电磁感应线框进出磁场(结合图象)问题(带答案)

合集下载

高考物理新电磁学知识点之电磁感应图文答案(3)

高考物理新电磁学知识点之电磁感应图文答案(3)

高考物理新电磁学知识点之电磁感应图文答案(3)一、选择题1.在水平桌面上,一个圆形金属框置于匀强磁场中,线框平面与磁场垂直,磁感应强度B1随时间t的变化关系如图甲所示,0~1 s内磁场方向垂直线框平面向下,圆形金属框与两根水平的平行金属导轨相连接,导轨上放置一根导体棒,且与导轨接触良好,导体棒处于另一匀强磁场B2中,如图乙所示,导体棒始终保持静止,则其所受的摩擦力F f随时间变化的图像是下图中的(设向右的方向为摩擦力的正方向) ( )A.B.C.D.2.如图所示,有一正方形闭合线圈,在足够大的匀强磁场中运动。

下列四个图中能产生感应电流的是A.B.C.D.3.如图所示,电源的电动势为E,内阻为r不可忽略.A、B是两个相同的小灯泡,L是一个自感系数较大的线圈.关于这个电路的说法中正确的是A.闭合开关,A灯立刻亮,而后逐渐变暗,最后亮度稳定B.闭合开关,B灯立刻亮,而后逐渐变暗,最后亮度稳定C.开关由闭合至断开,在断开瞬间,A灯闪亮一下再熄灭D.开关由闭合至断开,在断开瞬间,电流自左向右通过A灯4.如图所示,把金属圆环在纸面内拉出磁场,下列叙述正确的是()A.将金属圆环向左拉出磁场时,感应电流方向为逆时针B.不管沿什么方向将金属圆环拉出磁场时,感应电流方向都是顺时针C.将金属圆环向右匀速拉出磁场时,磁通量变化率不变D.将金属圆环向右加速拉出磁场时,受到向右的安培力5.如图所示,铁芯P上绕着两个线圈A和B, B与水平光滑导轨相连,导体棒放在水平导轨上。

A中通入电流i(俯视线圈A,顺时针电流为正),观察到导体棒向右加速运动,则A中通入的电流可能是()A.B.C.D.6.如图所示,A、B是相同的白炽灯,L是自感系数很大、电阻可忽略的自感线圈。

下面说法正确的是()A.闭合开关S瞬间,A、B灯同时亮,且达到正常B.闭合开关S瞬间,A灯比B灯先亮,最后一样亮C.断开开关S瞬间,P点电势比Q点电势低D .断开开关S 瞬间,通过A 灯的电流方向向左7.如图所示,A 、B 两闭合圆形线圈用同样导线且均绕成100匝。

电磁感应线框进出磁场(结合图象)问题(带答案)

电磁感应线框进出磁场(结合图象)问题(带答案)

v B B L L L L(一)、矩形线框进出匀强磁场1。

如图所示,在光滑得水平面上,有一垂直向下得匀强磁场分布在宽为L 得区域内,现有一个边长为a a (〈L )得正方形闭合线圈以速度0v 垂直磁场边界滑过磁场后速度变为v v (<)0v 那么:( )A。

完全进入磁场时线圈得速度大于)(0v v +/2 B。

、完全进入磁场时线圈得速度等于)(0v v +/2 C.完全进入磁场时线圈得速度小于)(0v v +/2 D.以上情况AB 均有可能,而C 就是不可能得2、如图(3)所示,磁感应强度磁场中匀速拉出磁场。

在其它条件不变得情况下为B得匀强磁场有理想界面,用力将矩形线圈从A、速度越大时,拉力做功越多。

B 、线圈边长L1越大时,拉力做功越多。

C 、线圈边长L2越大时,拉力做功越多。

D 、线圈电阻越大时,拉力做功越多。

3。

如图所示,为两个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里与向外,磁场宽度均为L ,距磁场区域得左侧L处,有一边长为L 得正方形导体线框,总电阻为R ,且线框平面与磁场方向垂直,现用外力F使线框以速度v 匀速穿过磁场区域,以初始位置为计时起点,规定:电流沿逆时针方向时得电动势E 为正,磁感线垂直纸面向里时磁通量Φ得方向为正,外力F向右为正。

则以下关于线框中得磁通量Φ、感应电动势E 、外力F 与电功率P随时间变化得图象正确得就是(D ) 4.边长为L 得正方形金属框在水平恒力F 作用下运动,穿过方向如图得有界匀强磁场区域。

磁场区域得宽度为d (d 〉L )。

已知a b边进入磁场时,线框得加速度恰好为零.则线框进入磁场得过程与从磁场另一侧穿出得过程相比较,有 ( ) A.产生得感应电流方向相反B 。

所受得安培力方向相反C。

进入磁场过程得时间等于穿出磁场过程得时间 D 。

进入磁场过程得发热量少于穿出磁场过程得发热量5.如图8所示,垂直纸面向里得匀强磁场得区域宽度为a 磁感应强度得大小为B .一边长为a 、电阻为4R 得正方形均匀导线框ABCD 从图示位置沿水平向右方向以速度v 匀速穿过两磁场区域,在下图中线框A 、B两端电压UAB 与线框移动距离x 得关系图象正确得就是 ( )甲A-3Bav/4B3aa 2a O xC x3a a2a O乙 图8BavU AB3a a 2a OxBav/43Bav/Bav/4U ABU ABBav/4U AB3a a 2a OxBav/43Bav/BavD× × × × × × × × ×V L aE t B t ΦAtP Dt F C 00 0 0 d B bF L a6、 如图所示,在PQ 、QR 区域中存在着磁感应强度大小相等、方向相反得匀强磁场,磁场方向均垂直于纸面,一正方形导线框abcd 位于纸面内,ab 边与磁场得边界P 重合.导线框与磁场区域得尺寸如图所示.从t =0时刻开始,线框匀速横穿两个磁场区域,以a→b→c→d为线框中得电流i得正方向,向左为导线框所受安培力得正方向,以下i – t 与F-t关系示意图中正确得就是 ( )7、如图所示,相距均为d 得得三条水平虚线L 1与L 2、L2与L3之间分别有垂直纸面向外、向里得匀强磁场,磁感应强度大小均为B .一个边长也就是d 得正方形导线框,从L 1上方一定高处由静止开始自由下落,当ab 边刚越过L1进入磁场时,恰好以速度v1做匀速直线运动;当ab 边在越过L2运动到L 3之前得某个时刻,线框又开始以速度v 2做匀速直线运动,在线框从进入磁场到速度变为v2得过程中,设线框得动能变化量大小为△E k,重力对线框做功大小为W1,安培力对线框做功大小为W2,下列说法中正确得有( )A。

专题66 电磁感应现象中的图像问题(解析版)

专题66 电磁感应现象中的图像问题(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题66 电磁感应现象中的图像问题特训目标特训内容目标1 I-t图像或I-x图像(1T—4T)目标2 U-t图像或U-x图像(5T—8T)目标3 F-t图像或F-x图像(9T—12T)目标4P-t图像或P-x图像(13T—16T)目标5v-t图像或v-x图像(17T—20T)一、I-t图像或I-x图像1.如图所示,afde为一边长为2L的正方形金属线框,b、c分别为af、fd的中点,从这两点剪断后,用bc直导线连接形成了五边形线框abcde、左侧有一方向与线框平面垂直、宽度为2L的匀强磁场区域,现让线框保持ae、cd边与磁场边界平行,向左匀速通过磁场区域,以ae边刚进入磁场时为计时零点。

则线框中感应电流随时间变化的图线可能正确的是(规定感应电流的方向逆时针为正)()A.B.C .D .【答案】A【详解】根据题意,设线框匀速运动的速度为v ,导线框的总电阻为R ,开始ae 边进入磁场切割磁感线,根据法拉第电磁感应定律有2E B Lv =⋅则感应电流为12E BLvI R R ==根据右手定则可知,感应电流的方向为逆时针;当运动一段时间0t 后,b 点进入磁场,根据题意可知0Lt v =根据几何关系可知,切割磁感线的有效长度为()'0032L L vt t t t =-≤≤同理可得,感应电流为()()2200332B L vt vBv BLvI t t t t R R R -==-+≤≤根据右手定则可知,感应电流的方向为逆时针;当运动时间为02t 时,ae 边开始离开磁场,切割磁感线有效长度为2L ,同理可得,感应电流为32EBLvI R R ==根据右手定则可知,感应电流的方向为顺时针;当时间为03t 时,b 点开始离开磁场,根据几何关系可知,切割磁感线的有效长度为()()"0023534L L vt L L vt t t t =--=-≤≤同理可得,感应电流为()()24005534B L vt vBv BLvI t t t t R R R -==-+≤≤根据右手定则可知,感应电流的方向为顺时针,综上所述可知,BCD 错误A 正确。

电磁感应中的线框问题

电磁感应中的线框问题

1、如图所示,用质量为m、电阻为R的均匀导线做成边长为l的单匝正方形线框MNPQ,线框每一边的电阻都相等。

将线框置于光滑绝缘的水平面上。

在线框的右侧存在竖直方向的有界匀强磁场,磁场边界间的距离为2l,磁感应强度为B。

在垂直MN边的水平拉力作用下,线框以垂直磁场边界的速度v匀速穿过磁场。

在运动过程中线框平面水平,且MN边与磁场的边界平行。

求:(1)线框MN边刚进入磁场时,线框中感应电流的大小;(2)线框MN边刚进入磁场时,M、N两点间的电压U MN;(3)在线框从MN边刚进入磁场到PQ边刚穿出磁场的过程中,水平拉力对线框所做的功W。

(1)线框MN边在磁场中运动时,感应电动势(3分)线框中的感应电流(3分)(2)M、N两点间的电压(3分)(3)线框运动过程中有感应电流的时间(3分)此过程线框中产生的焦耳热Q = I 2Rt =(3分)2、根据能量守恒定律得水平外力做功W=Q=(3分)如图3-6-15 所示,质量为m、边长为l 的正方形线框,在竖直平面内从有界的匀强磁场上方由静止自由下落.线框电阻为R,匀强磁场的宽度为H(l<H),磁感应强度为B.线框下落过程中ab边始终与磁场边界平行且水平.已知ab边刚进入磁场和刚穿出磁场时线框都作减速运动,加速度大小都是g.求:(1)ab 边刚进入磁场与ab 边刚出磁场时的速度;(2)线框进入磁场的过程中产生的热量;(3)cd 边刚进入磁场时线框的速度.(1)ab 进入磁场和离开磁场时线框的速度为vE=Blv I=F安=Bil F安-mg=m·(g)v=(2)线框进入磁场产生的热量为Q-W安+mgH=mv2-mv2 Q=W安=mgH(3)从ab 刚进入磁场到cd 刚进入磁场的过程中mgl-W安=mv′2-mv2v′==3、如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R.在金属线框的下方有一匀强磁场区域, MN和M′N′是匀强磁场区域的水平边界,并与线框的bc边平行,磁场方向与线框平面垂直.现金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由静止开始下落到完全穿过匀强磁场区域瞬间的速度-时间图象,图像中坐标轴上所标出的字母均为已知量.求:(1)金属框的边长L;(2)磁场的磁感应强度B;(3)请分别计算出金属线框在进入和离开磁场的过程中所产生的热量Q1和Q2.(1)由图象可知,金属框进入磁场过程中是做匀速直线运动,速度为v1,运动时间为t2-t1………………1分所以金属框的边长…………………2分(2)在金属框进入磁场的过程中,金属框所受安培力等于重力…………2分……………1分解得………………2分(3)金属框在进入磁场过程中金属框产生的热为Q1,重力对其做正功,安培力对其做负功,由能量守恒定律得……………2分金属框在离开磁场过程中金属框产生的热为Q2,重力对其做正功,安培力对其做负功,由能量守恒定律得………………2分即:……………1分4、如图所示,一平直绝缘斜面足够长,与水平面的夹角为θ;空间存在着磁感应强度大小为B,宽度为L的匀强磁场区域,磁场方向垂直斜面向下;一个质量为m、电阻为R、边长为a的正方形金属线框沿斜面向上滑动,线框向上滑动离开磁场时的速度刚好是刚进入磁场时速度的1/4,离开磁场后线框能沿斜面继续滑行一段距离,然后沿斜面滑下并匀速进入磁场.已知正方形线框与斜面之间的动摩擦因数为μ.求:(1)线框沿斜面下滑过程中匀速进入磁场时的速度v2.(2)线框在沿斜面上滑阶段通过磁场过程中产生的焦耳热Q.(1)线框在沿斜面下滑匀速进入磁场的瞬间有-------------------------2分解得----------------------2分(2)由动能定理,线框从离开磁场到滑动到最高点的过程中----------------------2分线框从最高点滑下匀速进入磁场的瞬间----------------------2分----------------------1分由能量守恒定律----------------------2分----------------------1分5、如图所示,在距离水平地面h=0.8m的虚线的上方有一个方向垂直于纸面水平向内的匀强磁场。

2020年高考物理新课标第一轮总复习讲义:第十章 第三讲 电磁感应中的电路和图象问题 含答案

2020年高考物理新课标第一轮总复习讲义:第十章 第三讲 电磁感应中的电路和图象问题 含答案

能力提升课第三讲电磁感应中的电路和图象问题热点一电磁感应中的电路问题(师生共研)1.电磁感应中电路知识的关系图2.解决电磁感应中的电路问题三部曲[典例1]如图所示,在匀强磁场中竖直放置两条足够长的平行导轨,磁场方向与导轨所在平面垂直,磁感应强度大小为B0,导轨上端连接一阻值为R的电阻和开关S,导轨电阻不计,两金属棒a和b的电阻都为R,质量分别为m a=0.02 kg和m b=0.01 kg,它们与导轨接触良好,并可沿导轨无摩擦地运动.若将b棒固定,开关S断开,用一竖直向上的恒力F拉a棒,稳定后a棒以v1=10 m/s的速度向上匀速运动,此时再释放b棒,b 棒恰能保持静止.(g取10 m/s2)(1)求拉力F的大小;(2)若将a棒固定,开关S闭合,让b棒自由下滑,求b棒滑行的最大速度v2的大小;(3)若将a棒和b棒都固定,开关S断开,使磁感应强度从B0随时间均匀增加,经0.1 s 后磁感应强度增大到2B 0时,a棒受到的安培力大小正好等于a棒的重力,求两棒间的距离.解析:(1)法一:a棒做切割磁感线运动,产生的感应电动势为E=B0L v1,a棒与b棒构成串联闭合电路,电流为I=E2R,a棒、b棒受到的安培力大小为F a=ILB0,F b=ILB0依题意,对a棒有F=F a+G a对b棒有F b=G b所以F=G a+G b=0.3 N.法二:a、b棒都是平衡状态,所以可将a、b棒看成一个整体,整体受到重力和一个向上的力F,所以F=G a+G b=0.3 N.(2)a棒固定、开关S闭合后,当b棒以速度v2匀速下滑时,b棒滑行速度最大,b棒做切割磁感线运动,产生的感应电动势为E1=B0L v2,等效电路图如图所示.所以电流为I1=E1 1.5Rb棒受到的安培力与b棒的重力平衡,有G b=B20L2v2 1.5R由(1)问可知G b=F b=B20L2v1 2R联立可得v2=7.5 m/s.(3)当磁场均匀变化时,产生的感应电动势为E2=ΔB·LhΔt,回路中电流为I2=E22R依题意有F a2=2B0I2L=G a,代入数据解得h=1 m. 答案:(1)0.3 N(2)7.5 m/s(3)1 m[反思总结]电磁感应中电路问题的题型特点闭合电路中磁通量发生变化或有部分导体做切割磁感线运动,在回路中将产生感应电动势和感应电流.从而考题中常涉及电流、电压、电功等的计算,也可能涉及电磁感应与力学、电磁感应与能量的综合分析.1-1.[E =n ΔΦΔt 在电路中的应用] (多选)在如图甲所示的电路中,螺线管匝数n =1 500匝,横截面积S =20 cm 2.螺线管导线电阻r =1 Ω,R 1=4 Ω,R 2=5 Ω,C =30 μF.在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化,则下列说法中正确的是( )A .螺线管中产生的感应电动势为1.2 VB .闭合S ,电路中的电流稳定后电容器上极板带正电C .电路中的电流稳定后,电阻R 1的电功率为5×10-2 WD .S 断开后,通过R 2的电荷量为1.8×10-5 C解析:由法拉第电磁感应定律可知,螺线管内产生的电动势为E =n ΔB Δt S =1 500×0.82×20×10-4 V =1.2 V ,故A 正确;根据楞次定律,当穿过螺线管的磁通量增加时,螺线管下部可以看成电源的正极,则电容器下极板带正电,故B 错误;电流稳定后,电流为I =E R 1+R 2+r = 1.24+5+1A =0.12 A ,电阻R 1上消耗的功率为P =I 2R 1=0.122×4 W =5.76×10-2 W ,故C 错误;开关断开后通过电阻R 2的电荷量为Q =CU =CIR 2=30×10-6×0.12×5 C =1.8×10-5 C ,故D 正确.答案:AD1-2.[E =Bl v 在电路中的应用] (2017·江苏卷)如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P . 解析:(1)感应电动势E =Bd v 0感应电流I =ER , 解得I =Bd v 0R .(2)安培力F =BId 牛顿第二定律F =ma 解得a =B 2d 2v 0mR .(3)金属杆切割磁感线的速度v ′=v 0-v ,则 感应电动势E =Bd (v 0-v ),电功率P =E 2R 解得P =B 2d 2(v 0-v )2R.答案:(1)I =Bd v 0R (2)a =B 2d 2v 0mR (3)P =B 2d 2(v 0-v )2R热点二 电磁感应中的图象问题 (师生共研)1.图象问题的求解类型2.弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.3.解决图象问题的一般步骤(1)明确图象的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等知识写出函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图象或判断图象.4.电磁感应中图象类选择题的两个常用方法排除法定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项.函数法根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断.1.F安-t图象[典例2]将一段导线绕成图甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图象是()解析:0~T2时间内,根据法拉第电磁感应定律及楞次定律可得回路的圆环形区域产生大小恒定的、顺时针方向的感应电流,根据左手定则,ab边在匀强磁场Ⅰ中受到水平向左的恒定的安培力;同理可得T2~T时间内,ab边在匀强磁场Ⅰ中受到水平向右的恒定的安培力,故B正确.答案:B2.v-t图象[典例3]如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气阻力影响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律()A B C D解析:由题意可知,线框先做自由落体运动,最终做匀加速直线运动.若ab边刚进入磁场时,速度较小,线框内产生的感应电流较小,线框所受安培力小于重力,则线圈进入磁场的过程做加速度逐渐减小的加速运动,图象C有可能;若线框进入磁场时的速度较大,线框内产生的感应电流较大,线框所受安培力大于重力,则线框进入磁场时做加速度逐渐减小的减速运动,图象B有可能;若线框进入磁场时的速度合适,线框所受安培力等于重力,则线框匀速进入磁场,图象D有可能;由分析可知选A.答案:A3.E-t图象[典例4]在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图甲所示,当磁场的磁感应强度B随时间t按如图乙所示规律变化时,下列选项中正确表示线圈中感应电动势E变化的是()解析:根据楞次定律得,0~1 s内,感应电流为正方向;1~3 s内,无感应电流;3~5 s 内,感应电流为负方向;再由法拉第电磁感应定律得,0~1 s内的感应电动势为3~5 s 内的二倍,故A正确.答案:A4.i-t图象[典例5]如图所示,两个垂直纸面的匀强磁场方向相反,磁感应强度的大小均为B,磁场区域的宽度为a,一正三角形(高为a)导线框ABC从图示位置沿图示方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,线框中感应电流i与线框移动距离x的关系图是下图中的()A B C D解析:x在a~2a范围,线框穿过两磁场分界线时,BC、AC边在右侧磁场中切割磁感线,有效切割长度逐渐增大,产生的感应电动势E1增大,AB边在左侧磁场中切割磁感线,产生的感应电动势E2不变,两个电动势串联,总电动势E=E1+E2增大,故A错误;x 在0~a范围,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值,故B错误;x在2a~3a范围,线框穿过右侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值,故C正确,D错误.答案:C5.综合图象[典例6](多选)如图所示为三个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向外、向里和向外,磁场宽度均为L.在磁场区域的左侧边界处有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直.现用外力F使线框以速度v匀速穿过磁场区域,以初始位置为计时起点,规定电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时的磁通量Φ为正值,外力F向右为正.则以下能反映线框中的磁通量Φ、感应电动势E、外力F和电功率P随时间变化规律的图象是()解析:在0~L v 时间内,磁通量Φ=BL v t ,为负值,逐渐增大;在t =3L2v 时磁通量为零,当t =2L v 时,磁通量Φ=BL 2为最大正值,在2L v ~5L2v 时间内,磁通量为正,逐渐减小,t =5L 2v 时,磁通量为零,5L 2v ~3L v 时间内,磁通量为负,逐渐增大,t =3Lv 时,磁通量为负的最大值,3L v ~4L v 时间内,磁通量为负,逐渐减小,由此可知A 正确.在0~Lv 时间内,E =BL v ,为负值;在L v ~2Lv 时间内,两个边切割磁感线,感应电动势E =2BL v ,为正值;在2L v ~3L v 时间内,两个边切割磁线,感应电动势E =2Bl v ,为负值;在3L v ~4Lv 时间内,一个边切割磁感线,E =BL v ,为正值,B 正确.0~Lv 时间内,安培力向左、外力向右,F 0=F 安=BI 0L ,电功率P 0=I 20R =B 2L 2v 2R,L v~2L v时间内,外力向右,F 1=2B ·2I 0L =4F 0,电功率P 1=I 21R =4B 2L 2v 2R=4P 0;2L v~3L v时间内,外力向右,F 2=2B ·2I 0L =4F 0,电功率P 2=I 22R =4B 2L 2v 2R=4P 0;在3L v~4L v时间内,外力向右,F 3=BI 0L =F 0,电功率P 3=I 20R =B 2L 2v 2R=P 0,C 错误,D 正确. 答案:ABD1. (多选)如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、cf 间分别接着阻值R =10 Ω的电阻.一阻值R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B =0.5 T 、方向竖直向下的匀强磁场.下列说法中正确的是( BD )A.导体棒ab中电流的流向为由b到aB.cd两端的电压为1 VC.de两端的电压为1 VD.fe两端的电压为1 V2.(多选)如图甲所示,MN、PQ两平行金属光滑导轨固定在绝缘水平面上,其左端接一电容为C的电容器,导轨范围内存在竖直向下的匀强磁场,导体棒ab垂直MN放在导轨上,在水平拉力的作用下从静止开始向右运动.电容器两极板间的电势差随时间变化的图象如图乙所示,不计导体棒及导轨电阻.下列关于导体棒ab运动的速度v、导体棒ab 受到的外力F随时间变化的图象可能正确的是( BD )3.在水平桌面上,一个面积为S的圆形金属框置于匀强磁场中,线框平面与磁场垂直,磁感应强度B随时间t的变化关系如图甲所示,0~1 s内磁场方向垂直线框平面向下,圆形金属框与两根水平的平行金属导轨相连接,导轨上放置一根导体棒,导体棒的长为L、电阻为R,且与导轨接触良好,导体棒处于另一匀强磁场中,如图乙所示.若导体棒始终保持静止,则其所受的静摩擦力F f随时间变化的图象是下图中的(设向右的方向为静摩擦力的正方向)( B )4.如图所示,金属杆ab 、cd 置于平行轨道MN 、PQ 上,可沿轨道滑动,两轨道间距l =0.5 m ,轨道所在空间有垂直于轨道平面的匀强磁场,磁感应强度B =0.5 T ,用力F =0.25 N 向右水平拉杆ab ,若ab 、cd 与轨道间的滑动摩擦力分别为F f1=0.15 N 、F f2=0.1 N ,两杆的有效电阻R 1=R 2=0.1 Ω,设导轨电阻不计,ab 、cd 的质量关系为2m 1=3m 2,且ab 、cd 与轨道间的最大静摩擦力与滑动摩擦力相等.求: (1)此两杆之间的稳定速度差;(2)若F =0.3 N ,两杆间稳定速度差又是多少?解析:因F >F f1,故ab 由静止开始做加速运动,ab 中将出现不断变大的感应电流,致使cd 受到安培力F 2作用,当F 2>F f2时,cd 也开始运动,故cd 开始运动的条件是:F -F f1-F f2>0.(1)当F =0.25 N 时,F -F f1-F f2=0,故cd 保持静止,两杆的稳定速度差等于ab 的最终稳定速度v max ,故此种情况有:电流I m =E m R 1+R 2=Bl v max R 1+R 2,安培力F m =BI m l ,则有F -F m -F f1=0,由此得v max =0.32 m/s.(2)当F =0.3 N >F f1+F f2,对ab 、cd 组成的系统,ab 、cd 所受安培力大小相等,方向相反,合力为零,则系统受的合外力为F 合=F -F f1-F f2=0.05 N .对系统有F 合=(m 1+m 2)a ,因为2m 1=3m 2,则F 合=52m 2a .取cd 为研究对象,F 安-F f2=m 2a ,F 安=BIl ,I =Bl Δv R 1+R 2,联立各式解得Δv =R 1+R 2B 2l 2(25F 合+F f2)=0.384 m/s. 答案:(1)0.32 m/s (2)0.384 m/s[A组·基础题]1. 如图所示,纸面内有一矩形导体线框abcd,置于垂直纸面向里、边界为MN的匀强磁场外,线框的ab边平行磁场边界MN,线框以垂直于MN的速度匀速地完全进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1,现将线框进入磁场的速度变为原来的两倍,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则有( C )A.Q2=Q1q2=q1B.Q2=2Q1q2=2q1C.Q2=2Q1q2=q1D.Q2=4Q1q2=2q12. (2016·浙江卷)如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a=3l b,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( B )A.两线圈内产生顺时针方向的感应电流B.a、b线圈中感应电动势之比为9∶1C.a、b线圈中感应电流之比为3∶4D.a、b线圈中电功率之比为3∶13.如图甲所示,一闭合圆形线圈水平放置,穿过它的竖直方向的匀强磁场磁感应强度随时间变化的规律如图乙所示,规定B的方向以向上为正方向,感应电流以俯视顺时针的方向为正方向,在0~4t时间内感应电流随时间变化的图象正确的是( D )4.如图甲所示,线圈ABCD固定于匀强磁场中,磁场方向垂直纸面向外,当磁场变化时,线圈AB边所受安培力向右且变化规律如图乙所示,则磁场的变化情况可能是下图所示的哪一个( D )5.(多选) 如图所示,光滑导轨倾斜放置,下端连一灯泡,匀强磁场垂直于导轨平面,当金属棒ab(电阻不计)沿导轨下滑达到稳定状态时,灯泡的电功率为P,导轨和导线电阻不计.要使灯泡在金属棒稳定运动状态下的电功率为2P,则下面选项中符合条件的是( AC )A.将导轨间距变为原来的2 2B.换一电阻值减半的灯泡C.换一质量为原来2倍的金属棒D.将磁场磁感应强度B变为原来的2倍6.(多选)如图甲所示,圆形的刚性金属线圈与一平行板电容器连接,线圈内存在垂直于线圈平面的匀强磁场,磁感应强度B随时间t变化的关系如图乙所示(以图示方向为正方向).t=0时刻,平行板电容器间一带正电的粒子(重力不计)由静止释放,假设粒子运动过程中未碰到极板,不计线圈内部磁场变化时对外部空间的影响,下列粒子在板间运动的速度图象和位移图象(以向上为正方向)中,正确的是( BC )7.(多选) 如图所示,两根电阻不计的平行光滑金属导轨在同一水平面内放置,左端与定值电阻R相连,导轨x>0一侧存在着沿x轴方向均匀增大的磁场,磁感应强度与x的关系是B=0.5+0.5x(T),在外力F作用下一阻值为r的金属棒从A1运动到A3,此过程中电路中的电功率保持不变.A1的坐标为x1=1 m,A2的坐标为x2=2 m,A3的坐标为x3=3 m,下列说法正确的是( BD )A.回路中的电动势既有感生电动势又有动生电动势B.在A1与A3处的速度之比为2∶1C.A1到A2与A2到A3的过程中通过导体横截面的电荷量之比为3∶4D.A1到A2与A2到A3的过程中产生的焦耳热之比为5∶7[B组·能力题]8.(多选) (2016·四川卷)如图所示,电阻不计、间距为l的光滑平行金属导轨水平放置于磁感应强度为B、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R.质量为m、电阻为r的金属棒MN置于导轨上,受到垂直于金属棒的水平外力F的作用由静止开始运动,外力F与金属棒速度v的关系是F=F0+k v(F0、k是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i,受到的安培力大小为F A,电阻R两端的电压为U R,感应电流的功率为P,它们随时间t变化图象可能正确的有( BC )9.某兴趣小组用电流传感器测量某磁场的磁感应强度.实验装置如图甲,不计电阻的足够长光滑金属导轨竖直放置在匀强磁场中,导轨间距为d ,其平面与磁场方向垂直.电流传感器与阻值为R 的电阻串联接在导轨上端.质量为m 、有效阻值为r 的导体棒AB 由静止释放沿导轨下滑,该过程中电流传感器测得电流随时间变化规律如图乙所示,电流最大值为I m .棒下滑过程中与导轨保持垂直且良好接触,不计电流传感器内阻及空气阻力,重力加速度为g .(1)求该磁场磁感应强度的大小; (2)求在t 1时刻棒AB 的速度大小;(3)在0~t 1时间内棒AB 下降了h ,求此过程电阻R 产生的电热. 解析:(1)电流为I m 时棒做匀速运动, 对棒:F 安=BI m d F 安=mg 解得B =mg I md .(2)t 1时刻,对回路有: E =Bd v I m =Bd vR +r解得v =I 2m (R +r )mg .(3)电路中产生的总电热:Q =mgh -12m v 2,电阻R 上产生的电热:Q R =R R +rQ 解得Q R =mghR R +r -I 4m R (R +r )2mg 2.答案:(1)mg I md (2)I 2m (R +r )mg(3)mghR R +r-I 4m R (R +r )2mg 2 10.在同一水平面上的光滑平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间的质量为m =1×10-14 kg 、电荷量为q =-1×10-14 C 的微粒恰好静止不动.取g =10 m/s 2,在整个运动过程中金属棒与导轨接触良好,且速度保持恒定.试求:(1)匀强磁场的方向; (2)ab 两端的电压;(3)金属棒ab 运动的速度大小.解析:(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下.(2)微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又E =U MN d所以U MN =mgdq =0.1 VR 3两端电压与电容器两端电压相等,由欧姆定律得通过R 3的电流为I =U MNR 3=0.05 A则ab 棒两端的电压为U ab =U MN +I R 1R 2R 1+R 2=0.4 V .(3)由法拉第电磁感应定律得感应电动势E =Bl v由闭合电路欧姆定律得E=U ab+Ir=0.5 V 联立解得v=1 m/s.答案:(1)竖直向下(2)0.4 V(3)1 m/s。

高三物理电磁感应与图象试题答案及解析

高三物理电磁感应与图象试题答案及解析

高三物理电磁感应与图象试题答案及解析1.如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下。

导线框以某一初速度向右运动,t=0时导线框的的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。

下列v-t图像中,可能正确描述上述过程的是A.B.C.D.【答案】 D【解析】线框进入磁场时,由右手定则和左手点则可知线框受到向左的安培力,由于,则安培力减小,故线框做加速度减小的减速运动;同理可知线框离开磁场时,线框也受到向左的安培力,做加速度减小的减速运动;线框完全进入磁场后,线框中没有感应电流,不再受安培力作用,线框做匀速运动,本题选D。

2.理论研究表明,无限长通电直导线磁场中某点的磁感应强度可用公式表示,公式中的k是常数、I是导线中电流强度、r是该点到直导线的距离。

若两根相距为L的无限长通电直导线垂直x轴平行放置,电流强度均为I,如图所示。

能正确反映两导线间的磁感应强度B与x关系的是图中的(规定B的正方向垂直纸面向里)【答案】A【解析】根据安培定则可知,左侧通电直导线在两通电直导线间的磁场方向垂直纸面向里,右侧通电直导线在两通电直导线间的磁场方向垂直纸面向外,又由于两导线中电流大小相等,,因此在两根导线中间位置合磁场为零,从中点向两边合磁场越来越强,左边的合磁场垂直纸面向里,为正值,右边的合磁场垂直纸面向外,为负值。

故A 正确。

【考点】本题考查通电直导线周围磁场的强弱和方向的判断及磁场的叠加,意在考查考生对安培定则和矢量叠加原理的理解程度。

3. 如图甲所示,足够长的光滑平行金属导轨MN 、PQ 所在平面与水平面成30°角,两导轨的间距l =0.50 m ,一端接有阻值R =1.0 Ω的电阻.质量m =0.10 kg 的金属棒ab 置于导轨上,与导轨垂直,电阻r =0.25 Ω.整个装置处于磁感应强度B =1. 0 T 的匀强磁场中,磁场方向垂直于导轨平面向下.t =0时刻,对金属棒施加一平行于导轨向上的外力F ,使之由静止开始运动,运动过程中电路中的电流随时间t 变化的关系如图乙所示.电路中其他部分电阻忽略不计,g 取10 m/s 2.求:(1)4.0 s 末金属棒ab 瞬时速度的大小; (2)3.0 s 末力F 的瞬时功率;(3)已知0~4.0 s 时间内电阻R 上产生的热量为0.64 J ,试计算F 对金属棒所做的功. 【答案】(1)2. 0 m/s (2)1.275 W (3)3.0 J【解析】(1)由题图乙可得:t =4.0 s 时,I =0.8 A. 根据I =,E =Blv解得:v =2.0 m/s. (2)由I =和感应电流与时间的线性关系可知,金属棒做初速度为零的匀加速直线运动.由运动学规律v =at解得4.0 s 内金属棒的加速度大小a =0.5 m/s 2 对金属棒进行受力分析,根据牛顿第二定律得: F -mgsin 30°-F 安=ma 又F 安=BIl由题图乙可得,t =3.0 s 时,I =0.6 A 解得F 安=0.3 N ,外力F =0.85 N由速度与电流的关系可知t =3.0 s 时v =1.5 m/s 根据P =Fv ,解得P =1.275 W. (3)根据焦耳定律:Q =I 2Rt Q′=I 2rt解得在该过程中金属棒上产生的热量Q′=0.16 J 电路中产生的总热量为:Q 总=0.80 J 根据能量守恒定律有: W F =ΔE p +Q 总+mv 2ΔE=mgxsin 30°px=at2=2.0 J解得ΔEp=3.0 J.F对金属棒所做的功WF4.如图所示,两根相距为L的平行直导轨水平放置,R为固定电阻,导轨电阻不计。

电磁感应线框进出磁场(结合图象)问题(带答案)

电磁感应线框进出磁场(结合图象)问题(带答案)

(一)、矩形线框进出匀强磁场1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,现有一个边长为a(a<L)的正方形闭合线圈以速度v垂直磁场边界滑0 过磁场后速度变为v(v<v)那么:()0 L ×A.完全进入磁场时线圈的速度大于(v0v)/2 B..完全进入磁场时线圈的速度等于(v0v)/2 Va ×C.完全进入磁场时线圈的速度小于(v0v)/2×D.以上情况AB均有可能,而C是不可能的×2.如图(3)所示,磁感应强度磁场中匀速拉出磁场。

在其它条件不变的情况下为B的匀强磁场有理想界面,用力将矩形线圈从A、速度越大时,拉力做功越多。

B、线圈边长L1越大时,拉力做功越多。

C、线圈边长L2越大时,拉力做功越多。

D、线圈电阻越大时,拉力做功越多。

3.如图所示,为两个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里和向外,磁场宽度均为L,距磁场区域的左侧L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度v匀速穿过磁场区域,以初始位置为计时起点,规定:电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时磁通量Φ的方向为正,外力F向右为正。

则以下关于线框中的磁通量Φ、感应电动势E、外力F和电功率P随时间变化的图象正确的是(D)EΦt00t BBvBAFPtLLLLtCD4.边长为L的正方形金属框在水平恒力F作用下运动,穿过方向如图的有界匀强磁场区域.磁场区域的宽度为d(d>L)。

已知ab边进入磁场时,线框的加速度恰好为零.则线框进入磁场的过程和从磁场另一侧穿出的过程相比较,有()BLa A.产生的感应电流方向相反F B.所受的安培力方向相反b C.进入磁场过程的时间等于穿出磁场过程的时间D.进入磁场过程的发热量少于穿出磁场过程的发热量d5.如图8所示,垂直纸面向里的匀强磁场的区域宽度为2a,磁感应强度的大小为B。

专题二电磁感应中的图像问题

专题二电磁感应中的图像问题

专题电磁感应中的图像问题1.如图所示,虚线右侧存在匀强磁场,磁场方向垂直纸面向外,正方形金属框电阻为R,边长是L,自线框从左边界进入磁场时开始计时,在水平向右的外力作用下由静止开始,以垂直于磁场边界的恒定加速度a进人磁场区域,t1时刻线框全部进入磁场.规定顺时针方向为感应电流I的正方向.外力大小为F,线框中电功率的瞬时值为P,通过导体横截面的电荷量为q,其中p—t图像为抛物线,则这些量随时间的变化关系正确的是()【答案】C2.如图甲所示,有一个等腰直角三角形的匀强磁场区域,其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B。

一边长为L总电阻为R的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域。

取沿a→b→c→d→a的感应电流为正,则图乙中表示线框中电流i随bC边的位置坐标x变化的图象正确的是【答案】C3.如图所示,两个垂直纸面的匀强磁场方向相反。

磁感应强度的大小均为B,磁场区域的宽度为a,一正三角形(高度为a)导线框ABC从图示位置沿图示方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,在下图中感应电流I与线框移动距离x的关系图是【答案】C4.如图,两条平行虚线之间存在匀强磁场,虚线间的距离为l ,磁场方向垂直纸面向里,abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为l ,t=0时刻bc 边与磁场区域边界重合。

现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域,取沿a-b-c-d-a 的感应电流为正方向,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是下图中的( )【答案】B1. (2012·新课标理综)如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。

已知在t=0到t=t1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。

电磁感应中图象问题含答案

电磁感应中图象问题含答案

电磁感应中的图像问题一、基础知识1.图像类型(1)时变图像,如B-T图像、φ-T图像、E-T图像和I-T图像。

(2)随位移*变化的图像,如E-*图像和I-*图像。

2.问题的类型(1)通过给定的电磁感应过程判断或画出正确的图像。

(2)从给定的相关图像中分析电磁感应过程,求解相应的物理量。

(3)用给定的图像判断或画出新的图像。

明白;理解1.问题类型的特征通常,图像问题可以分为三类:(1)通过给定的电磁感应过程选择或绘制正确的图像;(2)从给定的相关图像中分析电磁感应过程,求解相应的物理量;(3)根据图像定量计算。

2.解决问题的关键找出初始条件,正负方向的对应关系,变化范围,所研究物理量的函数表达式,磁场进出的转折点,是解决问题的关键。

3.解决图像问题的一般步骤。

(1)识别图像的类型,即B-T图像或φ-T图像,或E-T图像,I-T图像等。

(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等。

写出函数关系;(5)根据函数关系,进行数学分析,如分析斜率和截距的变化。

(6)画出或判断一个形象。

4、对形象的理解,应注意以下几个方面(1)明确图像所描述的物理意义;(2)各种“+”、“-”的含义一定要说清楚;(3)斜率的含义必须明确;(4)必须建立图像与电磁感应过程的对应关系;(5)注意三种相似关系及其各自的物理意义:v ~δv ~,B ~δB ~,φ~δφ~、、、分别反映V、B、φ的变化速度。

5.电磁感应中图像选择题的两种常见解法(1)排除法:定性分析电磁感应过程中物理量的变化趋势(增大或减小)、变化速度(均匀变化或非均匀变化),特别是物理量的正负,排除错误选项。

(2)函数法:根据题目给出的条件,定量写出两个物理量之间的函数关系,然后通过函数关系对图像进行分析判断。

这不一定是最简单的方法,但却是最有效的方法。

第二,练习1.如图,两个相邻的有界均匀磁场区域方向相反且垂直于纸面,磁感应强度为b .以磁场区域的左边界为Y轴建立坐标系,磁场区域在Y轴方向足够长,并且*轴方向的宽度为a .矩形引线框架ABCD的CD边与Y轴重合,ad边的长度为a .线框从图中所示的位置以匀速水平向右通过两个磁场区域,线框的平面始终垂直于磁场。

高中物理一日一题(80)线框进出磁场的图像问题

高中物理一日一题(80)线框进出磁场的图像问题

高中物理一日一题(80)线圈进出磁场的图像问题河南省信阳高级中学陈庆威1.(难度0.85)如图所示,两相邻有界匀强磁场的宽度均为L,磁感应强度大小相等、方向相反,均垂直于纸面。

有一边长为L 的正方形闭合线圈向右匀速通过整个磁场。

用i表示线圈中的感应电流.规定逆时针方向为电流正方向,图示线圈所在位置为位移起点,则下列关于i-x的图像中正确的是A. B.C. D.【答案】C【解析】线圈进入磁场,在进入磁场的0-L的过程中,E=BLv,,根据右手定则判断方向为逆时针方向,为正方向;电流I=BLvR在L-2L的过程中,电动势E=2BLv,电流I=2BLv,根据右手定R则判断方向为顺时针方向,为负方向;在2L-3L的过程中,E=BLv,,根据右手定则判断方向为逆时针方向,为正方向;电流I=BLvR故ABD错误,C正确;故选C.2.(难度0.65)一正方形闭合导线框abcd边长L=0.1 m,各边电阻均为1 Ω,bc边位于x轴上,在x轴原点O右方有宽L=0.1 m、磁感应强度为 1 T、方向垂直于纸面向里的匀强磁场区域,如图所示.在线框以恒定速度4 m/s沿x轴正方向穿越磁场区域的过程中,如图所示的各图中,能正确表示线框从进入到穿出磁场过程中,ab边两端电势差U ab随位置变化情况的是( )A. B.C. D.【答案】B【解析】分两段研究:ab进入磁场切割磁感线过程和dc切割磁感线过程.ab进入磁场切割磁感线过程中,x在0-L范围:由楞次定律判断得知,线框感应电流方向为逆时针,ab相当于电源,a的电势高于b的电势,U ab>0.感应电动势为E=BLv=E=0.3V;1×0.1×4V=0.4V,U ab是外电压,则有U ab=34dc切割磁感线过程,x在L-2L范围:由楞次定律判断得知,线框感应电流方向为顺时针,dc相当于电源,a的电势高于b的电势,U ab>0.感应电动势为E=BLv=1×0.1×4V=0.4V,E=0.1V,故选B.则有U ab=143.(难度0.65).如图所示,等腰直角三角形AOB内部存在着垂直纸面向外的匀强磁场,OB在x轴上,长度为2L.纸面内一边长为L的正方形导线框的一边在x轴上,沿x轴正方向以恒定的速度穿过磁场区域.规定顺时针方向为导线框中感应电流的正方向,t=0时刻导线框正好处于图示位置.则下面四幅图中能正确表示导线框中感应电流i随位移x变化的是()A. B.C. D.【答案】B【解析】根据电磁感应定律,当0-L时,通过线圈的磁通量均匀增加产生顺时针的感应电流,当L-2L时,右边切割磁感线的长度减小,左边切割磁感线的长度增大,由法拉第电磁感应定律可判断两个边切割磁感线产生的电流方向相反,所以合电流逐渐减小,在1.5L时电流减小到零,随后左边边长大于右边边长,电流反向,所以B选项是正确的,综上所述本题答案是:B4.(难度0.65)如图所示,一呈半正弦形状的闭合线框abc,ac=l,匀速穿过边界宽度也为l的相邻两个匀强磁场区域,两个区域的磁感应强度大小相同,整个过程线框中感应电流图象为(取顺时针方向为正方向)A. B.C. D.【答案】D【解析】线框进入磁场区域时穿过线框的磁通量垂直于纸面向外增大,根据楞次定律,线框中的感应电流方向为顺时针(正方向);同理,线框离开磁场区域过程中的磁通量是垂直于纸面向里的减小,线框中电流方向也是顺时针(正方向);线框的顶点运动到两磁场的分界线上时,同时切割两边大小相等、方向相反的磁感线,线框中感应电流的最大值为在左侧或右侧磁场中切割时产生感应电流最大值的2倍,且方向为逆时针(负方向)。

电磁感应线框进出磁场(结合图象)问题(带答案)

电磁感应线框进出磁场(结合图象)问题(带答案)

(一)、矩形线框进出匀强磁场1.如图所示,在光滑的水平而上,有一垂直向下的匀强磁场分布在宽为L 的区域内, 现有一个边长为a(a<L)的正方形闭合线圈以速度 过磁场后速度变为V (VvV )那么:()A. 完全进入磁场时线圈的速度大于(VoV )/3-B. .完全进入磁场时线圈的速度等于(vov)ZeC. 完全进入磁场时线圈的速度小于(v 0v)/2kD. 以上情况AB 均有可能,而C 是不可能的2•如图(3)所示,磁感应强度磁场中匀速拉出磁场。

在其它条件不 变的情况下为B 的匀强磁场有理想界面,用力将矩形线圈从A 、速度越大时,拉力做功越多。

B 、线圈边长L 】越大时,拉力做功越多。

C 、线圈边长L 越大时,拉力做功越多。

D 、线圈电阻越大时,拉力做功越多。

3. 如图所示,为两个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里 和向外,磁场宽度均为L,距磁场区域的左侧L 处,有一边长为L 的正方形导体线框,总电 阻为R,且线框平面与磁场方向垂直,现用外力F 使线框以速度v 匀速穿过磁场区域,以初 始位置为计时起点,规定:电流沿逆时针方向时的电动势E 为正,磁感线垂直纸面向里时 磁通量①的方向为正,外力F 向右为正。

则以下关于线框中的磁通量①、感应电动势E 、 外力F 和电功率P 随时间变化的图象正确的是(D)t t I0 : .................................................................................................... :■ •••••• 0 ■ ICD4.边长为L 的正方形金属框在水平恒力F 作用下运动,穿过方护岬的有柬匀强磁场J 区域.磁场区域的宽度为d ( d>L) o 已知ab 边进入磁场时,线L [:::::「 框的加速度恰好为零.则线框进入磁场的过程和从磁场另一侧[ ......... : 穿出的过程相比较,有()二 ••二V 。

2023年高考物理热点复习:电磁感应中的电路与图象问题(附答案解析)

2023年高考物理热点复习:电磁感应中的电路与图象问题(附答案解析)

第1页(共29页)2023年高考物理热点复习:电磁感应中的电路与图象问题
【2023高考课标解读】
1.对电磁感应中电源的理解
2.解决电磁感应电路问题的基本步骤
【2023高考热点解读】
一、电磁感应中的电路问题
1.内电路和外电路
(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源。

(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路。

2.电源电动势和路端电压
(1)电动势:E =Blv 或E =n ΔΦΔt。

(2)路端电压:U =IR =E -Ir 。

【拓展提升】
1
.电磁感应中电路知识的关系图
2
.解决电磁感应中的电路问题三步曲
二、电磁感应中的图象问题
电磁感应中常见的图象问题。

电磁感应的图像问题含答案

电磁感应的图像问题含答案

电磁感应的图像问题一、单选题1.如下图所示,abcd是边长为L,每边电阻均相同的正方形导体线框,今维持线框以恒定的速度V沿z轴运动,并过倾角为45°的三角形匀强磁场区域,磁场的磁感应强度为B,方向垂直纸面向里。

线框b点在O位置时开始计时,则在/ 2L时间内,a, b二点的电势差U随时间V2.如图所示,让闭合线圈abcd从高h处下落后,进入匀强磁场中,在bc边开始进入磁场,到ad边刚进入磁场的这一段时间内,表示线圈运动的v-t图象不可能是()3 .如图所示,用粗细相同的铜丝做成边长分别为L 和2L 的两只单匝闭合线框a 和b,以相同的水平速度从磁感应强度为B 的匀强磁场区域 中匀速地拉到磁场外,则在此过程中()A.线框a 、b 中电流大小之比I a :1b =1:1B.线a 、b 中电流大小之比I a :1b =1:2C.线框a 、6中焦耳热之比Q a :Q b =1:2D.线框a 、6中焦耳热之比Q a :Q b =1:84.如图所示,光滑的金属轨道分为水平段和圆弧段两部分,O 点为圆弧 的圆心”为轨道交点。

两轨道之间宽度为0.5m,匀强磁场方向竖直向 上,大小为0.5T 。

质量为0.05kg 的金属细杆置于轨道上的M 点。

当 在金属细杆内通以电流强度为2A 的恒定电流时,其可以沿轨道由静 止开始向右运动。

已知MN=OP=1.0m,金属杆始终垂直轨道,OP 沿水平 方向,则() B.A.A.金属细杆在水平段运动的加速度大小为5m/s2B.金属细杆运动至P点时的向心加速度大小为10m/s2C.金属细杆运动至P点时的速度大小为5m/sD.金属细杆运动至P点时对每条轨道的作用力大小为0.75N5.如图所示,在水平面内固定着U形光滑金属导轨,轨道间距为50cm, 金属导体棒ab质量为0.1kg,电阻为0.2。

,横放在导轨上,电阻R的阻值是0.8。

(导轨其余部分电阻不计).现加上竖直向下的磁感应强度为0.2T的匀强磁场.用水平向右的恒力F=0.1N拉动ab,使其从静止开始运动,则()A.导体棒ab开始运动后,电阻R中的电流方向是从P流向MB.导体棒ab运动的最大速度为10m/sC.导体棒ab开始运动后,a、b两点的电势差逐渐增加到1V后保持不变D.导体棒ab开始运动后任一时刻,F的功率总等于导体棒ab和电阻R 的发热功率之和6.如图所示,A是一个边长为L的正方形导线框,每边电阻为r.现维持线框以恒定速度v沿x轴运动,并穿过图中所示由虚线围成的匀强磁场区域.U bc二九-@c,线框在图示位置的时刻作为时间的零点,则b、c 两点间的电势差随时间变化的图线应为()二、多选题7.如图甲所示,水平放置的U形金属导轨宽度为25cm,其电阻不计。

2020年高考回归复习—电学选择之线框进出磁场过程的能量问题 包含答案

2020年高考回归复习—电学选择之线框进出磁场过程的能量问题 包含答案

高考回归复习—电学选择之线框进出磁场的能量问题1.如图所示,在倾角30θ=︒的光滑绝缘斜面上存在一有界匀强磁场,磁感应强度B =1T ,磁场方向垂直斜面向上,磁场上下边界均与斜面底边平行,磁场边界间距为L =0.5m 。

斜面上有一边长也为L 的正方形金属线框abcd ,其质量为m =0.1kg ,电阻为0.5R =Ω。

第一次让线框cd 边与磁场上边界重合,无初速释放后,ab 边刚进入磁场时,线框以速率v 1作匀速运动。

第二次把线框从cd 边离磁场上边界距离为d 处释放,cd 边刚进磁场时,线框以速率v 2作匀速运动。

两种情形下,线框进入磁场过程中通过线框的电量分别为q 1、q 2,线框通过磁场的时间分别t 1、t 2,线框通过磁场过程中产生的焦耳热分别为Q 1、Q 2.已知重力加速度g=10m/s 2,则( )A .121v v ==m/s ,0.05d =mB .120.5q q ==C ,0.1d =m C .12:9:10Q Q =D .12:6:5t t =2.如图所示,同一竖直面内的正方形导线框a b 、的边长均为L ,电阻均为R ,质量分别为2m 和m 。

它们分别系在一跨过两个定滑轮的轻绳两端,在两导线框之间有一宽度为2L 、磁感应强度大小为B 、方向垂直竖直面的匀强磁场区域。

开始时,线框b 的上边与匀强磁场的下边界重合,线框a 的下边到匀强磁场的上边界的距离为L 。

现将系统由静止释放,当线框b 全部进入磁场时,a b 、两个线框开始做匀速运动。

不计摩擦和空气阻力,重力加速度为g ,则( )A .a b 、两个线框匀速运动时的速度大小为22mgRB LB .线框a 从下边进入 磁场到上边离开磁场所用时间为233B L mgRC .从开始运动到线框a 全部进入磁场的过程中,线框a 所产生的焦耳热为mgLD .从开始运动到线框a 全部进入磁场的过程中,两线框共克服安培力做功为2mgL3.半径为r、质量为m、电阻为R的金属圆环用一根长为L的绝缘轻细杆悬挂于O1点,杆所在直线过圆环圆心,在O1点的正下方有一半径为L+2r的圆形匀强磁场区域,其圆心O2与O1点在同一竖直线上,O1点在圆形磁场区域边界上,磁感应强度为B,如图所示.现使绝缘轻细杆从水平位置由静止释放,下摆过程中金属圆环所在平面始终与磁场垂直,已知重力加速度为g,不计空气阻力及摩擦阻力,则()A.圆环最终会静止在O1点的正下方B.圆环第一次进入磁场的过程通过圆环的电荷量大小为2 Br R πC.圆环在整个过程中产生的焦耳热为1() 2mg L r+D.圆环在整个过程中产生的焦耳热为1(2) 2mg L r+4.如图所示,Ⅰ、Ⅱ两条虚线之间存在匀强磁场,磁场方向与竖直纸面垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)、矩形线框进出匀强磁场1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,现有一个边长为a(a<L)的正方形闭合线圈以速度v垂直磁场边界滑0 过磁场后速度变为v(v<v)那么:()0 L ×A.完全进入磁场时线圈的速度大于(v0v)/2 B..完全进入磁场时线圈的速度等于(v0v)/2 Va ×C.完全进入磁场时线圈的速度小于(v0v)/2×D.以上情况AB均有可能,而C是不可能的×2.如图(3)所示,磁感应强度磁场中匀速拉出磁场。

在其它条件不变的情况下为B的匀强磁场有理想界面,用力将矩形线圈从A、速度越大时,拉力做功越多。

B、线圈边长L1越大时,拉力做功越多。

C、线圈边长L2越大时,拉力做功越多。

D、线圈电阻越大时,拉力做功越多。

3.如图所示,为两个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里和向外,磁场宽度均为L,距磁场区域的左侧L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度v匀速穿过磁场区域,以初始位置为计时起点,规定:电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时磁通量Φ的方向为正,外力F向右为正。

则以下关于线框中的磁通量Φ、感应电动势E、外力F和电功率P随时间变化的图象正确的是(D)EΦt00t BBvBAFPtLLLLtCD4.边长为L的正方形金属框在水平恒力F作用下运动,穿过方向如图的有界匀强磁场区域.磁场区域的宽度为d(d>L)。

已知ab边进入磁场时,线框的加速度恰好为零.则线框进入磁场的过程和从磁场另一侧穿出的过程相比较,有()BLa A.产生的感应电流方向相反F B.所受的安培力方向相反b C.进入磁场过程的时间等于穿出磁场过程的时间D.进入磁场过程的发热量少于穿出磁场过程的发热量d5.如图8所示,垂直纸面向里的匀强磁场的区域宽度为2a,磁感应强度的大小为B。

一边长为a、电阻为4R的正方形均匀导线框ABCD从图示位置沿水平向右方向以速度v匀速穿过两磁场区域,在下图中线框A、B两端电压U AB与线框移动距离x的关系图象正确的是()甲3Bav/ U AB U ABBav U AB Bav3Bav/U ABBav/4Bav/4OxOa2a3a a2a 3aBav/4Oxa2a 3a xBav/4Oxa2a3a-3Bav/4CDAB乙图86.如图所示,在PQ、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,一正方形导线框abcd位于纸面内,ab边与磁场的边界P重合。

导线框与磁场区域的尺寸如图所示。

从t=0时刻开始,线框匀速横穿两个磁场区域,以a→b→c→d为线框中的电流i的正方向,向左为导线框所受安培力的正方向,以下i–t和F—t关系示意图中正确的是()7.如图所示,相距均为d的的三条水平虚线L1与L2、L2与dcL3之间分别有垂直纸面向外、向里的匀强磁场,磁感应强度大ab小均为B。

一个边长也是d的正方形导线框,从L1上方一定高处由静止开始自由下落,当ab边刚越过L1进入磁场时,恰好以速度v1做匀速直线运动;当ab边在越过L2运动到L3之前的某个时刻,线框又开始以速度v2做匀速直线运动,在线框从进入L1L2d磁场到速度变为v2的过程中,设线框的动能变化量大小为△E k,d 重力对线框做功大小为W1,安培力对线框做功大小为W2,下列L3说法中正确的有()A.在导体框下落过程中,由于重力做正功,所以有v2>v1B.从ab边进入磁场到速度变为v2的过程中,线框动能的变化量大小为△Ek=W2-W1C.从ab边进入磁场到速度变为v2的过程中,线框动能的变化量大小为△E k=W1-W2D.从ab边进入磁场到速度变为v2的过程中,机械能减少了W1+△Ek(二)、三角形线框进出匀强磁场1.如图7甲所示,两个相邻的有界匀强磁场区,方向相反,且垂直纸面,磁感应强度的大小均为B,磁场区在y轴方向足够宽,在x轴方向宽度均为a,一正三角形(中垂线长为a)导线框ABC从图示位置向右匀速穿过磁场区域,以逆时针方向为电流的正方向,在图5乙中感应电流i与线框移动距离x的关系图象正确的是()yBBBCOxAaaa甲i i ii2I0 I0I0I0I0Oxa2a3a Oxa2a3a2aOOa3axa 2a3ax-I0-I0-I0-2I0ABCD乙图7二.填空题1、如图所示,正方形金属框ABCD边长L=20cm,质量m=0.1kg,电阻R=0.1Ω,吊住金属框的细线跨过两定滑轮后,其另一端挂着一个质量为M=0.14kg的重物,重物拉着金属框运动,当金属框的AB边以某一速度进入磁感强度B=0.5T的水平匀强磁场后,即以该速度v做匀速运动,取g=10m/s 2,则金属框匀速上升的速度v=m/s,在金属框匀速上升的过程中,重物M通过悬线对金属框做功J,其中有J的机械能通过电流做功转化为内能.三、计算题1.(12分)如图甲所示,一边长L=2.5m、质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8T的匀强磁场中,它的一边与磁场的边界MN重合。

在水平力F作用下由静止开始向左运动,经过5s线框被拉出磁场。

测得金属线框中的电流随时间变化的图像如乙图所示,在金属线框被拉出的过程中。

⑴求通过线框导线截面的电量及线框的电阻;⑵求t=3s时水平力F的大小;I/AM0.6B0.40.22.有界匀强磁场区域如图甲所示,质量为m、电阻为R的长方形矩形线圈abcd边长分N0123456t/s甲乙别为L和2L,线圈一半在磁场内,一半在磁场外,磁感强度为B0.t0=0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动,v—t图象如图乙所示,图中斜向虚线为O点速度图线的切线,数据由图中给出,不考虚重力影响,求:(1)磁场磁感应强度的变化率;(2)t2时刻回路电功率.3.如图所示,在倾角为的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L,一个质量为m,边长为L的正方形线框以速度V刚进入dBe上边磁场时,即恰好做匀速直线运动,求:(1)当ab边fa刚越过ff时,线框的加速度多大?方向如何?(2)当ab到达gg与ff中间位置时,线框又恰好作匀速运动,求线框从开始进入到ab边到达gg与ff中间位置时,产生bgBf'g' v e'cθ的热量是多少?4.(8分)用质量为m、总电阻为R的导线做成边长为l的正方形线框MNP,Q并将其放在倾角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。

线框与导轨之间是光滑的,在导轨的下端有一宽度为l(即ab=l)、磁感应强度为B的有界匀强磁场,磁场的边界aa′、bb′垂直于导轨,磁场的方向与线框平面垂直。

某一次,把线框从静止状态释放,线框恰好能够匀速地穿过磁场区域。

若当地的重力加速度为g,求:(1)线框通过磁场时的运动速度;(2)开始释放时,MN与bb′之间的距离;(3)线框在通过磁场的过程中所生的热。

6.如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab边的边长l1=1m,bc边的边l2=0.6m,线框的质量m=1kg,电阻R=0.1Ω,线框通过细线与重物相连,重物质量M=2kg,斜面上ef线(ef∥gh)的右端方有垂直斜面向上的匀强磁场,B=0.5T,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh线的距离s=11.4m,(取g=10m/s2),g试求:⑴线框进入磁场时的速度v是多少?h⑵ab边由静止开始运动到gh线所用的时间t是多少?ed abfMcα7、如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里。

线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场。

整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动。

求:(1)线框在下落阶段匀速进人磁场时的速度v2;(2)线框在上升阶段刚离开磁场时的速度v1;(3)线框在上升阶段通过磁场过程中产生的焦耳热Q.(一)、1.B2.ABC3.D4.AD5.D6.AC7.BD(二)、1.C2.40.280.08(三)1、⑴根据q=It,由I-t图象得:q=1.25C又根据I=ER Rt=2BLRt得R=4Ω⑵由电流图像可知,感应电流随时间变化的规律:I=0.1t由感应电流BLvI,可得金属框的速度随时间也是线性变化的,RRIv==0.2t(2分)BL2线框做匀加速直线运动,加速度a=0.2m/s线框在外力F和安培力F A作用下做匀加速直线运动,FFma-A=得力F=(0.2t+0.1)N所以t=3s时,水平力F(0.230.1)0.7N2、解:(1)由v—t图可知,刚开始t=0时刻线圈加速度为va,此时感应电动势t1Et2LBt,则IER2LRBt。

3BLB0ma线圈此刻所受安培力为F=BIL=,得Rt BtmvR3BtL01。

(2)线圈在t2时刻开始做匀速直线运动,有两种可能:①线圈没有完全进入磁场,磁场就消失,所以没有感应电流,回路电功率P=0.②磁场没有消失,但线圈完全进入磁场,尽管有感应电流,但所受合力为零,同样做匀速直线运动.P2ER(2LtB 2) / R22mvB2t 02R2L3、3、(1)a=3gsin,θ方向平行于斜面向上(2)Q=3mglsinθ/2+15mv2/324、(1)(共4分)线框在磁场区域做匀速运动时,其受力如图所示:∴F=mgsinθ又安培力:F=BIl 感应电流:I=E/R感应电动势:E=Blv2解得匀速运动的速度:v=mgRsinθ/Bl2(2)(共2分)在进入磁场前,线框的加速度a=gsinθ所以线框进入磁场前下滑的距离s=2v2a=2m2gRsin442Bl(3)(共2分)过程中线框沿斜面通过了2l的距离,所以:Q热=mg·2lsinθ5、(1)6m/s(2)2.5s(mgf)R 6、(1)、222vBa ;(2)、mgfR22vvmgfmgfBa12()22(3)2 3R22Qm[(mg)f](mgf)(ab)442Ba。

相关文档
最新文档