函数与方程经典例题及答案
函数与方程经典例题及答案
函数与方程典型例题习题例1:已知二次函数()y f x =的图象经过点(0,8),(1,5),(3,7)--三点,(1)求()f x 的解析式;(2)求()f x 的零点;(3)比较(2)(4)f f ,(1)(3)f f ,(5)(1)f f -,(3)(6)f f -与0的大小关系.分析:可设函数解析式为2y ax bx c =++,将已知点的坐标代入方程解方程组求a 、b 、c .【解】(1)设函数解析式为2y ax bx c =++, 由85937c a b c a b c =-⎧⎪++=-⎨⎪++=⎩解得128a b c =⎧⎪=⎨⎪=-⎩,∴2()28f x x x =+-.(2)令()0f x =得2x =或4-,∴零点是122,4x x ==-.(3) (2)(4)0f f =,(1)(3)97630f f -=-⨯=-<,(5)(1)350f f -=-<,(3)(6)1120f f -=>.点评:当二次函数()y f x =的两个零点12,x x 12()x x ≠都在(或都不在)区间(,)m n 中时,()()0f m f n >;有且只有一个零点在区间(,)m n 中时,()()0f m f n <.例2:已知函数2()(3)1f x kx k x =+-+的图象与x 轴在原点的右侧有交点,试确定实数k 的取值范围.分析:【解】(1)当0k =时,()31f x x =-+与x 轴的交点为1(,0)3,符合题意;(2)0k ≠时,(0)1f =,0k <时,()f x 的图象是开口向下的抛物线,它与x 轴的两交点分别在原点的两侧; 0k >时,()f x 的图象是开口向上的抛物线,必须2(3)40302k k k k⎧∆=--≥⎪⎨-->⎪⎩,解得01k <≤ 综上可得k 的取值范围为(,1]-∞.追踪训练一1.函数22()log (45)f x x x =-+的图象与x 轴交点横坐标为 ( D ))A .1B .0C .2或0D .22.已知01a <<则方程0log =+x a a x 的解的个数是( A )A .1B .2C .3D .不确定3.直线23+=kx y 与曲线223y y x --+ 0=只有一个公共点,则k 的值为( A )A . 0,41,21-B .0,41- C .41,21- D .0,41,21- 4.函数265y x x =-+与x 轴交点坐标是(1,0)、(5,0),方程2650x x -+=的根为1或5.5.已知方程220x kx -+=在区间(0,3)中有且只有一解,则实数k 的取值范围为113k ≥. 6.已知函数()2x f x a =-过点(1,0),则方程()f x x =的解为 1.7-.7.求方程22850x x -+=的近似解(精确到0.1).答案:3.2和0.88.判断方程2(22)250x a x a -+++=(其中2a >)在区间(1,3)内是否有解.答案:有解. 函数与方程测试题(时间45分钟)一、填空题(共计6小题,每题10分)1、函数f(x)=122--x x 在区间(2,3)上零点的个数为 .2、已知:f(x)=b a x +的图象如图所示,则a 与b 的值分别为3、设f (x )x e +1,则f (x )= .4、建造一个容积为83m ,深为2m 的长方形无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为________元5、若不等式2x +ax+1≥0对于一切x ∈(0,21]成立,则a 的最小值是 . 6、如果y=mx x -2,[]1,1-∈x 的最小值为-4,则m 的值为 .二、解答题(共计2小题,每题20分)7、设集合P={x|224+-x x +a=0,x ∈R }.(1)若P 中仅有一个元素,求实数a 的取值集合Q ;(2)若对于任意a ∈Q ,不等式x 2-6x<a (x-2)恒成立,求x 的取值范围.8、已知函数f (x )=xa 11-(a>0,x>0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在[m ,n ]上的值域是[m ,n ](m≠n),求a 的取值范围.试题答案:1、根据求根公式得方程两根212,1±=x ,故答案为1个。
高中数学第二章一元二次函数方程和不等式典型例题(带答案)
高中数学第二章一元二次函数方程和不等式典型例题单选题1、已知a,b为正实数,且a+b=6+1a +9b,则a+b的最小值为()A.6B.8C.9D.12答案:B分析:根据题意,化简得到(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab,结合基本不等式,即可求解.由题意,可得(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab≥6(a+b)+16,则有(a+b)2−6(a+b)−16≥0,解得a+b≥8,当且仅当a=2,b=6取到最小值8.故选:B.2、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.3、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A4、已知正实数a、b满足1a +1b=m,若(a+1b)(b+1a)的最小值为4,则实数m的取值范围是()A.{2}B.[2,+∞)C.(0,2]D.(0,+∞)答案:B分析:由题意可得(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,所以有b=1a ,将1a+1b=m化为a+1a=m,再利用基本不等式可求得m的范围.解:因为a,b为正实数,(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,此时有b=1a,又因为1a +1b=m,所以a+1a=m,由基本不等式可知a+1a≥2(a=1时等号成立),所以m ≥2. 故选:B.5、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8] 答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果. 设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2,解得{A =3B =1,4a +2b =3(a +b )+a −b ,因为{1≤a +b ≤3−1≤a −b ≤1可得{3≤3(a +b )≤9−1≤a −b ≤1,所以2≤4a +2b ≤10. 故选:C.6、关于x 的不等式(x −a )(x −3)>0成立的一个充分不必要条件是−1<x <1,则a 的取值范围是( ) A .a ≤−1B .a <0C .a ≥2D .a ≥1 答案:D分析:由题意可知,(−1,1)是不等式(x −a )(x −3)>0解集的一个真子集,然后对a 与3的大小关系进行分类讨论,求得不等式的解集,利用集合的包含关系可求得实数a 的取值范围. 由题可知(−1,1)是不等式(x −a )(x −3)>0的解集的一个真子集.当a =3时,不等式(x −a )(x −3)>0的解集为{x |x ≠3},此时(−1,1){x |x ≠3}; 当时,不等式(x −a )(x −3)>0的解集为(−∞,3)∪(a,+∞), ∵(−1,1)(−∞,3),合乎题意;当a <3时,不等式(x −a )(x −3)>0的解集为(−∞,a )∪(3,+∞), 由题意可得(−1,1)(−∞,a ),此时1≤a <3. 综上所述,a ≥1. 故选:D.3a小提示:本题考查利用充分不必要条件求参数,同时也考查了一元二次不等式的解法,考查计算能力,属于中等题.7、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞)答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2b a,2×6=−ca,得b =−4a ,c =−12a ,∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0, 整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞).故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 8、a,b,c 是不同时为0的实数,则ab+bc a 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32答案:A分析:对原式变形,两次利用基本不等式,求解即可. 若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c 均为正实数,则ab+bc a 2+2b 2+c 2=a+c a 2+c 2b+2b≤2√a 2+c 2b×2b=(22)=12√a 2+2ac+c 22(a 2+c 2)=12√12+ac a 2+c 2≤12√12+2√a 2×c2=12, 当且仅当a 2+c 2b=2b ,且a =c 取等,即取等号,即则ab+bca 2+2b 2+c 2的最大值为12, 故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致. 多选题9、下列函数中最大值为12的是( ) A .y =x 2+116x 2B .y =x ⋅√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,x >−2 答案:BC解析:利用基本不等式逐项判断即可. 解:对A ,y =x 2+116x2≥2√x 2⋅116x 2=12,当且仅当x 2=116x2,即x =±12时取等号,故A 错误;对B ,y =x ⋅√1−x 2=√x 2⋅(1−x 2)≤x 2+1−x 22=12,当且仅当x 2=1−x 2,又∵x ∈[0,1],即x =√22时取等号,故B 正确;对C ,y =x 2x 4+1=1x 2+1x2≤12,a b c ==当且仅当x2=1x2,即x=±1时等号成立,故C正确;对D,y=x+4x+2=x+2+4x+2−2≥2√(x+2)⋅4x+2−2=2,当且仅当x+2=4x+2,又∵x>−2,∴x=0时取等号,故D错误.故选:BC.10、设正实数m、n满足m+n=2,则下列说法中正确的是()A.2m−n>14B.mn的最大值为1C.√m+√n的最小值为2D.m2+n2的最小值为2答案:ABD分析:利用不等式的性质以及指数函数的性质可判断A选项的正误,利用基本不等式可判断BCD选项的正误. 对于A选项,因为正实数m、n满足m+n=2,则0<m<2,m−n=m−(2−m)=2−2m∈(−2,2),故2m−n>2−2=14,A对;对于B选项,由基本不等式可得mn≤(m+n2)2=1,当且仅当m=n=1时,等号成立,B对;对于C选项,由基本不等式可得(√m+√n)2=m+n+2√mn≤2(m+n)=4,因为√m+√n>0,故√m+√n≤2,当且仅当m=n=1时,等号成立,C错;对于D选项,∵2(m2+n2)=(m2+n2)+(m2+n2)≥m2+n2+2mn=(m+n)2=4,可得m2+n2≥2,当且仅当m=n=1时,等号成立,D对.故选:ABD.11、已知a,b,c∈R+,则下列不等式正确的是()A.1a +1b≥4a+bB.a+b≤√a2+b2C.b2a +a2b≥a+b D.a2+b22≥a+b−1答案:ACD分析:对AC,利用基本不等式可求解;对B,根据(a+b)2=a2+b2+2ab>a2+b2可判断;对D,利用(a−1)2+(b−1)2≥0可判断.对A ,因为(1a +1b )(a +b )=b a +a b +2≥2√b a ⋅a b +2=4,当且仅当b a =a b 时等号成立,所以1a +1b ≥4a+b ,故A正确;对B ,(a +b )2=a 2+b 2+2ab >a 2+b 2,所以a +b >√a 2+b 2,故B 错误; 对C ,b 2a+a +a 2b+b ≥2√b 2a⋅a +2√a 2b⋅b =2a +2b ,当且仅当a =b 等号成立,所以b 2a+a 2b≥a +b ,故C正确;对D ,因为(a −1)2+(b −1)2≥0,所以a 2+b 2−2a −2b +2≥0,所以a 2+b 22≥a +b −1,当且仅当a =b =1等号成立,故D 正确. 故选:ACD.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD[0,1]13、已知a >0,b >0,且a +2b =1,则( ) A .ab 的最大值为19B .1a +2b 的最小值为9C .a 2+b 2的最小值为15D .(a +1)(b +1)的最大值为2答案:BC分析:对A ,直接运用均值不等式2√2ab ≤a +2b 即可判断; 对B ,1a +2b =(1a +2b)⋅(a +2b )=5+2b a+2a b,运用均值不等式即可判断;对C ,a 2+b 2=(1−2b )2+b 2,讨论二次函数最值即可;对D ,(a +1)(b +1)=2(a +b )(a +3b )=2[(a +2b )2−b 2]=2(1−b 2),讨论最值即可. a >0,b >0,2√2ab ≤a +2b =1⇒ab ≤18,当a =2b 时,即a =12,b =14时,可取等号,A 错;1a+2b =(1a +2b )⋅(a +2b )=5+2b a+2a b≥5+2√2b a ⋅2a b=9,当2b a =2ab时,即a =b =13时,可取等号,B 对; a 2+b 2=(1−2b)2+b 2=5b 2−4b +1=5(b −25)2+15≥15,当a =15,b =25时,可取等号,C 对;(a +1)(b +1)=2(a +b )(a +3b )=2(a 2+4ab +3b 2)=2[(a +2b )2−b 2]=2(1−b 2)<2,D 错. 故选:BC 填空题14、若一个三角形的三边长分别为a ,b ,c ,设p =12(a +b +c ),则该三角形的面积S =√p (p −a )(p −b )(p −c ),这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,AB =2,则该三角形面积的最大值为___________. 答案:2√2分析:计算得到p =4,c =2,a +b =6,根据均值不等式得到ab ≤9,代入计算得到答案. p =12(a +b +c )=4,c =2,a +b =6,a +b =6≥2√ab ,ab ≤9,当a =b =3时等号成立.S =√p (p −a )(p −b )(p −c )=√8(4−a )(4−b )=√128−32(a +b )+8ab ≤2√2. 所以答案是:2√2.15、若关于x 的二次方程x 2+mx +4m 2−3=0的两个根分别为x 1,x 2,且满足x 1+x 2=x 1x 2,则m 的值为______ 答案:分析:先求出方程有两根时m 的范围,再由根与系数关系将x 1,x 2用m 表示,建立关于m 的方程,求解即可. 关于x 的二次方程x 2+mx +4m 2−3=0有两个根, 则Δ=m 2−4(4m 2−3)=−3(5m 2−4)≥0, ∴−2√55≤m ≤2√55,x 1+x 2=−m,x 1⋅x 2=4m 2−3,又∵x 1+x 2=x 1x 2,∴−m =4m 2−3,即4m 2+m −3=0, 解得m =34或m =−1(舍去),∴m 的值为.小提示:本题考查一元二次方程根与系数关系的应用,要注意两根存在的条件,属于基础题.16、若关于x 的不等式x 2−(m +2)x +2m <0的解集中恰有3个正整数,则实数m 的取值范围为___________. 答案:(5,6]分析:不等式化为(x −m)(x −2)<0,根据解集中恰好有3个正整数即可求得m 的范围. x 2−(m +2)x +2m <0可化为(x −m)(x −2)<0, 该不等式的解集中恰有3个正整数,∴不等式的解集为{x|2<x <m},且5<m ⩽6; 所以答案是:(5,6]. 解答题343417、求实数m 的范围,使关于x 的方程x 2+2(m −1) x +2m +6=0. (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根α , β,且满足0<α<1<β<4; (3)至少有一个正根. 答案:(1)m <−1 (2)−75<m <−54(3)m ≤−1分析:设y =f (x )=x 2+2(m −1)x +2m +6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有f (2)<0,即4+4(m −1)+2m +6<0,得m <−1. (2)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有{f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得−75<m <−54.(3)设y =f (x )=x 2+2(m −1)x +2m +6. 方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0f (0)>02(m−1)−2>0,即{m ≤−1或m ≥5m >−3m <1.∴−3<m ≤−1. ②有一个正根,一个负根,此时可得f (0)<0,得m <−3. ③有一个正根,另一根为0,此时可得{6+2m =02(m −1)<0,∴m =−3.综上所述,得m ≤−1.18、阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数y=x2和y=√x,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数y=x2的图象是向下凸的,在上任意取两个点M1,M2,函数y=x2的图象总是在线段M1M2的下方,此时函数y=x2称为下凸函数;函数y=√x的图象是向上凸的,在上任意取两个点M1,M2,函数y=√x的图象总是在线段M1M2的上方,则函数y=√x称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≤f(x1)+f(x2)2,则称y=f(x)为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的下方.定义2:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≥f(x1)+f(x2)2,则称y=f(x)为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数y=x3在(−∞,0]为上凸函数,在[0,+∞)上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数f(x)=−x2+bx+c是上凸函数;(3)已知函数f(x)=x|x−a|,若对任意x1,x2∈[2,3],恒有f(x1+x22)≥f(x1)+f(x2)2,尝试数形结合探究实数a的取值范围.答案:(1)y=1x,x∈(0,+∞);(2)证明见解析;(3)a≥3.[0,1][0,1][0,1]分析:(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.(1)y =1x ,x ∈(0,+∞); (2)对于二次函数f(x)=−x 2+bx +c ,∀x 1,x 2∈R ,满足f (x 1+x 22)−f (x 1)+f (x 2)2=−(x 1+x 22)2+b ⋅x 1+x 22+c −−x 12+bx 1+c −x 22+bx 2+c 2=−x 12+x 22+2x 1x 24+x 12+x 222=(x 1−x 2)24≥0, 即f (x 1+x 22)≥f (x 1)+f (x 2)2,满足上凸函数定义,二次函数f(x)=−x 2+bx +c 是上凸函数.(3)由(2)知二次函数f(x)=−x 2+bx +c 是上凸函数,同理易得二次函数f(x)=x 2+bx +c 为下凸函数,对于函数f(x)=x |x −a |={x 2−ax,x >a −x 2+ax,x ≤a,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意x 1,x 2∈[2,3],恒有f (x 1+x 22)≥f (x 1)+f (x 2)2,则函数f(x)=x|x −a|满足上凸函数定义,即[2,3]⊆(−∞,a],即a ≥3.。
函数、方程、不等式问题的参考答案【典型例题】
【典型例题】
【例1】(天津市)(Ⅰ)当 , 时,抛物线为 ,
方程 的两个根为 , .
∴该抛物线与 轴公共点的坐标是 和 .
(Ⅱ)当 时,抛物线为 ,且与 轴有公共点.
对于方程 ,判别式 ≥0,有 ≤ .
①当 时,由方程 ,解得 .
此时抛物线为 与 轴只有一个公共点 .
④抛物线 与 的形状相同,但开口方向相反;
⑤抛物线 与 都与 轴有两个交点;
⑥抛物线 经过点 或抛物线 经过点 ;
等等.
(2)当 时, ,令 ,
解得 .
,令 ,解得 .
① 点 与点 对称,点 与点 对称;
② 四点横坐标的代数和为0;
③ (或 ).
(3) ,
抛物线 开口向下,抛物线 开口向上.
根据题意,得 .
当 时, 的最大值是2.
3、(四川自贡)(1)令 ,得
由勾股定理的逆定理和抛物线的对称性知△ABM是一个以 、 为直角边的等腰直角三角形
(2)设
∵△ABM是等腰直角三角形
∴斜边上的中线等于斜边的一半
又顶点M(-2,-1)
∴ ,即AB=2
∴A(-3,0),B(-1,0)
将B(-1,0)代入 中得
∴抛物线的解析式为 ,即
②当 时,
时, ,
时, .
由已知 时,该抛物线与 轴有且只有一个公共点,考虑其对称轴为 ,
应有 即
解得 .
综上, 或 .
(Ⅲ)对于二次函数 ,
由已知 时, ; 时, ,
又 ,∴ .
于是 .而 ,∴ ,即 .
∴ .
∵关于 的一元二次方程 的判别式
,
∴抛物线 与 轴有两个公共点,顶点在 轴下方.
高二数学函数与方程试题答案及解析
高二数学函数与方程试题答案及解析1.已知函数有零点,则的取值范围是.【答案】【解析】由题意知有解,即方程有解,可转化为直线与方程所表示的曲线有交点,用数形结合思想可得的取值范围。
【考点】函数的零点与相应的方程根的关系及数形结合思想的应用。
2.已知是定义在上且周期为3的函数,当时,,若函数在区间上有10个零点(互不相同),则实数的取值范围是.【答案】【解析】由于函数在区间上有10个零点(互不相同),因此与函数有10个不同的交点,由于函数周期为3,所以与函数在一个周期内交点个数为4,对于函数,当时,,为翻折之后抛物线的顶点,由于恒成立,要使在一个周期内的交点为4,满足,此时,函数在区间上有10个零点(互不相同).【考点】函数的交点.3.下列图象表示的函数能用二分法求零点的是()【答案】C【解析】函数在区间上存在零点,满足两条:一是函数在区间连续,二是,满足这两条的是【考点】函数的零点.4.函数的零点所在区间为()A.B.C.D.【答案】A【解析】,;则,所以函数的零点所在区间为.【考点】零点存在定理.5.已知符号表示不超过的最大整数,若函数有且仅有3个零点,则的取值范围是()A.B.C.D.【答案】C【解析】因为,有且仅有3个零点,则方程在(0,+∞)上有且仅有3个实数根,且 a>0.∵x>0,∴[x]≥0;若[x]=0,则=0;若[x]≥1,因为[x]≤x<[x]+1,∴<<1,∴<a≤1,且随着[x]的增大而增大.故不同的[x]对应不同的a值,故有[x]=1,2,3,4.若[x]=1,则有<≤1;若[x]=2,则有<≤1;若[x]=3,则有<≤1;若[x]=4,则有<≤1;综上所述,<a≤,故选C.考点:函数零点,对新概念的理解,分类整合思想6.函数的零点个数为 ( )A.0B.1C.2D.3【答案】B【解析】在同一个直角坐标系中画出的图像,易知两图像的交点只有一个,故选B。
【考点】利用函数图像判断函数零点的个数。
高考数学必考点专项第6练 函数与方程(练习及答案)(全国通用)(新高考专用)
高考数学必考点专项第6练函数与方程习题精选一、单选题1. 函数2()=2+log ||x f x x 的零点个数为( ) A. 0 B. 1 C. 2 D. 32. 已知函数若()g x 存在2个零点,则a的取值范围是( )A. [1,)-+∞B. [0,)+∞C. [1,0)-D. [1,)+∞3. 若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A. b e a <B. a e b <C. 0b a e <<D. 0a b e <<4. 已知()f x 是定义在R 上的奇函数,且满足,当时,,则函数在区间上所有零点个数为( )A. 0B. 2C. 4D. 65. 已知函数2()()x f x e ax x R =-∈有三个不同的零点,则实数a 的取值范围是( )A.B.C.D.6. 设a ,b R ∈,函数若函数()y f x ax b =--恰有3个零点,则( )[6,6]-A. 1a <-,0b <B. 1a <-,0b >C. 1a >-,0b <D. 1a >-,0b > 7. 已知函数的零点为,函数()f x 的最小值为0y ,且则函数的零点个数是( )A. 3B. 4C. 3或4D. 2或38. 已知函数,若函数()()g x x f x a =⋅-的零点个数恰为2个,则( )A.2837a <<或1a =- B. 7382a <<C.7382a <<或1a =- D. 7382a <<或54a =-9. 已知函数2,0()ln ,0kx x f x x x +⎧=⎨->⎩,则下列关于[()]2y f f x =-的零点个数判别正确的是( )A. 当0k =时,有无数个零点B. 当0k <时,有3个零点C. 当0k >时,有3个零点D. 无论k 取何值,都有4个零点二、多选题10. 若关于x 的方程23--=02x x k 在(1,1)-上有实根,则( )A. k 的最大值为52B. k 的最小值为916-C. 95[-,)162k ∈D. 95(,]162k ∈-11. 已知函数,().g x kx =若方程()()f x g x =有实根,则实数k的取值可以是( )012[,),y x x ∈A.12B. 1-C. 1D. (2,+)∞上的任意一个数12. 已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩,下列说法中正确的是( )A. 当121122x x -<<<时,恒有12()()f x f x >B. 若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17[,]26C. 不存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D. 若关于x 的方程3[()][()]04f x f x a --=所有实数根之和为0,则34a =-13. 已知函数,若方程()0f x a -=有两个不相等的实根,则实数a 的取值范围可以是( )A.B.C.D.14. 已知函数,则方程22()2()10f x f x a -+-=的根的个数可能为( )A. 2B. 6C. 5D. 4三、填空题15. 用二分法求函数()=34x f x x --的一个零点,其参考数据如下:(2,)+∞根据此数据,可得方程34=0x --的一个近似解(精确度0.01)为__________.16. 方程103x e x =-的解(,1),x k k k Z ∈+∈,则k =__________. 17. 已知()|lg |2f x x kx =--,给出下列四个结论:(1)若0k =,则()f x 有两个零点; (2)0k ∃<,使得()f x 有一个零点;(3)0k ∃<,使得()f x 有三个零点;(4)0k ∃>,使得()f x 有三个零点;以上正确结论的序号是__________. 四、解答题18. 已知二次函数2()2(,).f x x bx c b c R =++∈(1)若函数()y f x =的零点为1-和1,求实数b ,c 的值;(2)若()f x 满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--,(0,1)内,求实数b 的取值范围.19. 已知函数2()22(0)f x ax ax b a=-++>在区间[2,0]-上有最小值1,最大值9.(1)求a b+的值;(2)设()()f xg xx=,若不等式在区间[2,4]上恒成立,求实数k的取值范围;(3)设,若函数()F x有三个零点,求实数λ的取值范围.答案和解析1.【答案】C .【解答】解:函数2()2log ||xf x x =+的零点个数,即为函数2xy =-的图象和函数2log ||y x =的图象的交点个数,作出函数的图象如下:数形结合可得,函数2xy =-的图象和函数2log ||y x =的图象的交点个数为2. 故选.C2.【答案】A解:函数()()g x f x x a =++存在2个零点, 即关于x 的方程()f x x a =--有2个不同的实根, 即函数()f x 的图象与直线y x a =--有2个交点. 作出直线y x a =--与函数()f x 的图象,如图所示,由图可知,1a -,解得1a -, 故选.A3.【答案】D解:函数xy e =是增函数,0xy e '=>恒成立, 函数的图象如图,0y >,即取得坐标在x 轴上方,如果(,)a b 在x 轴下方,连线的斜率小于0,不成立.点(,)a b 在x 轴或下方时,只有一条切线. 如果(,)a b 在曲线上,只有一条切线;(,)a b 在曲线上侧,没有切线;由图象可知(,)a b 在图象的下方,并且在x 轴上方时,有两条切线,可知0.a b e <<故选:.D4.【答案】D解:由,得,故,故函数是周期为4的周期函数.又因为()f x 是定义在R 上的奇函数,所以,所以,故1x =是函数()f x 的对称轴.当时,,由此画出()f x 的大致图象如下图所示,令()()10g x xf x =-=,注意到(0)0g ≠,故上述方程可化为,画出1y x=的图象, 由图可知与1y x=图象都关于点(0,0)对称,它们两个函数图象的6个交点A 与F ,B 与E ,C 与D , 所以函数在区间[6,6]-上所有零点个数为6.故选.D5.【答案】C解:0x =时,(0)10f =≠,令2()0xf x e ax =-=,得2xe a x=,令2()x e g x x =,则问题转化为y a =与2()xe g x x=有三个交点,3(2)()xx e g x x -'=,令()0g x '=,解得2x =,()f x∴当0x <或2x >时,()0g x '>,()g x 在(,0)-∞,(2,)+∞单调递增,当02x <<时,()0g x '<,()g x 在(0,2)单调递减,()g x 在2x =处取极小值,2(2)4e g =,作出()g x 的图象如下:要使直线y a =与曲线2()x e g x x =有三个交点,则24e a >,故实数a 的取值范围是2e (,).4+∞故选.C6.【答案】C解:当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,()y f x ax b =--最多一个零点;当0x 时,3211()(1)32y f x ax b x a x ax ax b =--=-++-- 3211(1)32x a x b =-+-, 2(1)y x a x '=-+,当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b=--最多一个零点,不合题意; 当10a +>,即1a >-时,令0y '>得[1,),x a ∈++∞函数递增,令0y '<得[0,1),x a ∈+函数递减,函数最多有2个零点; 根据题意函数()y f x ax b =--恰有3个零点,所以函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如右图:01ba∴<-且,解得0b <,10a ->,31(1)6b a >-+,31(1)06a b ∴-+<<,11a -<<,故选:.C7.【答案】D解:如图所示,函数2()(0)f x ax bx c a =++>的零点为1x ,212()x x x <,令2()0f x ax bx c =++=, 240.b ac ∴∆=->由2(())()()0f f x af x bf x c =++=,0∆>,1()f x x ∴=或2().f x x =函数()f x 的最小值为0y ,且012[,),y x x ∈画出直线2y x =,1.y x =则直线2.y x =与()y f x =必有两个交点,此时2().f x x =有2个实数根,即函数(())y f f x =有两个零点.直线1y x =与()y f x =可能有一个交点或无交点,此时1()f x x =有一个实数根2b x a=-或无实数根. 综上可知:函数(())y f f x =的零点有2个或3个.故选.D8.【答案】D解:如图,可得()f x 的图象.令()0g x =,当0x =时,不符合题意;当0x ≠时,令()0g x =,得()a f x x =, ()g x 零点个数为2个,则函数()f x 与a y x =有两个交点. 易知0a =不符合题意.若0a >,则满足,可得73;82a << 若0a <,因左支已交于一点,则右支必然只能交于一点,故,此时无解;或,解得54a =- 综上,a 的取值范围内为7382a <<或5.4a =- 故选.D9.【答案】A解:设()f x t =,对于A ,当0k =时,函数()f x 对应的图象如下图:当0t 时,由()2f t =得22=此时方程恒成立了,即[()]2y f f x =-有无数个零点,故A 正确,D 错误.对于B ,当0k <时,对应的图象如下图:当0t >时,由()2f t =,此时ln 2t -=,得2(0,1)t e -=∈,当0t 时,由()2f t =得0t =,由2()(0,1)t f x e -==∈,此时x 有一个解,由()0t f x ==,此时x 有一个解,综上[()]2y f f x =-的零点个数为2个,故B 错误, C .当0k >时,对应的图象如下图:当0t >时,由()2f t =,此时ln 2t -=,得2(0,1)t e -=∈,当0t 时,由()2f t =得0t =,由2()(0,1)t f x e -==∈,此时x 有2个解,由()0t f x ==,此时x 有2个解,综上[()]2y f f x =-的零点个数为4个,故C 错误,故选.A10.【答案】BC 解:22339()2416k x x x =-=--,(1,1)x ∈-, 函数239()416y x =--的图象开口向上,对称轴为34x =, 当34x =时,min 916y =-,当1x =-时,max 52y =, (1,1)x ∈-,95[,).162k ∴∈- 故选.BC11.【答案】ACD解:由题意,可得函数()f x 的图象和函数()g x 的图象有交点,如图所示:(2,1)A ,12OA k =, ∴函数()f x 的图象和函数()g x 的图象有交点,数形结合可得12k或1k <-, 故选.ACD12.【答案】BC解:根据定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩, 如图所示:对于A :当121122x x -<<<时,根据函数的图象12()()f x f x >不一定成立,故A 错误; 对于B :当(0,]x m ∈时,要使()f x 的最小值为34,令13214x =-,解得76x =,故m 的取值范围为17[,]26,故B 正确;对于C :令()f x kx =,故21x x kx -+=,整理得2(1)10x k x -++=,由于2(1)40k =+->,解得1k >,或3(k <-舍)若0k <,则当(0,1]x ∈时,0()()0y kx f x F x =<<⇒>,故3k <-舍去.又当1k >时,设1x 是方程()0F x =的较大根11x =>= 故1k >也不合题意.考虑y kx =与21y x x =-+有一个交点与121y x =-也有一个交点的情况, 因为y kx =与21y x x =-+有一个交点,故22(1)4230k k k ∆=+-=+-=,解得1k =或3(k =-舍)又当(0,)x ∈+∞时,y x =与121y x =-只有一个交点(1,1),与y x =和21y x x =-+的交点重合综上所述不存在实数k ,使得()F x 有5个不相等的零点, C 正确;对于D :3()04f x -=,解得112x =,276x =,所以1253x x +=, 令53x =-,则553()()337f f -=-=- 由于当23133[1,0),()()4247x f x x ∈-=---<-<-故37a =-也满足题意,D 不正确。
一元二次方程和一元二次函数真题及答案
一元二次方程和一元二次函数一元二次方程:20(0)ax bx c a ++=≠(1) 若方程没有实根:判别式240b ac ∆=-< (2) 若方程有两个相等实根:判别式240b ac ∆=-=(3) 若方程有两个不等的实根:判别式240b ac ∆=->注:若方程有两个实根:判别式240b ac ∆=-≥ 若方程有两个实根,记为12x x 、则:12b x a -+=、22b x a--=2121222221212122212121240()22()()b ac c x x a b x x a b c x x x x x x a a x x x x x x ⎧∆=-≥⎪⎪=⎪⎪⎪+=-⎨⎪⎪⎛⎫+=+-=-⎪ ⎪⎝⎭⎪⎪-=+-⎩g g g g一元二次函数: 函数)0(2≠++=a c bx ax y 叫做一元二次函数。
配方写成顶点式:a b ac a b x a y 44)2(22-++=(1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线ab x 2-=。
(2)当0>a ,函数图象开口向上,y 有最小值,ab ac y 442min-=,无最大值。
函数在区间)2,(a b --∞上是减函数,在),2(+∞-ab上是增函数。
2ba=-24)4ac b a-(3) 当0a <,函数图象开口向下,y 有最大值,ab ac y 442max-=,无最小值。
当0<a ,函数在区间上),2(+∞-a b 是减函数,在)2,(ab--∞上是增函数。
2ba-244ac b a-两点间距离公式:11(,)A x y 、22(,)B x yd =图像的移动:x 的系数为正先加后减 先左后右 先上后下例1:2(0)y ax a =≠怎么样变为)0(2≠++=a c bx ax y第一步:将被平移的二次函数的x 系数变为正,并化为顶点式。
2(0)0y a x =-+ 移动为: ab ac a b x a y 44)2(22-++=先左移2b a ,变为2()2b y a x a=+ 再上移244ac b a -,变为ab ac a b x a y 44)2(22-++=另:先上移244ac b a -,变为2244ac b y ax a -=+再左移2ba,变为a b ac a b x a y 44)2(22-++=例2:23y x =-+先向右平移3个单位,再向下平移2个单位。
高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y= (x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√|x|⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞). 故选:A.5、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .6、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 多选题9、已知函数y =ax 2+bx -3,则下列结论正确的是( ) A .关于x 的不等式ax 2+bx -3<0的解集可以是{x |x >3 } B .关于x 的不等式ax 2+bx -3>0的解集可以是∅C .函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点D .“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0” 答案:BCD分析:根据不等式的解集求出a 、b ,再解不等式ax 2+bx -3<0可判断A ;取a =-1,b =0,解不等式-x 2-3>0可判断B ;取a =-1,b =4可判断C ;根据根的分布、充要条件的定义可判断D . 若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误; 取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a<0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2, 且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确. 故选:BCD .10、已知x ,y 是正实数,则下列选项正确的是( ) A .若x +y =2,则1x+1y 有最小值2B .若x +y =3,则x(y +1)有最大值5C .若4x +y =1,则2√x +√y 有最大值√2D .x4+y 2x+1y有最小值94答案:AC分析:将已知转化,再利用基本不等式可判断ABC 选项;利用特值法判断选项D 。
二次函数与方程及实际问题及答案
二次函数与方程及实际问题1、二次函数的图象与轴有交点,则的取值范围是()A .B .C .D .2、二次函数y=x2-2x-3的图象如图所示。
当y<0时,自变量x的取值范围是A.-1<x<3 B.x<-1 C.x>3 D.x<-3或x>33、函数的图象如图所示,那么关于的方程的根的情况是()(A)有两个不相等的实数根(B)有两个异号实数根(C)有两个相等实数根(D)无实数根4、已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是() A.m ≥ B.m> C.m ≤ D.m<5、抛物线=与x轴交点为()A.二个交点 B.一个交点 C.无交点 D.三个交点6、一台机器原价60万元,如果每年的折旧率均为x,两年后这台机器的价位约为y万元,则y 与x的函数关系式为()A .B .C. D .7、某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是 ( )A.4米 B.3米 C.2米 D.1米9、若函数y=(1-m)x+2是关于x的二次函数,且抛物线的开口向上,则m的值为________ 10、点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1_______y2(填“>”“<”或“=”)11、把二次函数y=-4(1+2x)(x-3)化为一般形式为:______________12、二次函数y=-x2+2x+k的部分图象如图所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2= .13、如图是抛物线的一部分,其对称轴为直线=1,若其与轴一交点为B(3,0),则由图象可知,不等式>0的解集是14、函数 y=ax2-ax+3x+1的图象与x轴有且只有一个交点,那么a的值为__________.15、抛物线与y轴的交点坐标是,与x轴的交点坐标是 .16、抛物线y=x2-4x-5与x轴的正半轴的交点坐标为_________,与y轴的交点坐标为_________.17、如图,有一个抛物线型拱桥,其最大高度为16m,•跨度为•40m,•现把它的示意图放在平面直角坐标系中••,••则此抛物线的函数关系式为__________.18、将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,则函数关系式为__________.19、一个三角形的底边和这边上的高的和为10,则函数关系式为__________..20、有一长方形条幅,长为a m,宽为b m,四周镶上宽度相等的花边,求剩余面积S(m2)与花边宽度x(m)之间的函数关系式为,自变量x的取值范围为。
二次函数与一元二次方程(习题及答案)
【参考答案】
巩固练习
1. A
2. C
3. B
4. D
5. D
6. D
7. D
8. 1<α<β<3;α<x<β
9. m 9 4
10. (1)b=4
(2)无交点
11. (-1,0)
12. 一
13. (1)①x1=-2,x2=1 ②8 ③增大
(2)y=2x2+2x-4,最小值: 9 2
思考小结
思路分析
a,b 可以看做抛物线 y=(x-a)(x-b)与 x 轴交点的横坐标,x1,x2 可以看做抛物线 y=(x-a)(x-b)与直线 y 3 的交点的横坐标.
2 如图所示,
结合图象可得, a x1 x2 b . 故选 B.
1
巩固练习
1. 二次函数 y=x2-2x-3 的图象如图所示,当 y 0 时,自变量 x
向左平移 1 个单位,请判断新抛物线与 x 轴的交点情况.
11. 已知二次函数 y x2 2x m 的图象 C1 与 x 轴有且只有一个
交点,则 C1 的顶点坐标为__________. 12. 若关于 x 的一元二次方程 x2 x n 0 无实数根,则函数
y x2 x n 的图象顶点在第______象限.
C. x 1且x 5
D. x 1或x 5
第 5 题图
第 6 题图
6. 如图,若抛物线 y x2 1与双曲线 y k 的交点 A 的横坐标 x
为 1,则关于 x 的不等式 k x2 1 0 的解集是( ) x
A. x 1
B. x 1
C.0 x 1 D.1 x 0
7. 坐标平面上,若平移二次函数 y=2(x175)(x176)6 的图象,
高三数学函数与方程试题答案及解析
高三数学函数与方程试题答案及解析1.函数的图像与函数的图像所有交点的横坐标之和为 _.【答案】4.【解析】函数与的图象有公共的对称中心(1,0),作出两个函数的图象,如图所示:当1<x4时,,而函数y2在(1,4)上出现1.5个周期的图象,在上是单调增且为正数函数,y2在(1,4)上出现1.5个周期的图象,在上是单调减且为正数,∴函数y2在处取最大值为,而函数y2在(1,2)、(3,4)上为负数与y1的图象没有交点,所以两个函数图象在(1,4)上有两个交点(图中C、D),根据它们有公共的对称中心(1,0),可得在区间(-2,1)上也有两个交点(图中A、B),并且:xA +xD=xB+xC=2,故所求的横坐标之和为4,故答案为:4.【考点】1.函数的零点与方程的根的关系;2.数形结合思想.2.已知a>0,且a≠1,则函数f(x)=a x+(x-1)2-2a的零点个数为( )A.1B.2C.3D.与a有关【答案】B【解析】设g(x)=2a-a x,h(x)=(x-1)2,注意到g(x)的图象恒过定点(1,a),画出他们的图象无论a>1还是0<a<1,g(x)与h(x)的图象都必定有两个公共点考点:零点的个数3.已知函数,集合,,记分别为集合中的元素个数,那么下列结论不正确的是()A.B.C.D.【答案】【解析】集合,均表示方程的解集,集合中元素的个数,就是方程解的个数.当时,有一解,无解,正确;当时,有一解,有一解,正确;当时,有两解,有两解,其不可能有三个解,正确,不正确.故选.【考点】1、新定义;2、集合的概念;3、函数与方程.4.若关于x的方程x2-(a2+b2-6b)x+a2+b2+2a-4b+1=0的两个实数根x1,x2满足x 1<0<x2<1,则a2+b2+4a+4的取值范围是________.【答案】【解析】由题意得即利用线性规划的知识,问题转化为求区域上的点到点(-2,0)的距离的平方的取值范围.由图可知,所求的最大距离即为点(-2,0)与圆心(-1,2)的连线交圆与另一端点的值,即+2.所求的最小距离即为点(-2,0)到直线a+b+1=0的距离,即为=,所以a2+b2+4a+4∈,即a2+b2+4a+4∈.5.已知方程x=的解x∈,则正整数n=________.【答案】2【解析】在同一直角坐标系中画出函数y=x,y=的图像,如图所示.由图可得x∈(0,1),设f(x)=x-,因为f=-<0,f=->0,故n=2.6.若函数不存在零点,则实数的取值范围是.【答案】【解析】依题意在上没有实根.即等价于无解.等价于在上没有实根,即函数在与x轴没有交点.当时,.,又由.所以上有零点.所以不成立.当时,只需.【考点】1.方程的根与函数的零点.2.分类讨论的思想.7.函数的零点个数为( )A.1B.2C.3D.4【答案】B【解析】函数的零点个数方程的根的个数函数与的图象的交点个数.作出两函数的图象(如图).由图可知,两个函数的图象有两个交点,故选B8.设函数,.(1)解方程:;(2)令,,求证:(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.【答案】(1);(2)参考解析;(3)【解析】(1)由于函数,,所以解方程.通过换元即可转化为解二次方程.即可求得结论.(2)由于即得到.所以.所以两个一组的和为1,还剩中间一个.即可求得结论.(3)由是实数集上的奇函数,可求得.又由于对任意实数恒成立.该式的理解较困难,所以研究函数的单调性可得.函数在实数集上是递增.集合奇函数,由函数值大小即可得到变量的大小,再利用基本不等式,从而得到结论.试题解析:(1),,(2),.因为,所以,,.=.(3)因为是实数集上的奇函数,所以.,在实数集上单调递增.由得,又因为是实数集上的奇函数,所以,,又因为在实数集上单调递增,所以即对任意的都成立,即对任意的都成立,.【考点】1.解方程的思想.2.函数的单调性.3.归纳推理的思想.4.基本不等式.9.函数的零点所在的区间是()A.B.C.D.【答案】C【解析】∵函数,∴,=<<0,=>>0,∴,所以函数的零点所在区间是.【考点】函数的零点.10.设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时,f(x)=x3.又函数g(x)=|x cos(πx)|,则函数h(x)=g(x)-f(x)在上的零点个数为( )A.5B.6C.7D.8【答案】B【解析】因为当x∈[0,1]时,f(x)=x3,所以当x∈[1,2]时,2-x∈ [0,1],f(x)=f(2-x)=(2-x)3. 当x∈时,g(x)=x cos (πx);当x∈时,g(x)=-x cos(πx),注意到函数f(x),g(x)都是偶函数,且f(0)=g(0),f(1)=g(1),g=g=0,作出函数f(x),g(x)的大致图象,函数h(x)除了0,1这两个零点之外,分别在区间,,,上各有一个零点,共有6个零点,故选B.11.函数f(x)=1-x logx的零点所在的区间是()2A.,B.,1C.(1,2)D.(2,3)【答案】Cx的零点所在的区间是(1,2).【解析】f(1)=1,f(2)=-1,故函数f(x)=1-x log212.函数的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3.4)【答案】B【解析】函数在区间存在零点,等价于.计算,故选B.【考点】函数零点存在定理13.已知函数若a、b、c互不相等,且,则a+b+c的取值范围是()A.(1,2014)B.(1,2015)C.(2,2015)D.[2,2015]【答案】C【解析】由于函数的周期为,,故它的图象关于直线对称,不妨设,则.故有,再由正弦函数的定义域和值域可得,故有,解得,综上可得,,故选C.【考点】函数的根,图像变化.14.“函数在上存在零点”的充要条件是 .【答案】或【解析】函数在上存在零点等价于直线在上与轴有交点,则或,即或.【考点】函数的零点,充要条件.15.已知函数时,则下列结论正确的是 .(1),等式恒成立(2),使得方程有两个不等实数根(3),若,则一定有(4),使得函数在上有三个零点【答案】(1)(2)(3)【解析】由,所以(1)正确;对于B,不妨设m=则|f(x)|= ,即,得到:x=1或-1,故B正确;对于C,就是求f(x)单调性,由于f(x)为奇函数,只需讨论在(0,+∞)的单调性即可,当x>0时,f(x)= >0,所以在(0,+∞)单调递增且函数值都为正数,所以函数f(x)在(-∞,0)上单调递增且函数值都为负数,又f(0)=0,故f(x)在R上单调递增,所以任意x1,x2属于R,若x1≠x2,则一定有f(x1)≠f(x2)正确;D错误,令f(x)-kx=-kx=x()=0,则有一根为x=0,或=0,但是,而k,所以=0恒不成立,所以选择D【考点】1.函数的单调性、最值;2.函数的奇偶性、周期性;3.函数零点的判定定理.16.方程有解,则的取值范围()A.或B.C.D.【答案】D【解析】方程有解,即,因为,所以, ,即,解得.【考点】1、方程有解问题, 2、二次函数值域.17.已知直线:.若存在实数使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出四条曲线方程:①;②;③;④;则其中直线的“绝对曲线”有()A.①④B.②③C.②④D.②③④【答案】D【解析】由题意直线表示斜率为且过定点(1,1)的直线.(1)曲线①是由左右两支射线构成:时,是斜率为2且过点(1,0)的射线;时,是斜率为-2且过点(1,0)的射线.作图可知:当,直线仅与曲线①右支射线有一个交点;当时,直线与曲线①无交点;当时,直线仅与曲线①左支射线有一个交点.所以直线与曲线①最多只有一个交点,不符题意,故曲线①不是直线的“绝对曲线”.(2)因为定点(1,1)在曲线②上,所以直线与曲线②恒有交点,设曲线②与直线的两交点为、,易知,联立直线与曲线②方程,化简得:.,.,从而可知当且仅当时直线与曲线②仅一个交点.两边平方,化简得:.设,则,,且是连续函数,所以在(0,2)上有零点,即方程在(0,2)上有根,且在(0,2)上曲线②与直线有两个不同的交点.故存在实数使得曲线②与直线两个不同交点为端点的线段长度恰好等于,故曲线②是直线的“绝对曲线”.(3)曲线③表示圆心在(1,1)且半径为1的圆,它与直线两个交点为端点的线段长度恒为2,为2或-2时满足题意,故曲线③是直线的“绝对曲线”.(4)因为定点(1,1)在曲线④上,所以直线与曲线④恒有交点,设曲线④与直线的两交点为、,易知,联立直线与曲线④方程,化简得:,,,从而可知当且仅当时直线与曲线④仅一个交点.两边平方,化简得:.,,,且是连续函数,所以在上有零点,即方程在上有根,且在上曲线④与直线有两个不同的交点.故存在实数使得曲线④与直线两个交点为端点的线段长度恰好等于,故曲线④是直线的“绝对曲线”.【考点】曲线与直线的方程、函数的零点18.,则下列关于的零点个数判断正确的是()A.当k=0时,有无数个零点B.当k<0时,有3个零点C.当k>0时,有3个零点D.无论k取何值,都有4个零点【答案】A【解析】因为函数f(x)为分段函数,函数y=f(f(x))-2为复合函数,故需要分类讨论,确定函数y=f(f(x))+1的解析式,从而可得函数y=f(f(x))-2的零点个数;解:分四种情况讨论.(1)0<x<1时,lnx<0,∴y=f(f(x))+1=-ln(-lnx)+1,此时的零点为x=>1;(2)x>1时,lnx>0,∴y=f(f(x))+1=klnx+1,则k>0时,有一个零点,k<0时,klnx+1>0没有零点;(3)若x<0,kx+2≤0时,y=f(f(x))+1=k2x+k+1,则k>0时,kx≤-2,k2x≤-k,可得k2x+k≤0,y有一个零点,若k<0时,则k2x+k≥0,y没有零点,(4)若x<0,kx+2>0时,y=f(f(x))+1=ln(kx+1)+1,则k>0时,即y=0可得kx+2=,y有一个零点,k<0时kx>0,y没有零点,综上可知,当k>0时,有4个零点;当k<0时,有1个零点,故选A;k=0,y=f(f(x))-2,有无数个零点,故选A.【考点】复合函数的零点点评:本题考查分段函数,考查复合函数的零点,解题的关键是分类讨论确定函数y=f(f(x))+1的解析式,考查学生的分析能力,是一道中档题;19.若方程的根在区间上,则的值为()A.B.1C.或2D.或1【答案】D【解析】令f(x)=,且x>-1,则方程的实数根即为f(x)的零点.则当x>0时,f(x)在区间(k,k+1)(k∈Z)上单调递增,由于f(1)=ln2-2<0,f(2)=ln3-1>0,∴f(1)•f(2)<0,故f(x)在(1,2)上有唯一零点.当x<0时,f(x)在区(-1,0)上也是增函数,由f(-)=ln+=-ln100<3-lne3=0,f(-)=ln+200>200-ln1>200>0,可得 f(-)•f(-)<0,故函数f(x)在(-,-)上也有唯一零点,故f(x)在区(-1,0)上也唯一零点,此时,k=-1.综上可得,∴k=±1,故选D.【考点】函数的零点的定义,零点存在定理。
高中数学必修一第二章一元二次函数方程和不等式知识总结例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识总结例题单选题1、在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm )应满足的不等式为( ) A .4×x 0.5≥100B .4×x 0.5≤100C .4×x0.5>100D .4×x0.5<100 答案:C分析:为了安全,则人跑开的路程应大于100米,路程=速度×时间,其中时间即导火索燃烧的时间. 导火索燃烧的时间x0.5秒,人在此时间内跑的路程为4×x 0.5m .由题意可得4×x 0.5>100.故选:C.2、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( ) A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞) 答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13} 则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16)故选:A3、若关于x 的不等式x 2−6x +11−a <0在区间(2,5)内有解,则实数a 的取值范围是( ) A .(−2,+∞)B .(3,+∞)C .(6,+∞)D .(2,+∞) 答案:D分析:设f(x)=x2−6x+11,由题意可得a>f(x)min,从而可求出实数a的取值范围设f(x)=x2−6x+11,开口向上,对称轴为直线x=3,所以要使不等式x2−6x+11−a<0在区间(2,5)内有解,只要a>f(x)min即可,即a>f(3)=2,得a>2,所以实数a的取值范围为(2,+∞),故选:D4、已知a>1,则a+4a−1的最小值是()A.5B.6C.3√2D.2√2答案:A分析:由于a>1,所以a−1>0,则a+4a−1=(a−1)+4a−1+1,然后利用基本不等式可求出其最小值由于a>1,所以a−1>0所以a+4a−1=a−1+4a−1+1≥2√(a−1)⋅4(a−1)+1=5,当且仅当a−1=4a−1,即a=3时取等号.故选:A.5、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A6、已知使不等式x2+(a+1)x+a≤0成立的任意一个x,都满足不等式3x−1≤0,则实数a的取值范围为()A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解. 解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13,当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.7、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1,∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .8、已知二次函数y =ax 2+bx +c 的图象如图所示,则不等式ax 2+bx +c >0的解集是( )A .{x|−2<x <1}B .{x|x <−2或x >1}C .{x|−2≤x ≤1}D .{x|x ≤−2或x ≥1} 答案:A分析:由二次函数与一元二次不等式关系,结合函数图象确定不等式解集. 由二次函数图象知:ax 2+bx +c >0有−2<x <1. 故选:A 多选题9、若正实数a ,b 满足a +b =1,则下列说法正确的是( ) A .ab 有最大值14B .√a +√b 有最大值√2C .1a+1b有最小值4D .a 2+b 2有最小值√22答案:ABC分析:由已知结合基本不等式及相关结论分别分析各选项即可判断.解:因为正实数a ,b 满足a +b =1,所以1=a +b ≥2√ab ,当且仅当a =b =12时取等号,所以ab ≤14,故ab 有最大值14,故A 正确;(√a +√b)2=a +b +2√ab =1+2√ab ≤1+2√14=2,当且仅当a =b =12时取等号,故√a +√b ≤√2,即√a +√b 有最大值√2,故B 正确;1a+1b=a+b ab=1ab≥4,当且仅当a =b =12时取等号,故1a+1b有最小值4,故C 正确;a 2+b 2=(a +b )2−2ab =1−2ab ≥12,当且仅当a =b =12时取等号,所以a 2+b 2有最小值12,故D 错误. 故选:ABC .10、若−1<a <b <0,则( )A .a 2+b 2>2abB .1a <1b C .a +b >2√ab D .a +1a >b +1b 答案:AD分析:应用作差法判断B 、D ,根据重要不等式判断A ,由不等式性质判断C. A :由重要不等式知:a 2+b 2≥2ab ,而−1<a <b <0,故a 2+b 2>2ab ,正确; B :由−1<a <b <0,则1a −1b =b−a ab>0,故1a >1b ,错误;C :由−1<a <b <0,则a +b <0<2√ab ,错误;D :(a +1a)−(b +1b)=a −b +1a−1b=a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a>b +1b,正确.故选:AD11、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确; 由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4,当且仅当{ab =1aba b=b a,即a =b =1时取等号,故D 正确. 故选:ACD. 填空题12、不等式x+3x−1>0的解集为______________. 答案:{x |x <−3或x >1}分析:由题可得(x −1)(x +3)>0,进而即得. 由x+3x−1>0,得(x −1)(x +3)>0, 所以x <−3或x >1,故不等式得解集为{x |x <−3或x >1}. 所以答案是:{x |x <−3或x >1}. 13、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0, 解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)14、若0<x <2,则y =√2x(2−x)的最大值为_______ 答案:√2分析:由基本不等式求最大值.∵0<x <2,∴2−x >0,∴y =√2⋅√x(2−x)≤√2⋅x+2−x 2=√2,当且仅当x =2−x 即x =1时取等号,∴当x =1时,有最大值√2. 所以答案是:√2. 解答题15、某汽车公司购买了4辆大客车用于长途客运,每辆200万元,预计每辆客车每年收入约100万元,每辆客车第一年各种费用约为16万元,从第二年开始每年比上一年所需费用要增加16万元.(1)写出4辆客车运营的总利润y(万元)与运营年数x(x∈N∗)的函数关系式:(2)这4辆客车运营多少年,可使年平均运营利润最大?最大利润是多少?答案:(1)y=16(−2x2+23x−50);(2)这4辆客车运营5年,可使年平均运营利润最大,最大利润为48万元.分析:(1)由题知,每辆车x年总收入为100x万元,总支出为200+16×(1+2+3+⋅⋅⋅+x),进而得利润的表达式y=16(−2x2+23x−50);(2)结合(1)得年平均运营利润为yx =16[23−2(x+25x)],再根据基本不等式求解即可得答案.解:(1)依题意得,每辆车x年总收入为100x万元,总支出为200+16×(1+2+3+⋅⋅⋅+x)=200+16×x(1+x)2=200+8x(x+1),所以4辆客车运营的总利润y=4[100x−200−8x(x+1)]=16(−2x2+23x−50).(2)年平均运营利润为yx =16(−2x+23−50x)=16[23−2(x+25x)],因为x∈N∗,所以x+25x ≥2√x⋅25x=10,当且仅当x=5时,等号成立,此时yx≤16×(23−2×10)=48,所以这4辆客车运营5年,可使年平均运营利润最大,最大利润为48万元.。
高一数学函数与方程试题答案及解析
高一数学函数与方程试题答案及解析1.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定【答案】B【解析】由已知f(1)<0,f(1.5)>0,f(1.25)<0,∴f(1.25)f(1.5)<0,因此方程的根落在区间(1.25,1.5)内,故选B2.定义在R上的奇函数f(x) ()A.未必有零点B.零点的个数为偶数C.至少有一个零点D.以上都不对【答案】C【解析】∵函数f(x)是定义在R上的奇函数,∴f(0)=0,∴f(x)至少有一个零点,且f(x)零点的个数为奇数.3.函数f(x)=ax2+2ax+c(a≠0)的一个零点为1,则它的另一个零点为________.【答案】-3【解析】设方程f(x)=0的另一根为x,由根与系数的关系,得1+x=-=-2,故x=-3,即另一个零点为-3.4.若函数f(x)=3ax-2a+1在区间[-1,1]上存在一个零点,则a的取值范围是________.【答案】a≥或a≤-1【解析】因为函数f(x)=3ax-2a+1在区间[-1,1]上存在一个零点,所以有f(-1)·f(1)≤0,即(-5a+1)·(a+1)≤0,(5a-1)(a+1)≥0,所以或解得a≥或a≤-1.5.若方程x2-2ax+a=0在(0,1)恰有一个解,求a的取值范围.【答案】a<0或a>1【解析】解:设f(x)=x2-2ax+a.由题意知:f(0)·f(1)<0,即a(1-a)<0,根据两数之积小于0,那么必然一正一负.故分为两种情况.∴a<0或a>1.6.已知函数在R是奇函数,且当时,,则时,的解析式为_______________【答案】【解析】设则于是又函数在R是奇函数,所以所以当时,7.已知二次函数的最小值为3,且.求函数的解析式;(2)若偶函数(其中),那么,在区间上是否存在零点?请说明理由.【答案】(1)(2)存在零点【解析】(1)待定系数法,己知函数类型为二次函数,又知f(-1)=f(3),所以对称轴是x=1,且函数最小值f(1)=3,所设函数,且,代入f(-1)=11,可解a。
高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案
1 函数与方程【知识梳理】1、函数零点的定义(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。
(2)方程0)(=x f 有实根Û函数()y f x =的图像与x 轴有交点Û函数()y f x =有零点。
因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。
函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点(3)变号零点与不变号零点①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。
②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。
③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、函数零点的判定(1)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有()()0f a f b ×<,那么,函数)(x f y =在区间(),a b 内有零点,即存在),(0b a x Î,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。
(2)函数)(x f y =零点个数(或方程0)(=x f 实数根的个数)确定方法①代数法:函数)(x f y =的零点Û0)(=x f 的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点。
(3)零点个数确定0D >Û)(x f y =有2个零点Û0)(=x f 有两个不等实根;0D =Û)(x f y =有1个零点Û0)(=x f 有两个相等实根;0D <Û)(x f y =无零点Û0)(=x f 无实根;对于二次函数在区间[],a b 上的零点个数,要结合图像进行确定. 1、二分法(1)二分法的定义:对于在区间[,]a b 上连续不断且()()0f a f b ×<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: ①确定区间[,]a b ,验证()()0f a f b ×<,给定精确度e ; ②求区间(,)a b 的中点c ; ③计算()f c ; (ⅰ)若()0f c =,则c 就是函数的零点; (ⅱ) 若()()0f a f c ×<,则令b c =(此时零点0(,)x a c Î); (ⅲ) 若()()0f c f b ×<,则令a c =(此时零点0(,)x c b Î); ④判断是否达到精确度e ,即a b e -<,则得到零点近似值为a (或b );否则重复②至④步. 【经典例题】【经典例题】1.函数3()=2+2xf x x -在区间(0,1)内的零点个数是内的零点个数是 ( )A 、0 B 、1 C 、2 D 、3 2.函数.函数 f (x )=2x+3x 的零点所在的一个区间是的零点所在的一个区间是( ) A 、(-2,-1) B 、(-1,0) C 、(0,1) D 、(1,2) 3.若函数=)(x f xa x a -- (0a >且1a ¹)有两个零点,则实数a 的取值范围是的取值范围是. 4.设函数f (x )()x R Î满足f (x -)=f (x ),f (x )=f (2-x ),且当[0,1]x Î时,f (x )=x 3.又函数g (x )= |x cos ()x p |,则函数h (x )=g (x )-f (x )在13[,]22-上的零点个数为上的零点个数为 ( )A 、5 B 、6 C 、7 D 、8 5.函数2()cos f x x x =在区间[0,4]上的零点个数为上的零点个数为 ( )A 、4 B 、5 C 、6 D 、7 6.函数()cos f x x x =-在[0,)+¥内 ( )A 、没有零点、没有零点B 、有且仅有一个零点、有且仅有一个零点C 、有且仅有两个零点、有且仅有两个零点D 、有无穷多个零点、有无穷多个零点7.对实数a 和b ,定义运算“⊗”:a ⊗b =îïíïìa ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是的取值范围是 ( )A 、(-∞,-2]∪èæøö-1,32B 、(-∞,-2]∪èæøö-1,-34C 、èæøö-1,14∪èæøö14,+∞D 、èæøö-1,-34∪ëéøö14,+∞8.已知函数f x ()=log (0a 1).a x x b a +-¹>,且当2<a <3<b <4时,函数f x ()的零点*(,1),,n=x n n n N Î+Î则 . 9.求下列函数的零点:.求下列函数的零点:(1)32()22f x x x x =--+; (2)4()f x x x=-. 10.判断函数y =x 3-x -1在区间[1,1.5]内有无零点,如果有,求出一个近似零点(精确度0.1).【课堂练习】【课堂练习】1、在下列区间中,函数()43xf x e x =+-的零点所在的区间为的零点所在的区间为 ( )A 、1(,0)4-B 、1(0,)4C 、11(,)42D 、13(,)242、若0x 是方程lg 2x x +=的解,则0x 属于区间属于区间 ( ) A 、(0,1) B 、(1,1.25) C 、(1.25,1.75) D 、(1.75,2)3、下列函数中能用二分法求零点的是、下列函数中能用二分法求零点的是 ( ) ( )4、函数f ()x =2x+3x 的零点所在的一个区间是的零点所在的一个区间是 ( )A .(-2,-1)B 、(-1,0)C 、(0,1)D 、(1,2)5、设函数f ()x =4sin (2x+1)-x ,则在下列区间中函数f ()x 不存在零点的是不存在零点的是( ) A 、[-4,-2] B 、[-2,0] C 、[0,2] D 、[2,4] 6、函数()x f =x -cos x 在[0,¥+﹚内﹚内 ( )A 、没有零点、没有零点B 、有且仅有一个零点、有且仅有一个零点C 、有且仅有两个零点、有且仅有两个零点D 、有无穷多个零点、有无穷多个零点 7、若函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过0.25,则()f x 可以是(可以是( )A 、()41f x x =-B 、2()(1)f x x =- C 、()1xf x e =- D 、1()ln()2f x x =-8、下列函数零点不宜用二分法的是、下列函数零点不宜用二分法的是 ( )( )A 、3()8f x x =- B 、()ln 3f x x =+ C 、2()222f x x x =++ D 、2()41f x x x =-++ 9、函数f(x)=log 2x+2x-1的零点必落在区间的零点必落在区间 ( )A 、÷øöçèæ41,81B 、÷øöçèæ21,41C 、÷øöçèæ1,21 D 、(1,2) 10、01lg =-xx 有解的区域是有解的区域是 ( )A 、(0,1]B 、(1,10]C 、(10,100] D 、(100,)+¥11、在下列区间中,函数()e 43xf x x =+-的零点所在的区间为的零点所在的区间为 ( ) A 、1(,0)4- B 、 1(0,)4 C 、11(,)42 D 、13(,)24 12、函数2()log f x x x p =+的零点所在区间为(的零点所在区间为( )A 、1[0,]8 B 、11[,]84 C 、11[,]42D 、1[,1]213、设()833-+=x x f x,用二分法求方程()2,10833Î=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间(则方程的根落在区间() A 、(1,1.25) B 、(1.25,1.5) C 、(1.5,2) D 、不能确定、不能确定 14、设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是(存在零点的是( ) A 、[]4,2-- B 、[]2,0- C 、[]0,2 D 、[]2,415、函数223,0()2ln ,0x x x f x x x ì+-£=í-+>î, 零点个数为(零点个数为( )A 、3 B 、2 C 、1 D 、0 16、若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:的一个正数零点附近的函数值用二分法计算,其参考数据如下:f (1) = -2 f (1.5) = 0.625 f (1.25) = -0.984 f (1.375) = -0.260 f (1.4375) = 0.162 f (1.40625) = -0.054那么方程32220x x x +--=的一个近似根(精确到0.1)为)为 ( ) A 、1.2 B 、1.3 C 、1.4 D 、1.5 17、方程223xx -+=的实数解的个数为的实数解的个数为. 18、已知函数22()(1)2f x x a x a =+-+-的一个零点比1大,一个零点比1小,求实数a 的取值范围。
历年高三数学高考考点之〈函数与方程〉必会题型及答案
历年高三数学高考考点之〈函数与方程〉必会题型及答案体验高考1.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a的取值范围是________. 答案 (-∞,0)∪(1,+∞) 解析 函数g (x )有两个零点, 即方程f (x )-b =0有两个不等实根, 则函数y =f (x )和y =b 的图象有两个公共点. ①若a <0,则当x ≤a 时,f (x )=x 3,函数单调递增; 当x >a 时,f (x )=x 2,函数先单调递减后单调递增,f (x )的图象如图(1)实线部分所示,其与直线y =b 可能有两个公共点.②若0≤a ≤1,则a 3≤a 2,函数f (x )在R 上单调递增,f (x )的图象如图(2)实线部分所示,其与直线y =b 至多有一个公共点. ③若a >1,则a 3>a 2,函数f (x )在R 上不单调,f (x )的图象如图(3)实线部分所示,其与直线y =b 可能有两个公共点. 综上,a <0或a >1.2.设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________(写出所有正确条件的编号).①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2; ④a =0,b =2;⑤a =1,b =2. 答案 ①③④⑤解析 令f (x )=x 3+ax +b ,f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,f (x )单调递增,必有一个实根,④⑤正确;当a <0时,由于选项当中a =-3,∴只考虑a =-3这一种情况,f ′(x )=3x 2-3=3(x +1)(x -1),∴f (x )极大=f (-1)=-1+3+b =b +2,f (x )极小=f (1)=1-3+b =b -2,要有一根,f (x )极大<0或f (x )极小>0,∴b <-2或b >2,①③正确,②错误.所有正确条件为①③④⑤.3.(2016·课标全国甲)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )等于( )A.0B.mC.2mD.4m 答案 B解析 方法一 特殊函数法,根据f (-x )=2-f (x )可设函数f (x )=x +1,由y =x +1x,解得两个点的坐标为⎩⎪⎨⎪⎧x 1=-1,y 1=0⎩⎪⎨⎪⎧x 2=1,y 2=2此时m =2,所以∑i =1m(x i +y i )=m ,故选B.方法二 由题设得12(f (x )+f (-x ))=1,点(x ,f (x ))与点(-x ,f (-x ))关于点(0,1)对称,则y =f (x )的图象关于点(0,1)对称. 又y =x +1x =1+1x,x ≠0的图象也关于点(0,1)对称. 则交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对,且关于点(0,1)对称.则∑i =1m (x i ,y i )=∑i =1m x i +∑i =1my i =0+m2×2=m ,故选B.高考必会题型题型一 利用函数与方程思想解决图象交点或方程根等问题例1 已知函数f (x )=⎩⎪⎨⎪⎧x 2+4a -3x +3a ,x <0,log ax +1+1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰有两个不相等的实数解,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,23B.⎣⎢⎡⎦⎥⎤23,34C.⎣⎢⎡⎦⎥⎤13,23∪⎩⎨⎧⎭⎬⎫34D.⎣⎢⎡⎭⎪⎫13,23∪⎩⎨⎧⎭⎬⎫34 答案 C解析 由y =log a (x +1)+1在[0,+∞)上递减,得0<a <1. 又由f (x )在R 上单调递减,则⎩⎪⎨⎪⎧02+4a -3·0+3a ≥f 0=1,3-4a2≥0⇒13≤a ≤34. 如图所示,在同一坐标系中作出函数y =|f (x )|和y =2-x 的图象.由图象可知,在[0,+∞)上,|f (x )|=2-x 有且仅有一个解. 故在(-∞,0)上,|f (x )|=2-x 同样有且仅有一个解.当3a >2,即a >23时,由x 2+(4a -3)x +3a =2-x (其中x <0),得x 2+(4a -2)x +3a -2=0(其中x <0),则Δ=(4a -2)2-4(3a -2)=0, 解得a =34或a =1(舍去);当1≤3a ≤2,即13≤a ≤23时,由图象可知,符合条件.综上所述,a ∈⎣⎢⎡⎦⎥⎤13,23∪⎩⎨⎧⎭⎬⎫34.故选C.点评 函数图象的交点、函数零点、方程的根三者之间可互相转化,解题的宗旨就是函数与方程的思想.方程的根可转化为函数零点、函数图象的交点,反之函数零点、函数图象的交点个数问题也可转化为方程根的问题.变式训练1 已知定义在R 上的函数f (x )满足:f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1,2-x 2,x ∈[-1,0,且f (x+2)=f (x ),g (x )=2x +5x +2,则方程f (x )=g (x )在区间[-5,1]上的所有实根之和为( )A.-5B.-6C.-7D.-8 答案 C解析 g (x )=2x +5x +2=2x +2+1x +2=2+1x +2,由题意知函数f (x )的周期为2,则函数f (x ),g (x )在区间[-5,1]上的图象如图所示:由图象知f (x )、g (x )有三个交点,故方程f (x )=g (x ) 在x ∈[-5,1]上有三个根x A 、x B 、x C ,x B =-3,x A +x C2=-2,x A +x C =-4,∴x A +x B +x C =-7.题型二 函数与方程思想在不等式中的应用例2 定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f xex<1的解集为( )A.(-∞,0)B.(0,+∞)C.(-∞,2)D.(2,+∞) 答案 B解析 构造函数g (x )=f xex,则g ′(x )=e x·f ′x -e x ·f xex2=f ′x -f xex.由题意得g ′(x )<0恒成立,所以函数g (x )=f xex在R 上单调递减.又g (0)=f 0e=1,所以f xex<1,即g (x )<1,所以x >0,所以不等式的解集为(0,+∞).故选B.点评 不等式恒成立问题的处理方法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化.一般地,已知存在范围的量为变量,而待求范围的量为参数.变式训练2 已知f (x )=log 2x ,x ∈[2,16],对于函数f (x )值域内的任意实数m ,则使x 2+mx +4>2m +4x 恒成立的实数x 的取值范围为( ) A.(-∞,-2]B.[2,+∞)C.(-∞,-2]∪[2,+∞)D.(-∞,-2)∪(2,+∞)答案 D解析 ∵x ∈[2,16],∴f (x )=log 2x ∈[1,4], 即m ∈[1,4].不等式x 2+mx +4>2m +4x 恒成立, 即为m (x -2)+(x -2)2>0恒成立, 设g (m )=(x -2)m +(x -2)2, 则此函数在[1,4]上恒大于0,所以⎩⎪⎨⎪⎧g 1>0,g 4>0,即⎩⎪⎨⎪⎧x -2+x -22>0,4x -2+x -22>0,解得x <-2或x >2.题型三 函数与方程思想在数列中的应用例3 已知数列{a n }是首项为2,各项均为正数的等差数列,a 2,a 3,a 4+1成等比数列,设b n =1S n +1+1S n +2+…+1S 2n(其中S n 是数列{a n }的前n 项和),若对任意n ∈N *,不等式b n ≤k 恒成立,求实数k 的最小值. 解 因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ), 得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n . 因为S n =n (n +1),b n =1S n +1+1S n +2+…+1S 2n=1n +1n +2+1n +2n +3+…+12n2n +1=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1 =1n +1-12n +1=n 2n 2+3n +1=12n +1n+3.令f (x )=2x +1x(x ≥1),则f ′(x )=2-1x2,当x ≥1时,f ′(x )>0恒成立,所以f (x )在[1,+∞)上是增函数, 故当x =1时,f (x )min =f (1)=3, 即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立, 则须使k ≥(b n )max =16,所以实数k 的最小值为16.点评 数列问题函数(方程)化法数列问题函数(方程)化法与形式结构函数(方程)化法类似,但要注意数列问题中n 的取值范围为正整数,涉及的函数具有离散性特点,其一般解题步骤为: 第一步:分析数列式子的结构特征.第二步:根据结构特征构造“特征”函数(方程),转化问题形式.第三步:研究函数性质.结合解决问题的需要,研究函数(方程)的相关性质,主要涉及函数单调性与最值、值域问题的研究.第四步:回归问题.结合对函数(方程)相关性质的研究,回归问题.变式训练3 设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( ) A.S n 的最大值是S 8 B.S n 的最小值是S 8 C.S n 的最大值是S 7 D.S n 的最小值是S 7答案 D解析 由条件得S n n <S n +1n +1,即n a 1+a n 2n <n +1a 1+a n +12n +1,所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D.题型四 函数与方程思想在解析几何中的应用例4 椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=3PB →. (1)求椭圆C 的方程; (2)求m 的取值范围.解 (1)设椭圆C 的方程为y 2a 2+x 2b2=1 (a >b >0),设c >0,c 2=a 2-b 2, 由题意,知2b =2,c a =22,所以a =1,b =c =22. 故椭圆C 的方程为y 2+x 212=1,即y 2+2x 2=1. (2)①当直线l 的斜率不存在时,也满足AP →=3PB →,此时m =±12.②当直线l 的斜率存在时,设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,2x 2+y 2=1,得(k 2+2)x 2+2kmx +(m 2-1)=0,Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0,(*)x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2.因为AP →=3PB →,所以-x 1=3x 2,所以⎩⎪⎨⎪⎧x 1+x 2=-2x 2,x 1x 2=-3x 22.则3(x 1+x 2)2+4x 1x 2=0,即3·⎝ ⎛⎭⎪⎫-2km k 2+22+4·m 2-1k 2+2=0, 整理得4k 2m 2+2m 2-k 2-2=0, 即k 2(4m 2-1)+2m 2-2=0, 当m 2=14时,上式不成立;当m 2≠14时,k 2=2-2m 24m 2-1,由(*)式,得k 2>2m 2-2,又k ≠0, 所以k 2=2-2m24m 2-1>0,解得-1<m <-12或12<m <1,综上,所求m 的取值范围为⎝ ⎛⎦⎥⎤-1,-12∪⎣⎢⎡⎭⎪⎫12,1. 点评 利用判别式法研究圆锥曲线中的范围问题的步骤 第一步:联立方程.第二步:求解判别式Δ.第三步:代换.利用题设条件和圆锥曲线的几何性质,得到所求目标参数和判别式不等式中的参数的一个等量关系,将其代换.第四步:下结论.将上述等量代换式代入Δ>0或Δ≥0中,即可求出目标参数的取值范围. 第五步:回顾反思.在研究直线与圆锥曲线的位置关系问题时,无论题目中有没有涉及求参数的取值范围,都不能忽视了判别式对某些量的制约,这是求解这类问题的关键环节.变式训练4 已知点F 1(-c ,0),F 2(c ,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,点P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是____________. 答案 ⎣⎢⎡⎦⎥⎤33,22 解析 设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y ) =x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a2x 2代入①式解得x 2=2c 2-b2a 2c 2=3c 2-a2a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2, ∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.高考题型精练1.关于x 的方程3x =a 2+2a ,在(-∞,1]上有解,则实数a 的取值范围是( ) A.[-2,-1)∪(0,1] B.[-3,-2)∪[0,1] C.[-3,-2)∪(0,1] D.[-2,-1)∪[0,1]答案 C解析 当x ∈(-∞,1]时,3x∈(0,3],要使3x =a 2+2a 有解,a 2+2a 的值域必须为(0,3], 即0<a 2+2a ≤3,解不等式可得-3≤a <-2或0<a ≤1,故选C.2.设函数f (x )=e x(x 3-3x +3)-a e x-x ,若不等式f (x )≤0有解,则实数a 的最小值为( ) A.2e -1 B.2-2e C.1+2e 2D.1-1e 答案 D解析 因为f (x )≤0有解,所以f (x )=e x (x 3-3x +3)-a e x -x ≤0,a ≥x 3-3x +3-xex =F (x ),F ′(x )=3x 2-3+x -1ex =(x -1)(3x +3+e -x ),令G (x )=3x +3+e -x,G ′(x )=3-e -x,3-e -x=0,x =-ln 3,G (x )最小值G (-ln 3)=6-3ln 3>0, F (x )在(-∞,1)上递减,在(1,+∞)上递增, F (x )的最小值为F (1)=1-1e ,所以a ≥1-1e,故选D.3.已知f (x )=x 2-4x +4,f 1(x )=f (x ),f 2(x )=f (f 1(x )),…,f n (x )=f (f n -1(x )),函数y =f n (x )的零点个数记为a n ,则a n 等于( ) A.2n B.2n -1C.2n +1D.2n 或2n -1答案 B解析 f 1(x )=x 2-4x +4=(x -2)2,有1个零点2,由f 2(x )=0可得f 1(x )=2,则x =2+2或x =2-2,即y =f 2(x )有2个零点,由f 3(x )=0可得f 2(x )=2-2或2+2,则(x -2)2=2-2或(x -2)2=2+2,即y =f 3(x )有4个零点,以此类推可知,y =f n (x )的零点个数a n =2n -1.故选B.4.已知函数f (x )=ln x -14x +34x -1,g (x )=-x 2+2bx -4,若对任意x 1∈(0,2),x 2∈[1,2],不等式f (x 1)≥g (x 2)恒成立,则实数b 的取值范围为____________. 答案 ⎝ ⎛⎦⎥⎤-∞,142 解析 问题等价于f (x )min ≥g (x )max .f (x )=ln x -14x +34x-1,所以f ′(x )=1x -14-34x 2=4x -x 2-34x 2, 令f ′(x )>0得x 2-4x +3<0,解得1<x <3,故函数f (x )的单调递增区间是(1,3),单调递减区间是(0,1)和(3,+∞),故在区间(0,2)上,x =1是函数的极小值点,这个极小值点是唯一的,故也是最小值点,所以f (x )min =f (1)=-12.由于函数g (x )=-x 2+2bx -4,x ∈[1,2]. 当b <1时,g (x )max =g (1)=2b -5; 当1≤b ≤2时;g (x )max =g (b )=b 2-4;当b >2时,g (x )max =g (2)=4b -8. 故问题等价于⎩⎪⎨⎪⎧b <1,-12≥2b -5或⎩⎪⎨⎪⎧1≤b ≤2,-12≥b 2-4或⎩⎪⎨⎪⎧b >2,-12≥4b -8.解第一个不等式组得b <1,解第二个不等式组得1≤b ≤142,第三个不等式组无解. 综上所述,b 的取值范围是⎝ ⎛⎦⎥⎤-∞,142. 5.满足条件AB =2,AC =2BC 的三角形ABC 的面积的最大值是________. 答案 2 2解析 可设BC =x ,则AC =2x , 根据面积公式得S △ABC =x 1-cos 2B , 由余弦定理计算得cos B =4-x24x ,代入上式得S △ABC =x1-4-x 24x2=128-x 2-12216.由⎩⎨⎧2x +x >2,x +2>2x ,得22-2<x <22+2.故当x =23时,S △ABC 有最大值2 2.6.已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________. 答案 [1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2,x 2+y -a2=a ,得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,则由题意得⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1.7.设函数f (x )=ln x +ax -1(a 为常数).(1)若曲线y =f (x )在点(2,f (2))处的切线与x 轴平行,求实数a 的值; (2)若函数f (x )在(e ,+∞)内有极值,求实数a 的取值范围. 解 (1)函数f (x )的定义域为(0,1)∪(1,+∞),由f (x )=ln x +a x -1得f ′(x )=1x -ax -12,由于曲线y =f (x )在点(2,f (2))处的切线与x 轴平行, 所以f ′(2)=0,即12-a2-12=0,所以a =12.(2)因为f ′(x )=1x -ax -12=x 2-2+a x +1x x -12,若函数f (x )在(e ,+∞)内有极值,则函数y =f ′(x )在(e ,+∞)内有异号零点, 令φ(x )=x 2-(2+a )x +1.设x 2-(2+a )x +1=(x -α)(x -β),可知αβ=1, 不妨设β>α,则α∈(0,1),β∈(1,+∞), 若函数y =f ′(x )在(e ,+∞)内有异号零点, 即y =φ(x )在(e ,+∞)内有异号零点,所以β>e ,又φ(0)=1>0,所以φ(e)=e 2-(2+a )e +1<0,解得a >e +1e -2,所以实数a 的取值范围是(e +1e -2,+∞).8.已知f (x )=e x -ax -1.(1)求f (x )的单调增区间;(2)若f (x )在定义域R 内单调递增,求a 的取值范围. 解 (1)∵f (x )=e x -ax -1(x ∈R ),∴f ′(x )=e x -a .令f ′(x )≥0,得e x ≥a ,当a ≤0时,f ′(x )>0在R 上恒成立;当a >0时,有x ≥ln a .综上,当a ≤0时,f (x )的单调增区间为(-∞,+∞); 当a >0时,f (x )的单调增区间为(ln a ,+∞).(2)由(1)知f ′(x )=e x -a .∵f (x )在R 上单调递增,∴f ′(x )=e x -a ≥0恒成立,即a ≤e x 在R 上恒成立.∵当x ∈R 时,e x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求k 的值. 解 (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b = 2. 所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k x -1,x 24+y 22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2. 所以|MN |=x 2-x 12+y 2-y 12 =1+k 2[x 1+x 22-4x 1x 2] =21+k 24+6k21+2k 2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2, 所以△AMN 的面积为S =12|MN |·d =|k |4+6k 21+2k2. 由|k |4+6k 21+2k 2=103,解得k =±1. 所以k 的值为1或-1.10.已知等比数列{a n }满足2a 1+a 3=3a 2,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式.(2)若b n =a n +log 21a n,S n =b 1+b 2+…+b n ,求使S n -2n +1+47<0成立的正整数n 的最小值. 解 (1)设等比数列{a n }的首项为a 1,公比为q ,依题意,有⎩⎪⎨⎪⎧ 2a 1+a 3=3a 2,a 2+a 4=2a 3+2,即⎩⎪⎨⎪⎧ a 12+q 2=3a 1q , ①a 1q +q 3=2a 1q 2+4. ② 由①得q 2-3q +2=0,解得q =1或q =2.当q =1时,不合题意.舍去;当q =2时,代入②得a 1=2,所以a n =2×2n -1=2n.(2)b n =a n +log 21a n=2n +log 212n =2n -n .所以S n =2-1+22-2+23-3+ (2)-n =(2+22+23+…+2n )-(1+2+3+…+n ) =21-2n 1-2-n 1+n2=2n +1-2-12n -12n 2.因为S n -2n +1+47<0,所以2n +1-2-12n -12n 2-2n +1+47<0,即n 2+n -90>0,解得n >9或n <-10.因为n ∈N *,故使S n -2n +1+47<0成立的正整数n 的最小值为10.。
高三数学函数与方程试题答案及解析
高三数学函数与方程试题答案及解析1.已知是定义在上且周期为3的函数,当时,,若函数在区间上有10个零点(互不相同),则实数的取值范围是 .【答案】【解析】作出函数的图象,可见,当时,,,方程在上有10个零点,即函数和图象与直线在上有10个交点,由于函数的周期为3,因此直线与函数的应该是4个交点,则有.【考点】函数的零点,周期函数的性质,函数图象的交点问题.2.函数f(x)=lnx-x-a有两个不同的零点,则实数a的取值范围是()A.(-∞,-1]B.(-∞,-1)C.[-1,+∞)D.(-1,+∞)【答案】B【解析】函数f(x)=lnx-x-a的零点,即为关于x的方程lnx-x-a=0的实根,将方程lnx-x-a=0,化为方程lnx=x+a,令y1=lnx,y2=x+a,由导数知识可知,直线y2=x+a与曲线y1=lnx相切时有a=-1,若关于x的方程lnx-x-a=0有两个不同的实根,则实数a的取值范围是(-∞,-1).故选B.3.已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).(1)若g(x)=m有实数根,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.【答案】(1)m≥2e(2)(-e2+2e+1,+∞)【解析】解:(1)∵g(x)=x+≥2=2e等号成立的条件是x=e,故g(x)的值域是[2e,+∞),因此,只需m≥2e,g(x)=m就有实数根.(2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)与f(x)的大致图象.∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,∴其图象的对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).4.已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根x=,则f(x)=0在区间[0,2014]内根的个数为()A.1006B.1007C.2013D.2014【答案】D【解析】由f(x+1)=f(x-1),可知f(x+2)=f(x),所以函数f(x)的周期是2.由f(x)=f(-x+2),可知函数f(x)关于直线x=1对称,因为函数f(x)=0在[0,1]内有且只有一个根x=,所以函数f(x)=0在区间[0,2014]内根的个数为2014,故选D.5.已知函数,集合,,记分别为集合中的元素个数,那么下列结论不正确的是()A.B.C.D.【答案】【解析】集合,均表示方程的解集,集合中元素的个数,就是方程解的个数.当时,有一解,无解,正确;当时,有一解,有一解,正确;当时,有两解,有两解,其不可能有三个解,正确,不正确.故选.【考点】1、新定义;2、集合的概念;3、函数与方程.6.偶函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=x,则关于x的方程f(x)=x在x∈[0,4]上解的个数是________.【答案】4【解析】由f(x-1)=f(x+1)可知T=2.∵x∈[0,1]时,f(x)=x,又∵f(x)是偶函数,∴可得图像如图.∴f(x)=x在x∈[0,4]上解的个数是4个.7.关于x的方程e x ln x=1的实根个数是________.【答案】1【解析】由e x ln x=1(x>0)得ln x=(x>0),即ln x=x(x>0).令y1=ln x(x>0),y2=x(x>0),在同一直角坐标系内绘出函数y1,y2的图像,图像如图所示.根据图像可知两函数只有一个交点,所以原方程实根的个数为1.8.已知方程x=的解x∈,则正整数n=________.【答案】2【解析】在同一直角坐标系中画出函数y=x,y=的图像,如图所示.由图可得x∈(0,1),设f(x)=x-,因为f=-<0,f=->0,故n=2.9.(13分)(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.【答案】(Ⅰ)x﹣y﹣2=0(Ⅱ)(﹣,0)【解析】(I)利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f'(2)=g'(2)=1.即为关于a、b的方程,解方程即可.(II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2﹣3x+2﹣m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x﹣1)恒成立问题转化为求函数f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围.解:(I) f'(x)=3x2+4ax+b,g'(x)=2x﹣3.由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.故有f(2)=g(2)=0,f'(2)=g'(2)=1.由此得,解得,所以a=﹣2,b=5..切线的方程为x﹣y﹣2=0.(II)由(I)得f(x)=x3﹣4x2+5x﹣2,所以f(x)+g(x)=x3﹣3x2+2x.依题意,方程x(x2﹣3x+2﹣m)=0,有三个互不相等的实根0,x1,x2,故x1,x2是x2﹣3x+2﹣m=0的两相异实根.所以△=9﹣4(2﹣m)>0,解得m>﹣.又对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,特别地取x=x1时,f(x1)+g(x1)<m(x1﹣1)成立,得m<0.由韦达定理得x1+x2=3>0,x1x2=2﹣m>0.故0<x1<x2.对任意的x∈[x1,x2],x﹣x2≤0,x﹣x1≥0,x>0.则f(x)+g(x)﹣mx=x(x﹣x1)(x﹣x2)≤0,又f(x1)+g(x1)﹣mx1=0.所以f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值为0.于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,综上得:实数m的取值范围是(﹣,0).点评:本题主要考查函数,导数,不等式等基础知识,同时考查综合运用数学知识进行推理论证的能立,以及函数与方程和特殊与一般的思想.10.用min{a,b)表示a,b两数中的最小值.若函数恰有三个零点,则t的值为( ).A.-2B.2C.2或-2D.1或-l【答案】D【解析】此题可以考虑数形结合:做出的图象,当过两函数交点时,恰有三个交点,即有三个零点,时,,,得到(舍)或,或,故选D.【考点】函数的零点11.已知函数,则下列说法错误的是( )A.若,则有零点B.若有零点,则且C.使得有唯一零点D.若有唯一零点,则且【答案】B【解析】令,当时,的图象如下图(1)所示,由图可知,有零点,故A正确.取,的图象如下图(2)所示,由图可知,有零点,故B错误.选B.【考点】函数的零点.12.已知是二次函数,不等式的解集是(0,5),且在区间[-1,4]上的最大值是12.(1)求f(x)的解析式;(2)是否存在正整数m,使得方程在区间内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.【答案】(1);(2)方程,设,则.当时,,是减函数;当时,,是增函数.因为.所以方程在区间,内分别有唯一实数根,而区间,内没有实数根.所以存在唯一的正数,使得方程在区间内有且只有两个不等的实数根.【解析】(1)由已知得0,5是二次函数的两个零点值,所以可设,开口方向向上,对称轴为,因此在区间上的最大值是,则,即,因此可求出函数的解析式;(2)由(1)得,构造函数,则方程的实数根转化为函数的零点,利用导数法得到函数减区间为、增区间为,又有,,,发现函数在区间,内分别有唯一零点,而在区间,内没有零点,所以存在唯一的正数,使得方程在区间内有且只有两个不等的实数根.(1)因为是二次函数,且的解集是,所以可设 2分所以在区间上的最大值是. 4分由已知,得,.. 6分(2)方程,设,则. 10分当时,,是减函数;当时,,是增函数. 10分因为.所以方程在区间,内分别有唯一实数根,而区间,内没有实数根. 12分所以存在唯一的正数,使得方程在区间内有且只有两个不等的实数根. 14分【考点】1.函数解析式;2.函数零点.13.函数的部分图象如图所示,则的解析式可以是A.B.C.D.【答案】C【解析】由图象可知函数定义域为实数集,故选项B不正确,又图象可知函数零点有,,,,,所以选项A,D不正确,C正确.故选C.【考点】1、函数的图象与性质;2、函数的零点.14.设定义域为R的函数若函数有7个零点,则实数的值为()A.0B.C.D.【答案】D【解析】代入检验,当时,,有2个不同实根,有4个不同实根,不符合题意;当时,,有3个不同实根,有2个不同实根,不符合题意;当时,,作出函数的图象,得到有4个不同实根,有3个不同实根,符合题意. 选D.【考点】1.函数图象;2.函数零点.15.设函数,则函数的零点个数为个.【答案】3【解析】将的图象向上平移个单位得的图象,由图象可知,有3个零点.【考点】函数的零点.16.已知函数f(x)=x2+ax+b的两个零点是-2和3,解不等式bf(ax)>0;【答案】(-3,2)【解析】由题意,得f=(x+2)(x-3)=x2-x-6,所以a=-1,b=-6,所以不等式bf(ax)>0,即为f(-x)<0,即x2+x-6<0,解得-3<x<2,所以解集为(-3,2).17.已知f(x)=2x,g(x)=3-x2,试判断函数y=f(x)-g(x)的零点个数.【答案】两个【解析】在同一坐标系内作出函数f(x)=2x与g(x)=3-x2的图象,两图象有两个交点,∴函数y=f(x)-g(x)有两个零点.18.若=x- (表示不超过x的最大整数),则方程-2013x=的实数解的个数是________.【答案】2【解析】方程可化为+[x]=2013x,可以构造两个函数:y=+[x],y=2013x,由图可知,两函数图象有2个交点,故方程有两个根.19.f(x)=|2x-1|,f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),则函数y=f4(x)的零点个数为________.【答案】8【解析】f4(x)=|2f3(x)-1|的零点,即f3(x)=的零点,即|2f2(x)-1|=的零点,即f2(x)=或的零点,即|2f(x)-1|=或的零点,即f(x)=,,,的零点,显然对上述每个数值各有两个零点,故共有8个零点.20.方程的解的个数为()A.1B.3C.4D.5【答案】B【解析】本题中方程不可解,但方程解的个数可以借助于函数和的图象的交点的个数来解决,作出这两个函数的图象(如图),,,但当时,,而,故两个函数图象有三交点,即原方程有三个解.【考点】方程的解与函数图象的交点.21.已知函数,若函数在上有两个零点,则的取值范围是()A.B.C.D.【答案】D【解析】当时,函数,令,解得;当时,,此时函数在上有且仅有一个零点,等价转化为方程在上有且仅有一个实根,而函数在上的值域为,所以,解得,故选D.【考点】函数的零点22.函数在区间内的零点个数是()A.0B.1C.2D.3【答案】B.【解析】又在上单调递增,在内只有一个零点.【考点】函数的零点.23.已知函数,在上的零点个数有()A.1个B.2个C.3个D.4个【答案】B【解析】(数形结合)函数在上的零点个数,由函数与的图象在上的交点个数为2,故选B.【考点】函数的零点24.设函数,若实数满足,则( )A.B.C.D.【答案】A【解析】由已知得,,∴;,,∴,∴,∵,在上是单调增函数,∴.【考点】方程的根与函数的零点.25.对于任意定义在区间D上的函数f(x),若实数x0∈D,满足f(x)=x,则称x为函数f(x)在D上的一个不动点,若f(x)=2x++a在区间(0,+∞)上没有不动点,则实数a取值范围是_______.【答案】【解析】根据题意知只要①在上没有实数解就行,将①化简得,要使其在没有实数解,那么要满足或者解得.【考点】方程的根与系数的关系.26.若定义在R上的偶函数满足且时,则方程的零点个数是( )A.2个B.3个C.4个D.多于4个【答案】C【解析】试题分析:函数f(x)是以2为周期的周期函数,且是偶函数,根据上的解析式,图象关于y轴对称,可以绘制上的图象,根据周期性,可以绘制上的图象,而是个偶函数,绘制其在y轴右侧图象可知两图象右侧有两个交点,根据对称性可得共有四个交点,故选B.【考点】函数与方程.27.已知函数,其中表示不超过实数的最大整数.若关于的方程有三个不同的实根,则实数的取值范围是()A.B.C.D.【答案】B【解析】关于的方程有三个不同的实根,转化为两个函数图像有三个不同的交点,函数的图像(如图),函数恒过定点为,观察图像易得【考点】函数图象交点个数.28.函数是定义域为R的奇函数,且时,,则函数的零点个数是()A.1B.2C.3D.4【答案】C【解析】由题意知,当时,令,即,令,,当时,与有1个交点,即时有1个零点,又是定义域为R的奇函数,所以函数有3个零点.【考点】奇函数的性质、零点问题.29.已知,其中为常数,且.若为常数,则的值__________【答案】【解析】根据题意分别得到和的解析式,算出化简后等于k,根据合分比性质得到k即可。
高一数学函数与方程练习题及答案
高一数学函数与方程练习题及答案1. 题目:已知函数f(x) = 2x - 3,求f(4)的值。
解答:将x = 4代入函数f(x),得到f(4) = 2(4) - 3 = 8 - 3 = 5。
答案:f(4) = 5。
2. 题目:已知函数g(x) = x^2 - 4x + 3,求g(2)的值。
解答:将x = 2代入函数g(x),得到g(2) = (2)^2 - 4(2) + 3 = 4 - 8 + 3 = -1。
答案:g(2) = -1。
3. 题目:已知函数h(x) = 3x + 2,求满足h(x) = 10的x的值。
解答:将h(x) = 10转化为方程3x + 2 = 10,然后解方程得到x = (10 - 2) / 3 = 8 / 3。
答案:x = 8 / 3。
4. 题目:已知函数k(x) = x^2 - 6x + 8,求满足k(x) = 0的x的值。
解答:将k(x) = 0转化为方程x^2 - 6x + 8 = 0,然后解方程得到x = 2 或 x = 4。
答案:x = 2或 x = 4。
5. 题目:已知函数m(x) = 2x^2 - 3x + 1,求m(3)的值。
解答:将x = 3代入函数m(x),得到m(3) = 2(3)^2 - 3(3) + 1 = 18 - 9 + 1 = 10。
答案:m(3) = 10。
通过以上练习题的解答,我们巩固了高一数学中关于函数与方程的知识。
在解题过程中,我们学会了如何代入特定的x值来求函数的值,以及如何解方程来求满足特定条件的x值。
这些知识将在数学学习中起到重要的作用,为我们解决实际问题提供了基础。
通过不断的练习和实践,我们将更加熟练地运用这些知识。
数学课程函数与方程练习题及答案
数学课程函数与方程练习题及答案1. 函数与方程的基本概念在数学课程中,函数与方程是基础而重要的概念。
函数是描述两个变量之间关系的规则,通常表示为f(x)或y。
方程则是包含未知数的等式,我们需要找到使其成立的解。
2. 函数的分类函数可以分为线性函数、二次函数、指数函数、对数函数等多种类型。
下面是一些函数与方程的练习题及答案:2.1 线性函数题目1:已知函数f(x) = 2x + 3,求f(4)的值。
解答:将x代入函数中,得到f(4) = 2*4 + 3 = 11。
题目2:已知函数g(x) = 5x - 2,求解方程g(x) = 3的解。
解答:将g(x)替换为3,得到5x - 2 = 3,解方程得x = 1。
2.2 二次函数题目3:已知函数h(x) = x^2 + 2x + 1,求h(3)的值。
解答:将x代入函数中,得到h(3) = 3^2 + 2*3 + 1 = 19。
题目4:已知函数k(x) = x^2 + 3x,求解方程k(x) = 0的解。
解答:将k(x)替换为0,得到x^2 + 3x = 0,解方程得x = 0或x = -3。
2.3 指数函数题目5:已知函数p(x) = 2^x,求p(2)的值。
解答:将x代入函数中,得到p(2) = 2^2 = 4。
题目6:已知函数q(x) = 3^x,求解方程q(x) = 9的解。
解答:将q(x)替换为9,得到3^x = 9,转化为指数运算得到x = 2。
2.4 对数函数题目7:已知函数r(x) = log2(x),求r(8)的值。
解答:将x代入函数中,得到r(8) = log2(8) = 3。
题目8:已知函数s(x) = log5(x),求解方程s(x) = 2的解。
解答:将s(x)替换为2,得到log5(x) = 2,转化为指数运算得到x = 25。
3. 总结通过上述练习题及答案,我们复习了函数与方程的基本概念,并对常见的函数类型进行了练习。
通过解答这些问题,我们可以更好地掌握并应用这些概念,提高数学的理解与运用能力。
高三数学函数与方程试题答案及解析
高三数学函数与方程试题答案及解析1.函数在区间[0,4]上的零点个数是A.4B.5C.6D.7【答案】C【解析】令f(x)=0,可得x=1或cosx2=0∴x=1或x2=kπ+,k∈Z,∵x∈[0,4],则x2∈[0,16],∴k可取的值有0,1,2,3,4,∴方程共有6个解,∴函数f(x)=(x-1)cosx2在区间[0,4]上的零点个数为6个,故选C【考点】1.三角函数的周期性;2.零点的概念.2.若方程的解为,则大于的最小整数是.【答案】5.【解析】由于方程,设在同一坐标系中作出两函数的图象:,则有,而且可知,故大于的最小整数是:5.【考点】方程的根与函数图象交点之间的关系.3.已知定义在R上的函数f(x)的周期为4,且当x∈(-1,3]时,f(x)=,则函数的零点个数是( )A.4B.5C.6D.7【答案】B【解析】由函数的周期为4x递增且经过(6,1)点画出f(x)的草图如图,其中函数y=log6函数g(x)的零点,即为y=f(x)与y=logx的交点6结合图象可知,它们共有5个交点,选B【考点】函数的周期性,分段函数,函数的零点.4.已知函数,若存在唯一的零点,且,则的取值范围是A.B.C.D.【答案】C【解析】试题分析:根据题中函数特征,当时,函数显然有两个零点且一正一负; 当时,求导可得:,利用导数的正负与函数单调性的关系可得:和时函数单调递增; 时函数单调递减,显然存在负零点; 当时,求导可得:,利用导数的正负与函数单调性的关系可得:和时函数单调递减; 时函数单调递增,欲要使得函数有唯一的零点且为正,则满足:,即得:,可解得:,则.【考点】1.函数的零点;2.导数在函数性质中的运用;3.分类讨论的运用5.已知函数,.若方程恰有4个互异的实数根,则实数的取值范围为__________.【答案】.【解析】(方法一)在同一坐标系中画和的图象(如图),问题转化为与图象恰有四个交点.当与(或与)相切时,与图象恰有三个交点.把代入,得,即,由,得,解得或.又当时,与仅两个交点,或.(方法二)显然,∴.令,则.∵,∴.结合图象可得或.【考点】方程的根与函数的零点.6.函数f(x)=3x-7+lnx的零点位于区间(n,n+1)(n∈N)内,则n=________.【答案】2【解析】求函数f(x)=3x-7+lnx的零点,可以大致估算两个相邻自然数的函数值,如f(2)=-1+ln2,由于ln2<ln e=1,所以f(2)<0,f(3)=2+ln3,由于ln3>1,所以f(3)>0,所以函数f(x)的零点位于区间(2,3)内,故n=2.7.已知函数f(x)=x2-2acos kπ·ln x(k∈N*,a∈R,且a>0).(1)讨论函数f(x)的单调性;(2)若k=2 04,关于x的方程f(x)=2ax有唯一解,求a的值.【答案】(1)当k是奇数时,f′(x)>0,则f(x)在(0,+∞)上是增函数;当k是偶数时,f(x)在(0,)上是单调减函数,在(,+∞)上是单调增函数.(2)【解析】解:(1)由已知得x>0且f′(x)=2x-(-1)k·.当k是奇数时,f′(x)>0,则f(x)在(0,+∞)上是增函数;当k是偶数时,则f′(x)=2x-=.所以当x∈(0,)时,f′(x)<0;当x∈(,+∞)时,f′(x)>0.故当k是偶数时,f(x)在(0,)上是单调减函数,在(,+∞)上是单调增函数.(2)若k=2 014,则f(x)=x2-2aln x(k∈N*).记g(x)=f(x)-2ax=x2-2aln x-2ax,则g′(x)=2x--2a=(x2-ax-a).则方程f(x)=2ax有唯一解,即g(x)=0有唯一解.令g′(x)=0,得x2-ax-a=0.因为a>0,x>0,所以x1=<0(舍去),x2=.当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)上是单调减函数;当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)上是单调增函数.当x=x2时,g′(x2)=0,g(x)min=g(x2).因为g(x)=0有唯一解,所以g(x2)=0.则,即两式相减得2aln x2+ax2-a=0,因为a>0,所以2ln x2+x2-1=0.(*)设函数h(x)=2lnx+x-1.因为当x>0时,h(x)是增函数,所以h(x)=0至多有一个解.因为h(1)=0,所以方程(*)的解为x2=1.从而解得a=.8.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0可得其中一个零点x∈________,第二次应计算________.【答案】(0,0.5)f(0.25)【解析】因为f(x)=x3+3x-1是R上的连续函数,且f(0)<0,f(0.5)>0,则f(x)在x∈(0,0.5)上存在零点,且第二次验证时需验证f(0.25)的符号.9.已知函数f(x)=x3-x2++.证明:存在x0∈,使f(x)=x.【答案】见解析【解析】证明:令g(x)=f(x)-x. ∵g(0)=,g=f-=-,∴g(0)·g<0.又函数g(x)在上连续, ∴存在x 0∈,使g(x 0)=0,即f(x 0)=x 0.10. [2013·湖北黄冈一模]若定义在R 上的偶函数f(x)满足f(x +2)=f(x),且x ∈[0,1]时,f(x)=x ,则方程f(x)=log 3|x|的解有( ) A .2个 B .3个 C .4个 D .多于4个【答案】C【解析】若函数f(x)满足f(x +2)=f(x),则函数f(x)是以2为周期的周期函数,又函数是定义在R 上的偶函数,结合当x ∈[0,1]时,f(x)=x ,在同一坐标系中画出函数y =f(x)与函数y =log 3|x|的图象如图所示:由图可知函数y =f(x)与函数y =log 3|x|的图象共有4个交点,即方程f(x)=log 3|x|的解的个数是4,故选C.11. (5分)(2011•天津)对实数a 与b ,定义新运算“⊗”:a ⊗b=.设函数f (x )=(x 2﹣2)⊗(x ﹣1),x ∈R .若函数y=f (x )﹣c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(﹣1,1]∪(2,+∞)B .(﹣2,﹣1]∪(1,2]C .(﹣∞,﹣2)∪(1,2]D .[﹣2,﹣1]【答案】B【解析】根据定义的运算法则化简函数f (x )=(x 2﹣2)⊗(x ﹣1),的解析式,并画出f (x )的图象,函数y=f (x )﹣c 的图象与x 轴恰有两个公共点转化为y=f (x ),y=c 图象的交点问题,结合图象求得实数c 的取值范围. 解:∵,∴函数f (x )=(x 2﹣2)⊗(x ﹣1) =,由图可知,当c ∈(﹣2,﹣1]∪(1,2] 函数f (x ) 与y=c 的图象有两个公共点, ∴c 的取值范围是 (﹣2,﹣1]∪(1,2],故选B.点评:本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.12.用min{a,b)表示a,b两数中的最小值.若函数恰有三个零点,则t的值为( ).A.-2B.2C.2或-2D.1或-l【答案】D【解析】此题可以考虑数形结合:做出的图象,当过两函数交点时,恰有三个交点,即有三个零点,时,,,得到(舍)或,或,故选D.【考点】函数的零点13.若函数f(x)=|4x-x2|-a的零点个数为4,则a的取值范围是()A.[0,3]B.(0,4)C.[-1,2]D.(-1,4)【答案】B【解析】函数f(x)=|4x-x2|-a的零点个数为4方程|4x-x2|-a=0有4个不同的根a=|4x-x2|函数g(x)=a与函数F(x)=|4x-x2|的图象有4个不同的交点作出4x-x2的图象,可知在x=2处其有最大值4∴若直线g(x)=a与函数F(x)=|4x-x2|的图象有4个不同的交点,则a∈(0,4)14.如果函数y=2x+c的图象经过点(2,5),则c=()A.1B.0C.﹣1D.﹣2【答案】A【解析】∵函数y=2x+c的图象经过点(2,5),∴5=22+c,∴c=1,故选A.15.已知函数,若关于的函数有两个零点,则实数的取值范围是__________.【答案】【解析】有两个零点,等价于函数与函数的图像有两个交点,作出函数的图像如下:由图可知的取值范围:故答案:【考点】根的存在性和个数的判断;数形结合.16.函数的零点个数为()A.B.C.D.【答案】B【解析】令,则,即,画出的图像如下:则函数的零点为1个,故选B.【考点】1.函数零点的应用.17.已知函数f(x)=||x-1|-1|,若关于x的方程f(x)=m(m∈R)恰有四个互不相等的实根x1,x2,x 3,x4,则x1x2x3x4的取值范围是________.【答案】(-3,0)【解析】f(x)=||x-1|-1|=方程f(x)=m的解就是y=f(x)的图象与直线y=m交点的横坐标,由图可知,x2=-x1,x3=2+x1,x4=2-x1,且-1<x1<0.设t=x1x2x3x4=(-2)2-4,则t=(-2)2-4,易得-3<t<0.18.已知关于x的方程x2+2alog2(x2+2)+a2-3=0有唯一解,则实数a的值为________.【答案】1【解析】设f(x)=x2+2alog2(x2+2)+a2-3,由f(-x)=f(x),知f(x)是偶函数.若方程f(x)=0有唯一解,则f(0)=0,代入得a=1或a=-3.令t=x2,则f(x)=g(t)=t+2alog2(t+2)+a2-3.当a=1时,g(t)=t+2log2(t+2)-2,由于g(t)≥g(0)=0,当且仅当x=0时取等号,符合条件;当a=-3时,g(t)=t-6log2(t+2)+6,由g(30)=30-6×5+6>0,g(14)=14-6×4+6<0,知f(x)至少有三个根,不符合.所以,符合条件的实数a的值为1.19.函数f(x)=ln x的图象与函数g(x)=x2-4x+4的图象的交点个数为( )A.0B.1C.2D.3【答案】C【解析】g(x)=x2-4x+4=(x-2)2,在同一平面直角坐标系内画出函数f(x)=ln x与g(x)=(x-2)2的图象(如图).由图可得两个函数的图象有2个交点.20.规定记号“”表示一种运算,即a b=a2+2ab-b2.设函数f(x)=x2,且关于x的方程f(x)=lg|x+2|(x≠-2)恰有四个互不相等的实数根x1,x2,x3,x4,则x1+x2+x3+x4的值是()A.-4B.4C.8D.-8【答案】D【解析】函数f(x)=x2+4x-4,由于函数y=f(x),函数y=lg|x+2|的图像均关于直线x=-2对称,故四个根的和为-8.21.函数f(x)=1-x log2x的零点所在的区间是()A.,B.,1C.(1,2)D.(2,3)【答案】C【解析】f(1)=1,f(2)=-1,故函数f(x)=1-x log2x的零点所在的区间是(1,2).22.直线y=x与函数f(x)=的图象恰有三个公共点,则实数m的取值范围是 ().A.[-1,2)B.[-1,2]C.[2,+∞)D.(-∞,-1]【答案】A【解析】直线y=x与函数f(x)=的图象恰有三个公共点,即方程x2+4x+2=x(x≤m)与x=2(x>m)共有三个根.∵x2+4x+2=x的解为x1=-2,x2=-1,∴-1≤m<2时满足条件,故选A.23.方程的解的个数为()A.1B.3C.4D.5【答案】B【解析】本题中方程不可解,但方程解的个数可以借助于函数和的图象的交点的个数来解决,作出这两个函数的图象(如图),,,但当时,,而,故两个函数图象有三交点,即原方程有三个解.【考点】方程的解与函数图象的交点.24.已知函数是偶函数,直线与函数的图像自左至右依次交于四个不同点、、、,若,则实数的值为________.【答案】【解析】首先根据偶函数定义可得,其次有在轴左边,由于以及对称性,知,把代入表达式,有,即,所以,又由刚才分析有,代入可求得,而,因此有.【考点】偶函数的定义,二次方程根与系数的关系.25.若直线与曲线恰有四个公共点,则的取值集合是______.【答案】【解析】显然时,,时,;由得,则.所以时;时;时;时;由此,可作出函数的图象如下图所示:由得:,由得;由得:,由得;结合图象可知,当或时,直线与曲线恰有四个公共点.【考点】函数与方程.26.定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(-1,4]时,f(x)=x2-2x,则函数f(x)在[0,2013]上的零点个数是_____ .【答案】604【解析】由,可知,则,所以是以10为周期的周期函数. 在一个周期上,函数在区间内有3个零点,在区间内无零点,故在一个周期上仅有3个零点,由于区间中包含201个周期,又时也存在一个零点,故在上的零点个数为.【考点】函数与方程、零点存在定理.27.设方程的两个根为,则()A.B.C.D.【答案】D【解析】依题意,,,分别作出函数和函数的图像.则图像中两函数交点的横坐标即方程的两个根.由图可知,两根中一个大于1,一个大于0小于1.不妨设,则,.所以,故.【考点】函数与方程、对数函数与指数函数的图像和性质28.若函数的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程的一个近似根(精确到0.1)为【答案】【解析】,,且都接近0,由二分法可知其根近似于1.4.【考点】1.零点问题;2.二分法.29.已知函数,在上的零点个数有()A.1个B.2个C.3个D.4个【答案】B【解析】(数形结合)函数在上的零点个数,由函数与的图象在上的交点个数为2,故选B.【考点】函数的零点30.奇函数f(x)、偶函数g(x)的图像分别如图1、2所示,方程f(g(x))=0,g(f(x))=0的实根个数分别为a、b,则a+b= ()A.14B.8C.7D.3【答案】B【解析】结合图相知,方程f(g(x))=0,得;或;或,即b=7;方程f(g(x))=0,而,所以x=0,即a=1,故a+b=8.选B 【考点】函数奇偶性、函数和方程的根.31.若函数的零点与的零点之差的绝对值不超过0.25,则可以是()A.B.C.D.【答案】B【解析】对于选项,函数的零点为,若函数零点与函数的零点之差的绝对值不超过,则函数的零点在区间,由于函数单调递增,且,,故选项错误;对于选项,函数的零点为,则函数的零点在区间,,,,由零点存在定理知,函数的零点在区间在,故答案为,由同样的方法,可知选项、均不正确.【考点】函数的零点、零点存在定理32.设函数满足,且当时,.又函数,则函数在上的零点个数为()A.5B.6C.7D.8【答案】B【解析】在同一坐标系内画出函数y=f(x)和y=g(x)的图象,在上图象交点的个数既是h(x)零点的个数。
高中 函数与方程知识点+例题+练习 含答案
教学过程(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.【训练1】(1)(2014·合肥模拟)函数f(x)=-1x+log2x的一个零点落在区间________.①(0,1);②(1,2);③(2,3);④(3,4).(2)(2012·北京卷改编)函数f(x)=-⎝⎛⎭⎪⎫12x的零点个数为________.考点二根据函数零点的存在情况,求参数的值【例2】已知函数f(x)=-x2+2e x+m-1,g(x)=x+e2x(x>0).(1)若y=g(x)-m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.教学效果分析教学过程1.函数零点的判定常用的方法有:(1)零点存在性定理;(2)数形结合;(3)解方程f(x)=0.2.研究方程f(x)=g(x)的解,实质就是研究G(x)=f(x)-g(x)的零点.3.转化思想:方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.创新突破2——函数的零点与函数极值点的交汇【典例】(2013·安徽卷改编)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2.若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为________.[反思感悟] (1)强化函数零点的求法,函数与方程的转化技巧,本题的突破点是方程3(f(x))2+2af(x)+b=0的不同实根个数转化为f(x)=x1与f(x)=x2的根的个数之和.(2)本题把函数的零点与函数的极值点交汇在一起考查,体现了新课标高考的指导思想.【自主体验】(2014·广州测试)已知e是自然对数的底数,函数f(x)=e x+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则f(a),f(1),f(b)的大小关系为________.教学效果分析能力提升题组一、填空题1.(2014·烟台模拟)如图是函数f (x )=x 2+ax +b 的图象,则函数g (x )=ln x +f ′(x )的零点所在区间是________. ①⎝ ⎛⎭⎪⎫14,12; ②(1,2) ③⎝ ⎛⎭⎪⎫12,1; ④(2,3). 2.(2013·连云港检测)已知函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且当x ∈[-1,1]时,f (x )=|x |,函数g (x )=⎩⎪⎨⎪⎧sin (πx ),x >0,-1x,x <0,则函数h (x )=f (x )-g (x )在区间[-5,5]上的零点的个数为________. 3.(2013·天津卷改编)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则g (a ),0,f (b )的大小关系为________. 二、解答题4.(2014·深圳调研)已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }. (1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x -4ln x 的零点个数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与方程典型例题习题
例1:已知二次函数()y f x =的图象经过点(0,8),(1,5),(3,7)--三点,
(1)求()f x 的解析式;
(2)求()f x 的零点;
(3)比较(2)(4)f f ,(1)(3)f f ,(5)(1)f f -,(3)(6)f f -与0的大小关系.
分析:可设函数解析式为2
y ax bx c =++,将已知点的坐标代入方程解方程组求a 、b 、c .
【解】(1)设函数解析式为2y ax bx c =++, 由85937c a b c a b c =-⎧⎪++=-⎨⎪++=⎩解得128a b c =⎧⎪=⎨⎪=-⎩
,
∴2()28f x x x =+-.
(2)令()0f x =得2x =或4-,
∴零点是122,4x x ==-.
(3) (2)(4)0f f =,
(1)(3)97630f f -=-⨯=-<,(5)(1)350f f -=-<,(3)(6)1120f f -=>.
点评:当二次函数()y f x =的两个零点12,x x 12()x x ≠都在(或都不在)区间(,)m n 中时,()()0f m f n >;有且只有一个零点在区间(,)m n 中时,()()0f m f n <.
例2:已知函数2()(3)1f x kx k x =+-+的图象与x 轴在原点的右侧有交点,试确定实数k 的取值范围.
分析:
【解】(1)当0k =时,()31f x x =-+与x 轴的交点为1(,0)3
,符合题意;
(2)0k ≠时,(0)1f =,
0k <时,()f x 的图象是开口向下的抛物线,它与x 轴的两交点分别在原点的两侧; 0k >时,()f x 的图象是开口向上的抛物线,必须2(3)40302k k k k
⎧∆=--≥⎪⎨-->⎪⎩,解得01k <≤ 综上可得k 的取值范围为(,1]-∞.
追踪训练一
1.函数22()log (45)f x x x =-+的图象与x 轴交点横坐标为 ( D )
)
A .1
B .0
C .2或0
D .2
2.已知01a <<则方程0log =+x a a x 的解的个数是( A )
A .1
B .2
C .3
D .不确定
3.直线2
3+=kx y 与曲线223y y x --+ 0=只有一个公共点,则k 的值为( A )
A . 0,41,21-
B .0,4
1- C .41,21- D .0,4
1,21- 4.函数265y x x =-+与x 轴交点坐标是(1,0)、(5,0),方程2650x x -+=的根为1或5.
5.已知方程220x kx -+=在区间(0,3)中有且只有一解,则实数k 的取值范围为113
k ≥
. 6.已知函数()2x f x a =-过点(1,0),则方程()f x x =的解为 1.7-.
7.求方程2
2850x x -+=的近似解(精确到0.1).
答案:3.2和0.8
8.判断方程2(22)250x a x a -+++=(其中2a >)在区间(1,3)内是否有解.
答案:有解. 函数与方程测试题(时间45分钟)
一、填空题(共计6小题,每题10分)
1、函数f(x)=122--x x 在区间(2,3)上零点的个数为 .
2、已知:f(x)=b a x +的图象如图所示,则a 与b 的值分别为
3、设f (x )
x e +1,则f (x )= .
4、建造一个容积为83m ,深为2m 的长方形无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为________元
5、若不等式
2x +ax+1≥0对于一切x ∈(0,21]成立,则a 的最小值是 . 6、如果y=mx x -2,[]1,1-∈x 的最小值为-4,则m 的值为 .
二、解答题(共计2小题,每题20分)
7、设集合P={x|224+-x x +a=0,x ∈R }.
(1)若P 中仅有一个元素,求实数a 的取值集合Q ;
(2)若对于任意a ∈Q ,不等式x 2-6x<a (x-2)恒成立,求x 的取值范围.
8、已知函数f (x )=x
a 11-(a>0,x>0). (1)求证:f (x )在(0,+∞)上是增函数;
(2)若f (x )在[m ,n ]上的值域是[m ,n ](m≠n),求a 的取值范围.
试题答案:
1、根据求根公式得方程两根212,1±=x ,故答案为1个。
另法:因为f(2)=-1<0,f(3)=2>0,而二次函数f(x)=122
--x x 在区间(2,3)上的图象是连续的,表明此函数的图象在区间(2,3)上一定穿过x 轴,而另一解显然不在(2,3)内。
2、由图象可知,函数图象过(2,0),(0,-2)两点,从而得a,b 的方程组,解得a=3,b=-3.
3、 提示:构造f (x )与g (x )的方程组.答案:f (x )=2
2++-x x e e 4、提示:因水池容积是定值38m ,高度也是定值2m ,所以底面积是定值2
4m ,而底面积一定时,只有底面周长最小时,才能使总造价最低,从而建立周长l 与池底矩形一边长x 的函数关系:)4(2x x l +=).0(>x 进而得l 8≥,当.24
,8===l x l ,8min =∴l 此时水池的总造价最低,为)(176082804120元=⨯⨯+⨯.
5、分离变量有a≥-(x+
x 1),x ∈(0,21]恒成立.右端的最大值为25-,故答案为25- 另法:设f (x )=x 2+ax+1结合二次函数图象,分对称轴在区间的内外三种情况进行讨论.
6、解:原式化为.4
)2(2
2m m x y --= 当41,12
min -=+=-<m y m ,故m=-5 当-1≤2
m ≤1时,y min =42m -=-4,故m=±4 不符, 当2
m >1时,y min =1-m=-4∴m=5.答案:±5.。
7.(1)令2x =t (t>0),设f (t )=t 2-4t+a.
由f (t )=0,在(0,+∞)有且仅有一根或两相等实根,则有
①f (t )=0有两等根时,∴Δ=0∴16-4a=0∴a=4;
验证:t 2-4t+4=0∴t=2∈(0,+∞),这时x=1;
②f (t )=0有一正根和一负根时,f (0)<0∴a<0;
③若f (0)=0,则a=0,此时4x -4·2x =0∴2x =0(舍去),或2x =4,
∴ x=2,即P 中只有一个元素2;
综上所述,a≤0或a=4,即Q ={a|a≤0或a=4}.
(2)要使原不等式对任意a ∈(-∞,0]∪{4}恒成立.
即g (a )=(x-2)a-(x 2-6x )>0恒成立.
只须⎪⎩
⎪⎨⎧>>≤-0)0(0)4(02g g x 得5-17<x≤2
8.(1)证明:任取x 1>x 2>0,
f (x 1)-f (x 2)=)11(1121x a x a ---=2
121x x x x ->0, f(1x )>f(2x ) 故f (x )在(0,+∞)上是增函数.
(2)解:由(1)f (x )在定义域上是增函数.∴ m=f (m ),n=f (n ),即m 2-a 1m+1=0,n 2-a
1n+1=0.故方程x 2-a 1x+1=0有两个不相等的正根m ,n ,注意到m·n=1,则只需要Δ=(a
1)2-4>0,由于a>0,则0<a<21. (备)
1、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为 .
提示:由函数方程f (x)=f (2-x ),可知,y=f(x)的图象关于x=1对称,故图象与x 轴的交点关于x=1对称,所以5个根之和为5。
2、若关于x 的方程2
3tx +(3-7t )x+4=0的两实根βα,满足0<α<1<β<2,
求:实数t 的取值范围。
提示:设f(x)=23tx +(3-7t )x+4,显见0≠t , f(0)=4>0,由二次函数的图象可知,t>0故只需要⎪⎩
⎪⎨⎧><>0)2(0)1(0)0(f f f 进而得47<t<5.。