高三文科数学立体几何综合题训练

合集下载

文科立体几何综合测试题

文科立体几何综合测试题

高三文科数学《立体几何》作业(20091121)一、 选择题(每道小题 5分,共 40分 )1. 如果平面α外一条直线 l 与α内的两条直线垂直,那么l 与α的位置关系是( )A .l ⊥αB . l ∥αC .l 与α斜交D .不能确定2. 如果a 、b 是异面直线,则a,b 的公垂线 ( )A .不一定存在B .有且只有一条C .可能有一条也可能有无数条D .一定有无数条3. 设a 、b 是异面直线,那么 ( )A .必然存在唯一的平面同时平行于直线a 和bB .必然存在唯一的平面同时垂直于直线a 和bC .过直线a 存在唯一的一个平面平行于直线bD .过直线a 存在唯一的一个平面垂直于直线b4. 如图,已知点A 在直线a 上,AB , AC 分别在平面βα,内,AB a AC a ⊥⊥,则以下结论不正确的( )A .BA 是AC 在α内的射影B .AC 是AB 在内的射影C .a ⊥平面ABCD .AB ⊥AC5. 若圆锥侧面展开图是半径为1的半圆,这个圆锥的体积是( )A B C D ....ππππ12243123246. 正方体ABCD -A 1B 1C 1D 1中,直线BC 1与直线A 1C 的位置关系是( ) A .相交且垂直 B .相交但不垂直 C .异面且垂直 D .异面但不垂直7 一个空间几何体的三视图,其中主视图和左视图的高为2,俯视图是边长为1的正六边形,那么这个几何体的体积为( )2361D C B A8 过圆锥顶点的一个截面与底面成60°的角,这截面截圆锥底面的圆所得劣弧是120°,底面圆心到截面距离是3cm ,则圆锥的侧面积是 ( )A 247cmB 12cmC 421cmD 821cm 222....ππππ72二、 填空(每题5分, 共20分)9. 过四条平行直线,最多可确定_______________个平面.10. 如果直线a ∥平面β,a ⊥平面α,则平面α与β的位置关系为________________.11 长方体ABCD -A'B'C'D'中棱AA'=5,AB=12,直线B'C'与平面A'BCD'的距离为___________ 12 E ,F 分别是边长为a 的正方形ABCD 的边BC 与CD 的中点,AC 交EF 于H ,现在沿AE ,EF ,AF 将正方形折成四面体,使D ,B ,C 重合,记重合后的点为G ,那么在四面体A-EFG中有:(1)AH 垂直平面EFG ;(2)AG 垂直平面EFG ;(3)四面体A-EFG 的体积为324a ;(4)四面体A-EFG 的体积为3232a 。

届高三数学立体几何专项训练(文科)

届高三数学立体几何专项训练(文科)

高三数学立体几何专题(文科)(一)吴丽康 2019-111.如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设AP=1,AD=,三棱锥P-ABD 的体积V=,求A 点到平面PBD 的距离.2. 如图,四棱锥P -ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点.(1)求证:CE ∥平面PAD ;(2)在线段AB 上是否存在一点F ,使得平面PAD ∥平面CEF ?若存在,证明你的结论,若不存在,请说明理由.3如图,在四棱锥P -ABCD 中,平面PAC ⊥平面ABCD ,且PA ⊥AC ,PA =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PF PC=λ(λ≠0). (1)求证:EF ∥平面PAD ;(2)当λ=12时,求点D 到平面AFB 的距离. 4.如图,四棱柱ABCD -A1B1C1D1的底面ABCD 是正方形.(1)证明:平面A1BD ∥平面CD1B1;(2)若平面ABCD ∩平面B1D1C =直线l ,证明:B1D1∥l.5..如图,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点, M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH.求证:AP∥GH.6.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.7.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,四边形ABCD为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC 交于点F.(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出的值.8...如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.9.(2016·高考北京卷)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.11..如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=3,AD=CD=1,∠ADC=120°,点M是AC与BD的交点,点N在线段PB上,且PN=1PB.4(1)证明:MN∥平面PDC;(2)求直线MN与平面PAC所成角的正弦值.12..(2016·高考四川卷)如图,在四棱锥P ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=1AD.2(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(2)证明:平面PAB⊥平面PBD.13.(2016·高考江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.14.【2014,19】如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.15.(2017天津,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥ BC, PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP 与BC 所成角的余弦值;(2)求证:PD ⊥平面PBC;(3)求直线AB 与平面PBC 所成角的正弦值.16.(2016·高考浙江卷)如图,在三棱台ABC DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.17..(2018·全国Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直, M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC.(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.立体几何中的翻折问题18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A1BE 的位置,得到四棱锥A1-BCDE.(1)证明:CD ⊥平面A1OC ;(2)当平面A1BE ⊥平面BCDE 时,四棱锥A1-BCDE 的体积为362,求a 的值.19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2, E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D -ABC 中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCD-A1B1C1D1中,AB =16,BC =10,AA1=8.点E ,F 分别在A1B1,D1C1上,过点E 、F 的平面α与此长方体的面相交,交线围成一个正方形EFGH.(1)求证:A1E =D1F ;(2)判断A1D 与平面α的关系.高三数学立体几何专题(文科)1解析:(Ⅰ)设AC 的中点为O ,连接EO. 在三角形PBD 中,中位线EO//PB ,且EO 在平面AEC 上,所以PB//平面AEC.(Ⅱ)∵AP=1,,,,∴,作AH ⊥PB 角PB 于H , 由题意可知BC ⊥平面PAB ,∴BC ⊥AH ,故AH ⊥平面PBC . 又,故A 点到平面PBC 的距离.2.(1)证明:如图所示,取PA 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB , 又AB ∥CD ,CD =12AB .所以EH ∥CD ,EH =CD , 因此四边形DCEH 是平行四边形, 所以CE ∥DH ,又DH ⊂平面PAD ,CE ⊄平面PAD , 所以CE ∥平面PAD .(2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD , 又CF ⊄平面PAD ,所以CF ∥平面PAD ,由(1)可知CE ∥平面PAD , 又CE ∩CF =C ,故平面CEF ∥平面PAD ,故存在AB 的中点F 满足要求.3.(1)证明 ∵PE PB =PF PC =λ(λ≠0),∴EF ∥BC.∵BC ∥AD ,∴EF ∥AD. 又EF ⊄平面PAD ,AD ⊂平面PAD ,∴EF ∥平面PAD.(2)解 ∵λ=12,∴F 是PC 的中点, 在Rt △PAC 中,PA =2,AC =2,∴PC =PA2+AC2=6,∴PF =12PC =62.∵平面PAC ⊥平面ABCD ,且平面PAC ∩平面ABCD =AC , PA ⊥AC ,PA ⊂平面PAC ,∴PA ⊥平面ABCD ,∴PA ⊥BC.又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴BC ⊥平面PAB ,∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62. 连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由VF -ABD =VD -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455. 4.证明 (1)由题设知BB1∥DD1且BB1=DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1∥B1C1∥BC且A1D1=B1C1=BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.5.连接AC交BD于点O,连接MO,因为PM=MC,AO=OC,所以PA∥MO,因为PA⊄平面MBD,MO⊂平面MBD,所以PA∥平面MBD.因为平面PAHG∩平面MBD=GH,所以AP∥GH.6.[证明] (1)在四棱锥P-ABCD中,因为PA⊥底面ABCD, CD⊂平面ABCD,所以PA⊥CD,因为AC⊥CD,且PA∩AC=A,所以CD⊥平面PAC,而AE⊂平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD⊂平面PAD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.7.(1)证明因为ABCD为正方形,所以AD∥BC.因为AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.因为AD⊂平面AEFD,平面AEFD∩平面PBC=EF,所以AD∥EF.(2)证明因为四边形ABCD是正方形,所以AD⊥AB.因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊂平面ABCD,所以AD⊥平面PAB.因为PB⊂平面PAB,所以AD⊥PB.因为△PAB为等边三角形,E是PB中点,所以PB⊥AE.因为AE⊂平面AEFD,AD⊂平面AEFD,AE∩AD=A,所以PB⊥平面AEFD.(3)解由(1)知,V1=VC-AEFD,VE-ABC=VF-ADC=VC-AEFD=V1,∴VBC-AEFD=V1,则VP-ABCD=V1+V1=V1,∴.8.[解] (1)证明:在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.(2)证明:如图,连接PG.因为△PAD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面PAD,PG⊂平面PAD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面PAC.又AB⊂平面PAB,所以平面PAB⊥平面PAC.(3)棱PB上存在点F,使得PA∥平面CEF.理由如下:如图,取PB中点F,连接EF,CE,CF.又因为E为AB的中点,所以EF∥PA.又因为PA⊄平面CEF,且EF⊂平面CEF,所以PA∥平面CEF.10.证明(1)因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB ⊥AD ,由点E 在棱PC 上(异于点C),所以点F 异于点D ,所以AF ∩AD =A ,AF ,AD ⊂平面PAD ,所以AB ⊥平面PAD ,又AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD.11.(1)证明 因为AB =BC ,AD =CD ,所以BD 垂直平分线段AC.又∠ADC =120°,所以MD =12AD =12,AM =32.所以AC = 3. 又AB =BC =3,所以△ABC 是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BN NP=3,所以MN ∥PD. 又MN ⊄平面PDC ,PD ⊂平面PDC ,所以MN ∥平面PDC.(2)解 因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA ,又BD ⊥AC ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,所以BD ⊥平面PAC.由(1)知MN ∥PD ,所以直线MN 与平面PAC 所成的角即直线PD 与平面PAC 所成的角, 故∠DPM 即为所求的角.在Rt △PAD 中,PD =2,所以sin ∠DPM =DM DP =122=14,所以直线MN 与平面PAC 所成角的正弦值为14. 12.【解】 (1)取棱AD 的中点M(M ∈平面PAD),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM , 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,PA ⊥AB ,PA ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交. 所以PA ⊥平面ABCD ,从而PA ⊥BD .连接BM ,因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB . 又AB ∩AP =A ,所以BD ⊥平面PAB .又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .13.[证明] (1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE ∥AC ,于是DE ∥A1C1.又DE ⊄平面A1C1F ,A1C1⊂平面A1C1F ,所以直线DE ∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A ⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A ⊥A1C1.又A1C1⊥A1B1,A1A ⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D ⊂平面ABB1A1,所以A1C1⊥B1D .又B1D ⊥A1F ,A1C1⊂平面A1C1F ,A1F ⊂平面A1C1F ,A1C1∩A1F =A1, 所以B1D ⊥平面A1C1F.因为直线B1D ⊂平面B1DE ,所以平面B1DE ⊥平面A1C1F14.证明:(Ⅰ)连接 BC1,则O 为B1C 与BC1的交点,∵AO ⊥平面BB1C1C. ∴AO ⊥B1C , …2分因为侧面BB1C1C为菱形,∴BC1⊥B1C,…4分∴BC1⊥平面ABC1,∵AB平面ABC1,故B1C⊥AB.…6分(Ⅱ)作OD⊥BC,垂足为D,连结AD,∵AO⊥BC,∴BC⊥平面AOD,又BC平面ABC,∴平面ABC⊥平面AOD,交线为AD,作OH⊥AD,垂足为H,∴OH⊥平面ABC. …9分∵∠CBB1=60°,所以ΔCBB1为等边三角形,又BC=1,可得OD=,由于AC⊥AB1,∴,∴,由OH·AD=OD·OA,可得OH=,又O为B1C的中点,所以点B1到平面ABC的距离为,所以三棱柱ABC-A1B1C1的高高为。

专题8.3 立体几何综合问题(原卷版)文科生

专题8.3 立体几何综合问题(原卷版)文科生

【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。

高二高三立体几何文科大题训练,附详细答案

高二高三立体几何文科大题训练,附详细答案

侧视DCBAP图5图41、(佛山市2013届高三上学期期末)如图所示,已知圆O 的直径AB 长度为4,点D 为 线段AB 上一点,且13AD DB =,点C 为圆O 上一点,且BC =.点P 在圆O 所在平面上的正投影为 点D ,PD BD =.(1)求证:CD ⊥平面PAB ; (2)求点D 到平面PBC 的距离.2、(广州市2013届高三上学期期末)已知四棱锥P ABCD -的正视图是一个底边长为4、腰长为3的等腰三角形,图4、图5 分别是四棱锥P ABCD -的侧视图和俯视图. (1)求证:AD PC ⊥;(2)求四棱锥P ABCD -的侧面PAB 的面积.1解析:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO 的中点, 又∵AB 为圆O 的直径,∴AC CB ⊥,BC =知,60CAB ∠=,∴ACO ∆为等边三角形,从而CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB .-----------------6分(注:证明CD ⊥平面PAB 时,也可以由平面PAB ⊥平面ACB 得到,酌情给分.) 法2:∵AB 为圆O 的直径,∴AC CB ⊥, ∵在Rt ABC ∆中,4AB =,∴由3AD DB =BC =得,3DB =,4AB =,BC =,∴BD BC BC AB ==,则BDC BCA ∆∆∽, ∴BCA BDC ∠=∠,即CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB .-----------------6分法3:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆BC =得,30ABC ∠=,∵4AB =,由3AD DB =得,3DB =,BC = 由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=, ∴222CD DB BC +=,即CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分由PD AO D=得,CD⊥平面PAB.-----------------6分(Ⅱ)法1:由(Ⅰ)可知CD=3PD DB==,--------7分(注:在第(Ⅰ)问中使用方法1时,此处需要求出线段的长度,酌情给分.)∴1111133332322P BDC BDCV S PD DB DC PD-∆=⋅=⋅⋅⋅=⨯⨯=.--------10分又PB==,PC==BC==∴PBC∆为等腰三角形,则122PBCS∆=⨯=.--------12分设点D到平面PBC的距离为d,由P BDC D PBCV V--=得,13PBCS d∆⋅=,解得d=.--------14分法2:由(Ⅰ)可知CD=,3PD DB==,过点D作DE CB⊥,垂足为E,连接PE,再过点D作DF PE⊥,垂足为F.-----------------8分∵PD⊥平面ABC,又CB⊂平面ABC,∴PD CB⊥,又PD DE D=,∴CB⊥平面PDE,又DF⊂平面PDE,∴CB DF⊥,又CB PE E=,∴DF⊥平面PBC,故DF为点D到平面PBC的距离.--------10分在Rt DEB∆中,3sin302DE DB=⋅=,2PE==,在Rt PDE∆中,335PD DEDFPE⨯⋅===,即点D到平面PBC的距离为5.-------14分2(1)证明:依题意,可知点P在平面ABCD上的正射影是线段CD的中点E,连接PE,则PE⊥平面ABCD. …………… 2分FE D CBAP∵AD ⊂平面ABCD ,∴AD PE ⊥. …………… 3分 ∵AD CD ⊥,CD PE E CD ,=⊂平面PCD ,PE ⊂平面PCD , ∴AD ⊥平面PCD . …………… 5分 ∵PC ⊂平面PCD ,∴AD PC ⊥. …………… 6分 (2)解:依题意,在等腰三角形PCD 中,3PC PD ==,2DE EC ==, 在R t △PED 中,225PE PD DE =-=,…………… 7分过E 作EF AB ⊥,垂足为F ,连接PF ,∵PE ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB PE ⊥. …………… 8分 ∵EF ⊂平面PEF ,PE ⊂平面PEF ,EF PE E =,∴AB ⊥平面PEF . …………… 9分 ∵PF ⊂平面PEF ,∴AB PF ⊥. …………… 10分 依题意得2EF AD ==. …………… 11分 在R t △PEF 中, 223PF PE EF =+=, …………… 12分∴△PAB 的面积为162S AB PF ==. ∴四棱锥P ABCD -的侧面PAB 的面积为6. …………… 14分3、(惠州市2013届高三上学期期末)如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点.(1)求证:EF //平面11ABC D ; (2)求证:1CF B E ⊥; (3)求三棱锥1C B FE V -的体积.3解:(1)连结1BD ,在B DD 1∆中,E 、F 分别为1D D ,DB 的中点,则∵EF 为中位线…………2分1//EF D B ∴而1D B ⊂面11ABC D ,EF ⊄面11ABC D//EF ∴面11ABC D …………4分(2)等腰直角三角形BCD 中,F 为BD 中点BD CF ⊥∴①…………5分正方体1111ABCD A B C D -ABCD 1面⊥∴DD ,ABCD 面⊂CF CF DD ⊥∴1②…………7分综合①②,且1111,,B BDD BD DD D BD DD 面⊂=⋂11B BDD CF 面⊥∴,而111B E BDD B ⊂面,E B CF 1⊥∴…………………………………………………9分(3)由(2)可知11CF BDD B ⊥平面1CF EFB ∴⊥平面 即CF 为高 ,2CF BF ==…………10分1132EF BD ==,222211(2)26B F BF BB =+=+= 222211111(22)3B E B D D E =+=+=∴22211EF B F B E += 即190EFB ∠=∴223211=⋅=∆F B EF S EF B …………12分11113B EFC C B EF B EF V V S CF --∆∴==⋅⋅=1222331=⋅⋅…………14分4、(茂名市2013届高三上学期期末)在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD,1AB CD ==,3AC =,AD=DE=2,G 为AD 的中点。

高考大题专练四:立体几何的综合运用

高考大题专练四:立体几何的综合运用

专练40高考大题专练(四)立体几何的综合运用1.[2021·全国新高考Ⅰ卷]如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E-BC -D的大小为45°,求三棱锥A-BCD的体积.2.[2020·新高考Ⅰ卷]如图,四棱锥P ­ ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.3.[2022·全国乙卷(理),18]如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.4.[2020·全国卷Ⅰ]如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=66DO.(1)证明:P A⊥平面PBC;(2)求二面角B-PC-E的余弦值.5.[2020·全国卷Ⅱ]如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN 所成角的正弦值.6.[2021·全国乙卷]如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC的中点,且PB⊥AM.(1)求BC;(2)求二面角A-PM-B的正弦值.7.[2021·全国甲卷]已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?8.[2022·新高考Ⅰ卷,19]如图,直三棱柱ABC-A1B1C1的体积为4,△A1BC的面积为22.(1)求A到平面A1BC的距离;(2)设D到A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1,求二面角A-BD-C的正弦值.。

高考数学总复习《立体几何》部分试题及答案

高考数学总复习《立体几何》部分试题及答案

高考数学总复习试卷立体几何综合训练第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题正确的是()A.直线a,b与直线l所成角相等,则a//bB.直线a,b与平面α成相等角,则a//bC.平面α,β与平面γ所成角均为直二面角,则α//βD.直线a,b在平面α外,且a⊥α,a⊥b,则b//α2.空间四边形ABCD,M,N分别是AB、CD的中点,且AC=4,BD=6,则()A.1<MN<5 B.2<MN<10C.1≤MN≤5 D.2〈MN<53.已知AO为平面α的一条斜线,O为斜足,OB为OA在α内的射影,直线OC在平面α内,且∠AOB=∠BOC=45°,则∠AOC等于()A.30°B.45°C.60°D.不确定4.甲烷分子结构是:中心一个碳原子,外围四个氢原子构成四面体,中心碳原子与四个氢原子等距离,且连成四线段,两两所成角为θ,则cosθ值为()A.B.C.D.5.对已知直线a,有直线b同时满足下面三个条件:①与a异面;②与a成定角;③与a距离为定值d,则这样的直线b有()A.1条B.2条C.4条D.无数条6.α,β是不重合两平面,l,m是两条不重合直线,α//β的一个充分不必要条件是()A.,且l//β,m//βB.,且l//mC.l⊥α,m⊥β,且l//m D.l//α,m//β,且l//m7.如图正方体中,E,F分别为AB,的中点,则异面直线与EF所成角的余弦值为( )A.B.C.D.8.对于任一个长方体,都一定存在一点:①这点到长方体的各顶点距离相等;②这点到长方体的各条棱距离相等;③这点到长方体的各面距离相等,以上三个结论中正确的是()A.①②B.①C.②D.①③9.在斜棱柱的侧面中,矩形最多有几个?A.2 B.3 C.4 D.610.正六棱柱的底面边长为2,最长的一条对角线长为,则它的侧面积为()A.24 B.12 C.D.11.异面直线a,b成80°角,P为a,b外的一个定点,若过P有且仅有2条直线与a,b所成的角相等且等于α,则角α属于集合()A.{α|0°〈α〈40°} B.{α|40°<α〈50°}C.{α|40°〈α<90°}D.{α|50°<α〈90°}12.从水平放置的球体容器的顶部的一个孔向球内以相同的速度注水,容器中水面的高度与注水时间t之间的关系用图象表示应为()第II卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把答案填在题中横线上)13.正四棱锥S—ABCD侧棱长与底面边长相等,E为SC中点,BE与SA所成角的余弦值为_____________。

高考立体几何文科大题及答案

高考立体几何文科大题及答案

高考立体几何大题及答案1.(2009 全国卷Ⅰ文)如图,四棱锥S ABCD中,底面ABCD 为矩形,SD 底面ABCD ,AD 2 ,DC SD 2,点M 在侧棱SC上,∠ABM=60。

(I)证明:M 是侧棱SC的中点;求二面角S AM B的大小。

2.(2009 全国卷Ⅱ文)如图,直三棱柱ABC-A 1B1C1 中,AB ⊥AC,D 、E 分别为AA 1、B1C 的中点,DE⊥平面BCC1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B1C 与平面BCD所成的角的大小A 1 C1 B 1D EAC B3.(2009 浙江卷文)如图,DC 平面ABC ,EB / /DC ,AC BC EB 2DC 2 ,ACB 120 ,P,Q 分别为AE, AB 的中点.(I)证明:PQ / / 平面ACD ;(II )求AD 与平面ABE所成角的正弦值.4.(2009 北京卷文)如图,四棱锥P ABCD 的底面是正方形,PD 底面ABCD ,点E 在棱PB 上.(Ⅰ)求证:平面AEC 平面PDB ;(Ⅱ)当PD 2AB 且 E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.5.(2009 江苏卷)如图,在直三棱柱ABC A1B1C1 中,E、F 分别是 A B 、A1C 的中点,点D1在B C 上,A1D B1C1 1 。

求证:(1)EF∥平面ABC ;(2)平面A FD 平面BB1C1C .16.(2009安徽卷文)如图,ABCD的边长为2的正方形,直线l与平面ABCD平行,g和F式l上的两个不同点,且EA=ED,FB=FC,和是平面ABCD内的两点,和都与平面ABCD垂直,(Ⅰ)证明:直线垂直且平分线段AD:(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面体ABCDEF的体积。

7.(2009江西卷文)如图,在四棱锥P ABCD中,底面ABCD是矩形,PA平面ABCD,PA AD4,AB2.以BD的中点O为球心、BD为直径的球P面交PD于点M.(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;M(3)求点O到平面ABM的距离.DAOBC8.(2009四川卷文)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB AE,FA FE,AEF45(I)求证:EF平面BCE;(II)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE(III)求二面角F BD A的大小。

2020届高三数学立体几何专项训练(文科)

2020届高三数学立体几何专项训练(文科)

2021届高三数学立体几何专题(文科)1解析:〔Ⅰ〕设AC的中点为O,连接EO.在三角形PBD中,中位线EO//PB,且EO在平面AEC上,所以PB//平面AEC.〔Ⅱ〕∵AP=1,AD3,3 V,P-ABD411V=PAABADP-ABD32作AH⊥PB角PB于H,33=AB=,∴643AB,2由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又313PAABAHPB13 ,故A点到平面PBC的距离31313.2.(1)证明:如下图,取PA的中点H,连接EH,DH,因为E为PB的中点,所以EH∥AB,EH=1AB,2又AB∥CD,CD=12AB.所以EH∥CD,EH=CD,因此四边形DCEH是平行四边形,所以CE∥DH,又DH?平面PAD,CE?平面PAD,所以CE∥平面PAD.1(2)如下图,取AB的中点F,连接CF,EF,所以AF=AB,21又CD=AB,所以AF=CD,又AF∥CD,所以四边形AFCD为平行四边形,所以CF∥AD,2又CF?平面PAD,所以CF∥平面PAD,由(1)可知CE∥平面PAD,又CE∩CF=C,故平面CEF∥平面PAD,故存在AB的中点F满足要求.3.(1)证明∵P EPF==λ(λ≠0),∴EF∥BC.∵BC∥AD,∴EF∥AD. PBPC又EF?平面PAD,AD?平面PAD,∴EF∥平面PAD.(2)解∵λ=12,∴F是PC的中点,在Rt△PAC中,PA=2,AC=2,∴PC=P A2+AC2=6,----12∴PF=PC=6.∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,2PA⊥AC,PA?平面PAC,∴PA⊥平面ABCD,∴PA⊥BC.又AB⊥AD,BC∥AD,∴BC⊥AB,又PA∩AB=A,PA,AB?平面PAB,7----∴BC⊥平面PAB,∴BC⊥PB,∴在Rt△PBC中,BF=12PC=62.连接BD,DF,设点D到平面AFB的距离为d,在等腰三角形BAF中,BF=AF=6,AB=1,2∴S△ABF=5,又S△ABD=1,点F到平面ABD的距离为1,4∴由V F-ABD=V D-AFB,得13×1×1=13×d×545,解得d=,即点D到平面AFB的距离为45455.4.证明(1)由题设知BB1∥DD1且BB1=DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD?平面CD1B1,B1D1?平面CD1B1,所以BD∥平面CD1B1.因为A1D1∥B1C1∥BC且A1D1=B1C1=BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B?平面CD1B1,D1C?平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B?平面A1BD,所以平面A1BD∥平面CD1B1. (2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.5.连接AC交BD于点O,连接MO,因为PM=MC,AO=OC,所以PA∥MO,因为PA?平面MBD,MO?平面MBD,所以PA∥平面MBD.因为平面PAHG∩平面MBD=GH,所以AP∥GH.6.[证明](1)在四棱锥P-ABCD中,因为PA⊥底面ABCD,CD?平面ABCD,所以PA⊥CD,因为AC⊥CD,且PA∩AC=A,所以CD⊥平面PAC,而AE?平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD?平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD?平面PAD,所以AB⊥PD.8----又因为AB∩AE=A,所以PD⊥平面ABE.7.(1)证明因为ABCD为正方形,所以AD∥BC.因为AD?平面PBC,BC?平面PBC,所以AD∥平面PBC.因为AD?平面AEFD,平面AEFD∩平面PBC=EF,所以AD∥EF.(2)证明因为四边形ABCD是正方形,所以AD⊥AB.因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD?平面ABCD,所以AD⊥平面PAB.因为PB?平面PAB,所以AD⊥PB.因为△PAB为等边三角形,E是PB中点,所以PB⊥AE.因为AE?平面AEFD,AD?平面AEFD,AE∩AD=A,所以PB⊥平面AEFD.(3)解由(1)知,V1=VC-AEFD,VE-ABC=VF-ADC=VC-AEFD=V1,∴V BC-AEFD=V1,那么V P-ABCD=V1+V1=V1,∴.8.[解](1)证明:在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.(2)证明:如图,连接PG.因为△PAD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB?平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE?平面DEF,DE?平面DEF,EF∩DE=E,PB?平面PGB,GB?平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面PAD,PG?平面PAD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG?平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面PAC.又AB?平面PAB,所以平面PAB⊥平面PAC.9----(3)棱PB上存在点F,使得PA∥平面CEF.理由如下:如图,取PB中点F,连接E F,CE,CF.又因为E为AB的中点,所以EF∥PA.又因为PA?平面CEF,且EF?平面CEF,所以PA∥平面CEF.10.证明(1)因为四边形ABCD是矩形,所以AB∥CD.又AB?平面PDC,CD?平面PDC,所以AB∥平面PDC,又因为AB?平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A,AF,AD?平面PAD,所以AB⊥平面PAD,又AB?平面ABCD,所以平面PAD⊥平面ABCD.11.(1)证明因为AB=BC,AD=CD,所以BD垂直平分线段A C.又∠ADC=120°,所以MD=11,AM=2AD=232.所以AC=3.又AB=BC=3,所以△ABC是等边三角形,3所以BM=,所以2 B MMD1=3,又因为PN=4PB,所以B MMDBNNP==3,所以MN∥PD.又MN?平面PDC,PD?平面PDC,所以MN∥平面PDC.(2)解因为PA⊥平面ABCD,BD?平面ABCD,所以BD⊥PA,又BD⊥AC,PA∩AC=A,PA,AC?平面PAC,所以BD⊥平面PAC.由(1)知MN∥PD,所以直线MN与平面PAC所成的角即直线PD与平面PAC所成的角,故∠DPM即为所求的角.在Rt△PAD中,PD=2,1所以sin∠DPM=D MDP=22=14,所以直线MN与平面PAC所成角的正弦值为14.12.【解】(1)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:1因为AD∥BC,BC=2AD,所以BC∥AM,且BC=AM,所以四边形AMCB是平行四边形,从而CM∥AB.又AB?平面PAB,CM?平面PAB,所以CM∥平面PAB.(说明:取棱PD的中点N,那么所找的点可以是直线MN上任意一点)10(2)由,PA⊥AB,PA⊥CD,因为AD∥BC,BC=1 2所以PA⊥平面ABCD,从而PA⊥BD.连接B M,1因为AD∥BC,BC=AD,所以BC∥MD,且BC=MD.21所以四边形BCDM是平行四边形.所以BM=CD=2AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又BD?平面PBD,所以平面PAB⊥平面PBD.13.[证明](1)在直三棱柱ABCA1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又DE?平面A1C1F,A1C1?平面A1C1F,所以直线D E∥平面A1C1F.(2)在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.因为A1C1?平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A?平面ABB1A1,A1B1?平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D?平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1?平面A1C1F,A1F?平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D?平面B1DE,所以平面B1DE⊥平面A1C1F14.证明:(Ⅰ)连接B C1,那么O为B1C与BC1的交点,∵AO⊥平面BB1C1C.∴AO⊥B1C,⋯2分因为侧面BB1C1C为菱形,∴BC1⊥B1C,⋯4分∴BC1⊥平面ABC1,∵AB平面ABC1,故B1C⊥AB.⋯6分(Ⅱ)作OD⊥BC,垂足为D,连结A D,∵AO⊥BC,∴BC⊥平面AOD,又BC平面ABC,∴平面ABC⊥平面AOD,交线为AD,作OH⊥AD,垂足为H,∴OH⊥平面ABC.⋯9分∵∠CBB1=60°,所以ΔCBB1为等边三角形,又BC=1,可得OD=3 4,11由于AC⊥AB1,∴OAB1C,∴22227ADODOA,4 11由OH·AD=O·DOA,可得OH=2114,又O为B1C的中点,所以点B1到平面ABC的距离为217,所以三棱柱ABC-A1B1C1的高高为217。

高三立体几何习题(文科含答案)

高三立体几何习题(文科含答案)

23正视图 图1侧视图 图22 俯视图 2图3立几习题21假设直线l 不平行于平面a ,且l a ∉,则 A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线 C .a 内存在唯一的直线与l 平行 D .a 内的直线与l 都相交 2.1l ,2l ,3l 是空间三条不同的直线,则以下命题正确的选项是〔A 〕12l l ⊥,23l l ⊥13//l l ⇒〔B 〕12l l ⊥,23//l l ⇒13l l ⊥〔C 〕233////l l l ⇒1l ,2l ,3l 共面〔D 〕1l ,2l ,3l 共点⇒1l ,2l ,3l 共面3.如图1 ~ 3,某几何体的正视图〔主视图〕,侧视图〔左视图〕和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为 A .3 B .4 C .3 D .24.某几何体的三视图如下图,则它的体积是〔 〕 A.283π- B.83π-D.23π5、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD的中点 求证:〔1〕直线E F ‖平面PCD ; (2)平面BEF ⊥平面PAD5〔本小题总分值13分〕如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OD=,△OAB,△OAC,△ODE,△ODF都是正三角形。

OA=,21∥;〔Ⅰ〕证明直线BC EF-的体积.〔Ⅱ〕求棱锥F OBED6.〔本小题共14分〕如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.〔Ⅰ〕求证:DE∥平面BCP;〔Ⅱ〕求证:四边形DEFG为矩形;〔Ⅲ〕是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.7.〔本小题总分值12分〕如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。

高三文科数学立体几何专题(附答案)

高三文科数学立体几何专题(附答案)

2008届高三文科数学第二轮复习资料——《立体几何》专题一、空间基本元素:直线与平面之间位置关系的小结.如下图:二、练习题:1. 1∥ 2,a ,b 与 1, 2都垂直,则a ,b 的关系是A .平行B .相交C .异面D .平行、相交、异面都有可能2.三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是 A .V 21 B .V 31 C .V 41 D .V 323.设α、β、γ为平面, m 、n 、l 为直线,则m β⊥的一个充分条件是A .,,l m l αβαβ⊥=⊥ B .,,m αγαγβγ=⊥⊥D1 B 1C .,,m αγβγα⊥⊥⊥D .,,n n m αβα⊥⊥⊥ 4.如图1,在棱长为a 的正方体ABCD A B C D -1111中, P 、Q 是对角 线A C 1上的点,若aPQ =2,则三棱锥P BDQ -的体积为A .a 336 B .a 318 C .324D .不确定 5.圆台的轴截面面积是Q ,母线与下底面成60°角,则圆台的内切球的表面积是 A 12Q B 23Q C 2πQ D 23πQ6.在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别为棱BC 、CC 1、C 1D 1、AA 1的中点,O 为AC 与BD 的交点(如图),求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H ; (3)A 1O ⊥平面BDF ; (4)平面BDF ⊥平面AA 1C .7.如图,斜三棱柱ABC —A ’B ’C ’中,底面是边长为a 的正三角形, 侧棱长为 b ,侧棱AA ’与底面相邻两边AB 、AC 都成450角,求 此三棱柱的侧面积和体积.8.在三棱锥P —ABC 中,PC=16cm ,AB=18cm ,PA=PB=AC=BC=17cm ,求三棱锥的体积V P-ABC .9.如图6为某一几何体的展开图,其中ABCD 是边长为6的正方形,SD=PD=6,CR=SC ,AQ=AP ,点S 、D 、A 、Q 及P 、D 、C 、R 共线.沿图中虚线将它们折叠起来,使P 、Q 、R 、S 四点重合,请画出其直观图,试问需要几个这样的几何体才能拼成一个棱长为6的正方体ABCD A B C D -1111?10. 如图10,在正四棱柱ABCD-A 1B 1C 1D 1中,AB=a , AA 1=2a ,M 、N 分别是BB 1、DD 1的中点. (1)求证:平面A 1MC 1⊥平面B 1NC 1;(2)若在正四棱柱ABCD-A 1B 1C 1D 1的体积为V , 三棱锥M-A 1B 1C 1的体积为V 1,求V 1:V 的值.11.直三棱柱ABC-A 1B 1C 1中,BC AB ⊥,E 是A 1C 的中点,ED A C ⊥1且交AC 于D ,A A AB BC 122== (如图11) . (I )证明:B C 11//平面A BC 1;A QB PDS CR图6图11 DE A 1C BAC 1B 1 A NBCD A 1 B 1C 1D 1图 10M⊥平面EDB.(II)证明:A C1参考答案1.D 2.B 3.D 4.A 5.D6.解析:(1)欲证EG∥平面BB1D1D,须在平面BB1D1D内找一条与EG平行的直线,构造辅助平面BEGO’及辅助直线BO’,显然BO’即是.(2)按线线平行⇒线面平行⇒面面平行的思路,在平面B1D1H内寻找B1D1和O’H两条关键的相交直线,转化为证明:B1D1∥平面BDF,O’H∥平面BDF.(3)为证A1O⊥平面BDF,由三垂线定理,易得BD⊥A1O,再寻A1O垂直于平面BDF内的另一条直线.猜想A1O⊥OF.借助于正方体棱长及有关线段的关系计算得:A1O2+OF2=A1F2⇒A1O⊥OF.(4)∵ CC1⊥平面AC,∴ CC1⊥BD又BD⊥AC,∴ BD⊥平面AA1C又BD⊂平面BDF,∴平面BDF⊥平面AA1C7.解析:在侧面AB’内作BD⊥AA’于D,连结CD.∵ AC=AB,AD=AD,∠DAB=∠DAC=450∴△DAB≌△DAC∴∠CDA=∠BDA=900,BD=CD∴ BD⊥AA’,CD⊥AA’∴△DBC是斜三棱柱的直截面2在Rt△ADB中,BD=AB·sin450=a2a2∴△DBC的周长=BD+CD+BC=(2+1)a,△DBC的面积=4∴ S 侧=b(BD+DC+BC)=(2+1)ab ∴ V=DBC S ∆·AA ’=4ba 28.解析:取PC 和AB 的中点M 和N∴ AMB AMB C AMB P ABC P S PC 31V V V ∆---⋅⋅=+= 在△AMB 中,AM 2=BM 2=172-82=25×9 ∴ AM=BM=15cm ,MN 2=152-92=24×6 ∴ S △AMB =21×AB ×MN=21×18×12=108(cm 2) ∴ V P-ABC =31×16×108=576(cm 3)9.解:它是有一条侧棱垂直于底面的四棱锥(如图). 需要3个这样的几何体可以拼成一个正方体.10.解:(1)取CC 1的中点P ,联结MP 、NP 、D 1P(图18), 则A 1MPD 1为平行四边形 ∴ D 1P ∥A 1M ,∵A 1B 1C 1D 1是边长 为a 的正方形,又C 1P=a ,∴C 1PND 1也是正方形,∴C 1N ⊥D 1P .∴C 1N ⊥A 1M . 又 C 1B 1⊥A 1M ,∴ A 1M ⊥平面B 1NC 1,又A 1M ⊂平面A 1MC 1, ∴平面A 1MC 1⊥平面B 1NC 1;(2)V=32a ,V M-A 1B 1C 1=V C-MA 1B 1=23111326a a a ⋅=,∴ V 1:V =11211.证明:(I )证: 三棱柱ABC A B C -111中B C BC 11//,又BC ⊂平面A BC 1,且B C 11⊂/平面A BC 1,∴B C 11//平面A BC 1A QBPDS CR第九题图11DE A 1C BAC 1 B 1 A NBCD A 1 B 1C 1D 1图 10MAB CD E HGA 1B 1C 1D 1第九题(II )证: 三棱柱ABC A B C -111中A A AB 1⊥,∴Rt A AB ∆1中,AB A B =221,∴=∴BC A B A BC 11,∆是等腰三角形. E 是等腰∆A BC 1底边A C 1的中点,∴⊥A C BE1①又依条件知 A C ED1⊥② 且ED BE E=③由①,②,③得A C 1⊥平面EDB .。

2024全国高考真题数学汇编:立体几何初步章节综合

2024全国高考真题数学汇编:立体几何初步章节综合

2024全国高考真题数学汇编立体几何初步章节综合一、单选题1.(2024天津高考真题)若,m n 为两条不同的直线, 为一个平面,则下列结论中正确的是()A .若//m ,//n ,则m nB .若//,//m n ,则//m nC .若//, m n ,则m nD .若//, m n ,则m 与n 相交2.(2024积为()A .B .C .D .3.(2024全国高考真题)已知正三棱台111ABC A B C -的体积为523,6AB ,112A B ,则1A A 与平面ABC 所成角的正切值为()A .12B .1C .2D .34.(2024全国高考真题)设 、为两个平面,m n 、为两条直线,且m .下述四个命题:①若//m n ,则//n 或//n②若m n ,则n 或n③若//n 且//n ,则//m n④若n 与 , 所成的角相等,则m n 其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④5.(2024北京高考真题)如图,在四棱锥P ABCD 中,底面ABCD 是边长为4的正方形,4PA PB ,PC PD ).A .1B .2CD6.(2024天津高考真题)一个五面体ABC DEF .已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ,,.则该五面体的体积为()A B .142 C .2D .142二、填空题7.(2024全国高考真题)已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为 212r r , 213r r ,则圆台甲与乙的体积之比为.三、解答题8.(2024全国高考真题)如图,四棱锥P ABCD 中,PA 底面ABCD ,2PA AC ,1,BC AB .(1)若AD PB ,证明://AD 平面PBC ;(2)若AD DC ,且二面角A CP D ,求AD .9.(2024全国高考真题)如图,//,//AB CD CD EF ,2AB DE EF CF ,4,CD AD BC AE M 为CD 的中点.(1)证明://EM 平面BCF ;(2)求点M 到ADE 的距离.10.(2024上海高考真题)如图为正四棱锥,P ABCD O 为底面ABCD 的中心.(1)若5,AP AD ,求POA 绕PO 旋转一周形成的几何体的体积;(2)若,AP AD E 为PB 的中点,求直线BD 与平面AEC 所成角的大小.参考答案1.C【分析】根据线面平行的性质可判断AB 的正误,根据线面垂直的性质可判断CD 的正误.【详解】对于A ,若//m ,//n ,则,m n 平行或异面或相交,故A 错误.对于B ,若//,//m n ,则,m n 平行或异面或相交,故B 错误.对于C ,//, m n ,过m 作平面 ,使得s ,因为m ,故//m s ,而s ,故n s ,故m n ,故C 正确.对于D ,若//, m n ,则m 与n 相交或异面,故D 错误.故选:C.2.B【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r 即故3r ,故圆锥的体积为1π93.故选:B.3.B【分析】解法一:根据台体的体积公式可得三棱台的高3h ,做辅助线,结合正三棱台的结构特征求得AM 进而根据线面夹角的定义分析求解;解法二:将正三棱台111ABC A B C -补成正三棱锥 P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V ,进而可求正三棱锥 P ABC 的高,即可得结果.【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知1111166222ABC A B C S S 设正三棱台111ABC A B C -的为h ,则 11115233ABC A B C V h ,解得h 如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x ,则1AADN AD AM MN x =--=-,可得1DD 结合等腰梯形11BCC B 可得22211622BB DD,即 221616433x x,解得x 所以1A A 与平面ABC 所成角的正切值为11tan 1A M A AD AMÐ==;解法二:将正三棱台111ABC AB C -补成正三棱锥 P ABC ,则1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,因为11113PA A B PA AB ,则111127P A B C P ABC V V ,可知1112652273ABC A B C P ABC V V,则18P ABC V ,设正三棱锥 P ABC 的高为d,则11661832P ABC V d,解得d ,取底面ABC 的中心为O ,则PO底面ABC ,且AO 所以PA 与平面ABC 所成角的正切值tan 1PO PAO AO.故选:B.4.A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ,因为//m n ,m ,则//n ,当n ,因为//m n ,m ,则//n ,当n 既不在 也不在 内,因为//m n ,,m m ,则//n 且//n ,故①正确;对②,若m n ,则n 与, 不一定垂直,故②错误;对③,过直线n 分别作两平面与, 分别相交于直线s 和直线t ,因为//n ,过直线n 的平面与平面 的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s 平面 ,t 平面 ,则//s 平面 ,因为s 平面 ,m ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n 与 和 所成的角相等,如果//,// n n ,则//m n ,故④错误;综上只有①③正确,故选:A.5.D【分析】取点作辅助线,根据题意分析可知平面PEF 平面ABCD ,可知PO 平面ABCD ,利用等体积法求点到面的距离.【详解】如图,底面ABCD 为正方形,当相邻的棱长相等时,不妨设4,PA PB AB PC PD ,分别取,AB CD 的中点,E F ,连接,,PE PF EF ,则,PE AB EF AB ,且PE EF E ,,PE EF 平面PEF ,可知AB 平面PEF ,且AB 平面ABCD ,所以平面PEF 平面ABCD ,过P 作EF 的垂线,垂足为O ,即PO EF ,由平面PEF 平面ABCD EF ,PO 平面PEF ,所以PO 平面ABCD ,由题意可得:2,4PE PF EF ,则222PE PF EF ,即PE PF ,则1122PE PF PO EF ,可得PE PF PO EF,当相对的棱长相等时,不妨设4PA PC ,PB PD因为BD PB PD ,此时不能形成三角形PBD ,与题意不符,这样情况不存在.故选:D.6.C【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.【详解】用一个完全相同的五面体HIJ LMN (顶点与五面体ABC DEF 一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314,212111142ABC DEF ABC HIJ V 故选:C.7.4【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台的高分别为12h r r 甲,12h r r乙,所以21211313S S h V h V h S S h 甲甲甲乙乙乙.故答案为:4.8.(1)证明见解析【分析】(1)先证出AD 平面PAB ,即可得AD AB ,由勾股定理逆定理可得BC AB ,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DE AC 于E ,再过点E 作EF CP 于F ,连接DF ,根据三垂线法可知,DFE 即为二面角A CP D 的平面角,即可求得tan DFE AD 的长度表示出,DE EF ,即可解方程求出AD .【详解】(1)(1)因为PA 平面ABCD ,而AD 平面ABCD ,所以PA AD ,又AD PB ,PB PA P ,,PB PA 平面PAB ,所以AD 平面PAB ,而AB 平面PAB ,所以AD AB .因为222BC AB AC ,所以BC AB ,根据平面知识可知//AD BC ,又AD 平面PBC ,BC 平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC 于E ,再过点E 作EF CP 于F ,连接DF ,因为PA 平面ABCD ,所以平面PAC 平面ABCD ,而平面PAC 平面ABCD AC ,所以DE 平面PAC ,又EF CP ,所以 CP 平面DEF ,根据二面角的定义可知,DFE 即为二面角A CP D 的平面角,即sin DFEtan DFE 因为AD DC ,设AD x,则CDDE ,又242xCE,而EFC 为等腰直角三角形,所以2EF故22tan 4DFE xxAD9.(1)证明见详解;【分析】(1)结合已知易证四边形EFCM 为平行四边形,可证//EM FC ,进而得证;(2)先证明OA 平面EDM ,结合等体积法M ADE A EDM V V 即可求解.【详解】(1)由题意得,//EF MC ,且EF MC ,所以四边形EFCM 是平行四边形,所以//EM FC ,又CF 平面,BCF EM 平面BCF ,所以//EM 平面BCF ;(2)取DM 的中点O ,连接OA ,OE ,因为//AB MC ,且AB MC ,所以四边形AMCB 是平行四边形,所以AM BC又AD ,故ADM △是等腰三角形,同理EDM △是等腰三角形,可得,,3,OA DM OE DM OA OE又AE 222OA OE AE ,故OA OE .又,,,OA DM OE DM O OE DM 平面EDM ,所以OA 平面EDM ,易知122EDM S在ADE V 中,cos4DEA,所以1sin 22DEA DEA S 设点M 到平面ADE 的距离为d ,由M ADE A EDM V V ,得1133ADE EDM S d S OA ,得d故点M 到平面ADE10.(1)12π(2)π4【分析】(1)根据正四棱锥的数据,先算出直角三角形POA 的边长,然后求圆锥的体积;(2)连接,,EA EO EC ,可先证BE 平面ACE ,根据线面角的定义得出所求角为 BOE ,然后结合题目数量关系求解.【详解】(1)正四棱锥满足且PO 平面ABCD ,由AO 平面ABCD ,则PO AO ,又正四棱锥底面ABCD 是正方形,由 AD 3AO ,故4PO ,根据圆锥的定义,POA 绕PO 旋转一周形成的几何体是以PO 为轴,AO 为底面半径的圆锥,即圆锥的高为4PO ,底面半径为3AO ,根据圆锥的体积公式,所得圆锥的体积是21π3412π3(2)连接,,EA EO EC ,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由E 是PB 中点,则,AE PB CE PB ,又,,AE CE E AE CE 平面ACE ,故PB 平面ACE ,即BE 平面ACE ,又BD 平面ACE O ,于是直线BD 与平面AEC 所成角的大小即为 BOE ,不妨设6AP AD ,则3BO BE ,sin2BOE,又线面角的范围是π0,2 ,故π4BOE .即为所求.。

高三数学专项训练:立体几何解答题(文科)(一)

高三数学专项训练:立体几何解答题(文科)(一)

高三数学专项训练:立体几何解答题(文科)(一)1.(本题满分12分)如图,三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正三角形.(Ⅰ)求证:DM //平面APC ;(Ⅱ)求 证:平面ABC ⊥平面APC ;(Ⅲ)若BC =4,AB =20,求三棱锥D —BCM 的体积.2.如图1,在四棱锥ABCD P -中,⊥PA 底面ABCD ,面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.(Ⅰ)求四面体PBFC 的体积;(Ⅱ)证明:AE ∥平面PFC ;(Ⅲ)证明:平面PFC ⊥平面PCD .3.如图,四棱柱P ABCD -中, .//,,AB PAD AB CD PD AD F ⊥=平面是DC 上的点且1,2DF AB PH =为PAD ∆中AD 边上的高. (Ⅰ)求证://AB 平面PDC ; (Ⅱ)求证:PH BC ⊥;(Ⅲ)线段PB 上是否存在点E ,使EF ⊥平面PAB ?说明理由.A B C4.在四棱锥V ABCD -中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .V A B CD(Ⅰ)如果P 为线段VC 的中点,求证://VA 平面PBD ;(Ⅱ)如果正方形ABCD 的边长为2, 求三棱锥A VBD -的体积.5.如图,在四棱锥中,底面为菱形,,为的中点。

(1)若,求证:平面; (2)点在线段上,,试确定的值,使;6.如图,已知三棱锥BPC A -中,PC AP ⊥,BC AC ⊥,M 为AB 中点,D 为PB 中点,且PMB ∆为正三角形。

(Ⅰ)求证:DM //平面APC ;(Ⅱ)求证:平面ABC ⊥平面APC ;(III )若4=BC ,20=AB ,求三棱锥BCM D -的体积.AB CDPM7.如图,E 是矩形ABCD 中AD 边上的点,F 为CD 边的中点,243AB AE AD ===,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE .⑴ 求证:平面PBE ⊥平面PEF ;⑵ 求四棱锥P BEFC -的体积.PB C FE (1)(2)8.如图,平面四边形ABCD 的4个顶点都在球O 的表面上,AB 为球O 的直径,P 为球面上一点,且PO ⊥平面 ABCD ,2BC CD DA ===,点M 为PA 的中点.(1) 证明:平面//PBC 平面ODM ;(2) 求点A 到平面PBC 的距离. OAD PBC M9.如图,四棱锥P —ABCD 中,底面ABCD 是边长为a 的正方形E , F 分别为PC ,BD 的中点,侧面PAD ⊥底面ABCD ,且PA=PD=2AD.(Ⅰ)求证:EF//平面PAD ;(Ⅱ)求三棱锥C —PBD 的体积.10.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,90ABC BCD ∠=∠=,PA PD DC CB a ====,2AB a =,E 是PB 中点,H 是AD 中点.(Ⅰ)求证://EC 平面APD ;(Ⅱ)求三棱锥E BCD -的体积.CDFEP11.如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形, 90BAC ∠=°,O 为BC 中点.(Ⅰ)证明:SO ⊥平面ABC ;(Ⅱ)求异面直线BS 与AC 所成角的大小.12.(本题满分12分)如图,已知AB ⊥平面ACD ,DE ∥AB ,△ACD 是正三角形,2AD DE AB ==,且F 是CD 的中点.(Ⅰ)求证AF ∥平面BCE ;(Ⅱ)设AB =1,求多面体ABCDE 的体积.OSB C13.在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,PA ⊥平面ABCD ,E 为PD 的中点,PA =2AB =2.(Ⅰ)求四棱锥P -ABCD 的体积V ;(Ⅱ)若F 为PC 的中点,求证PC ⊥平面AEF ;PA BC DEF14..(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 是边长为a 的正方形E ,F分别为PC ,BD 的中点,侧面PAD ⊥底面ABCD ,且PA=PD=22AD.(Ⅰ)求证:EF//平面PAD ;(Ⅱ)求三棱锥C —PBD 的体积.CD FEP15.右图为一组合体,其底面ABCD为正方形,PD⊥平面ABCD,//EC PD,且22PD AD EC===(Ⅰ)求证://BE平面PDA;(Ⅱ)求四棱锥B CEPD-的体积;(Ⅲ)求该组合体的表面积.16.四棱锥S ABCD-中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,E为SD的中点,已知452ABC AB BC∠===,,SB SC==(Ⅰ)求证:SA BC⊥;(Ⅱ)在BC上求一点F,使//EC平面SAF;(Ⅲ)求三棱锥D EAC-的体积.A BC D SE17.(本小题满分12分) 在三棱柱111ABC A B C -中,底面是边长为32的正三角形,点1A 在底面ABC 上的射影O 恰是BC 中点.(Ⅰ)求证:1AA BC ⊥;(Ⅱ)当侧棱1AA 和底面成45角时, 求11A BB C C V -(Ⅲ)若D 为侧棱1AA 上一点,当DAD A 1为何值时,11BD A C ⊥.18.在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,PA =PD ,底面ABCD 是菱形,∠A =60°,E 是AD 的中点,F 是PC 的中点.(Ⅰ)求证:BE ⊥平面PAD ;(Ⅱ)求证:EF ∥平面PAB ;AB O CD A 1B 1C 119.在几何体ABCDE 中,⊥=∠DC BAC ,2π平面ABC ,⊥EB 平面ABC ,1,2====CD BE AC AB .(1)设平面ABE 与平面ACD 的交线为直线l ,求证://l 平面BCDE ;(2)设F 是BC 的中点,求证:平面⊥AFD 平面AFE ;(3)求几何体ABCDE 的体积.20.在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,PA =PD ,底面ABCD 是菱形,∠A =60°,E 是AD 的中点,F 是PC 的中点.(Ⅰ)求证:BE ⊥平面PAD ;(Ⅱ)求证:EF ∥平面PAB ;21.(本小题满分12分)如图,已知⊥AB 平面ACD ,⊥DE 平面ACD ,ACD ∆为等边三角形,AB DE AD 2==,F 为CD 中点.(1)求证://AF 平面BCE ;(2)求证:平面BCE ⊥平面CDE ;(3)求直线BF 与平面BCE 所成角的正弦值.22.如图,四棱锥P —ABCD 的底面ABCD 是边长为1的菱形,∠BCD ﹦60°,E 是CD 中点,PA ⊥底面ABCD ,PA(1)证明:平面PBE ⊥平面PAB(2)求二面角A —BE —P 的大小。

高三数学专项训练:立体几何解答题(文科)(一)

高三数学专项训练:立体几何解答题(文科)(一)
(Ⅰ)求证:BE⊥平面PAD;
(Ⅱ)求证:EF∥平面PAB;
21.
(本小题满分12分)如图,已知 平面 , 平面 , 为等边三角形, , 为 中点.
(1)求证: 平面 ;
(2)求证:平面 平面 ;
(3)求直线 与平面 所成角的正弦值.
22.如图,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD﹦60°,E是CD中点,
(Ⅰ)求证: 平面 ;
(Ⅱ)求三棱锥 的体积.
11.如图,在三棱锥 中,侧面 与侧面 均为等边三角形, , 为 中点.
(Ⅰ)证明: 平面 ;
(Ⅱ)求异面直线BS与AC所成角的大小.
12.(本题满分12分)
如图,已知AB 平面ACD,DE∥AB,△ACD是正三角形, ,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(1)求证:B1C∥平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.
44.(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形, BCD=60 ,E是CD的中点,PA 底面ABCD,PA=2。
(1)证明:平面PBE 平面PAB;
(2)求PC与平面PAB所成角的余弦值.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积。
15.右图为一组合体,其底面 为正方形, 平面 , ,且
(Ⅰ)求证: 平面 ;
(Ⅱ)求四棱锥 的体积;
(Ⅲ)求该组合体的表面积.
16.四棱锥 中,底面 为平行四边形,侧面 底面 , 为 的中点,已知 ,
(Ⅰ)求证: ;
(Ⅱ)在 上求一点 ,使 平面 ;
(Ⅲ)求三棱锥 的体积.
17.(本小题满分12分) 在三棱柱 中,底面是边长为 的正三角形,点 在底面 上的射影 恰是 中点.

高三数学立体几何专项训练(文科)(教育课资)

高三数学立体几何专项训练(文科)(教育课资)

2020届高三数学立体几何专题(文科)吴丽康 2019-111.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设AP=1,AD =,三棱锥P -ABD 的体积V =,求A 点到平面PBD 的距离.2. 如图,四棱锥P ­ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点. (1)求证:CE ∥平面P AD ;(2)在线段AB 上是否存在一点F ,使得平面P AD ∥平面CEF ? 若存在,证明你的结论,若不存在,请说明理由.3如图,在四棱锥P -ABCD 中,平面P AC ⊥平面ABCD ,且P A ⊥AC ,P A =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PFPC=λ(λ≠0). (1)求证:EF ∥平面P AD ;(2)当λ=12时,求点D 到平面AFB 的距离.3434.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面B1D1C=直线l,证明:B1D1∥l.5..如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.6.如图,在四棱锥P­ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.7.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,四边形ABCD为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC交于点F.(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出V1的值.V28...如图,在四棱锥P­ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面P AD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.9.(2016·高考北京卷)如图,在四棱锥P­ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC;(2)求证:平面P AB⊥平面P AC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面P AD⊥平面ABCD.11..如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =BC =3,AD =CD =1,∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB .(1)证明:MN ∥平面PDC ;(2)求直线MN 与平面P AC 所成角的正弦值.12..(2016·高考四川卷)如图,在四棱锥P ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .13.(2016·高考江苏卷)如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1. 求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .14.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.15.(2017天津,文17)如图,在四棱锥P-ABCD 中,AD ⊥平面PDC,AD ∥ BC, PD ⊥PB, AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP 与BC 所成角的余弦值;(2)求证:PD ⊥平面PBC;(3)求直线AB 与平面PBC 所成角的正弦值.16.(2016·高考浙江卷)如图,在三棱台ABC DEF 中,平面BCFE ⊥平面ABC , ∠ACB =90°,BE =EF =FC =1,BC =2,AC =3. (1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.17..(2018·全国Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直, M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.立体几何中的翻折问题18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1­BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1­BCDE 的体积为362,求a 的值.19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直, 如图2.在图2所示的几何体D -ABC 中: (1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCD ­A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8.点E ,F 分别在A 1B 1,D 1C 1上,过点E 、F 的平面α与此长方体的面相交,交线围成一个正方形EFGH .(1)求证:A 1E =D 1F ;(2)判断A 1D 与平面α的关系.2020届高三数学立体几何专题(文科)1解析:(Ⅰ)设AC 的中点为O , 连接EO . 在三角形PBD 中,中位线EO //PB ,且EO 在平面AEC 上,所以PB //平面AEC . (Ⅱ)∵AP =1,3AD =,-3P ABD V =, -11=32P ABD V PA AB AD ∴⋅⋅⋅33==AB ,∴32AB =, 作AH ⊥PB 角PB 于H ,由题意可知BC ⊥平面P AB ,∴BC ⊥AH ,故AH ⊥平面PBC .又313PA AB AH PB ⋅==,故A 点到平面PBC 的距离313. 2.(1)证明:如图所示,取P A 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB ,又AB ∥CD ,CD =12AB . 所以EH ∥CD ,EH =CD ,因此四边形DCEH 是平行四边形, 所以CE ∥DH , 又DH ⊂平面P AD ,CE ⊄平面P AD , 所以CE ∥平面P AD . (2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD ,又CF ⊄平面P AD ,所以CF ∥平面P AD ,由(1)可知CE ∥平面P AD , 又CE ∩CF =C ,故平面CEF ∥平面P AD ,故存在AB 的中点F 满足要求.3.(1)证明 ∵PE PB =PFPC =λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面P AD ,AD ⊂平面P AD ,∴EF ∥平面P AD . (2)解 ∵λ=12,∴F 是PC 的中点,在Rt △P AC 中,P A =2,AC =2,∴PC =P A 2+AC 2=6,∴PF =12PC =62.∵平面P AC ⊥平面ABCD ,且平面P AC ∩平面ABCD =AC ,P A ⊥AC ,P A ⊂平面P AC ,∴P A ⊥平面ABCD ,∴P A ⊥BC .又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又P A ∩AB =A ,P A ,AB ⊂平面P AB , ∴BC ⊥平面P AB , ∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455.4.证明 (1)由题设知BB 1∥DD 1且BB 1=DD 1,所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1.又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1,所以BD ∥平面CD 1B 1.因为A 1D 1∥B 1C 1∥BC 且A 1D 1=B 1C 1=BC , 所以四边形A 1BCD 1是平行四边形,所以A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, 所以A 1B ∥平面CD 1B 1.又因为BD ∩A 1B =B ,BD ,A 1B ⊂平面A 1BD , 所以平面A 1BD ∥平面CD 1B 1. (2)由(1)知平面A 1BD ∥平面CD 1B 1,又平面ABCD ∩平面B 1D 1C =直线l , 平面ABCD ∩平面A 1BD =直线BD ,所以直线l ∥直线BD , 在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD ,所以B 1D 1∥l .5.连接AC 交BD 于点O ,连接MO ,因为PM =MC ,AO =OC ,所以P A ∥MO , 因为P A ⊄平面MBD ,MO ⊂平面MBD ,所以P A ∥平面MBD .因为平面P AHG ∩平面MBD =GH ,所以AP ∥GH .6.[证明] (1)在四棱锥P ­ABCD 中,因为P A ⊥底面ABCD , CD ⊂平面ABCD ,所以P A ⊥CD ,因为AC ⊥CD ,且P A ∩AC =A ,所以CD ⊥平面P AC ,而AE ⊂平面P AC ,所以CD ⊥AE . (2)由P A =AB =BC ,∠ABC =60°,可得AC =P A . 因为E 是PC 的中点,所以AE ⊥PC .由(1)知AE ⊥CD ,且PC ∩CD =C ,所以AE ⊥平面PCD . 而PD ⊂平面PCD ,所以AE ⊥PD . 因为P A ⊥底面ABCD ,所以P A ⊥AB . 又因为AB ⊥AD 且P A ∩AD =A ,所以AB ⊥平面P AD ,而PD ⊂平面P AD ,所以AB ⊥PD . 又因为AB ∩AE =A ,所以PD ⊥平面ABE .7.(1)证明 因为ABCD 为正方形,所以AD ∥BC.因为AD ⊄平面PBC,BC ⊂平面PBC,所以AD ∥平面PBC. 因为AD ⊂平面AEFD,平面AEFD ∩平面PBC=EF, 所以AD ∥EF. (2)证明 因为四边形ABCD 是正方形,所以AD ⊥AB.因为平面PAB ⊥平面ABCD,平面PAB ∩平面ABCD=AB,AD ⊂平面ABCD, 所以AD ⊥平面PAB.因为PB ⊂平面PAB,所以AD ⊥PB. 因为△PAB 为等边三角形,E 是PB 中点,所以PB ⊥AE.因为AE ⊂平面AEFD,AD ⊂平面AEFD,AE ∩AD=A,所以PB ⊥平面AEFD. (3)解 由(1)知,V 1=V C-AEFD ,V E-ABC =V F-ADC =23V C-AEFD =23V 1,∴V BC-AEFD =53V 1,则V P-ABCD =V 1+53V 1=83V 1, ∴V 1V 2=38.8.[解] (1)证明:在菱形ABCD 中,∠DAB =60°,G 为AD 的中点,所以BG ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以BG ⊥平面P AD .(2)证明:如图,连接PG.因为△P AD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面P AD,PG⊂平面P AD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面P AC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面P AC.又AB⊂平面P AB,所以平面P AB⊥平面P AC.(3)棱PB上存在点F,使得P A∥平面CEF.理由如下:如图,取PB中点F,连接EF,CE,CF.又因为E为AB的中点,所以EF∥P A.又因为P A⊄平面CEF,且EF⊂平面CEF,所以P A∥平面CEF.10.证明(1)因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A,AF,AD⊂平面P AD,所以AB⊥平面P AD,又AB⊂平面ABCD,所以平面P AD⊥平面ABCD.11.(1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC .又∠ADC =120°,所以MD =12AD =12,AM =32. 所以AC = 3. 又AB =BC =3,所以△ABC 是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BN NP=3,所以MN ∥PD . 又MN ⊄平面PDC ,PD ⊂平面PDC ,所以MN ∥平面PDC .(2)解 因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥P A ,又BD ⊥AC ,P A ∩AC =A ,P A ,AC ⊂平面P AC ,所以BD ⊥平面P AC .由(1)知MN ∥PD ,所以直线MN 与平面P AC 所成的角即直线PD 与平面P AC 所成的角, 故∠DPM 即为所求的角.在Rt △P AD 中,PD =2,所以sin ∠DPM =DM DP =122=14, 所以直线MN 与平面P AC 所成角的正弦值为14. 12.【解】 (1)取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM , 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面P AB ,CM ⊄平面P AB ,所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,P A ⊥AB ,P A ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交. 所以P A ⊥平面ABCD ,从而P A ⊥BD .连接BM ,因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB . 又AB ∩AP =A ,所以BD ⊥平面P AB .又BD ⊂平面PBD ,所以平面P AB ⊥平面PBD .13.[证明] (1)在直三棱柱ABC A 1B 1C 1中,A 1C 1∥AC .在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE ∥AC ,于是DE ∥A 1C 1.又DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F ,所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1.因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1,所以A 1C 1⊥平面ABB 1A 1.因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D .又B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .因为直线B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F14.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD ,又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD ,作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =3, 由于AC ⊥AB 1,∴11122OA B C ==,∴2274AD OD OA =+=, 由 OH·AD=OD·OA ,可得OH=21,又O 为B 1C 的中点, 所以点B 1到平面ABC 的距离为217, 所以三棱柱ABC -A 1B 1C 1的高高为21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
C
A
B
C
E F
P
1
A 1
C 1
B
B
A
高三文科数学立体几何综合题训练
1.如图,四边形ABCD 与''ABB A 都是边长为a 的正方形,点E 是A A '的中点,
'A A ⊥平面ABCD .
(I )求证:C A '//平面BDE ; (II )求证:平面AC A '⊥平面BDE .
2.如图,在四棱锥ABCD -P 中,底面ABCD 是矩形,侧棱PD ⊥底面ABCD , DC PD =,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明:PA ∥平面EDB ;
(2)证明:PB ⊥平面EFD .
3.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。

(1)求证:EF//平面11D ABC ;(2)求证:EF C B 1⊥; (3)求三棱锥EFC B -1的体积V 。

4.在直三棱柱111C B A ABC -中, AC=4,CB=2,AA 1=2
60=∠ACB ,E 、F 分别是BC C A ,11的中点。

(1)证明:平面⊥AEB 平面C C BB 11;
(2)证明://1F C 平面ABE ;
(3)设P 是BE 的中点,求三棱锥F C B P 11-的体积。

5.如图,四边形A B C D 为矩形,AD ⊥平面ABE
2,AE EB BC === F 为C E 上的点,且B F ⊥平面AC E ,
.BD AC G =
(1)求证:A E ⊥平面BC E ; (2)求证://A E 平面BFD ; (3)求三棱锥E A D C -的体积.
6.如图,在侧棱垂直于底面的三棱柱ABC —A 1B 1C 1中,AC=3,AB=5,AA 1=BC=4,点D 是AB 的中点。

(Ⅰ)求证:1AC BC ⊥; (Ⅱ)求证:1//AC 平面CDB 1; (Ⅲ)求三棱锥A 1—B 1CD 的体积。

A 1
B 1
C 1
D 1
A
B
C D
E
7.正方形AD EF 与梯形A B C D 所在的平面互相垂直, ,//,22AD CD AB CD CD AB AD ⊥==. (Ⅰ)求证:B C B E ⊥;
(Ⅱ)在E C 上找一点M ,使得//B M 平面A D E F ,请确定M 点的位置,并给出证明.
8.三棱柱111
A B C A B C -中,侧棱与底面垂直,90ABC ∠=
,12AB BC BB ===, ,M N
分别是AB ,1A C 的中点.
(Ⅰ)求证:M N ∥平面11BCC B ; (Ⅱ)求证:M N ⊥平面11A B C ; (Ⅲ)求三棱锥M -11A B C 的体积.
9.如图,长方体1111D C B A ABCD -中,11==AA AB ,2=AD ,E 是BC 的中点. (Ⅰ)求证:直线//1BB 平面DE D 1; (Ⅱ)求证:平面AE A 1⊥平面DE D 1; (Ⅲ)求三棱锥DE A A 1-的体积.
10.如图,P A 垂直于矩形A B C D 所在的平面,AD PA 2==
,CD =,E 、F 分别 是A B 、P D 的中点。

(I )求证:AF //平面P C E ;
(Ⅱ)求证:平面P C E ⊥平面P C D ; (Ⅲ)求四面体P E FC 的体积
11.如图(1),A B C ∆是等腰直角三角形,4AC BC ==,E 、F 分别为A C 、A B 的中点,将AEF ∆沿E F 折起, 使A '在平面B C E F 上的射影O 恰为E C 的中点,得到图(2). (1)求证:E F A C '⊥; (2)求三棱锥BC A F '-的体积.
E
B
A C
D
F
N
M C 1B 1
A 1
C
B
A
12.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AD=2,
AB=1,AC
(Ⅰ)证明:CD⊥平面P AC;
(Ⅱ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.
13.一个四棱锥P-ABCD的三视图如图所示.
(1)求四棱锥P-ABCD的体积;
(2)若E为CD中点,求证:平面PBD⊥平面PAE。

15.已知四棱锥P—A BCD中,点M是PC的中点,点E是AB上的一个动点,且该四棱锥的三视图如图所示,其中正视图和侧视图是直角三角形。

(I)求证:PA//平面BDM;
(II)若点E是AB的中点,求证:CE⊥平面P DE;
(III)无论点E在何位置,是否均有三棱锥C—PDE的体积为
定值?若是,请求出定值;若不是,请说明理由。

16.一个简单多面体的直观图和三视图如图所示,它的主视图和侧视图都是腰长为1的等腰直角三角形,俯视图的轮廓为正方形,E是PD的中点.
(1)求证:ACE
PB平面
//;
(2)求证:PC⊥BD;
(3)求三棱锥C-PAB的体积。

主视图侧视图
俯视图

D
C
B
A
F
E

D
C
B
A 17.已知矩形ABCD 中,AB=6,
BC=E 为AD 的中点(图一)。

沿BE 将△ABE 折起,
使平面ABE ⊥平面BECD (图二),且F 为AC 的中点。

(1)求证:FD//平面ABE ; (2)求证:AC ⊥BE 。

18.如图甲,在平面四边形ABCD 中,已知45,90,A C ∠=∠= 105ADC ∠= ,A B B D =,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点.
(1)求证:DC ⊥平面ABC ; (2)设C D a =,求三棱锥A -BFE 的体积.
19.如图,在体积为1的三棱柱111C B A ABC -中,侧棱⊥1AA 底面ABC ,AB AC ⊥,
11==AA AC ,P 为线段AB 上的动点.
(Ⅰ)求证:P C CA 11⊥;
(Ⅱ)线段AB 上是否存在一点P ,使四面体11C AB P -的体积为6
1?若存在,
请确定点P 的位置;若不存在,请说明理由.
20.如图,已知四边形ABCD 为直角梯形,∠ABC =90°,AD ∥BC ,AD =2,AB =BC =1.沿AC 将△ABC 折起,使点B 到点P 的位置, 且平面PAC ⊥平面ACD . (Ⅰ)证明:DC ⊥平面APC ; (Ⅱ)求棱锥A -PBC 的体积.。

相关文档
最新文档