控制系统的设计1引言在生产过程中,凡是将两种或两种以上的物料量自动地保持一定比例关系的控制系统,就称为比值控制系统。
在化工行业中,流量控制是非常重要的。
本文主要介绍了一种流量比值控制系统,经实验和实践运行,证明该系统具有结构简单、稳态误差小、控制精度高等优点。
2工作原理比值控制有开环比值控制、单闭环比值控制和双闭环比值控制三种类型。
开环比值控制是最简单的控制方案。
单闭环比值控制系统是为了克服开环比值控制方案的缺点而设计的,这种方案的不足之处是主流量没有构成闭环控制。
本系统采样双闭环比值控制方案。
图1kcl-h2so4双闭环流量比值控制系统原理图由图1所示,第一个闭环控制系统是主流量氯化钾本身构成的流量闭环控制系统,当设置确定后,通过闭环调节作用,消除扰动的影响,使氯化钾的流量稳定在设定值上,主流量闭环控制系统属于恒值控制系统。
第二个闭环控制系统是副流量硫酸闭环控制系统,其输入量是经过检测与变送后的氯化钾流量信号q1与比值系数k1的乘积。
硫酸副流量闭环控制系统由副控制器1、硫酸泵变频器、硫酸泵以及检测点2/变送器2等组成。
副流量闭环控制系统属于跟随系统。
3流量比值控制系统设计3.1 流量比值控制系统构成氯化钾与硫酸流量比值控制系统是由三菱fx2nc系列plc、耐腐蚀泵、西门子mm440变频器、计量螺旋、电磁流量计等组成。
流量比值控制系统方框图如图2所示。
图2流量比值控制系统方框图(1)三菱fx2nc系列plc。
fx2nc系列plc具有很高的性能体积比和通信功能,可以安装到比标准的plc小很多的空间内。
i/o型连接器可以降低接线成本,节约接线时间。
i/o 点数可以扩展到256点,最多可以连接4个特殊功能模块。
(2)耐腐蚀泵。
硫酸属于腐蚀性介质,输送泵必须采用耐腐蚀泵。
本系统采用ihf 6550-160型氟塑料离心泵,泵进口直径65mm;出口直径50mm;叶轮名义直径160mm;转速2900r/nin,流量25m3/h;扬程32m;电机功率5.5kw。
双闭环管道流量比值控制系统设计报告
PLC控制技术实训评分表课程名称:PLC控制技术实训设计题目:单容液位变频器PID单回路控制,比值控制系统班级:学号::指导老师:年月日常熟理工学院电气与自动化工程学院《PLC控制技术实训》报告题目:单容液位变频器PID单回路控制比值控制系统设计姓名:李良、何龙太莫勇、高虎学号:160112109、160112106160112113、160112104 班级:自动化121指导教师:刘叔军起止日期:2015.6.29~7.12摘要本课题针对液位控制系统系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面,实现PID对水箱液位的控制。
针对比值控制系统进行模拟复杂控制系统设计、分析和测试研究,该系统通过涡轮流量计、电磁流量计进行信号采集,以工控组态软件组态王上位机监控P 画面并对PID参数调节,实现对比值系统的控制。
关键词:PLC PID控制液位控制比值控制组态王流量目录1、引言..................................................... 错误!未定义书签。
1.1主要内容............................................................... 错误!未定义书签。
1.2任务要求 .............................................................. 错误!未定义书签。
2、设计方案 ............................................. 错误!未定义书签。
2.1设计原理 .............................................................. 错误!未定义书签。
2.2设计方案论证 ....................................................... 错误!未定义书签。
第七章比值控制系统
在工业生产过程中起主导作用的物料流量一般选为主 流量,其它的物料流量选为副流量,其副流量跟随主流量 变化。
在工业生产过程中不可控的或者工艺上不允许控制的 物料流量一般选为主流量 ,而可控的物料流量选为副流 量。
在生产过程中较昂贵的物料流量可选为主流量,这样 可以不会造成浪费或提高产量。
在现代工业生产过程中,对自动化的要求较高。就比值控制而 言,不仅要求静态比值恒定,且还要求动态比值一定,在扰动 作用下,要求主、副流量接近同步变化即要求静态与动态时物 料量保持一定比值。为了使 主、副流量在时间上和相位 上同步变化,必须引入“动态 补偿环节”Wb(s),从原理上 分析,Q2(s)/Q1(s)=K,就可
Q2 s Wm1 sWb sWK sWT 2 sW2 s
Q1 s
1WT 2 sW2 sWm2 s
若能使Q2(s)/Q1(s)=K,就能达到主、副流量在 控制过程中的每一瞬时都能成比值变化即主、副 流量变化在时间和相位上同步。
Wm1
sWb sWK sWT 2 sW2 1WT 2 sW2 sWm2 s
作迅速。
例: “燃料-空气”系统
例: 带氧量校正信号的“燃料-空气”系统
1.信号的静态配合 流量与测量信号成线性关系
I1
Q1 Q1max
16
4
I2
Q2 Q2 max
16
4
由于生产工艺要求Q2/ Q1=K,则
K I2 4 Q2max I1 4 Q1max
Wk (s)
K
I2 I1
4 4
K
Q1max Q2 max
若采用比值器来实现比值控制时,由上式计算出的仪表比 值系数K′,即为比值器的比值系数,W(s)= K′。
双闭环控制系统设计
运动控制课程设计双闭环系统的最佳工程设计目录1. 课程设计任务书 (1)1.1系统性能指标 (1)1.2设计内容 (1)1.3应完成的技术文件 (1)2.课程设计设计说明书 (2)2.1综述 (2)2.2整流电路 (2)2.3触发电路的选择和同步 (3)2.4双闭环控制电路的工作原理 (4)3. 设计计算书 (6)3.1整流装置的计算 (6)3.1.1变压器副方电压 (6)3.1.2变压器和晶闸管的容量 (6)3.1.3平波电抗器的电感量 (7)3.1.4晶闸管保护电路 (8)3.2 控制电路的计算 (9)3.2.1已知参数 (9)3.2.3预选参数 (10)3.2.5最佳典型II型速度环的计算 (12)3.3系统性能指标的分析计算 (13)3.3.1静态指标的计算 (13)3.3.2动态跟随指标的计算 (14)3.3.3动态抗扰动指标的计算 (14)参考资料 (16)4.附图和附表 (17)4.1动态结构图和相应的动态结构参数图 (17)4.2典Ⅰ典Ⅱ的开环对数幅频特性图 (17)4.3系统参数表 (18)4.4元件明细表 (22)4.5系统原理图 (23)1. 课程设计任务书1.1系统性能指标1)条速范围D>102)静差率s<5%3)电流超调量<5%4)空载起动到额定转速的超调量<10%,调整时间<1s5)当负载变化20%的额定值,电网波动10%额定值时,最大动态速降<10%,动态恢复时间<0.3s1.2设计内容1)设计系统原理图2)计算调节器参数及其它参数3)编写课程设计说明书1.3应完成的技术文件1)设计说明书2)设计计算书3)系统原理图4)电气元件明细表2.课程设计设计说明书2.1综述随着现代工业的发展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。
相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。
双闭环控制则很好的弥补了他的这一缺陷。
双闭环控制系统设计
运动控制课程设计双闭环系统的最佳工程设计目录1. 课程设计任务书 (1)1.1系统性能指标 (1)1.2设计内容 (1)1.3应完成的技术文件 (1)2.课程设计设计说明书 (2)2.1综述 (2)2.2整流电路 (2)2.3触发电路的选择和同步 (3)2.4双闭环控制电路的工作原理 (4)3. 设计计算书 (6)3.1整流装置的计算 (6)3.1.1变压器副方电压 (6)3.1.2变压器和晶闸管的容量 (6)3.1.3平波电抗器的电感量 (7)3.1.4晶闸管保护电路 (8)3.2 控制电路的计算 (9)3.2.1已知参数 (9)3.2.3预选参数 (10)3.2.5最佳典型II型速度环的计算 (12)3.3系统性能指标的分析计算 (13)3.3.1静态指标的计算 (13)3.3.2动态跟随指标的计算 (14)3.3.3动态抗扰动指标的计算 (14)参考资料 (16)4.附图和附表 (17)4.1动态结构图和相应的动态结构参数图 (17)4.2典Ⅰ典Ⅱ的开环对数幅频特性图 (17)4.3系统参数表 (18)4.4元件明细表 (22)4.5系统原理图 (23)1. 课程设计任务书1.1系统性能指标1)条速范围D>102)静差率s<5%3)电流超调量<5%4)空载起动到额定转速的超调量<10%,调整时间<1s5)当负载变化20%的额定值,电网波动10%额定值时,最大动态速降<10%,动态恢复时间<0.3s1.2设计内容1)设计系统原理图2)计算调节器参数及其它参数3)编写课程设计说明书1.3应完成的技术文件1)设计说明书2)设计计算书3)系统原理图4)电气元件明细表2.课程设计设计说明书2.1综述随着现代工业的发展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。
相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。
双闭环控制则很好的弥补了他的这一缺陷。
双闭环比值控制
过程控制工程课程设计报告设计题目:双闭环比值控制目录一.双闭环比值控制系统简介 (3)二.双闭环比值控制系统仿真综合实例 (4)三.双闭环比值控制系统实例步骤及仿真图 (5)四.参考历史文献 (12)五.心得体会 (15)一.双闭环比值控制系统双闭环比值控制系统的特点是在保持比值控制的前提下,主动量和从动量两个流量均构成闭环回路,这样克服了自身流量的干扰,使主、从流量都比较平稳,并使得工艺总负荷也较稳定。
从动量控制回路是随动控制系统,期望系统响应快些,一般按单回路整定;主动量控制回路是定值控制系统,反应速度较慢时有利于从动控制回路的快速跟踪,一般整定为周期过程。
主、从控制回路均选择PI 控制方式。
二.双闭环比值控制系统系统仿真综合实例双闭环比值控制系统的工艺图及控制框图如下图所示。
假设主动控制量控制系统的数学模型和从动控制量控制系统的数学模型为t e s s G 5.1153)(-+=和s e s s s G 5.)120)(110(3)(-++=。
三.双闭环比值控制系统实例及仿真图(1)分析主动量控制系统和从动量控制系统稳定性。
执行该系统的Bode 图得,系统开环稳定,幅值稳定裕量7.05dB ,对应增益为2.25。
(2)选择控制系统结构和调节器形式。
控制系统框图如图下图1所示。
其中k 代表比值,在此设定为4.)(1s GC 和)(2s GC 分别为主动量控制环和从动控制环的控制器,按前述分析取PI 形式。
图1控制系统框图(3)整定主动量回路控制器参数。
仍采用稳定边界法整定系统参数。
设定停止时间为60.0,Relative tolerance设定为1e-5。
仿真图如下图2。
图2主动量回路控制器参数整定仿真图控制Kp不断减小为8.2时,得到等幅振荡图如下图3,放大图为图4,估计出临界振荡周期Tk为4。
Ki=Kp*T/Ti。
图3图4由稳定边界法临界振荡计算公式得Kp=2.2*8.2/10=1.804;Ki=8.2*(4/1.2)/1000=0.333。
(完整版)双闭环比值控制系统---毕业课程设计
《过程控制》课程设计报告题目:双闭环比值控制系统的分析与设计姓名:王飞学号:专业:自动化年级:2010级指导教师:李天华目录1 任务书 11.1设计题目 --- 11.2设计任务 --- 11.3原始数据 --- 21.4设计内容 --- 22 研究背景 33 研究意义 44 研究内容 45 论文组织 55.1衰减曲线法整定主动量回路控制器参数 -- 55.2反应曲线法整定从动量回路控制器参数 -- 85.3双闭环比值控制系统仿真及性能测试 --- 115.4双闭环比值控制系统的抗干扰能力检验 - 136 双闭环比值控制与串级控制的区别,以及各自的优缺点 --- 16 6.1双闭环比值控制与串级控制的区别 ----- 166.2双闭环比值控制的优、缺点 176.3串级控制的优、缺点 ----- 177 总结 178 参考文献 ------ 17附录:双闭环比值控制最终整定结果(Simulink图) 181任务书1.1设计题目双闭环比值控制系统的分析与设计1.2设计任务在现代工业生产过程中,要求两种或多种物料流量成一定比例关系;一旦比例失调,会影响生产的正常进行,影响产品质量,浪费动力,造成环境污染,甚至产生生产事故。
如:燃烧过程中,往往要求燃料量与空气量需按一定比例混合后送入炉膛;制药生产中要求药物和注入剂按比例混合;造纸过程中为保证纸浆浓度,要求自动控制纸浆量和水量比例;水泥配料系统等等。
凡是两个或多个变量自动维持一定比值关系的过程控制系统,统称为比值控制系统。
主动量:起主导作用而又不可控的物料流量Q1;从动量---跟随主动量而变化的物料流量Q2;比例系数:k=在生产过程中,根据工艺过程容许的负荷波动幅度、干扰因素的性质和产品质量的要求不同,实现对两种物料流量比值的控制方案也不同:开环比值控制系统、单闭环比值控制系统、双闭环比值控制系统、变比值控制系统。
双闭环比值控制系统是由一个定值控制的主动量控制回路和一个跟随主动量变化的从动量随动控制回路组成,其流程图和方框图分别如图 1和图2所示。
双闭环比值控制系统仿真
学号:2013133301课程设计报告题目双闭环比值系统仿真学院计算机科学与信息工程学院专业自动化班级2013级自动化3学生姓名刘博指导教师吴诗贤2016年11月26日摘要 (3)一、课程设计任务 (5)二、课程设计内容 (5)(1) PID控制原理及PID参数整定概述 (5)(2)基于稳定边界法的PID控制器参数整定算法 (7)(3)利用Simulink建立仿真模型 (9)(4)参数整定过程 (14)(5)调试分析过程及仿真结果描述 (20)三、总结 (20)参考文献 21双闭环比值控制系统仿真摘要:双闭环比值控制系统的特点是在保持比值控制的前提下,主动量和从动量两个流量均构成闭环回路,这样克服了自身流量的干扰,使主、从流量都比较平稳,并使得工艺总负荷也较稳定。
从动量控制回路是随动控制系统,期望系统响应快些,一般按单回路整定;主动量控制回路是定值控制系统,反应速度较慢时有利于从动控制回路的快速跟踪,一般整定为周期过程。
主、从控制回路均选择PI控制方式。
MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C、FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。
Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
图4双闭环比值控制系统
项目五 比值控制系统
以图5.7所示硝酸生产中氧化炉的炉温与氨气/空气比值所组成 的串级比值控制方案为例,说明变比值控制系统的应用。
图5.7 氧化炉温度与氨气/空气串级比值控制系统
项目五 比值控制系统
在变比值控制方案中,选取的第三参数主要是衡量质量 的最终指标,而流量间的比值只是参考指标和控制手段。因 此在选用变比值控制时,必须考虑到作为衡量质量指标的第 三参数能否进行连续的测量变送,否则系统将无法实施。由 于具有第三参数自动校正比值的优点,且随着质量检测仪表 的发展,变比值控制可能会越来越多地在生产上得到应用。 需要注意的是,上面提到的变比值控制方案是用除法器 来实施的,实际上还可采用其他运算单元(如乘法器)来实 施。同时从系统的结构看,上例是单闭环变比值控制系统, 如果工艺控制需要,也可构成双闭环变比值控制系统。
F2 =K F 1
(5-1)
式中,K为从动量与主动量的比值。 由此可见,在比值控制系统中,从动量是跟随主动量变化的物 料流量,因此,比值控制系统实际上是一种随动控制系统。
项目五 比值控制系统
5.2 比值控制系统的类型
按照系统结构,可将比值控制系统分为单闭环、双闭环和变 比值控制系统三种结构类型。 从控制原理看,比值控制系统属于前馈控制系统。开环比值 控制系统是最简单的比值控制系统。当F2因管线两端的压力波动 而发生变化时,系统不起控制作用,此时难以保证F2与F1间的比 值关系。也就是说,开环比值控制系统对来自于从动量所在管线 的扰动并无抗干扰能力,只能适用于从动量较平稳且对比值要求 不高的场合。而实际生产过程中,对F2的扰动常常是不可避免的, 因此生产上很少采用开环比值控制系统。
项目五 比值控制系统
5.3 比值系数的计算
在此,有必要把流量比值K和设置于仪表的比值 系数 K′区别开来,因为工艺上规定的比值是指两物 料的(质量或体积)流量之比,而目前通用的仪表则 使用统一的标准信号(例如,电动仪表使用0~10 mA或4~20 mA直流电流信号,气动仪表使用20~ 100 kPa气压信号等)。因此,必须把工艺规定的流 量比值K折算成仪表信号的比值系数 K′,才能进行比 值设定。比值系数的折算方法随流量与测量信号间是 否成线性关系而不同。
比例阀双闭环设计.
沈阳化工大学本科毕业论文题目:比例阀流量闭环控制系统硬件设计院系:信息工程学院专业:电气工程及其自动化班级: 0803 学生姓名:胡志鹏指导教师:蔡胜年论文提交日期:年月日论文答辩日期:年月日毕业设计(论文)任务书电气工程及其自动化专业电气0803班学生:胡志鹏摘要本文以国外比例阀电源控制器的功能和技术参数为参考,致力于将外部标准输入信号转换成PWM电压信号,通过控制驱动PWM电压的占空比,实现控制主电路的大信号;通过双闭环设计,使比例电磁阀的电流、流量更稳定,保持比例阀的开度不变,达到提高流量的控制精度的目的;同时,通过增加频率可调环节,选择适用于比例阀的最优脉动性。
由于控制途径是采用电流闭环控制,保证了电流的稳定性。
经过仿真与实验分析,完成了单片机控制器的设计。
在硬件电路设计方面,根据本设计控制对象的特点,本文采用了AT89S52为核心控制器件在使用特殊功能寄存器功能下的PWM驱动电路方案,将理论计算和面包板调试相结合的方法,实现了主电路和驱动控制电路的参数研究,完成了控制主电路,PID调节电路和电流反馈控制电路的设计工作。
其中工作主电路部分主要使用单片机直接输出PWM控制信号。
本文设计最后进行了实际测试,实验结果表明本文所设计的电路基本都能满足控制要求,对电磁阀平稳、宽范围内的流量控制有着明显的作用。
关键词:电磁阀;单片机;PWM;PIDAbstractIn this paper, the proportion of foreign power controller valve function as a reference, is committed to an external standard voltage input signal into a PWM signal, PWM voltage by controlling the duty cycle of drive to achieve control of the main circuit of the large-signal; through closed-loop design, the compensation coil The temperature rise, the solenoid valve with a stable current to maintain the same ratio of valve opening, to improve the accuracy of flow control purposes; the same time, by increasing the frequency adjustable links, choose the best for the pulse of proportional valve . As the current control approach is the use of closed-loop control to ensure that the current stability. Through simulation and experimental analysis, completed the micro-controller design.In circuit design, according to the characteristics of the design control object, we use as the core control device AT89S52 SFR functions using the PWM drive circuit under the program, the theoretical calculations and bread board debugging method of combining to achieve the main circuit and drive control circuit parametric studies, completed the main control circuit, PID regulator circuit and current feedback control circuit design. The major part of the main circuit which work directly with the microcontroller output PWMcontrol signal.Finally, this design was the actual test, experiment results show that the design of the control circuit to meet the basic requirements of the solenoid valves smooth, wide range of flow control has a significant role.Key words:Solenoid valve;SCM;PWM;PID目录一、绪论1.1电液比例阀概述1.2研究内容与预期结果1.3研究意义二、总体设计方案2.1控制系统的组成及工作原理2.2比例阀双闭环控制原理2.3PWM控制技术2.31脉宽调制技术的原理2.32脉宽调制技术的优点2.4PID控制技术介绍三、系统硬件设计3.1硬件系统整体设计3.2单片机系统各部分介绍及功能3.21晶振电路3.22复位电路作用与原理3,23键盘与显示电路3.3报警电路3.4驱动电路3.5双闭环控制电路四、系统软件设计五、实验结果分析六、结束语一、绪论1.1电液比例阀概述如今,作为连接现代微电子技术、计算机控制技术和大功率工程控制设备之间的桥梁,电液比例控制技术已经在工业领域获得广泛的应用,正如一些权威人士所指出的那样,代表流体控制技术的发展方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (1)双闭环流量比值控制系统设计 (2)1、双闭环比值控制系统的原理与结构组成 (2)2、课程设计使用的设备 (3)3、比值系数的计算 (4)4、设备投运步骤以及实验曲线结果 (5)5、总结 (16)6、参考文献 (17)摘要在许多生产过程中,工艺上常常要求两种或者两种以上的物料保持一定的比例关系。
一旦比例失调,会影响生产的正常进行,造成产量下降,质量降低,能源浪费,环境污染,甚至造成安全事故。
这种自动保持两个或多个参数间比例关系的控制系统就是比值控制所要完成的任务。
因此比值控制系统就是用于实现两个或两个以上物料保持一定比例关系的控制系统。
需要保持一定比例关系的两种物料中,总有一种起主导作用的物料,称这种物料为主物料,另一种物料在控制过程中跟随主物料的变化而成比例的变化,这种无物料成为从物料。
由于主,从物料均为流量参数,又分别成为主物料流量和从物料流量,通常,主物料流量用Q1表示,从物料流量用Q2表示,工艺上要求两物料的比值为K,即K=Q2/Q1.在比值控制精度要求较高而主物料Q1又允许控制的场合,很自然就想到对主物料也进行定值控制,这就形成了双闭环比值系统。
在双闭环比值系统中,当主物料Q1受到干扰发生波动时,主物料回路对其进行定值控制,使从物料始终稳定在设定值附近,因此主物料回路是一个定值控制系统,而从物料回路是一个随动控制系统,主物料发生变化时,通过比值器的输出,使从物料回路控制器的设定值也发生变化,从而使从物料随着主物料的变化而成比例的变化。
当从物料Q2受到干扰时,和单闭环控制系统一样,经过从物料回路的调节,使从物料稳定在比值器输出值上。
双闭环比值控制系统由于实现了主物料Q1的定值控制,克服了干扰的影响,使主物料Q1变化平稳。
当然与之成比例的从物料Q2变化也将比较平稳。
根据双闭环比值控制系统的优点,它常用在主物料干扰比较频繁的场合,工艺上经常需要升降负荷的场合以及工艺上不允许负荷有较大波动的场合。
本实验通过了解双闭环比值控制系统的原理与结构组成,进行双闭环流量比值控制系统设计(包括仪表选型)以及进行比值系数的计算,最后基于WinCC进行监控界面设计,给出不同参数下的响应曲线,根据扰动作用时,记录系统输出的响应曲线。
双闭环流量比值控制系统设计1、双闭环比值控制系统的原理与结构组成在工业生产过程中,往往需要几种物料以一定的比例混合参加化学反应。
如果比例失调,则会导致产品质量的降低、原料的浪费,严重时还会发生事故。
这种用来实现两个或两个以上参数之间保持一定比值关系的过程控制系统,均称为比值控制系统。
本设计是双闭环流量比值控制系统。
其系统结构图如图1所示。
该系统中有两条支路,一路是来自于电动阀支路的流量Q1,它是一个主流量;另一路是来自于变频器—磁力泵支路的流量Q2,它是系统的副流量。
要求副流量Q2能跟随主流量Q1的变化而变化,而且两者间保持一个定值的比例关系,即Q2/Q1=K。
图6-2 双闭环流量比值控制系统(a)结构图 (b)方框图(a)结构图 (b)方框图图1 双闭环流量比值控制系统由图中可以看出双闭环流量比值控制系统是由一个定值控制的主流量回路和一个跟随主流量变化的副流量控制回路组成,主流量回路能克服主流量扰动,实现其定值控制。
副流量控制回路能抑制作用于副回路中的扰动,当扰动消除后,主副流量都回复到原设定值上,其比值不变。
显然,双闭环流量控制系统的总流量是固定不变的。
从整定的角度看,应使从物料回路响应较主物料回路快一些,以便从物料能跟得上主物料的变化,保证主,从物料的比值恒定。
2、课程设计使用的设备2.1. THJ-3型高级过程控制系统实验装置,如下图所示:本实验装置对象主要由水箱、锅炉和盘管三大部分组成。
供水系统有两路:一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、电磁阀、涡轮流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、涡轮流量计及手动调节阀组成。
2.2 THJ-3型西门子PLC过程控制系统。
该过程控制系统的控制柜主要由电源控制组件、西门子PLC控制组件、变频器控制组件等几部分组成。
是一套集自动化仪表技术、计算机技术、通讯技术、自动控制技术及现场总线技术为一体的多功能实验设备。
该系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识,单回路控制,串级控制,前馈-反馈控制,滞后控制、比值控制,解耦控制等多种控制形式。
2.3 西门子S7系列PLC编程软件。
本装置中PLC控制方案采用了德国西门子公司的S7-300PLC,采用的是Step 7编程软件。
利用这个软件可以对PLC进行编程、调试、下装、诊断。
2.4 西门子WinCC监控组态软件。
S7-300PLC控制方案采用WinCC软件作为上位机监控组态软件,WinCC是结合西门子在过程自动化领域中的先进技术和Microsoft的强大功能的产物。
作为一个国际先进的人机界面(HMI)软件和SCADA系统,WinCC提供了适用于工业的图形显示、消息、归档以及报表的功能模板;并具有高性能的过程耦合、快速的画面更新、以及可靠的数据;WinCC还为用户解决方案提供了开放的界面,使得将WinCC 集成入复杂、广泛的自动化项目成为可能。
3、比值系数的计算设流量变送器的输出电流与输入流量间成线性关系,即当流量Q由0~Qmax变化时,相应变送器的输出电流为4~20mA。
由此可知,任一瞬时主流量Q1和副流量Q2所对应变送器的输出电流分别为I 1=416max11+⨯QQ(1)I 2=416max22+⨯QQ(2)式中Q1max 和Q2max分别为Q1和Q2最大流量值,即涡轮流量计测量上限,由于两只涡轮流量计完全相同,所以有Q1max =Q2max。
设工艺要求Q2/Q1=K,则式(6-1)、(6-2)可改写为Q1=16)4(1-I Q1max(3)Q2=16)4(2-I Q2max(4)于是求得12Q Q =4412--I I ×max 1max 2Q Q =4412--I I (5) 折算成仪表的比值系数K ′为K ′=K ×max2max 1Q Q =K (6) 4、设备投运步骤以及实验曲线结果4.1阀门开关选择:本设计选择电动阀支路和变频器支路组成流量比值控制系统。
投运之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8、F1-11、F2-1、F2-5全开,其余阀门均关闭。
4.2具体的实验内容与步骤如下:4.2.1.强电接线:~220V 接面板COM ,N 与N1、N2、N3短接,D1、D2、D3分别接面板DO1、DO2、DO3;弱电连线:将“FT1电动阀支路流量”(1-5V 信号)对应接至模拟量输入通道AI0的+、-,将“FT2变频器支路流量”(1-5V 信号)对应接至模拟量输入通道AI1的+、-;将模拟量输出通道AO0接至电动阀控制输入的+、-,模拟量输出通道AO1接至变频器控制输入的+、-。
接线如下图所示:4.2.2.接通总电源空气开关,闭合三相电源和单向电源,打开电动调节阀、变频器与控制站电源,给电动调节阀、变频器、S7-300PLC 上电。
如下图所示:4.2.3.打开Step 7软件,打开“S7-300PLC”程序进行下载,然后运行WinCC 组态软件,打开“S7-300PLC控制系统”工程,然后激活WinCC运行环境,在主菜单中点击“实验十六、双闭环流量比值控制”,进入“实验十六”的监控界面。
4.2.4.在上位机监控界面中将副调节器设置为“手动”输出,并将输出值设置为一个合适的值。
如下图所示:4.2.5.闭合三相磁力泵电源开关,三相磁力泵上电打水,适当增加/减少副调节器的输出量,使电动阀支路流量平衡于设定值。
4.2.6.选择PI控制规律,并按照单回路调节器参数的整定方法整定副流量回路的调节器参数,并按整定后的PI参数进行副流量调节器的参数设置,同时将副调节器投入自动运行。
4.2.7.待变频器支路流量稳定于给定值后,通过以下几种方式加干扰:(1)突增(或突减)主调节器输出值的大小,使其有一个正(或负)阶跃增量的变化;(2)将中水箱进水阀F2-4开至适当开度(副流量扰动);(3)将电动调节阀的旁路阀F1-4(同电磁阀)开至适当开度;(4)将中水箱进水阀F1-7开至适当开度;以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。
4.2.8.分别适量改变副调节器的P及I参数,重复步骤9,用计算机记录不同参数时系统的阶跃响应曲线。
4.2.9.适量改变比值器的比例系数K′,观察副流量Q的变化,并记录相应2的动态曲线。
实验曲线和分析如下:图一图二由图二与图一对比可知,在比例控制系统中,U(t)=KcE(t)+U0,在线性范围内,主调节器减少比例度Kc,系统输出U(t) 减少,系统稳定性增强,控制时间变长, 残差增大,同时系统超调减少。
图三由图三可知,主调节器与副调节器相对比,减小比例度Kc,系统控制时间增强,振荡频率降低,稳定性增强。
同时,图三与上两个图一和图二相对比来说,加入微分控制后,在主调节器中,调节频率提高,系统偏差减小,系统稳定性增强。
图四图四与图一,图二相对比,引入积分作用,属于无差控制,与比例控制中的有差控制形成鲜明对比,控制时间较慢,稳定性较差,属于浮动调节。
图四与图三相比例微分控制相对比,也体现了无差控制,同时稳定性减弱。
但从控制效果上来看,此实验控制对象为流量,滞后时间较小,而且在管路中存在不规则的干扰噪声,因此此图中的PI控制效果较好。
图五图五与图四相对比,在比例度不变情况下,主调节器减少积分时间,主调节器积分作用增强,系统振荡频率增加,系统稳定性变差。
同时,副调节器与图四中副调节器相对比,比例度较大,系统振荡频率较强,出现超调现象,系统稳定性大大降低。
图六图六与图五相对比,主调节器积分时间不变情况下,比例度减小,系统超调减小,系统振荡频率减少,稳定性增强。
主调节器与副调节器对比,积分时间减小,积分作用增强,消除稳态误差较快,系统振荡频率较快,系统稳定性较差。
图七图七与图六相对比,主调节器比例度不变情况下,积分时间变长,积分作用变弱,系统稳定性增强。
同时,副调节器与主调节器相对比,积分时间减小,积分作用增强,系统振荡频率较快,稳定性较差。
图八图八与图七相比,主调节器比例度增大,系统超调变大,稳定性减弱。
同时,积分时间变长,系统输出u减小,积分作用变弱,消除稳态误差较慢,稳定性增强。
图九图九与图八相对比,主调节器比例度增大,系统超调较大,系统振荡加强,系统稳定变弱。
同时,积分时间减少,积分作用增强,系统振荡加强,稳定性下降。
图十图十与图九相对比,主调节器减小比例度,系统振荡减少,稳定性增强。