河南省商丘市第一中学2019-2020学年九年级下期二模数学试卷(解析版)
河南省商丘市2019-2020学年中考数学考前模拟卷(2)含解析
河南省商丘市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③2.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.43.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8 9 10户数 2 6 2则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4 B.极差是2 C.平均数是9 D.众数是94.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+55.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°6.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.60cm2B.50cm2C.40cm2D.30cm27.若分式11xx-+的值为零,则x的值是( )A.1 B.1-C.1±D.28.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC 边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C 平分∠BB′A′9.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+910.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=160011.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )A.AD DEDB BC=B.BF EFBC AD=C.AE BFEC FC=D.EF DEAB BC=12.下列运算,结果正确的是()A .m 2+m 2=m 4B .2m 2n÷12mn=4m C.(3mn 2)2=6m 2n 4 D .(m+2)2=m 2+4 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,函数y=x 和y=﹣12x 的图象分别为直线l 1,l 2,过点A 1(1,﹣12)作x 轴的垂线交11于点A 2,过点A 2作y 轴的垂线交l 2于点A 3,过点A 3作x 轴的垂线交l 1于点A 4,过点A 4作y 轴的垂线交l 2于点A 5,…依次进行下去,则点A 2018的横坐标为_____.14.如图,宽为(1020)m m <<的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则m 的值为__________.15.因式分解:32a ab -=_______________.16.解不等式组1121x x x -+-⎧⎨≥-⎩f ①② 请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 ;(Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .17.如图的三角形纸片中,8,6,5AB cm BC cm AC cm ===,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则ADE ∆的周长为__________.18.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.20.(6分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣32),顶点为P.(1)求抛物线解析式;(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.21.(6分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3)22.(8分)先化简,再求值:(221121a a a a a a +----+)÷1a a -,其中a=3+1. 23.(8分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等. (1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x 台,这100台家电的销售利润为Y 元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种? (3)实际进货时,厂家对电冰箱出厂价下调K (0<K <150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.24.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?25.(10分)如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,E 是弧BD 的中点,AE 与BC 交于点F ,∠C=2∠EAB . 求证:AC 是⊙O 的切线;已知CD=4,CA=6,求AF 的长.26.(12分)已知如图,在△ABC 中,∠B =45°,点D 是BC 边的中点,DE ⊥BC 于点D ,交AB 于点E ,连接CE .(1)求∠AEC 的度数;(2)请你判断AE 、BE 、AC 三条线段之间的等量关系,并证明你的结论.27.(12分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=22时,a=,b=;如图2,当∠ABE=10°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=1.求AF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.2.B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
河南省商丘市2019-2020学年中考数学第二次调研试卷含解析
河南省商丘市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为( ) A .1.23×106 B .1.23×107 C .0.123×107 D .12.3×1052.甲、乙两人分别以4m/s 和5m/s 的速度,同时从100m 直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t (s ),甲乙两人的距离为S (m ),则S 关于t 的函数图象为( )A .B .C .D .3.如图,在矩形ABCD 中,AB=2,AD=2,以点A 为圆心,AD 的长为半径的圆交BC 边于点E ,则图中阴影部分的面积为( )A .2213π--B .2212π-- C .2222π-- D .2214π--4.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B→A→C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D . 5.如图,半⊙O 的半径为2,点P 是⊙O 直径AB 延长线上的一点,PT 切⊙O 于点T ,M 是OP 的中点,射线TM 与半⊙O 交于点C .若∠P =20°,则图中阴影部分的面积为( )A .1+3πB .1+6πC .2sin20°+29πD .23π 6.下列二次根式中,为最简二次根式的是( )A .45B .22a b +C .12D . 3.67.下列因式分解正确的是( ) A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 8.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )A .2.8×105B .2.8×106C .28×105D .0.28×1079.下列命题正确的是( )A .内错角相等B .-1是无理数C .1的立方根是±1D .两角及一边对应相等的两个三角形全等10.在数轴上到原点距离等于3的数是( )A .3B .﹣3C .3或﹣3D .不知道11.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p ,而在另一个瓶子中是1:q ,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( )A .2P q +B .2P q Pq +C .2+2p q P q Pq +++D .2+2p q pq P q +++ 12.如图,PA 切⊙O 于点A ,PO 交⊙O 于点B ,点C 是⊙O 优弧弧AB 上一点,连接AC 、B C ,如果∠P=∠C ,⊙O 的半径为1,则劣弧弧AB 的长为( )A .13πB .14πC .16πD .112π 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的方程x 22x+sinα=0有两个相等的实数根,则锐角α的度数为___.14.已知实数a 、b 、c 2a+b+c (2005)(6)a b +-﹣2c|=0,则代数式ab+bc 的值为__. 15.如图,△ABC 内接于⊙O ,DA 、DC 分别切⊙O 于A 、C 两点,∠ABC=114°,则∠ADC 的度数为_______°.16.如图,直线4y x =+与双曲线k y x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.17.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.18.如图,ABC V 与ADB △中,90ABC ADB ︒∠=∠=,C ABD ∠=∠,5AC =,4AB =,AD 的长为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y 轴的左侧将△OBC 放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B 、C 两点的对应点B′、C′的坐标;如果△OBC 内部一点M 的坐标为(x ,y ),写出M 的对应点M′的坐标.20.(6分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.21.(6分)如图,一次函数y =﹣34x+6的图象分别交y 轴、x 轴交于点A 、B ,点P 从点B 出发,沿射线BA 以每秒1个单位的速度出发,设点P 的运动时间为t 秒.(1)点P 在运动过程中,若某一时刻,△OPA 的面积为6,求此时P 的坐标;(2)在整个运动过程中,当t 为何值时,△AOP 为等腰三角形?(只需写出t 的值,无需解答过程)22.(8分)如图,在平面直角坐标中,点O 是坐标原点,一次函数y 1=kx+b 与反比例函数y 2=3(0)x xf 的图象交于A (1,m )、B (n ,1)两点.(1)求直线AB 的解析式;(2)根据图象写出当y 1>y 2时,x 的取值范围;(3)若点P 在y 轴上,求PA+PB 的最小值.23.(8分)先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 24.(10分)如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB(结果保留根号).25.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B 、C 两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)26.(12分)已知:如图,在平面直角坐标系中,O 为坐标原点,△OAB 的顶点A 、B 的坐标分别是A (0,5),B (3,1),过点B 画BC ⊥AB 交直线于点C ,连结AC ,以点A 为圆心,AC 为半径画弧交x 轴负半轴于点D ,连结AD 、CD .(1)求证:△ABC ≌△AOD .(2)设△ACD 的面积为,求关于的函数关系式.(3)若四边形ABCD 恰有一组对边平行,求的值.27.(12分)有这样一个问题:探究函数1x y x =+的图象与性质.小怀根据学习函数的经验,对函数1x y x =+的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:(1)函数1x y x =+的自变量x 的取值范围是 ; (2)列出y 与x 的几组对应值.请直接写出m 的值,m= ; (3)请在平面直角坐标系xOy 中,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数1x y x =+的一条性质.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1230000这个数用科学记数法可以表示为61.2310.⨯故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.2.B【解析】【分析】匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.【详解】∵甲、乙两人分别以4m/s和5m/s的速度,∴两人的相对速度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s×1m/s=20m,故选B.【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.3.B【解析】【分析】先利用三角函数求出∠BAE=45°,则BE=AB=2,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.【详解】解:∵AE=AD=2,而AB=2,∴cos∠BAE=ABAE=2,∴∠BAE=45°,∴BE=AB=2,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×2﹣1 2×2×2﹣2452360π⋅⋅=22﹣1﹣2π.故选B.【点睛】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.4.B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.5.A【解析】【分析】连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.【详解】连接OT、OC,∵PT切⊙O于点T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中点,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足为H,则CH=12OC=1,S阴影=S△AOC+S扇形OCB=12OA•CH+2302360π⨯=1+3π,故选A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.6.B【解析】【分析】最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是(整式)(分母中不含根号)2.被开方数中不含能开提尽方的(因数)或(因式).【详解】A. 不是最简二次根式;B. ,最简二次根式;C. =2,不是最简二次根式;D. ,不是最简二次根式.故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.7.C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.8.B【解析】分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:280万这个数用科学记数法可以表示为62.810,⨯ 故选B.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.9.D【解析】解:A .两直线平行,内错角相等,故A 错误;B .-1是有理数,故B 错误;C .1的立方根是1,故C 错误;D .两角及一边对应相等的两个三角形全等,正确.故选D .10.C【解析】【分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.11.C【解析】【分析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +, 水之和为:1p p ++1q q +,。
2019届河南省九年级下学期第二次模拟考试数学试卷【含答案及解析】
2019届河南省九年级下学期第二次模拟考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 已知-2的相反数是a,则a是()A. 2B. -C.D. -22. 函数y=的自变量x的取值范围是()A. x>0B. x≠1C. x>1且x≠1D. x≥0且x≠13. 解集在数轴上表示为如图所示的不等式组是()A. B. C. D.4. .小明把如图所示的4张扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌旋转倒过来.然后小明很快辨认了哪张牌被倒过来了,那么图中被倒过来的扑克牌点数是()A. 8B. 6C. 8和5D. 55. 如图是五个棱长为“1”的立方块组成的一个几何体,不是三视图之一的是()A. B. C. D.6. 如图,⊙O的直径AB=10,E在⊙O内,且OE=4,则过E点所有弦中,长度为整数的条数为()A. 4B. 6C. 8D. 10二、填空题7. 随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:=13, =13,,,则小麦长势比较整齐的试验田是 __________.8. 如图,P是∠的边OA上一点,且点P的坐标为(3,4),则sinα=__________.9. 分解因式: ______________.三、解答题10. =_________________四、填空题11. 在平面直角坐标系中,将点P(﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点,则点的坐标为____________.12. 如图,Rt△AOB中,O为坐标原点,∠AOB=90°,OA∶OB=1∶2,如果点A在反比例函数y=(x>0)的图像上运动,那么点B在函数 (填函数解析式)的图像上运动.13. 如图,直线y = kx + b经过A(–2,–1)和B(–3,0)两点,则不等式0<kx + b的解集是___________.五、解答题14. 如图测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得1m杆的影子长为2 m,则电线杆的高度约为多少m?六、填空题15. 已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为__.七、解答题16. 先化简,再求值:,其中;17. 某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,不放回再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.” 请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.18. 如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立.并说明理由.19. 因长期干旱,甲水库蓄水量降到了正常水位的最低值,为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3)与时间t(h)之间的函数关系.求: (1)线段BC的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?20. 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30°方向往C移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响。
河南省商丘市2019-2020学年中考数学仿真第二次备考试题含解析
河南省商丘市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是A.B.C.D.2.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.53.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°4.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.5.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.6.如图,已知函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+3x>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>07.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE=12AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为()A.3B.5C.7D.228.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.9.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60 °B.75°C.85°D.90°10.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.1611.计算23(1)x -﹣23(1)x x -的结果为( ) A .31x - B .31x - C .23(1)x - D .23(1)x - 12.如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( )A .100°B .110°C .115°D .120°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的方程1101ax x +-=-有增根,则a =______. 14.一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为15.函数32x y x =-中,自变量x 的取值范围是______ 16.已知二次函数2y ax bx c =++的图象如图所示,若方程2ax bx c k ++=有两个不相等的实数根,则k的取值范围是_____________.17.若2216a b -=,13a b -=,则+a b 的值为 ________ . 18.用一张扇形纸片围成一个圆锥的侧面(接缝处不计),若这个扇形纸片的面积是90πcm 2,围成的圆锥的底面半径为15cm ,则这个圆锥的母线长为_____cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.20.(6分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x≥2)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:分别写出y A、y B与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.21.(6分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.22.(8分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?23.(8分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.24.(10分)如图,抛物线y=﹣12x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.25.(10分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)连接AC、BC,判断△ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.26.(12分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2. ①求BCAE的值;②若点G为AE上一点,求OG+12EG最小值.27.(12分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】本题主要考查二次函数的解析式【详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.故选D.【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.2.B【解析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=12∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=1.故选B.3.C【解析】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.5.D【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选D.【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形6.C【解析】【分析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+3x>1的解集.【详解】∵函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣3x,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+3x>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.7.C【解析】在菱形ABCD中,OC=12AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=12AC=1,在矩形OCED中,由勾股定理得:CE=OD=2222213AD AO-=-=,在Rt△ACE中,由勾股定理得:AE=22222(3)7AC CE+=+=;故选C.点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.8.B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.9.C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC 的度数为85°.故选C .考点: 旋转的性质.10.A【解析】【详解】∵AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,∴DA=DB ,EA=EC ,则△ADE 的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A .11.A【解析】【分析】根据分式的运算法则即可【详解】解:原式=23(1)3(1)1x x x-=--, 故选A.【点睛】本题主要考查分式的运算。
河南省商丘市2019-2020学年中考第二次质量检测数学试题含解析
河南省商丘市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算结果正确的是( )A .3a ﹣a=2B .(a ﹣b )2=a 2﹣b 2C .a (a+b )=a 2+bD .6ab 2÷2ab=3b2.下列标志中,可以看作是轴对称图形的是( )A .B .C .D .3.一个正比例函数的图象过点(2,﹣3),它的表达式为( )A .3y -2x =B .2y 3x =C .3y 2x =D .2y -3x = 4.若顺次连接四边形ABCD 各边中点所得的四边形是菱形,则四边形ABCD 一定是( ) A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形5.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,△OAB 是边长为4的等边三角形,以O 为旋转中心,将△OAB 按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )A .(2,23)B .(﹣2,4)C .(﹣2,22)D .(﹣2,23) 6.计算23(1)x -﹣23(1)x x -的结果为( ) A .31x - B .31x - C .23(1)x - D .23(1)x - 7.下列图案中,是轴对称图形的是( )A .B .C .D . 8.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( )A.2πcm B.4πcm C.6πcm D.8πcm9.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC 边于点M’,连接MB,DM’则图中的全等三角形共有()A.3对B.4对C.5对D.6对10.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为()A.15m B.17m C.18m D.20m11.如图是一个放置在水平桌面的锥形瓶,它的俯视图是()A.B.C.D.12.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8的算术平方根是_____.14.方程1223x x =+的解为__________. 15.如果反比例函数k y x =的图象经过点A (2,y 1)与B (3,y 2),那么12y y 的值等于_____________. 16.计算35的结果等于_____. 17.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.18.已知一组数据3-,x ,﹣2,3,1,6的中位数为1,则其方差为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程2320x x ++=的根. 20.(6分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是 ;(2) 搅匀后,从中任取一个球,标号记为k ,然后放回搅匀再取一个球,标号记为b ,求直线y=kx+b 经过一、二、三象限的概率.21.(6分)如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.22.(8分)如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB(结果保留根号).23.(8分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T 恤衫每件进价是多少元?老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元?(利润=售价﹣进价)24.(10分)某文具店购进A ,B 两种钢笔,若购进A 种钢笔2支,B 种钢笔3支,共需90元;购进A 种钢笔3支,B 种钢笔5支,共需145元.(1)求A 、B 两种钢笔每支各多少元?(2)若该文具店要购进A ,B 两种钢笔共90支,总费用不超过1588元,并且A 种钢笔的数量少于B 种钢笔的数量,那么该文具店有哪几种购买方案?(3)文具店以每支30元的价格销售B 种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B 种钢笔,涨价卖出,经统计,B 种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B 种钢笔每支涨价a 元(a 为正整数),销售这批钢笔每月获利W 元,试求W 与a 之间的函数关系式,并且求出B 种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?25.(10分)计算:|﹣913)0﹣(12)﹣1. 26.(12分)(1)计算:0|28(2)2cos45π︒-+.(2)解方程:x 2﹣4x+2=027.(12分)(1)如图1,在矩形ABCD 中,AB =2,BC =5,∠MPN =90°,且∠MPN 的直角顶点在BC 边上,BP =1.①特殊情形:若MP过点A,NP过点D,则PAPD=.②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时ECFC的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选D.【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.3.A【解析】【分析】利用待定系数法即可求解.【详解】设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=32 -.∴函数的解析式是:32y x =-.故选A.4.C 【解析】【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=12BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形,假设AC=BD ,∵EH=12AC ,EF=12BD , 则EF=EH ,∴平行四边形EFGH 是菱形,即只有具备AC=BD 即可推出四边形是菱形,故选D .【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.5.D【解析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=o,则易得A 点坐标和O 点坐标,再利用勾股定理计算出224223BC =-=,然后根据第二象限点的坐标特征可写出B 点坐标;由旋转的性质得60,AOA BOB OA OB OA OB ∠'=∠'==='='o ,则点A′与点B 重合,于是可得点A′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=o ,∴A 点坐标为(−4,0),O 点坐标为(0,0),在Rt △BOC 中,224223BC =-=,∴B 点坐标为(2,3)-;∵△OAB 按顺时针方向旋转60o ,得到△OA′B′,∴60,AOA BOB OA OB OA OB ∠'=∠'==='='o ,∴点A′与点B 重合,即点A′的坐标为(2,-,故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.6.A【解析】【分析】根据分式的运算法则即可【详解】解:原式=23(1)3(1)1x x x-=--, 故选A.【点睛】本题主要考查分式的运算。
河南省商丘市2020版中考数学二模试卷(II)卷
河南省商丘市2020版中考数学二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·武汉模拟) 的计算结果是()A . 4B . ﹣4C . ±4D . 82. (2分)当a为任何实数时,下列分式中一定有意义的是()A .B .C .D .3. (2分) (2017八上·海淀期末) 下列运算中正确的是()A . x2÷x8=x﹣4B . a•a2=a2C . (a3)2=a6D . (3a)3=9a34. (2分)某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是()A . 至少有两名学生生日相同B . 不可能有两名学生生日相同C . 可能有两名学生生日相同,但可能性不大D . 可能有两名学生生日相同,且可能性很大5. (2分) (2015七下·萧山期中) 已知:x﹣y=5,(x+y)2=49,则x2+y2的值等于()A . 37B . 27C . 25D . 446. (2分)如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕C顺时针旋转90°至三角板的位置后,再沿CB方向向左平移,使点落在原三角板ABC的斜边AB上,则三角板平移的距离为()A . 6cmB . 4cmC . (6-)cmD . ()cm7. (2分)如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A .B .C .D .8. (2分)(2018·河南) 河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A . 中位数是12.7%B . 众数是15.3%C . 平均数是15.98%D . 方差是09. (2分)在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S= ,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A .B .C .D . a2014﹣110. (2分)如图所示是二次函数y=-x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是()A . 4B .C . 2πD . 8二、填空题 (共6题;共6分)11. (1分) (2018七上·佳木斯期中) 如果某天的最高气温是5℃,最低气温是﹣3℃,那么日温差是________℃.12. (1分)计算:=________ .13. (1分)(2016·呼和浩特) 在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率________.14. (1分) (2020九上·潮南期末) 如图,将△ABC沿BC翻折得到△DBC,再将△DBC绕C点逆时针旋转60°得到△FEC,延长BD交EF于H,已知∠ABC=30°,∠BAC=90°,AC=1,则四边形CDHF的面积为________.15. (1分) (2017九上·东丽期末) 如图,是半径为的⊙ 的直径,是圆上异于,的任意一点,的平分线交⊙ 于点,连接和,△ 的中位线所在的直线与⊙ 相交于点、,则的长是________16. (1分)(2017·三门峡模拟) 如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连结AD,将△ACD沿AD折叠,点C落在点C′,连结C′D交AB于点E,连结BC′.当△BC′D是直角三角形时,DE 的长为________.三、解答题 (共7题;共85分)17. (10分) (2016七上·临沭期末) 计算题(1)计算:;(2)解方程:.18. (5分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,且AO=CO.求证:四边形ABCD是平行四边形.19. (15分)为了倡导“节约用水,从我做起”,某市政府决定对市直机关600户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计该市直机关600户家庭中月平均用水量不超过12吨的约有多少户?20. (15分)(2017·磴口模拟) 某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?21. (20分) (2018九上·灌南期末) 如图甲,在平面直角坐标系中,直线分别交x轴、y轴于点A、B,⊙O 的半径为2 个单位长度,点P为直线y=﹣x+8上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,且PC⊥PD.(1)试说明四边形OCPD的形状(要有证明过程);(2)求点P的坐标(3)若直线y=﹣x+8沿x轴向左平移得到一条新的直线y1=﹣x+b,此直线将⊙O的圆周分得两段弧长之比为1:3,请直接写出b的值;(4)若将⊙O沿x轴向右平移(圆心O始终保持在x轴上),试写出当⊙O与直线y=﹣x+8有交点时圆心O的横坐标m的取值范围.(直接写出答案)22. (10分)如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:(1)△ADA′≌△CDE;(2)直线CE是线段AA′的垂直平分线.23. (10分) (2017九上·平舆期末) 如图,抛物线y=﹣ x2+bx+c过点A(4,0),B(﹣4,﹣4).(1)求抛物线的解析式;(2)若点P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交抛物线及x轴于C、D 两点.请问是否存在这样的点P,使PD=2CD?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共85分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、。
2019-2020学年河南省中考数学模拟试卷(二)(有标准答案)
河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C (0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
河南省商丘市第一中学2019-2020学年九年级下期二模数学试卷(解析版)
河南省商丘市第一中学2019-2020学年九年级下期二模数学试卷一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm33.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图所示的工件的主视图是()A.B.C.D.5.下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b26.关于方程x2﹣4x+9=0的根的情况,下列说法正确的是()A.有两个相等实根B.有两个不相等实数根C.没有实数根D.有一个实数根7.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC =3,AB=5,则DE等于()A.2B.C.D.8.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<19.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x﹣1=0的实根x0所在的范围是()A.B.C.D.10.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A.B.C.5D.4二.填空题(共5小题)11.=.12.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.13.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若的长为,则图中阴影部分的面积为.15.如图所示,在矩形ABCD中,AB=2,AD=2,对角线AC与BD交于点O,E是AD 边动点,作直线OE交BC于点G,将四边形DEGC沿直线EG折叠,点D落在点D′处,点C落在点C′处,ED′交AC于F,若△AEF是直角三角形,则AE=.三.解答题(共8小题)16.先化简,再求值:÷(﹣m﹣1),其中m=6.17.某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.18.如图直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,3),这两条直线分别与x轴交于B,C两点.(1)求k的值;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,则此时点P 的坐标是.19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D 作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为.20.如图,小东在楼AB的顶部A处测得该楼正前方旗杆CD的顶端C的俯角为42°,在楼AB的底部B处测得旗杆CD的顶端C的仰角为30°,已知旗杆CD的高度为12m,根据测得的数据,计算楼AB的高度.(结果保留整数,参考数据:sin42°≈0.7,cos42°≈0.7,tan42°≈0.9,≈1.7)21.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.22.在△ABC中,AD为BC边上的中线,E为AD上一动点,设DE=nEA,连接CE并延长,交AB于点F.(1)尝试探究如图(1),当∠BAC=90°,∠B=30°,DE=EA时,BF,BA之间的数量关系是;(2)类比延伸如图(2),当△ABC为锐角三角形,DE=EA时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移如图(3),当△ABC为锐角三角形,DE=nEA时,请直接写出BF,BA之间的数量关系.23.如图抛物线y=ax2+bx+6的开口向下与x轴交于点A(﹣6,0)和点B(2,0),与y 轴交于点C,点P是抛物线上一个动点(不与点C重合)(1)求抛物线的解析式;(2)当点P是抛物线上一个动点,若△PCA的面积为12,求点P的坐标;(3)如图2,抛物线的顶点为D,在抛物线上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.001239=1.239×10﹣3.故选:A.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.4.如图所示的工件的主视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形,本题找到从正面看所得到的图形即可.【解答】解:从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选:B.5.下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.6.关于方程x2﹣4x+9=0的根的情况,下列说法正确的是()A.有两个相等实根B.有两个不相等实数根C.没有实数根D.有一个实数根【分析】先计算判别式的值,然后根据判别式的意义判断根的情况.【解答】解:∵△=(﹣4)2﹣4×9=﹣4<0,∴方程没有实数根.故选:C.7.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC =3,AB=5,则DE等于()A.2B.C.D.【分析】根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.【解答】解:在Rt△ACB中,由勾股定理得:BC==4,连接AE,从作法可知:DE是AB的垂直平分线,根据性质得出AE=BE,在Rt△ACE中,由勾股定理得:AC2+CE2=AE2,即32+(4﹣AE)2=AE2,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE2+()2=()2,解得:DE=.故选:C.8.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x =﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.9.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x﹣1=0的实根x0所在的范围是()A.B.C.D.【分析】首先根据题意推断方程x3+2x﹣1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x﹣1=0的实根x所在范围.【解答】解:方程x3+2x﹣1=0,∴x2+2=,∴它的根可视为y=x2+2和的图象交点的横坐标,当x=时,y=x2+2=2,y==4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y==1,此时抛物线的图象在反比例函数上方.故方程x3+2x﹣1=0的实根x所在范围为:<x<.故选:C.10.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A.B.C.5D.4【分析】连接AC交BD于O,根据图②求出菱形的边长为4,对角线BD为6,根据菱形的对角线互相垂直平分求出BO,再利用勾股定理列式求出CO,然后求出AC的长,再根据菱形的面积等于对角线乘积的一半求出菱形的面积,b为点P在CD上时△ABP 的面积,等于菱形的面积的一半,从而得解.【解答】解:如图,连接AC交BD于O,由图②可知,BC=CD=4,BD=14﹣8=6,∴BO=BD=×6=3,在Rt△BOC中,CO===,AC=2CO=2,所以,菱形的面积=AC•BD=×2×6=6,当点P在CD上运动时,△ABP的面积不变,为b,所以,b=×6=3.故选:B.二.填空题(共5小题)11.=2.【分析】根据算术平方根的定义、负整数指数幂计算可得.【解答】解:原式=2﹣4+4=2,故答案为:2.12.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是m>9.【分析】利用根的判别式△<0列不等式求解即可.【解答】解:∵抛物线y=x2﹣6x+m与x轴没有交点,∴△=b2﹣4ac<0,∴(﹣6)2﹣4×1•m<0,解得m>9,∴m的取值范围是m>9.故答案为:m>9.13.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.【分析】先画树状图展示所有36种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两次都摸到红球的结果数为9,所以两次都摸到红球的概率为=.故答案为:.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若的长为,则图中阴影部分的面积为2﹣.【分析】连结AC,如图,设半径为r,先根据切线的性质得∠ACD=90°,再根据平行四边形的性质得AB∥CD,AD∥BC,则∠CAF=90°,∠1=∠B,∠2=∠3,利用∠B =∠3易得∠1=∠2=45°,则根据弧长公式可得=,解得r=2,然后根据扇形面积公式,利用S阴影部分=S△ACD﹣S扇形CAE进行计算即可.【解答】解:连结AC,如图,设半径为r,∵AB的长为半径的圆恰好与CD相切于点C,∴AC⊥CD,∴∠ACD=90°,∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠CAF=90°,∠1=∠B,∠2=∠3,而AB=AC,∴∠B=∠3,∴∠1=∠2=45°,∵的长为,∴=,解得r=2,在Rt△ACD中,∵∠2=45°,∴AC=CD=2,∴S阴影部分=S△ACD﹣S扇形CAE×2×2﹣=2﹣.故答案为2﹣.15.如图所示,在矩形ABCD中,AB=2,AD=2,对角线AC与BD交于点O,E是AD 边动点,作直线OE交BC于点G,将四边形DEGC沿直线EG折叠,点D落在点D′处,点C落在点C′处,ED′交AC于F,若△AEF是直角三角形,则AE=或﹣1.【分析】首先证明△AOB是等边三角形,分两种情形分别求解即可.【解答】解:在矩形ABCD中,∵∠BAD=90°,AD=2,AB=2,∴tan∠ABD==,∴∠ABD=60°,∵OA=OB,∴△AOB是等边三角形,①当EF⊥AC时,易证点D′与B重合,此时AE=AB•tan30°=.②当AE⊥EF时,易证AE=BM=CG=(BC﹣AB)=﹣1.综上所述,满足条件的AE的值为或﹣1.三.解答题(共8小题)16.先化简,再求值:÷(﹣m﹣1),其中m=6.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m的值代入计算即可求出值.【解答】解:原式=÷=•=﹣,当m=6时,原式=﹣=﹣=﹣.17.某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有50人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是40%,等级C对应的圆心角的度数为72°;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有595人.【分析】(1)由A等的人数和比例,根据总数=某等人数÷所占的比例计算;(2)根据“总数=某等人数÷所占的比例”计算出D等的人数,总数﹣其它等的人数=C等的人数;(3)由总数=某等人数÷所占的比例计算出B等的比例,由总比例为1计算出C等的比例,对应的圆心角=360°×比例;(4)用样本估计总体.【解答】(1)总人数=A等人数÷A等的比例=15÷30%=50人;(2)D等的人数=总人数×D等比例=50×10%=5人,C等人数=50﹣20﹣15﹣5=10人,如图:(3)B等的比例=20÷50=40%,C等的比例=1﹣40%﹣10%﹣30%=20%,C等的圆心角=360°×20%=72°;(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(15+20)÷50×850=595人.18.如图直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,3),这两条直线分别与x轴交于B,C两点.(1)求k的值;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,则此时点P 的坐标是(﹣,0)或(,0).【分析】(1)将点A的坐标代入y=,即可求解;(2)观察图象即可求解;(3)AP把△ABC的面积分成1:2两部分,则点P把BC分成1:2两部分,即可求解.【解答】解:(1)将点A的坐标代入y=得,k=xy=1×3=3;(2)从图象看,x>0,当不等式x+b>时,x>1;(3)将点A的坐标代入y2=x+b得,3=+b,解得:b=,y2=x+,令y2=0,则x=﹣3,即点C(﹣3,0),y1=﹣x+4,令y1=0,则x=4,即点B(4,0),则BC=7,AP把△ABC的面积分成1:2两部分,则点P把BC分成1:2两部分,即PB=BC或BC,即BP=或,设点P的横坐标为x,则4﹣x=或,解得:x=或﹣故点P的坐标为:(﹣,0)或(,0);故答案为:(﹣,0)或(,0).19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D 作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为30°时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为2.【分析】(1)由垂径定理,切线的性质可得FO⊥AC,OD⊥DE,可得AC∥DE;(2)①连接CD,AD,OC,由题意可证△ADO是等边三角形,由等边三角形的性质可得DF=OF,AF=FC,且AC⊥OD,可证四边形AOCD为菱形;②由题意可证△AFO∽△ODE,可得,即OD=2OF,DE=2AF=AC,可证四边形ACDE是平行四边形,由勾股定理可求DE的长,即可求四边形ACDE 的面积.【解答】证明:(1)∵F为弦AC的中点,∴AF=CF,且OF过圆心O∴FO⊥AC,∵DE是⊙O切线∴OD⊥DE∴DE∥AC(2)①当∠OAC=30°时,四边形AOCD是菱形,理由如下:如图,连接CD,AD,OC,∵∠OAC=30°,OF⊥AC∴∠AOF=60°∵AO=DO,∠AOF=60°∴△ADO是等边三角形又∵AF⊥DO∴DF=FO,且AF=CF,∴四边形AOCD是平行四边形又∵AO=CO∴四边形AOCD是菱形②如图,连接CD,∵AC∥DE∴△AFO∽△ODE∴∴OD=2OF,DE=2AF∵AC=2AF∴DE=AC,且DE∥AC∴四边形ACDE是平行四边形∵OA=AE=OD=2∴OF=DF=1,OE=4∵在Rt△ODE中,DE==2∴S四边形ACDE=DE×DF=2×1=2故答案为:220.如图,小东在楼AB的顶部A处测得该楼正前方旗杆CD的顶端C的俯角为42°,在楼AB的底部B处测得旗杆CD的顶端C的仰角为30°,已知旗杆CD的高度为12m,根据测得的数据,计算楼AB的高度.(结果保留整数,参考数据:sin42°≈0.7,cos42°≈0.7,tan42°≈0.9,≈1.7)【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△AEC、△CBD,通过解这两个直角三角形求得AE、DC的长度,进而可解即可求出答案.【解答】解:∵在Rt△CBD中,∠CBD=30°,CD=12m,∴DB=,过点C作CE⊥AB于点E,则CE=DB=12m.∵在A处测得旗杆CD的顶端C的俯角为42°,∴∠ACE=42°,∴AE=CE•tan 42°≈12×0.9≈18.4(m)∴AB=BE+AE=CD+AE=12+18.4≈30(m).答:楼AB的高度约为30m.21.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.【分析】(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,根据购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元,列出方程组,然后求解即可;(2)设购买甲型设备m台,乙型设备(10﹣m)台,根据公司经预算决定购买节省能源的新设备的资金不超过110万元,列出不等式,然后求解即可得出购买方案;(3)根据甲型设备的产量为240吨/月,乙型设备的产量为180吨/月和总产量不低于2040吨,列出不等式,求出m的取值范围,再根据每台的钱数,即可得出最省钱的购买方案.【解答】解:(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,由题意得:,解得:,则甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)设购买甲型设备m台,乙型设备(10﹣m)台,则:12m+10(10﹣m)≤110,∴m≤5,∵m取非负整数∴m=0,1,2,3,4,5,∴有6种购买方案.(3)由题意:240m+180(10﹣m)≥2040,∴m≥4∴m为4或5.当m=4时,购买资金为:12×4+10×6=108(万元),当m=5时,购买资金为:12×5+10×5=110(万元),则最省钱的购买方案为,选购甲型设备4台,乙型设备6台.22.在△ABC中,AD为BC边上的中线,E为AD上一动点,设DE=nEA,连接CE并延长,交AB于点F.(1)尝试探究如图(1),当∠BAC=90°,∠B=30°,DE=EA时,BF,BA之间的数量关系是;(2)类比延伸如图(2),当△ABC为锐角三角形,DE=EA时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移如图(3),当△ABC为锐角三角形,DE=nEA时,请直接写出BF,BA之间的数量关系.【分析】(1)尝试探究:过点D作DM∥CF,交AB于M,可证△BDM∽△BCF,△AFE∽△AMD,可得,=,可证BM=MF=AF,可得BF,BA之间的数量关系;(2)类比延伸过点D作DM∥CF,交AB于M,可证△BDM∽△BCF,△AFE∽△AMD,可得,=,可证BM=MF=AF,可得BF,BA之间的数量关系;(3)拓展迁移过点D作DM∥CF,交AB于M,由平行线分线段成比例可得BM=MF,FM=nAF,可得AB=2nAF+AF,BF=2nAF,即可求BF,BA之间的数量关系.【解答】解:(1)尝试探究如图,过点D作DM∥CF,交AB于M,∵AD是中线,AE=DE∴BD=CD=BC,AE=AD∵DM∥CF,∴△BDM∽△BCF,△AFE∽△AMD∴,=∴BF=2BM,AM=2AF∴BM=MF,AF=FM∴BM=MF=AF∴(2)类比延伸:结论仍然成立,理由如下:如图,过点D作DM∥CF,交AB于M,∵AD是中线,AE=DE∴BD=CD=BC,AE=AD∵DM∥CF,∴△BDM∽△BCF,△AFE∽△AMD∴,=∴BF=2BM,AM=2AF∴BM=MF,AF=FM∴BM=MF=AF∴(3)拓展迁移如图,过点D作DM∥CF,交AB于M,∵DM∥FC,且BD=CD∴∴BM=MF∵DM∥CF,DE=nEA∴==∴FM=nAF∴BM=MF=nAF∴AB=2nAF+AFBF=2nAF∴23.如图抛物线y=ax2+bx+6的开口向下与x轴交于点A(﹣6,0)和点B(2,0),与y 轴交于点C,点P是抛物线上一个动点(不与点C重合)(1)求抛物线的解析式;(2)当点P是抛物线上一个动点,若△PCA的面积为12,求点P的坐标;(3)如图2,抛物线的顶点为D,在抛物线上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.【分析】(1)函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),即可求解;(2)S△PCA=PG×AC=PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,即可求解;(3)sin∠DAC==,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,即可求解.【解答】解:(1)函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),﹣12a=6,解得:a=﹣,函数的表达式为:y=﹣x2﹣2x+6…①,顶点D坐标为(﹣2,8);(2)如图1所示,过点P作直线m∥AC交抛物线于点P′,在直线AC下方等距离处作直线n交抛物线与点P″、P′″,过点P作PH∥y轴交AC于点H,作PG⊥AC于点G,∵OA=OC,∴∠PHG=∠CAB=45°,则HP=PG,S△PCA=PG×AC=PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,则直线m的表达式为:y=x+10…②,联立①②并解得:x=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);直线n的表达式为:y=x+2…③同理可得点P(P″、P′″)的坐标为(﹣3﹣,﹣﹣1)或(﹣3,﹣1),综上,点P的坐标为(﹣2,8)或(﹣4,6)或(﹣3﹣,﹣﹣1)或(﹣3,﹣1).(3)点A、B、C、D的坐标为(﹣6,0)、(2,0)、(0,6)、(﹣2,8),则AC=,CD=,AD=,则∠ACD=90°,sin∠DAC==,延长DC至D′使CD=CD′,连接AD′,过点D作DH⊥AD′,则DD′=2,AD=AD′=,S△ADD′=DD′×AC=DH×AD′,即:2×=DH×,解得:DH=,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,①当点E在AB上方时,则直线AE的表达式为:y=x+b,将点A坐标代入上式并解得:直线AE的表达式为:y=x+…④,联立①④并解得:x=(不合题意值已舍去),即点E(,);②当点E在AB下方时,同理可得:点E(,﹣),综上,点E(,)或(,﹣).。
商丘市中考数学二模试卷
商丘市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·海珠模拟) -3的相反数为()A . -3B . 3C .D .2. (2分)今年我们祖国迎来了70华诞,据报道国庆阅兵为近几次阅兵中规模最大,人数约15000人用科学记数法表示15000确的是()A . 15×103B . 1.5×104C . 1.5×105D . 0.15×1053. (2分) (2020七下·萧山期末) 下列计算正确的是A .B .C .D .4. (2分)(2018·曲靖模拟) 把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A . 6→3B . 7→16C . 7→8D . 6→155. (2分) (2016七下·博白期中) 若不等式组无解,则m的取值范围是()A . m>3B . m<3C . m≥3D . m≤36. (2分)下列函数中,自变量的取值范围选取错误的是()A . y=2x2中,x取全体实数B . y=中,x取x≠-1的实数C . y=中,x取x≥2的实数D . y=中,x取x≥-3的实数7. (2分)某物体的三视图如图所示,那么该物体的形状是()A . 圆柱B . 球C . 正方体D . 长方体8. (2分) (2015八下·深圳期中) 学校建围栏,要为24000根栏杆油漆,由于改进了技术,每天比原计划多油400根,结果提前两天完成了任务,请问原计划每天油多少根栏杆?如果设原计划每天油x根栏杆,根据题意列方程为()A . = +2B . = ﹣2C . = ﹣2D . = +29. (2分) (2019八下·双阳期末) 已知矩形的面积为36cm2 ,相邻两条边长分别为xcm和ycm,则y与x 之间的函数图象正确的是()A .B .C .D .10. (2分) (2017九上·鄞州月考) 对于二次函数的图象与性质,下列说法正确的是()A . 对称轴是直线,最小值是B . 对称轴是直线,最大值是C . 对称轴是直线,最小值是D . 对称轴是直线,最大值是二、填空题 (共6题;共7分)11. (1分)(2018·威海) 分解因式:﹣ a2+2a﹣2=________.12. (2分)数据1,2,3,5,5的众数是________ ,平均数是________ .13. (1分)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为________14. (1分)(2018·新乡模拟) 如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为________.15. (1分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带________ 去.16. (1分) (2019八下·南昌期末) 如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为________.三、解答题 (共9题;共84分)17. (5分) (2019八下·长沙开学考) 计算: .18. (5分)(2017·汉阳模拟) 先化简,再求代数式的值,其中a=3tan30°+1,b= cos45°.19. (12分)(2019·西安模拟) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:非常了解,比较了解,基本了解,不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查________名学生;扇形统计图中C所对应扇形的圆心角度数是________;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?20. (10分)(2019·顺义模拟) 如图,在平面直角坐标系xOy中,直线y=kx+k与双曲线y=(x>0)交于点A(1,a).(1)求a,k的值;(2)已知直线l过点D(2,0)且平行于直线y=kx+k,点P(m,n)(m>3)是直线l上一动点,过点P分别作x轴、y轴的平行线,交双曲线y=(x>0)于点M、N,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为W.横、纵坐标都是整数的点叫做整点.①当m=4时,直接写出区域W内的整点个数;②若区域W内的整点个数不超过8个,结合图象,求m的取值范围.21. (12分)(2020·仙居模拟) 新房装修甲居民购买家居用品的清单如下表,因污水导致部分信息无法识别,据下表解决问题:家居用品名称单价(元)数量(个)金额(元)挂钟30260垃圾桶15塑料鞋架40艺术字画a290电热水壶351b合计8280(1)直接写出a=________,b=________;(2)甲居民购买了垃圾桶,塑料鞋架各几个?(3)若甲居民再次购买艺术字画和垃圾桶两种家居用品,共花费150元,则有哪几种不同的购买方案?22. (10分)(2020·定安模拟) 如图,某大楼的顶部有一块广告牌,小背在山坡的坡脚处测得广告牌底部的仰角为45°,沿坡面向上走到处测得广告牌顶部C的仰角为30°.已知山坡的坡度为,米,米.此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键.(1)求点B距地面的高度;(2)求广告牌的高度.(结果保留根号)23. (7分)(2017·林州模拟) 如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB= ,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是________时,四边形ABDE是菱形;②当的长度是________时,△ADE是直角三角形.24. (15分)综合与实践:再探平行四边形的性质问题情境:学完平行四边形的有关知识后,同学们开展了再探平行四边形的性质数学活动,以下是“希望小组”得到的一个性质:如图1,已知▱ABCD中,∠BAD>90°,AE⊥BC于点E ,AF⊥CD于点F ,则∠EAF=∠ABC .问题解决:(1)如图2,当0°<∠BAD<90°时,∠EAF=∠ABC还成立吗?证明你发现的结论;(2)如图2,连接EF和AC ,若∠ACB=27°,求∠AFE的度数;拓广探索:(3)如图3,当0°<∠BAD<90°且AB=BC时,已知EF与AB , AD分别相交于点M和点N ,探究图中由点A , E , M , N , F五个点构成的线段或角的数量关系,请你直接写出两个结论(不考虑直角,不必证明).25. (8分)(2019·北仑模拟) 如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是半高三角形,此时,称△ABC是BC类半高三角形;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF类半高三角形.(1)直接写出下列3个小题的答案.①若一个三角形既是等腰三角形又是半高三角形,则其底角度数的所有可能值为________.②若一个三角形既是直角三角形又是半高三角形,则其最小角的正切值为________.③如图3,正方形网格中,L,M是已知的两个格点,若格点N使得△LMN为半高三角形,且△LMN为等腰三角形或直角三角形,则这样的格点N共有________个.(2)如图,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点T坐标为(0,5),点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为RS类半高三角形.①当点P介于点R与点S之间(包括点R,S),且PQ取得最小值时,求点P的坐标.②当点P介于点R与点O之间(包括点R,O)时,求PQ+ QT的最小值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共84分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、。
2020年河南省商丘一中中考数学二模试卷(含答案解析)
2020年河南省商丘一中中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.−2的绝对值是A. −2B. 2C. ±2D. −122.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A. 0.129×10−2B. 1.29×10−2C. 1.29×10−3D. 12.9×10−13.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.4.如图,所示的几何体的主视图是()A.B.C.D.5.下列各式中计算正确的有几项()①.(a+2b)2=a2+4ab+b2;②.(2a6b4c)÷(−14a3c)=−12a3b4c;③.(4x+4y)(4x−4y)=16x−16y;④.2ab(5ab2+3a2b)=10a2b3+6a3b2.A. 0B. 1C. 2D. 36.一元二次方程2x2+2√2x+1=0的根的情况是()A. 方程有两个不相等的实数根B. 方程有两个相等的实数根C. 方程没有实数根D. 方程根的情况不能确定7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A,B为圆心,大于12AB的长为半径画弧,两弧的交点分别为P、Q,过P、Q两点作直线交BC于点D,则CD的长是()A. 1.4B. 1.5C. 1.6D. 3.48.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=−1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2−4ac>0;③ab<0;④a−b+c<0,其中正确的结论有()个.A. 4个B. 3个C. 2个D. 1个9.已知方程12x2+x+m=0有两个不相等的实数根,则二次函数y=12x2+x+m的图象可能是()A. B.C. D.10.如图1,动点P从菱形ABCD的顶点A出发,沿A→C→D以1cm/s的速度运动到点D.设点P的运动时间为(s),△PAB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则a的值为()A. √5B. 52C. 2D. 2√5二、填空题(本大题共5小题,共15.0分)11.计算:(3−π )0−√8+(12)−1+|1−√2|=________.12.若二次函数y=mx2−(2m+2)x−1+m的图象与x轴有两个交点,则m的取值范围是_____________.13.一个不透明的袋子里装有除颜色不同外其他都相同的5个小球,其中红球3个、白球2个,一次从中摸出两个小球,全是红球的概率为______ .14.如图,在平行四边形ABCD中,以AB中点E为圆心,EA为半径画弧交CD于点F,点F恰好为CD中点,若∠B=60°,BC=6,则图中阴影部分的面积为______.15.矩形ABCD的对角线AC,BD相交于点O,若AB=AO,则∠ABD的度数是______.三、解答题(本大题共8小题,共75.0分)16.先化简,再求值.(a+2a2−2a −a−1a2−4a+4)÷4−aa−2,其中a2−2a−1=0.17.为了让学生了解安全知识,增强安全意识,某校举行了一次“安全知识竞赛”.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩为样本,绘制了下列统计图(说明:A级:90分−−100分;B级:75分−−89分;C级:60分−−74分;D级:60分以下).请结合图中提供的信息,解答下列问题:(1)本次调查的样本容量是___;(2)扇形统计图中C级所在的扇形的圆心角度数是___;(3)请把条形统计图补充完整;(4)若该校共有1500名学生参加了这次竞赛,请你估计在此次安全知识竞赛中,达到A级和B 级的学生共约有多少人?18.如图,直线y=kx+b(k≠0)与双曲线y=mx (m≠0)交于点A(−12,2)B(1,−1).(1)方程kx+b−mx =0的解为____,不等式kx+b<mx的解集是____;(请直接写出答案)(2)点P在x轴上,如果S△ABP=3,求点P的坐标.19.如图,已知矩形ABCD,⊙O经过A,B两点,与CD切于E点(1)求证:CE=DE;(2)过点A作⊙O的切线交CD的延长线于点P,若⊙O的半径为10,CD=12,求PA的长.20.如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,楼BC的高度大约为多少?(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)21.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?22.已知△ABC,点D,E分别在边AB,AC上,分别过A,D,E作BC的垂线,垂足为H,F,G.(1)如图1,若AB=AC,BD=AE,求证:AH=DF+EG;(2)如图2,若BDBA =AEAC,请猜想AH,DF,EG之间的数量关系,并给予证明.23.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A(−2,0)、B(4,0),交y轴于点C(0,−3).(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求点D坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,直接写出点Q坐标,不存在,请说明理由.【答案与解析】1.答案:B解析:本题考查了绝对值的概念.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.解:|−2|=2.故选B.2.答案:C解析:解:0.00129这个数用科学记数法可表示为1.29×10−3.故选C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.答案:A解析:本题主要考查了中心对称图形与轴对称图形的定义.根据轴对称图形与中心对称图形的概念求解即可.解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,也不是中心对称图形,不符合题意;C.不是轴对称图形,也不是中心对称图形,不符合题意;D.是轴对称图形,也是中心对称图形,不符合题意.故选A.4.答案:D解析:解:从几何体的正面可以看到D中的图形,故选:D.根据主视图是从物体正面看,所得到的图形解答即可.本题考查的是简单几何体的三视图,掌握主视图、左视图、俯视图分别是从物体正面、左面、上面看,所得到的图形是解题的关键.5.答案:B解析:本题考查了整式的运算,熟练掌握完全平方公式、平方差公式、单项式除以单项式、单项式乘以多项式的法则是解答本题的关键.根据乘法公式及运算法则逐个计算式子得出结果即可求出答案.解:①(a+2b)2=a2+4ab+4b2,故不正确;a3c)=−8a3b4,故不正确;②(2a6b4c)÷(−14③(4x+4y)(4x−4y)=16x2−16y2,故不正确;④2ab(5ab2+3a2b)=10a2b3+6a3b2,故正确.故选B.6.答案:B解析:本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a≠0)根的情况与判别式△的关系:先求出△的值,再判断出其符号即可.(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.解:∵△=(2√2)2−4×2×1=0,∴方程有两个相等的实数根.故选B.7.答案:C解析:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5−x)2,解得x=175,∴CD=BC−DB=5−175=85=1.6,故选C.8.答案:B解析:本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2−4ac 决定抛物线与x轴的交点个数:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.利用抛物线的对称性可确定A点坐标为(−3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向上得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=−1时,y<0,即a−b+c<0和a>0可对④进行判断.解:对于①,∵抛物线的对称轴为直线x=−1,点B的坐标为(1,0),∴A(−3,0),∴AB=1−(−3)=4,所以①正确;对于②,∵抛物线与x轴有2个交点,∴△=b2−4ac>0,所以②正确;对于③,∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=−b2a=−1,∴b=2a>0,∴ab>0,所以③错误;对于④,∵x=−1时,y<0,∴a−b+c<0,而a>0,∴a(a−b+c)<0,所以④正确.故选B.9.答案:D解析:本题考查的是二次函数的图象,根据方程12x2+x+m=0有两个不相等的实数根可知Δ>0,则二次函数y=12x2+x+m与x轴有两个交点,再根据a=12>0,即可判断二次函数的开口方向,最后根据二次函数的对称轴x=−b2a来判定满足条件的函数图象即可.解:∵方程12x2+x+m=0有两个不相等的实数根,∴Δ>0,即二次函数y=12x2+x+m与x轴有两个交点,∵a=12>0,∴二次函数y=12x2+x+m开口向上,又∵二次函数的对称轴x =−b 2a =−12×12=−1<0,∴二次函数的对称轴在y 轴的左边,综上所述,满足条件的二次函数的图象是D ,故选D .10.答案:B解析:解:由图2知,菱形的边长为a ,对角线AC =√5,则对角线BD 为2(√52)=2√a 2−54, 当点P 在线段AC 上运动时,y =12AP ×12BD =12×√a 2−54x , 由图2知,当x =√5时,y =a , 即a =12×√a 2−54×√5, 解得:a =52,故选:B .由图2知,菱形的边长为a ,对角线AC =√5,则对角线BD 为2√a 2−(√52)2=2√a 2−54,当点P 在线段AC 上运动时,y =12AP ×12BD =12×√a 2−54x ,即可求解. 本题考查的是动点图象问题,涉及到二次函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解. 11.答案:2−√2解析:此题主要考查的是实数的运算,掌握实数的运算法则,是解答此题的关键.先根据绝对值的性质,零指数幂的定义,负整数指数幂的定义,二次根式的化简,分别进行计算,然后再进行加减运算即可. 解:原式=1−2√2+2+√2−1=2−√2.故答案为:2−√212.答案:m >−13且m ≠0解析:【试题解析】解:∵原函数是二次函数,∴m≠0.∵二次函数y=mx2−(2m+2)x−1+m的图象与x轴有两个交点,则△=b2−4ac>0,△=[−(2m+2)]2−4m(−1+m)>0,解得m>−13,∴m的取值范围是:m>−13且m≠0.故答案是:m>−13且m≠0.本题考查了抛物线与x轴的交点:当△=b2−4ac>0时图象与x轴有两个交点;当△=b2−4ac=0时图象与x轴有一个交点;当△=b2−4ac<0时图象与x轴没有交点.根据二次函数y=mx2−(2m+2)x−1+m的图象与x轴有两个交点,可得△=[−(2m+2)]2−4m(−1+m)>0且m≠0,求解即可.13.答案:310解析:解:画树状图:共有20种等可能的结果数,其中两个小球全是红球的结果数为6,所以一次从中摸出两个小球,全是红球的概率=620=310.故答案为310.画树状图展示所有20种等可能的结果数,再找出两个小球全是红球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14.答案:2π3解析:解:连接EF、EC,∵CF//BE,CF=BE,∴四边形EBCF是平行四边形,∴EF//BC,∴∠B=∠FEA,∵∠B=60°,∴∠FEA=60°,∵EF=EA,∴FA=CE,同理可证,四边形AECF是平行四边形,∴EC=AF,∴EC=BC,∵∠B=60°,BC=2,∴BE=BC=CF=EC=2,∴图中阴影部分的面积为:60×π×22360+2×2×sin60°2−2×2×sin60°2=2π3,故答案为:2π3.根据题意作出合适的辅助线,然后根据题意可知阴影部分的面积就是扇形AEF的面积+△CEF的面积−△AEC的面积,从而可以解答本题.本题考查扇形的面积、平行四边形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.答案:60°解析:解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.故答案为60°.首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.16.答案:解:(a+2a2−2a −a−1a2−4a+4)÷4−aa−2,=[a+2a(a−2)−a−1(a−2)2]·a−24−a,=(a+2)(a−2)−a(a−1)a(a−2)2·a−2 4−a,=a2−4−a2+aa(a−2)2·a−2 4−a,=−a−4a(a−2)·a−2 a−4,=−1a a−2,=−1a2−2a,∵a2−2a−1=0,∴a2−2a=1,∴原式=−1.解析:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.17.答案:解:(1)100;(2)36°;(3)抽样总人数为49÷49%=100(人),C级的学生数为100×10%=10(人);(4)安全知识竞赛中A级和B级的学生数为1500×(49%+36%)=1275(人).答:安全知识竞赛中A级和B级的学生一共有1275人.解析:本题考查的是条形统计图和扇形统计图的综合运用,用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据A的人数除以A所占的百分比,求出抽取的学生数即可;(2)利用C级所在的扇形的圆心角度数=C级的百分比×360°求解即可,(3)先求出抽样总人数,现求出C级的学生数即可作图;(4)利用安全知识竞赛中A级和B级的学生数=总人数×(A级的百分比+B级的百分比)求解即可.解:(1)49÷49%=100(人).本次抽取的学生人数为100人.故答案为100;(2)C级所在的扇形的圆心角度数为(1−49%−36%−5%)×360°=36°.故答案为36°;(4)见答案.18.答案:解:(1)x =−12或1;−12<x <0或x >1;(2)把A(−12,2)B(1,−1)代入y =kx +b 得{−12x +b =2k +b =−1,解得{k =−2b =−1, 则直线解析式为y =−2x −1,当y =0时,−2x +1=0,解得x =12,则C(12,0),设点P 的坐标为(x,0),则PC =|x −12 |,∵S △ABP =3,∴12×3|x −12 |=3,即|x −12 |=2,解得:x 1=−32,x 2=52,∴点P 的坐标为(−32,0)或(52,0).解析:本题考查了反比例函数和一次函数的综合应用,熟练掌握反比例函数和一次函数的性质是解题的关键.(1)结合图象,分析函数值的大小关系即可;(2)用待定系数法求直线解析式;设点P 的坐标为(x,0),则PC =|x −12|,根据面积公式求解. 解:(1)当x =−12或x =1时,kx +b =m x ,所以方程kx +b −m x =0的解为x =−12或1;当−12<x <0或x >1时,kx +b <mx ,则不等式kx +b <m x 的解集是−12<x <0或x >1;故答案为x =−12或1;−12<x <0或x >1;(2)见答案.19.答案:(1)证明:连接OE ,延长EO 交AB 于F ,如图1所示:∵⊙O 与CD 切于E 点,∴OE ⊥CD ,∵四边形ABCD 是矩形,∴∠A =∠B =∠C =∠ADC =90°,CD =AB ,AB//CD ,∴OF ⊥AB ,且AF =BF ,∴CE =DE ;(2)解:如图2所示:连接GH 、AH ,则AH 为直径,∠AGH +∠B =180°,∴∠AGH =90°,∠DGH =90°,∴四边形ABHG 和四边形CDGH 是矩形,∴GH =AB =CD =12,DG =CH ,∵AF =BF =6,∴OF =√OA 2−AF 2=8,同理:ON =8,∴AG =FN =16,∵OA =OC ,CE =DE ,∴OE 是梯形ADCH 的中位线,∴OE =12(AD +CH)=10,∴AD +CH =AG +2DG =20,∴DG =2,∴AD=18,∵PA、PE是⊙O的切线,∴PA=PE,在Rt△APD中,PD=PE−DE=PA−3,AD2+(PA−6)2=PA2,即182+(PA−6)2=PA2,解得:PA=30.解析:(1)证明:连接OE,延长EO交AB于F,由切线的性质得出OE⊥CD,由垂径定理得出OF⊥AB,且AF=BF,即可得出结论;(2)连接GH、AH,则AH为直径,证出四边形ABHG和四边形CDGH是矩形,得出GH=AB=CD=12,DG=CH,由勾股定理得出OF=√OA2−AF2=8,同理:ON=8,得出AG=FN=16,由梯形中(AD+CH)=10,AD+CH=AG+2DG=20,得出DG=2,AD=18,由切位线定理得出OE=12线长定理得出PA=PE,在Rt△APD中,由勾股定理得出方程,解方程即可.本题考查了切线的性质、矩形的判定与性质、切线长定理、垂径定理、勾股定理等知识;熟练掌握切线的性质,求出AD的长是解题的关键.20.答案:解:在Rt△ABD中,∵AD=31,∠BAD=32°,∴BD=AD⋅tan32°≈31×0.6=18.6,在Rt△ACD中,∵∠DAC=45°,∴CD=AD=31,∴BC=BD+CD=18.6+31≈50.故楼BC的高度大约为50m.解析:此题考查了解直角三角形的应用−仰角俯角问题.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.在Rt△ABD中,求得BD=AD⋅tan32°=18.6,在Rt△ACD中,求得CD=AD=31,再根据BC= BD+CD,代入数据计算即可.21.答案:解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元.根据题意,得{x +2y =5900,2x +2y =9400,解得{x =3500,y =1200. 故每台A 型电脑的价格为3500元,每台B 型打印机的价格为1200元.(2)设学校购买n 台B 型打印机,则购买A 型电脑(n −1)台.根据题意,得3500(n −1)+1200n ≤20000,解得n ≤5.故该学校至多能购买5台B 型打印机.解析:本题主要考查二元一次方程组与一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.(1)设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元,根据“1台A 型电脑的钱数+2台B 型打印机的钱数=5900,2台A 型电脑的钱数+2台B 型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买n 台B 型打印机,则购买A 型电脑为(n −1)台,根据“(n −1)台A 型电脑的钱数+n 台B 型打印机的钱数≤20000”列出不等式,解之可得.22.答案:证明:(1)如图1,过点E 作EK ⊥AH ,垂足为K ,则KH =EG ,由已知可得,∠1=∠2,∠1=∠3,∴∠2=∠3,∵∠AKE =∠DFB =90°,AE =BD ,∴△AKE≌△DFB,∴AK=DF,∴AH=KH+AK=DF+EG;(2)数量关系为:AH=DF+EG,理由如下:由已知可得,△BDF∽△BAH,△CEG∽△CAH,∴DFAH =BDBA,EGAH=ECAC=AC−AEAC=1−AEAC,∵BDBA =AEAC,∴DFAH +EGAH=1,∴AH=DF+EG.解析:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.(1)如图1,过E作EK⊥AH于K,得到四边形EKHG是矩形,于是得到KH=EG,通过△DFB≌△AKE,得到AK=DF,等量代换即可得到结论.(2)由于DF⊥BC,AH⊥BC,EG⊥BC,得到DF//AH//EG,推出△BDF∽△BAH,△CEG∽△CAH,根据相似三角形的性质得BDAB =DFAH,CEAC=EGAH,1−AEAC=EGAH,等量代换得到DFAH+EGAH=1,于是得到结论.23.答案:解:(1)抛物线的表达式为:y=a(x+2)(x−4)=a(x2−2x−8),故−8a=−3,解得:a=38,故抛物线的表达式为:y=38x2−34x−3;(2)将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =34x −3, 过点D 作y 轴的平行线交CB 于点H ,设点H(x,34x −3),则点D(x,38x 2−34x −3),S △BCD =12HD ×OB =12×4×(34x −3−38x 2+34x +3)=−34x 2+3x ,当x =2时,S 最大值为3,此时,点D(2,−3);(3)①当点Q 在x 轴上方时,过点Q 作QH ⊥BC 于点H ,设对称轴交BC 于点G ,直线BC 的表达式为:y =34x −3,抛物线的对称轴为:x =1,故点G(1,−94),则BG =154, 则tan∠OCB =43=tanα=tan∠QGB ,∠QBC =45°,设:QH =4x =BH ,GH =3x ,则QG =5x ,GB =GH +BH =3x +4x =154,解得:x =1528, GQ =5x =7528,QM =QG −MG =7528−94=37, 故点Q(1,37);②当点Q 在x 轴下方时,同理可得:点Q(1,−21);综上Q 的坐标为:(1,−21)或(1,37).解析:本题考查的是二次函数综合运用,涉及解直角三角形、面积的计算等,其中(3),要注意分类求解,避免遗漏.(1)抛物线的表达式为:y =a(x +2)(x −4)=a(x 2−2x −8),故−8a =−3,即可求解;(2)△BCD 面积S =12HD ×OB =12×4×(34x −3−38x 2+34x +3)=−34x 2+3x ,即可求解;(3)分点Q 在x 轴上方、点Q 在x 轴下方两种情况,分别求解即可.。
河南省商丘市2019年中考数学二模试卷
河南省商丘市2019年中考数学二模试卷一、选择题(每小题3分,共24分)在每小题四个选项中,只有一项是符合题目要求1.﹣的绝对值为()A.﹣2 B.﹣C.D.12.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 0025米,把0.000 0025用科学记数法表示为()A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣63.体育老师测试了一组学生的立定跳远成绩,记录如下(单位:m):2.00,2.11,2.35,2.15,2.20,2.17,那么这组数据的中位数是()A.2.15 B.2.16 C.2.17 D.2.204.直线l1∥l2,一块含45°角的直角三角板,如图放置,∠1=42°,则∠2等于()A.97°B.93°C.87°D.83°5.不等式组的最小正整数解为()A.1 B.2 C.3 D.46.下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.7.如图,AB是半圆的直径,D是弧AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°8.如图,在平面直角坐标系中,放置半径为1的圆,与两坐标轴相切,若该圆向x轴正方向滚动2016圈后(滚动时在x轴上不滑动),则该圆的圆心坐标为()A.(4032π+1.0)B.(4032π+1.1)C.(4032π﹣1.0)D.(4032π﹣1.1)二、填空题(每小题3分,共21分)9. =______.10.如图,已知直线AB∥CD,直线EG垂直于AB,垂足为G,直线EF交CD于点F,∠1=50°,则∠2=______.11.微信根据移动ID所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为______.12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为______.13.反比例函数y=经过点A(﹣3,1),设B(x1,y1),C(x2,y2)是该函数图象上的两点,且x1<x2<0,那么y1与y2的大小关系是______(填“y1>y2”,“y1=y2”或“y1<y2”).14.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为______平方单位.15.已知一个矩形纸片OACB,OB=6,OA=11,点P为BC边上的动点(点P不与点B,C重合),经过点O折叠该纸片,得折痕OP和点B′,经过点P再次折叠纸片,使点C落在直线PB′上,得折痕PQ和点C′,当点C′恰好落在边OA上时BP的长为______.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有______ 人;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树______棵.(保留整数)18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=______时,四边形ADFE为菱形;(3)当AB=______时,四边形ACBF为正方形.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k取最大整数值时,用合适的方法求该方程的解.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?河南省商丘市2019年中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共24分)在每小题四个选项中,只有一项是符合题目要求1.﹣的绝对值为()A.﹣2 B.﹣C.D.1【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣|=,∴﹣的绝对值为.故选:C.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 0025米,把0.000 0025用科学记数法表示为()A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.体育老师测试了一组学生的立定跳远成绩,记录如下(单位:m):2.00,2.11,2.35,2.15,2.20,2.17,那么这组数据的中位数是()A.2.15 B.2.16 C.2.17 D.2.20【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的从小到大的顺序排列为:2.00、2.11、2.15、2.17、2.20、2.35,则中位数为:2.16.故选B.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.直线l1∥l2,一块含45°角的直角三角板,如图放置,∠1=42°,则∠2等于()A.97°B.93°C.87°D.83°【考点】平行线的性质;三角形的外角性质.【分析】根据平行线的性质得出∠2=∠ADE,根据三角形外角性质求出∠ADE,即可得出答案.【解答】解:∴直线l1∥l2,∴∠2=∠ADE,∵∠1=42°,∠A=45°,∴∠2=∠ADE=∠1+∠A=87°,故选C.【点评】本题考查了三角形外角性质,平行线的性质的应用,能正确运用定理进行推理是解此题的关键.5.不等式组的最小正整数解为()A.1 B.2 C.3 D.4【考点】一元一次不等式组的整数解.【分析】首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.【解答】解:由不等式①得x≥﹣1,由不等式②得x<4,所以不等组的解集为﹣1≤x<4,因而不等式组的最小整数解是1.故选A.【点评】本题主要考查了一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键;其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).6.下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】根据三棱柱的展开图的特点进行解答即可.【解答】A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误.故选B.【点评】此题主要考查了几何体展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.7.如图,AB是半圆的直径,D是弧AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°【考点】圆周角定理.【分析】连接AC,根据圆周角定理求出∠C的度数,故可得出∠BAC的度数,再由圆周角和弦的关系求出的度数,故可得出的度数,由此可得出结论.【解答】解:连接AC,∵AB是半圆的直径,∴∠C=90°.∵∠ABC=50°,∴∠BAC=90°﹣50°=40°,=50°,∵D是弧AC的中点,∴=25°,∴∠DAC=25°,∴∠DAB=∠DAC+∠BAC=25°+40°=65°.故选C.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.8.如图,在平面直角坐标系中,放置半径为1的圆,与两坐标轴相切,若该圆向x轴正方向滚动2016圈后(滚动时在x轴上不滑动),则该圆的圆心坐标为()A.(4032π+1.0)B.(4032π+1.1)C.(4032π﹣1.0)D.(4032π﹣1.1)【考点】弧长的计算;规律型:点的坐标.【分析】由题意可知,该圆每向x轴正方向滚动1圈后,圆心的横坐标向右平移1个圆的周长,纵坐标不变,依此得出该圆向x轴正方向滚动2016圈后该圆的圆心坐标.【解答】解:∵圆的半径为1,∴圆的周长为2π×1=2π,∵图中圆的圆心坐标为(1,1),∴该圆向x轴正方向滚动2016圈后(滚动时在x轴上不滑动),该圆的圆心横坐标为2016×2π=4032π,纵坐标为1,即(4032π+1,1).故选B.【点评】本题考查了规律型:点的坐标,圆的周长公式,得出该圆每向x轴正方向滚动1圈后,圆心的横坐标向右平移1个圆的周长,纵坐标不变的规律是解题的关键.二、填空题(每小题3分,共21分)9. = 2 .【考点】算术平方根.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.如图,已知直线AB∥CD,直线EG垂直于AB,垂足为G,直线EF交CD于点F,∠1=50°,则∠2= 140°.【考点】平行线的性质.【分析】先根据垂直的定义求出∠AGE=90°,由三角形外角的性质得出∠AHE的度数,根据平行线的性质即可得出结论.【解答】解:∵EG⊥AB,∴∠AGE=90°.∵∠1=50°,∴∠AHE=∠1+∠AGE=50°+90°=140°.∵AB∥CD,∴∠2=∠AHE=140°.故答案为:140°.故答案为:140°.11.微信根据移动ID所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为 3.13×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于313万有7位,所以可以确定n=7﹣1=6.【解答】解:313万=3.13×106.故答案为:3.13×106.12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为: =.故答案为:.13.反比例函数y=经过点A(﹣3,1),设B(x1,y1),C(x2,y2)是该函数图象上的两点,且x1<x2<0,那么y1与y2的大小关系是y1<y2(填“y1>y2”,“y1=y2”或“y1<y2”).【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数y=经过点A(﹣3,1)得出反比例函数y=﹣,判断此函数图象所在的象限,再根据x1<x2<0判断出A(x1,y1)、B(x2,y2)所在的象限,根据此函数的增减性即可解答.【解答】解:∵反比例函数y=经过点A(﹣3,1),∴反比例函数y=﹣中,k=﹣3<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0,∴A(x1,y1)、B(x2,y2)两点均位于第二象限,∴y1<y2.故答案为:y1<y2.14.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为π﹣2 平方单位.【考点】扇形面积的计算.【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH =S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.【解答】解:连接OC,作OM⊥BC,ON⊥AC.∵CA=CB,∠ACB=90°,点O为AB的中点,∴OC=AB=2,四边形OMCN是正方形,OM=,则扇形FOE的面积是: =π,∵OA=OB,∠AOB=90°,点D为AB的中点,∴OC平分∠BCA,又∵OM⊥BC,ON⊥AC,∴OM=ON,∵∠GOH=∠MON=90°,∴∠GOM=∠HON,则在△OMG和△ONH中,,∴△OMG≌△ONH(AAS),∴S四边形OGCH =S四边形OMCN=()2=2.则阴影部分的面积是:π﹣2,故答案为:π﹣2.15.已知一个矩形纸片OACB,OB=6,OA=11,点P为BC边上的动点(点P不与点B,C重合),经过点O折叠该纸片,得折痕OP和点B′,经过点P再次折叠纸片,使点C落在直线PB′上,得折痕PQ和点C′,当点C′恰好落在边OA上时BP的长为或.【考点】翻折变换(折叠问题).【分析】设BP=t,AQ=m,首先过点P作PE⊥OA于E,易证△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例得到m=t2﹣t+6,即可求得t的值.【解答】解:过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,设BP=t,AQ=m,∵PC′=PC=11﹣t,PE=OB=6,C′Q=CQ=6﹣m,AC′==,∴=.∵=,∴m=t2﹣t+6,又∵36﹣12m=t2,将m=t2﹣t+6代入36﹣12m=t2,化简得,3t2﹣22t+36=0,解得:t1=,t2=.故答案为:或.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,选取合适的a的值代入进行计算即可.【解答】解:原式=•=•=•=,当a=﹣1时,原式=(答案不唯一).17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有50 人;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 3 棵.(保留整数)【考点】条形统计图;扇形统计图;加权平均数.【分析】(1)用植2棵树的学生数除以其百分比即可解答.(2)用总人数减去其他人数即可解答,再填图即可.(3)利用加权平均数的求法,求出总棵树再除以人数即可解答.【解答】解:(1)16÷32%=50;(2)50﹣10﹣16﹣8﹣4=12人,画图如下(3)(1×10+2×16+4×12+5×8+6×4)÷50=3.18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB= 60°时,四边形ADFE为菱形;(3)当AB= 4时,四边形ACBF为正方形.【考点】圆的综合题.【分析】(1)根据EF∥AB,可以得到∠FAB和∠CAB的关系,由AC和AF都是圆的半径,AB是△ABC和△ABF的公共边可以得到△ABC和△ABF关系;(2)根据四边形ADFE为菱形,通过变形可以得到∠CAB的度数;(3)根据四边形ACBF为正方形,AC=4,AB是该正方形的对角线,可以求得AB 的长.【解答】(1)证明:∵EF∥AB,∴∠AEF=∠CAB,∠AFE=∠FAB,又∵AE=AF,∴∠AEF=∠AFE,∴∠FAB=∠CAB,在△ABC和△ABF中,,∴△ABC≌△ABF(SAS);(2)连接CF,如右图所示,若四边形ADFE为菱形,则AE=EF=FD=DA,又∵CE=2AE,CE是圆A的直径,∴CE=2EF,∠CFE=90°,∴∠ECF=30°,∴∠CEF=60°,∵EF∥AB,∴∠AEF=∠CAB,∴∠CAB=60°,故答案为:60°;(3)若四边形ACBF为正方形,则AC=CB=BF=FA,AB是正方形ACBF的对角线,∵AC=4,∴AB=.故答案为:4.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k取最大整数值时,用合适的方法求该方程的解.【考点】根的判别式.【分析】(1)根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.(2)从上题中找到K的最大整数,代入方程后求解即可.【解答】解:(1)∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△>0,即22﹣4×1×k>0,解得:k<1;(2)根据题意,当k=0时,方程为:x2+2x=0,左边因式分解,得:x(x+2)=0,∴x1=0,x2=﹣2.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)【考点】解直角三角形的应用;弧长的计算.【分析】(1)构造∠α为锐角的直角三角形,利用α的正弦值可得AB的长;(2)弧MN的长度为圆心角为90+α,半径为0.8的弧长,利用弧长公式计算即可.【解答】解:(1)作AF⊥BC于F.∴BF=BC﹣AD=0.4米,∴AB=BF÷sin18°≈1.29米;(2)∵∠NEM=90°+18°=108°,∴弧长为=0.48π米.21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?【考点】二次函数的应用.【分析】(1)分别设出两种方案中y关于x的函数关系式,用待定系数法求解,即可解答;(2)根据“两种方案月报酬差额将达到3800元”,得到方程30x2﹣(50x+1200)=3800,即可解答;(3)分别计算出当销售员销售产量达到40件时,方案一与方案二的月报酬,根据方案二的月报酬不低于方案一的月报酬,列出不等式组,即可解答.【解答】解:(1)设y1=ax2,把(30,2700)代入得:900a=2700,解得:a=3,∴y1=3x2.设y2=kx+b,把(0,1200),(30,2700)代入得:,解得:,∴y2=50x+1200.(2)由题意得:30x2﹣(50x+1200)=3800,解得:x1=50,x2=﹣(舍去),答:当销售达到50件时,两种方案月报酬差额将达到3800元.(3)当销售员销售产量达到40件时,方案一的月报酬为:3×402=4800,方案二的月报酬为:(50+m)×40+1200=40m+3200,由题意得:40m+3200≥4800,解得:m≥40,答:当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬,m 至少增加40元.22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.【考点】几何变换综合题.【分析】(1)根据含30°的直角三角形的性质和等边三角形的性质解答即可;(2)根据相似三角形的判定和性质以及直角三角形中的三角函数解答即可;(3)由(2)的推理得出,再利用直角三角形的三角函数解答.【解答】解:(1)∵∠ACB=90°,D为AB的中点,∴CD=DB,∴∠DCB=∠B,∵∠B=60°,∴∠DCB=∠B=∠CDB=60°,∴∠CDA=120°,∵∠EDC=90°,∴∠ADE=30°;(2)∵∠C=90°,∠MDN=90°,∴∠DMC+∠CND=180°,∵∠DMC+∠PMD=180°,∴∠CND=∠PMD,同理∠CPD=∠DQN,∴△PMD∽△QND,过点D分别做DG⊥AC于G,DH⊥BC于H,可知DG,DH分别为△PMD和△QND的高∴=,∵DG⊥AC于G,DH⊥BC于H,∴DG∥BC,又∵D为AC中点,∴G为AC中点,∵∠C=90°,∴四边形CGDH 为矩形有CG=DH=AG,Rt△AGD中,即(3)是定值,定值为tan(90°﹣β),∵,四边形CGDH 为矩形有CG=DH=AG,∴Rt△AGD中, =tan∠A=tan(90°﹣∠B)=tan(90°﹣β),∴=tan(90°﹣β).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?【考点】二次函数综合题.【分析】(1)将点A、B代入抛物线解析式,求出a、b值即可得到抛物线解析式;(2)根据已知求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形性质求出点G的坐标,写出直线BP 解析式,联立二次函数解析式,求出点P坐标;(3)分两种情况,第一种情况重叠部分为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形面积公式求得.【解答】解:(1)将A(﹣1,0)、B(3,0)代入抛物线y=ax2+bx+3(a≠0),,解得:a=﹣1,b=2.故抛物线解析式为:y=﹣x2+2x+3.(2)存在将点D代入抛物线解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如下图,设BP交y轴于点G,∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中:∵∠∴△CDB≌△CGB(ASA),∴CG=CD=2,∴OG=1,∴点G(0,1),设直线BP:y=kx+1,代入点B(3,0),∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式:,解得:或(舍),∴P(﹣,).(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,当0≤t≤2时,如下图:设直线C′B′:y=﹣(x﹣t)+3联立直线BD求得F(,),S=S△BCD ﹣S△CC′E﹣S△C′DF=×2×3﹣×t×t﹣×(2﹣t)(3﹣)整理得:S=﹣t2+3t(0≤t≤2).当2<t≤3时,如下图:H(t,﹣3t+9),I(t,﹣t+3)S=S= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)△HIB整理得:S=t2﹣6t+9(2<t≤3)综上所述:S=.。
河南省商丘市第一中学2019-2020年九年级下期二模数学试卷(无答案)
2019-2020学年商丘市第一中学二模九年级数学试卷班级______ 姓名__________ 分数 _________一, 选择题(共10小题,每题3分)1. - 2020的绝对值是()A.2020B.-2020C.20201D.20201 2.已知空气的单位体积质量是0. 001239g/ cm 3,则用科学记数法表示该数为( )A. 1.239X10-3g/ cm 3B.1. 239X10-2g/ cm 3C. 0. 1239X10-2g/ cm 3D. 12.39X 10-4g/ cm 33.下列图形中,既是轴对称图形又是中心对称图形的是4.如图所示的工件的主视图是5. 下列各运算中,计算正确的是( )A. 2a ·3a=6aB. (3a 2) 3=27a 6C. a 4÷a 2=2aD. (a+b) 2=a 2+ab+b 26.关于方程x 2-24x+9=0的根的情况,下列说法正确的是()A.有两个相等实根B.有两个不相等实数根C.没有实数根D.有一个实数根7.如图,在△ABC 中,∠ACB=90°,分别以点A 和点B 为圆心,以相同的长(大于21AB)为半径作弧,两弧相交于点M 和点N,作直线MN 交AB 于点D,交BC 于点E.若AC=3,AB=5,则DE 等于( )A. 2B.310C.815D.215 8.如图,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (1, 0), 对称轴为直线x=- 1,当y>0时,x 的取值范围是( )A. - 1<x<1B. - 3<x<- 1C. x<1D. - 3<x<19.方程x 2+3x- 1=0的根可视为函数y=x+3的图象与函数y=x 1的图象交点的横坐标,则方程x 3+2x- 1=0的实根x0所在的范围是() 41x 0.0<<A 31x 41.0<<B C.21x 310<< D.1x 210<< 10.如图①,在菱形ABCD 中,动点P 从点B 出发,沿折线B→C→D→B 运动.设点P 经过的路程为x ,△ABP 的面积为y.把y 看作x 的函数,函数的图象如图②所示,则图②中的b 等于( )A. 38B.73C.5D.4二.填空题(共5小题,每题3分)11.8- 4+(21-)-2=__________ 12.若抛物线y=x 2 -6x+m 与x 轴没有交点,则m 的取值范围是_________13.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.__________14.如图,在平行四边形ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C,交AD 于点E ,延长BA 与ꙨA 相交于点F.若F E ))的长为2π,则图中阴影部分的面积为_______________15. 如图所示,在矩形ABCD 中,AB=2, AD=23,对角线AC 与BD 交于点0, E 是AD 边动点,作直线OE 交BC 于点G,将四边形DEGC 沿直线EG 折叠,点D 落在点D'处,点C 落在点C ’处,ED'交AC 于F,若△AEF 是直角三角形,则AE=___________三,解答题(共8小题)16. (8分)先化简,再求值:)113(144m 2---÷-+-m m m m 其中m=6.17. (9分)某校九年级(1)班所有学生参加2020年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A, B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1) 班参加体育测试的学生有_________人;(2)将条形统计图补充完整;在扇形统计图中,等级B 部分所占的百分比是________,等级 C 对应的圆心角的度数为______(3)若该校九年级学生共有850人参加体育测试,估计达到A 级和B 级的学生共有____________人18. (9分)如图直线y1=-x+4,y2=43x+b 都与双曲线y=x k 交于点A (1,3),这两条直线分别与x 轴交于B, C 两点 (1)求k 的值;(2)直接写出当x>0时,不等式43x+b> xk 的解集;. (3)若点P 在x 轴上,连接AP ,且AP 把△ABC 的面积分成1:2两部分,则此时点P 的坐标是___________19. (9分)如图,AB 为ꙨO 的直径,F 为弦AC 的中点,连接OF 并延长交弧AC 于点D,过点D 作ꙨO 的切线,交BA 的延长线于点E.(1)求证: AC// DE;(2)连接AD 、CD 、OC.填空①当∠OAC 的度数为_________时,四边形AOCD 为菱形;②当0A= AE=2时,四边形ACDE的面积为______________20. (9 分)我校九年级数学学习兴趣小组,为了测算楼房AB的高度采取了如下方法:在楼AB的顶部A处测得该楼正前方旗杆CD的顶端C的俯角为42°,在楼AB的底部B处测得旗杆CD的顶端C的仰角为30°,已知旗杆CD的高度为12m,根据测得的数据,计算楼AB的高度.(结果保留整数,参考数据: sin42° ≈0.7, cos42° ≈0.7, tan42° ≈0.9,3≈1.7)21. (10分) .每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案22. (10 分)在△ABC中,AD为BC边上的中线,E为AD.上一动点,设DE=nEA,连接CE并延长,交AB于点F.(1)尝试探究如图(1),当∠BAC=90°,∠B=30°,DE=EA时,BF,BA之间的数量关系是________(2)类比延伸如图(2),当△ABC为锐角三角形,DE=EA时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移如图(3),当△ABC为锐角三角形,DE=nEA时,请直接写出BF, BA之间的数量关系.23. (11 分) 23.如图抛物线y= ax2+bx+6的开口向下与x轴交于点4 (-6, 0)和点B (2, 0),与y轴交于点C,点P是抛物线上-一个动点(不与点C重合)(1)求抛物线的解析式;(2)当点P是抛物线上一个动点,若△PCA的面积为12,求点P的坐标;(3)如图2,抛物线的顶点为D,在抛物线上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省商丘市第一中学2019-2020学年九年级下期二模数学试卷一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm33.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图所示的工件的主视图是()A.B.C.D.5.下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b26.关于方程x2﹣4x+9=0的根的情况,下列说法正确的是()A.有两个相等实根B.有两个不相等实数根C.没有实数根D.有一个实数根7.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC =3,AB=5,则DE等于()A.2B.C.D.8.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<19.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x﹣1=0的实根x0所在的范围是()A.B.C.D.10.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A.B.C.5D.4二.填空题(共5小题)11.=.12.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.13.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若的长为,则图中阴影部分的面积为.15.如图所示,在矩形ABCD中,AB=2,AD=2,对角线AC与BD交于点O,E是AD 边动点,作直线OE交BC于点G,将四边形DEGC沿直线EG折叠,点D落在点D′处,点C落在点C′处,ED′交AC于F,若△AEF是直角三角形,则AE=.三.解答题(共8小题)16.先化简,再求值:÷(﹣m﹣1),其中m=6.17.某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.18.如图直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,3),这两条直线分别与x轴交于B,C两点.(1)求k的值;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,则此时点P 的坐标是.19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D 作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为.20.如图,小东在楼AB的顶部A处测得该楼正前方旗杆CD的顶端C的俯角为42°,在楼AB的底部B处测得旗杆CD的顶端C的仰角为30°,已知旗杆CD的高度为12m,根据测得的数据,计算楼AB的高度.(结果保留整数,参考数据:sin42°≈0.7,cos42°≈0.7,tan42°≈0.9,≈1.7)21.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.22.在△ABC中,AD为BC边上的中线,E为AD上一动点,设DE=nEA,连接CE并延长,交AB于点F.(1)尝试探究如图(1),当∠BAC=90°,∠B=30°,DE=EA时,BF,BA之间的数量关系是;(2)类比延伸如图(2),当△ABC为锐角三角形,DE=EA时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移如图(3),当△ABC为锐角三角形,DE=nEA时,请直接写出BF,BA之间的数量关系.23.如图抛物线y=ax2+bx+6的开口向下与x轴交于点A(﹣6,0)和点B(2,0),与y 轴交于点C,点P是抛物线上一个动点(不与点C重合)(1)求抛物线的解析式;(2)当点P是抛物线上一个动点,若△PCA的面积为12,求点P的坐标;(3)如图2,抛物线的顶点为D,在抛物线上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.001239=1.239×10﹣3.故选:A.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.4.如图所示的工件的主视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形,本题找到从正面看所得到的图形即可.【解答】解:从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选:B.5.下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.6.关于方程x2﹣4x+9=0的根的情况,下列说法正确的是()A.有两个相等实根B.有两个不相等实数根C.没有实数根D.有一个实数根【分析】先计算判别式的值,然后根据判别式的意义判断根的情况.【解答】解:∵△=(﹣4)2﹣4×9=﹣4<0,∴方程没有实数根.故选:C.7.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC =3,AB=5,则DE等于()A.2B.C.D.【分析】根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.【解答】解:在Rt△ACB中,由勾股定理得:BC==4,连接AE,从作法可知:DE是AB的垂直平分线,根据性质得出AE=BE,在Rt△ACE中,由勾股定理得:AC2+CE2=AE2,即32+(4﹣AE)2=AE2,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE2+()2=()2,解得:DE=.故选:C.8.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x =﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.9.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x﹣1=0的实根x0所在的范围是()A.B.C.D.【分析】首先根据题意推断方程x3+2x﹣1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x﹣1=0的实根x所在范围.【解答】解:方程x3+2x﹣1=0,∴x2+2=,∴它的根可视为y=x2+2和的图象交点的横坐标,当x=时,y=x2+2=2,y==4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y==1,此时抛物线的图象在反比例函数上方.故方程x3+2x﹣1=0的实根x所在范围为:<x<.故选:C.10.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A.B.C.5D.4【分析】连接AC交BD于O,根据图②求出菱形的边长为4,对角线BD为6,根据菱形的对角线互相垂直平分求出BO,再利用勾股定理列式求出CO,然后求出AC的长,再根据菱形的面积等于对角线乘积的一半求出菱形的面积,b为点P在CD上时△ABP 的面积,等于菱形的面积的一半,从而得解.【解答】解:如图,连接AC交BD于O,由图②可知,BC=CD=4,BD=14﹣8=6,∴BO=BD=×6=3,在Rt△BOC中,CO===,AC=2CO=2,所以,菱形的面积=AC•BD=×2×6=6,当点P在CD上运动时,△ABP的面积不变,为b,所以,b=×6=3.故选:B.二.填空题(共5小题)11.=2.【分析】根据算术平方根的定义、负整数指数幂计算可得.【解答】解:原式=2﹣4+4=2,故答案为:2.12.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是m>9.【分析】利用根的判别式△<0列不等式求解即可.【解答】解:∵抛物线y=x2﹣6x+m与x轴没有交点,∴△=b2﹣4ac<0,∴(﹣6)2﹣4×1•m<0,解得m>9,∴m的取值范围是m>9.故答案为:m>9.13.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.【分析】先画树状图展示所有36种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两次都摸到红球的结果数为9,所以两次都摸到红球的概率为=.故答案为:.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若的长为,则图中阴影部分的面积为2﹣.【分析】连结AC,如图,设半径为r,先根据切线的性质得∠ACD=90°,再根据平行四边形的性质得AB∥CD,AD∥BC,则∠CAF=90°,∠1=∠B,∠2=∠3,利用∠B =∠3易得∠1=∠2=45°,则根据弧长公式可得=,解得r=2,然后根据扇形面积公式,利用S阴影部分=S△ACD﹣S扇形CAE进行计算即可.【解答】解:连结AC,如图,设半径为r,∵AB的长为半径的圆恰好与CD相切于点C,∴AC⊥CD,∴∠ACD=90°,∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠CAF=90°,∠1=∠B,∠2=∠3,而AB=AC,∴∠B=∠3,∴∠1=∠2=45°,∵的长为,∴=,解得r=2,在Rt△ACD中,∵∠2=45°,∴AC=CD=2,∴S阴影部分=S△ACD﹣S扇形CAE×2×2﹣=2﹣.故答案为2﹣.15.如图所示,在矩形ABCD中,AB=2,AD=2,对角线AC与BD交于点O,E是AD 边动点,作直线OE交BC于点G,将四边形DEGC沿直线EG折叠,点D落在点D′处,点C落在点C′处,ED′交AC于F,若△AEF是直角三角形,则AE=或﹣1.【分析】首先证明△AOB是等边三角形,分两种情形分别求解即可.【解答】解:在矩形ABCD中,∵∠BAD=90°,AD=2,AB=2,∴tan∠ABD==,∴∠ABD=60°,∵OA=OB,∴△AOB是等边三角形,①当EF⊥AC时,易证点D′与B重合,此时AE=AB•tan30°=.②当AE⊥EF时,易证AE=BM=CG=(BC﹣AB)=﹣1.综上所述,满足条件的AE的值为或﹣1.三.解答题(共8小题)16.先化简,再求值:÷(﹣m﹣1),其中m=6.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m的值代入计算即可求出值.【解答】解:原式=÷=•=﹣,当m=6时,原式=﹣=﹣=﹣.17.某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有50人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是40%,等级C对应的圆心角的度数为72°;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有595人.【分析】(1)由A等的人数和比例,根据总数=某等人数÷所占的比例计算;(2)根据“总数=某等人数÷所占的比例”计算出D等的人数,总数﹣其它等的人数=C等的人数;(3)由总数=某等人数÷所占的比例计算出B等的比例,由总比例为1计算出C等的比例,对应的圆心角=360°×比例;(4)用样本估计总体.【解答】(1)总人数=A等人数÷A等的比例=15÷30%=50人;(2)D等的人数=总人数×D等比例=50×10%=5人,C等人数=50﹣20﹣15﹣5=10人,如图:(3)B等的比例=20÷50=40%,C等的比例=1﹣40%﹣10%﹣30%=20%,C等的圆心角=360°×20%=72°;(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(15+20)÷50×850=595人.18.如图直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,3),这两条直线分别与x轴交于B,C两点.(1)求k的值;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,则此时点P 的坐标是(﹣,0)或(,0).【分析】(1)将点A的坐标代入y=,即可求解;(2)观察图象即可求解;(3)AP把△ABC的面积分成1:2两部分,则点P把BC分成1:2两部分,即可求解.【解答】解:(1)将点A的坐标代入y=得,k=xy=1×3=3;(2)从图象看,x>0,当不等式x+b>时,x>1;(3)将点A的坐标代入y2=x+b得,3=+b,解得:b=,y2=x+,令y2=0,则x=﹣3,即点C(﹣3,0),y1=﹣x+4,令y1=0,则x=4,即点B(4,0),则BC=7,AP把△ABC的面积分成1:2两部分,则点P把BC分成1:2两部分,即PB=BC或BC,即BP=或,设点P的横坐标为x,则4﹣x=或,解得:x=或﹣故点P的坐标为:(﹣,0)或(,0);故答案为:(﹣,0)或(,0).19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D 作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为30°时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为2.【分析】(1)由垂径定理,切线的性质可得FO⊥AC,OD⊥DE,可得AC∥DE;(2)①连接CD,AD,OC,由题意可证△ADO是等边三角形,由等边三角形的性质可得DF=OF,AF=FC,且AC⊥OD,可证四边形AOCD为菱形;②由题意可证△AFO∽△ODE,可得,即OD=2OF,DE=2AF=AC,可证四边形ACDE是平行四边形,由勾股定理可求DE的长,即可求四边形ACDE 的面积.【解答】证明:(1)∵F为弦AC的中点,∴AF=CF,且OF过圆心O∴FO⊥AC,∵DE是⊙O切线∴OD⊥DE∴DE∥AC(2)①当∠OAC=30°时,四边形AOCD是菱形,理由如下:如图,连接CD,AD,OC,∵∠OAC=30°,OF⊥AC∴∠AOF=60°∵AO=DO,∠AOF=60°∴△ADO是等边三角形又∵AF⊥DO∴DF=FO,且AF=CF,∴四边形AOCD是平行四边形又∵AO=CO∴四边形AOCD是菱形②如图,连接CD,∵AC∥DE∴△AFO∽△ODE∴∴OD=2OF,DE=2AF∵AC=2AF∴DE=AC,且DE∥AC∴四边形ACDE是平行四边形∵OA=AE=OD=2∴OF=DF=1,OE=4∵在Rt△ODE中,DE==2∴S四边形ACDE=DE×DF=2×1=2故答案为:220.如图,小东在楼AB的顶部A处测得该楼正前方旗杆CD的顶端C的俯角为42°,在楼AB的底部B处测得旗杆CD的顶端C的仰角为30°,已知旗杆CD的高度为12m,根据测得的数据,计算楼AB的高度.(结果保留整数,参考数据:sin42°≈0.7,cos42°≈0.7,tan42°≈0.9,≈1.7)【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△AEC、△CBD,通过解这两个直角三角形求得AE、DC的长度,进而可解即可求出答案.【解答】解:∵在Rt△CBD中,∠CBD=30°,CD=12m,∴DB=,过点C作CE⊥AB于点E,则CE=DB=12m.∵在A处测得旗杆CD的顶端C的俯角为42°,∴∠ACE=42°,∴AE=CE•tan 42°≈12×0.9≈18.4(m)∴AB=BE+AE=CD+AE=12+18.4≈30(m).答:楼AB的高度约为30m.21.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.【分析】(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,根据购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元,列出方程组,然后求解即可;(2)设购买甲型设备m台,乙型设备(10﹣m)台,根据公司经预算决定购买节省能源的新设备的资金不超过110万元,列出不等式,然后求解即可得出购买方案;(3)根据甲型设备的产量为240吨/月,乙型设备的产量为180吨/月和总产量不低于2040吨,列出不等式,求出m的取值范围,再根据每台的钱数,即可得出最省钱的购买方案.【解答】解:(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,由题意得:,解得:,则甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)设购买甲型设备m台,乙型设备(10﹣m)台,则:12m+10(10﹣m)≤110,∴m≤5,∵m取非负整数∴m=0,1,2,3,4,5,∴有6种购买方案.(3)由题意:240m+180(10﹣m)≥2040,∴m≥4∴m为4或5.当m=4时,购买资金为:12×4+10×6=108(万元),当m=5时,购买资金为:12×5+10×5=110(万元),则最省钱的购买方案为,选购甲型设备4台,乙型设备6台.22.在△ABC中,AD为BC边上的中线,E为AD上一动点,设DE=nEA,连接CE并延长,交AB于点F.(1)尝试探究如图(1),当∠BAC=90°,∠B=30°,DE=EA时,BF,BA之间的数量关系是;(2)类比延伸如图(2),当△ABC为锐角三角形,DE=EA时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移如图(3),当△ABC为锐角三角形,DE=nEA时,请直接写出BF,BA之间的数量关系.【分析】(1)尝试探究:过点D作DM∥CF,交AB于M,可证△BDM∽△BCF,△AFE∽△AMD,可得,=,可证BM=MF=AF,可得BF,BA之间的数量关系;(2)类比延伸过点D作DM∥CF,交AB于M,可证△BDM∽△BCF,△AFE∽△AMD,可得,=,可证BM=MF=AF,可得BF,BA之间的数量关系;(3)拓展迁移过点D作DM∥CF,交AB于M,由平行线分线段成比例可得BM=MF,FM=nAF,可得AB=2nAF+AF,BF=2nAF,即可求BF,BA之间的数量关系.【解答】解:(1)尝试探究如图,过点D作DM∥CF,交AB于M,∵AD是中线,AE=DE∴BD=CD=BC,AE=AD∵DM∥CF,∴△BDM∽△BCF,△AFE∽△AMD∴,=∴BF=2BM,AM=2AF∴BM=MF,AF=FM∴BM=MF=AF∴(2)类比延伸:结论仍然成立,理由如下:如图,过点D作DM∥CF,交AB于M,∵AD是中线,AE=DE∴BD=CD=BC,AE=AD∵DM∥CF,∴△BDM∽△BCF,△AFE∽△AMD∴,=∴BF=2BM,AM=2AF∴BM=MF,AF=FM∴BM=MF=AF∴(3)拓展迁移如图,过点D作DM∥CF,交AB于M,∵DM∥FC,且BD=CD∴∴BM=MF∵DM∥CF,DE=nEA∴==∴FM=nAF∴BM=MF=nAF∴AB=2nAF+AFBF=2nAF∴23.如图抛物线y=ax2+bx+6的开口向下与x轴交于点A(﹣6,0)和点B(2,0),与y 轴交于点C,点P是抛物线上一个动点(不与点C重合)(1)求抛物线的解析式;(2)当点P是抛物线上一个动点,若△PCA的面积为12,求点P的坐标;(3)如图2,抛物线的顶点为D,在抛物线上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.【分析】(1)函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),即可求解;(2)S△PCA=PG×AC=PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,即可求解;(3)sin∠DAC==,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,即可求解.【解答】解:(1)函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),﹣12a=6,解得:a=﹣,函数的表达式为:y=﹣x2﹣2x+6…①,顶点D坐标为(﹣2,8);(2)如图1所示,过点P作直线m∥AC交抛物线于点P′,在直线AC下方等距离处作直线n交抛物线与点P″、P′″,过点P作PH∥y轴交AC于点H,作PG⊥AC于点G,∵OA=OC,∴∠PHG=∠CAB=45°,则HP=PG,S△PCA=PG×AC=PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,则直线m的表达式为:y=x+10…②,联立①②并解得:x=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);直线n的表达式为:y=x+2…③同理可得点P(P″、P′″)的坐标为(﹣3﹣,﹣﹣1)或(﹣3,﹣1),综上,点P的坐标为(﹣2,8)或(﹣4,6)或(﹣3﹣,﹣﹣1)或(﹣3,﹣1).(3)点A、B、C、D的坐标为(﹣6,0)、(2,0)、(0,6)、(﹣2,8),则AC=,CD=,AD=,则∠ACD=90°,sin∠DAC==,延长DC至D′使CD=CD′,连接AD′,过点D作DH⊥AD′,则DD′=2,AD=AD′=,S△ADD′=DD′×AC=DH×AD′,即:2×=DH×,解得:DH=,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,①当点E在AB上方时,则直线AE的表达式为:y=x+b,将点A坐标代入上式并解得:直线AE的表达式为:y=x+…④,联立①④并解得:x=(不合题意值已舍去),即点E(,);②当点E在AB下方时,同理可得:点E(,﹣),综上,点E(,)或(,﹣).。