材料力学之压杆稳定
材料力学-压杆稳定
Pcr
2 EI
l2
此时若杆件横截面不同时 ,取 I I m in ,弯曲发生在抗弯 能力最弱的平面内。称最小刚度平面。 对于其他约束条件,常数 c1, c2 , k 由约束条件确定,经推导得: 两端铰支: 1 微弯曲线为正弦半波形状 2 EI 一端固定一端自由: 2 微弯曲线为半个正弦半波 pcr 2 ( l ) 两端固定: 0.5 一端固定一端铰支: 0.7
n0 p 0
不符合情况
n 1 pcr
2 EI
l2
这就是确定两端铰支压杆临界载荷的 欧拉公式,其临界力称欧拉临界力。它 与抗弯刚度EI成正比,与杆长L2成反比。 这公式只适用于弹性稳定问题
7
此时挠度
n y ( x) c1 sin k x c1 sin x l x y ( x) c1 sin (0 x l ) 正弦半波形 l
10
§13-5
临界应力与柔度、三类不同的压杆
杆件尺寸不同,其失稳的形式也不同。P335 对于“细长”杆:发生弹性失稳的可能性较大。 ---“弹性屈曲” 对于“粗短”杆:发生材料屈服的可能性较大。 ---“屈服” 对于“中长”杆:有可能发生失稳,但其临界应力已超过比例极 限, 局部区域已进入塑性。 ----“弹塑性屈曲” 怎样区分三类不同的压杆?即多长的杆会发生弹性屈曲、屈服 、弹—塑性屈服?下面引入“柔度”概念。 临界应力 cr : Pcr cr
3
当纵向力P较小时,可看到扰动除去后,杆经若干次振动 而恢复原来的直线形式,即表明此时压杆直线形式的弹性平衡 是稳定的。 当总向力P较大时,可看到扰动除去后,杆不能恢复原来 的直线形式,而且继续弯曲,最后转入新的稳定平衡形式。即 曲线形式或由于弯曲太甚而杆被折断,此表明原来的弹性平衡 不稳定。 这说明:当压力大于一定数值时,压杆存在两种可能的平衡 形式。即直线和弯曲的平衡形式。但直线形式是不稳定的。而 压杆从直线平衡形式到弯曲平衡形式的转变称为“失稳”或“ 弯曲”。 那么当压力多大时,直线平衡形式不稳定(被破坏)?
材料力学压杆稳定
D 0, C 1 l 2
3
x 0, w
1 Fa l 2
3 EIl
3EI Fcr al
§14.7 纵横弯曲旳概念
❖9.15
作业9-2
在图示铰接杆系ABC中,AB和BC皆为细长压杆, 且截面相同,材料一样。若因在ABC平面内失稳而 破坏,并要求0<</2,试拟定F为最大值时旳角。
Fcr
2 EI ( l )2
截 面
F
F
材
料
相
同 ,
1.5l
2l
拟
定
失
稳
顺 l 3l
2l
序 。
(1)
(4)
F
F
F
4l
5l
3l
2.8l
2.5l
1.5l
(2)
(3)
(5)
Fcr
2 EI ( l )2
图示托架中AB杆旳直径
d=30mm,长度l=800mm,
两端可视为铰支,材料为
F
A3钢,s=240MPa。试求
第九章 压杆稳定
§9.1 压杆稳定旳概念 §9.2 两端铰支细长压杆旳临界压力 §9.3 其他支座条件下细长压杆旳临界压力 §9.4 欧拉公式旳合用范围 经验公式 §9.5 压杆旳稳定校核 §9.6 提升压杆稳定性旳措施 §9.7 纵横弯曲旳概念
§9.1 压杆稳定旳概念
1. 平衡旳稳定性
a)稳定平衡
B = 0 sinkl=0 kl = n k = n/l
F
k 2 EI
n
2
EI
l
Fcr
2 EI l2
w
A
sin
x
l
§9.3 其他支座条件下细长压杆 旳临界压力
材料力学之压杆稳定
材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。
压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。
本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。
压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。
压杆通常是一根长条形材料,两端固定或铰接。
在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。
在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。
压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。
当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。
所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。
压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。
当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。
在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。
临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。
当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。
临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。
这些方法能够给出压杆在不同边界条件下的临界压力比。
在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。
压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。
弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。
在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。
材料力学_压杆稳定
π 2E λp = σp
欧拉公式仅适用于细长压杆的稳定计算
对Q235 钢,E=200GPa,σp=200MPa,则 , ,
200 × 109 λp = π ≈ 100 6 200 × 10
9.2 压杆的临界应力
二,临界应力总图 大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): 细长压杆
σ cr σs
π 2 EI π 2E Fcr σ cr = = = 2 A (l / i )2 A(l )
其中
记
λ=
l
i
压杆的柔度或 压杆的柔度或长细比 欧拉临界应力
i=
I A
π 2E σ cr = 2 λ
(λ = λmax )
π 2E π 2E σ cr = 2 ≤ σ p λ ≥ λ σp
大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): λ ≥ λ p 细长压杆
σp
σ cr = σ s
σcr = a1 b1λ
2
π 2E σ cr = 2 λ
直线经验公式: 直线经验公式:
(λ ≥ λ p )
σ cr = a bλ
σ cr = π E λ2
2
中柔度压杆(中长压杆 中柔度压杆 中长压杆) 中长压杆
σ cr = a bλ (λs ≤ λ ≤ λ p )
σ cr ≤ σ s (σ b ) λs =
2
d y = M ( x) = M B + FBy (l x) Fy 2 dx
2
k2 =
F EI ~ M M= B F
y
A
y (0) = 0 y′(0) = 0 y (l ) = 0 y′(l ) = 0 ~ ~ B + M + F l = 0 0 1 1 l ~ k 0 0 1 A k F = 0 =0 ~ sin kl cos kl 1 0 A sin kl + B cos kl + M = 0 ~ k cos kl k sin kl 0 1 kA cos kl kB sin kl F = 0 kl sin = 0 or Det = k[kl sin kl 2(1 cos kl )] 2 kl kl kl kl kl = 2k sin ( kl cos 2 sin ) = 0 (kl cos 2 sin ) = 0 2 2 2 2 2
材料力学 第九章 压杆稳定
cr s cr a b
cr
小柔度杆 中柔度杆
O
π2 E
2
大柔度杆
2
1
l
i
大柔度杆—发生弹性失稳 中柔度杆—发生非弹性失稳 小柔度杆—不发生失稳,而发生强度失效
Fuzhou University
杆类型
大柔度杆
定义
1
临界力
π EI Fcr ( l ) 2
n 0,1, 2
取
n 1
π 2 EI Fcr 2 l
细长压杆的临界载荷的欧 拉公式 (两端铰支)
Fuzhou University
材料力学课件
w A sin kx B co s kx
kl n , n 0,1, 2
F x l w F x
取 n 1
π 2 EI Fcr 2 l
2
临界应力
cr π2E性质Fra bibliotek2
稳定 稳定 强度
中柔度杆 2 1 Fcr A(a b ) 小柔度杆
cr a b
2
Fcr A s
cr s
l
i
1 π
i
E
I A
1.0, 0.5, 0.7, 2.0
a s 2 b
Fcr
Fcr
π 2 EI
2l
2
π 2 EI
0.7l
2
π 2 EI Fcr 2 (l )
欧拉公式的普遍形式
Fuzhou University
材料力学课件 讨论:
π 2 EI Fcr ( l )2
材料力学第九章 压杆稳定
02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望
材料力学压杆稳定概念欧拉公式计算临界力
材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。
压杆稳定是材料力学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形状上的变化,我们称之为杆件处于稳定状态。
然而,当作用力超过一定临界值时,杆件就会发生失稳,产生形状上的变化。
因此,欧拉公式就是用来计算杆件临界力的一种方式。
欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。
它的基本假设是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。
根据欧拉公式,杆件临界力可通过以下公式计算:Pcr = (π^2 * E * I) / L^2其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示杆件的有效长度。
从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。
例子:假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模量为E。
根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为I=(π*r^4)/4Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。
这个临界力表示了该杆件能够承受的最大作用力。
如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。
总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。
欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。
材料力学:压杆稳定
坍塌后的奎拜克桥
材料力学教学课件
韩国汉城
1995年6月29日下午,韩国汉城三 丰百货大楼,由于盲目扩建、加层, 致使大楼四五层立柱不堪重负而产 生失稳破坏,大楼倒塌,死502人, 伤930人,失踪113人。
2020年2月3日星期一
10
第九章 压杆稳定
中国南京 2000年10月25日上午10时,南京电视台演播中 心演播大厅的屋顶的施工中,由于脚手架失稳, 造成屋顶模板倒塌,死6人,伤34人。
材料力学教学课件
2020年2月3日星期一
26
第九章 压杆稳定
1)、细长杆的临界应力
cr
2E 2
p
2E p
引入记号 1
2E p
欧拉公式的适用范围
l
i
1
2E p
2)、中长杆的临界应力(经验公式)
cr a b, 2 1
sin
kl
l
coskl
0
2020年2月3日星期一
19
第九章 压杆稳定
由于杆在微弯状态下保持平衡时,
Fy不可能等于零,故由上式得
1 sin kl l coskl 0 k 亦即 tan kl kl
满足此条件的最小非零解为kl=4.49,亦即 Fcr l 4.49 EI
从而得到此压杆求临界力的欧拉公式:
受均匀压力的球形薄壳或薄圆环,当压力超过一定数值时,圆环将 不能保持圆对称的平衡形式,而突然变为非圆对称的平衡形式。
材料力学教学课件
2020年2月3日星期一
9
第九章 压杆稳定
由于构件的失稳往往是突然发生的,因而其危害性也较大。 历史上曾多次发生因构件失稳而引起的重大事故。如1907年 加拿大劳伦斯河上,跨长为548米的奎拜克大桥,因压杆失 稳,导致整座大桥倒塌。近代这类事故仍时有发生。
材料力学压杆稳定
材料力学压杆稳定材料力学是研究物质内部力的作用和变形规律的一门学科。
在材料力学中,压杆稳定是一个重要的概念,它涉及到杆件在受压作用下的稳定性问题。
本文将围绕材料力学中的压杆稳定问题展开讨论,旨在帮助读者更好地理解和掌握这一概念。
首先,我们需要了解什么是压杆稳定。
在材料力学中,压杆稳定是指杆件在受到压力作用时不会发生失稳现象,保持原有形状和结构的能力。
对于一个长细杆件来说,当受到外部压力作用时,如果其稳定性不足,就会出现侧向挠曲或屈曲等失稳现象,这将导致结构的破坏。
因此,压杆稳定是材料力学中一个至关重要的问题。
接下来,我们将从材料的选择、截面形状和支撑条件等方面来探讨如何提高压杆的稳定性。
首先,材料的选择对于压杆稳定至关重要。
一般来说,高强度、高刚度的材料更有利于提高压杆的稳定性。
此外,材料的表面质量和加工工艺也会对压杆的稳定性产生影响,因此在实际工程中需要对材料的选择和加工过程进行严格控制。
其次,截面形状也是影响压杆稳定性的重要因素。
通常情况下,圆形截面是最有利于抵抗压力的,因为圆形截面能够均匀分布受力,减小局部应力集中的可能性。
相比之下,矩形或其他非圆形截面的压杆在受到压力作用时往往稳定性较差,容易发生失稳现象。
最后,支撑条件也是影响压杆稳定性的关键因素之一。
压杆的支撑条件直接影响其在受力时的变形和稳定性。
合理的支撑设计能够有效地提高压杆的稳定性,减小失稳的可能性。
综上所述,材料力学中的压杆稳定是一个复杂而重要的问题,需要综合考虑材料的选择、截面形状和支撑条件等因素。
只有在这些方面都做到合理设计和严格控制,才能保证压杆在受力时不会发生失稳现象,从而确保结构的安全可靠。
希望本文能够帮助读者更好地理解和掌握材料力学中压杆稳定的相关知识,为工程实践提供一定的参考价值。
同时,也希望读者能够在实际工程中注重压杆稳定性的设计和控制,确保结构的安全可靠。
材料力学压杆稳定概念欧拉公式计算临界力课件
杆的长度远大于横截面尺 寸,且横截面尺寸保持不 变。
杆的材料需满足胡克定律 ,即应力与应变成线性关 系。
欧拉公式在压杆稳定中的应用
01
通过欧拉公式,可以计算出压杆在临界状态下的临界力,即压杆失稳 前的最大承载力。
02
临界力的大小与压杆的材料、截面形状、尺寸等因素有关,是评估压 杆稳定性能的重要指标。
通过优化载荷分布,可以改善压杆的受力状态,从而提高稳定性。
THANKS
感谢观看
详细描述
理想压杆的临界力不受压杆重量和惯性影响,因此在实际应用中 ,需要考虑这些因素对临界力的影响。
实际压杆临界力计算
总结词
实际压杆是指考虑自身重量和惯 性影响的压杆,其临界力计算需 考虑这些因素。
总结词
实际压杆的临界力受到自身重量 和惯性影响,因此需要考虑这些 因素对临界力的影响。
详细描述
在计算实际压杆的临界力时,需 要考虑压杆自重产生的挠度以及 横截面面积和长度等因素的影响 。
02
推导过程中,考虑了压杆的弯曲变形和轴向压缩变形,利用能
量守恒和弹性力学的基本方程,最终得到了欧拉公式。
推导过程涉及了数学和物理的相关知识,需要一定的专业背景
03
和理论基础。
欧拉公式应用条件
欧拉公式适用于理想弹性 材料制成的细长等截面直 杆。
杆的受力方式为两端受压 ,且轴向压力逐渐增加直 到临界状态。
材料力学压杆稳定概念欧 拉公式计算临界力课件
• 压杆稳定概念 • 欧拉公式 • 临界力计算 • 压杆稳定性的影响因素 • 提高压杆稳定性的措施
01
压杆稳定概念
压杆失稳现象
01
02
03
弯曲变形
当压杆受到压力时,可能 会发生弯曲变形,导致承 载能力下降。
材料力学压杆稳定
长度因数
(支座系数, 长度系数, 约束系数)
注意:刚度越大, 杆长越短,约束越 强,临界力越大,
压杆越不易失稳。
一端固定 一端自由
2
一端固定 两端铰支 一端铰支
两端固定
1
0.7
0.5
第十章 压杆稳定
例:图示细长圆截面连杆,长度 l 800 mm ,直径 d 20 mm ,材 料为Q235钢,E=200GPa.试计算连杆的临界载荷 Fcr . 解:1、细长压杆的临界载荷
s p ( p s )
cr a b
a, b 是与材料性
能有关的常数。 直线公式适合合金 钢、铝合金、铸铁与 松木等中柔度压杆。
第十章 压杆稳定
——直线型经验公式
材料 硅钢
a s s b
p
a(MPa) b(MPa) 577 3.74
100
1.287 ( MPa)
第十章 压杆稳定
例:图示立柱,L=6m,由两根10号槽型A3钢组成,下端固定,上 端为球铰支座,试问 a=?时,立柱的临界压力最大值为多少? 解:1、对于单个10号槽钢,形心在C1点。
I z1 198 .3cm4 , I y1 25.6cm4 . A1 12.74cm , z0 1.52cm,
I min I y 2 I y1 2 23.63 47.26cm 4
i I min A 47 .26 1.68cm 2 8.367
150 89.3 p 100 1.68
max
第十章 压杆稳定
l
i
所以,应由经验公式求临界压力。
σcr=304-1.12λ =304-1.12×89.3 =204(MPa)
材料力学课件(压杆稳定性)
2 EI
2 a2
改变力F指向,BD成为压杆,临界压力
F2
2 EI
2a 2
Fcr
比较:Fcr Fcr
1 2 EI
2FAB FBD 2 a 2
例9-4.一端固定一端自由压杆,长为 l,弯曲刚度
为EI,设挠曲线方程
w
2l 3
(3lx 2
x3)
,为自由
端挠度。试用能量法去定临界压力的近似值。
思考: P 3169-4,习题9-11,13,14,18
练习: P 319习题9-10,12,15,17
(3)合理稳定性设计
[ ]st
与
L
i
成反比
合理截面:约束性质接近时,iminimax ——组合截面 提高 i ——使截面积远离形心
增强约束:缩短相当长度
思考:含有压杆的超静定问题
温度变化引起的稳定性问题
、[]st与 成反比
值:木杆——式(9 11,12)
钢杆——表 92,3
(2)稳定性条件
F A
[ ]st
[ ]
稳定性r 或 与 或 i 为非线性关系,选择截面
尺寸时需用迭代法
例9-5. Q235钢连杆,工字型截面A=552mm2,Iz= 7.40×104mm4,Iy=1. 41×104mm4,有效长度l= 580mm,两端柱形铰约束,xy平面失稳μz=1,xz 平面失稳μy=0.6,属 a 类压杆,轴向压力F=35kN, [σ]=206MPa。试求稳定许用应力,并校核稳定性。
思考:比较一根杆的柔度与柔度的界限值
影响大柔度、中柔度和小柔度杆临 界应力因素的异同
3. 压杆的稳定性条件与合理设计
(1)稳定许用应力
实际压杆与理想压杆的差异:初曲率、压力偏心、 材料缺陷等
材料力学课件 第十章压杆稳定
sinkL0
kn P
L EI
临界力 Pcr 是微弯下的最小压力,故,只能取n=1 ;且 杆将绕惯性矩最小的轴弯曲。
Pcr
2
EImin L2
14
Pcr
2
EImin L2
二、此公式的应用条件:
两端铰支压杆临界力的欧拉公式
1.理想压杆; 2.线弹性范围内; 3.两端为球铰支座。
三、其它支承情况下,压杆临界力的欧拉公式
29
我国钢结构柱子曲线
二、 受压构件的稳定公式
利用最大强度准则确定出轴心受压构件的临界应力 cr ,引入抗力分项系数 R ,则轴心受压构件的稳定计算公式如下:
N cr cr f y f A R R fy
f :钢材的强度设计值
(10.24)
30
例6
如图所示,两端简支,长度l 5m 的压杆由两根槽钢组成,若限定两个槽钢腹板
Iy [73.3 (51.8)2 21.95]2 2176.5cm4
33
若失稳将仍会在 xoy平面内,有
imin iz
Iz A
1732.4 6.28cm 43.9
max
l imin
500 79.6 6.28
查表得2 0.733
此时3 与3 已经很接近,按两个 16a 槽钢计算压杆的许可压力,有
20
[例3] 求下列细长压杆的临界力。
y y
x
z
z
h
L1
L2
解:①绕
y 轴,两端铰支:
=1.0,
I
y
b3h 12
,
②绕 z 轴,左端固定,右端铰支:
b
Pcry
2EI L22
y
=0.7,
材料力学压杆稳定
材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。
在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。
压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。
稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。
本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。
压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。
压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。
这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。
为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。
一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。
此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。
2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。
一般来说,杆件所使用的材料应当具有足够的强度和刚度。
强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。
此外,材料应当具有足够的韧性,以防止杆件发生断裂。
3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。
一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。
支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。
4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。
外力可以包括静力荷载、动力荷载和温度荷载等。
在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。
总之,压杆的稳定性是确保结构安全可靠性的重要因素。
在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。
合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。
材料力学 第10章 压杆稳定
μ=2
欧拉临界压力公式 :
Fcr
2 EI (l )2
应用欧拉公式时,应注意以下两点:
1、欧拉公式只适用于线弹性范围,即只适用于弹性稳定问题
2、 I 为压杆失稳发生弯曲时,截面对其中性轴的惯性矩。
对于各个方向约束相同的情形(例如球铰约束),I 取截面的 最小惯性矩,即 I=Imin;
Fcr
2 EI (l )2
压杆临界压力欧拉公式的一般形式
E——材料的弹性模量;
—长度系数(或约束系数),反映了杆端支承对临界载
荷的影响。
压杆临界力与外
l—压杆的计算长度或相当长度。 力有关吗??
l—压杆的实际长度。
I—压杆失稳发生弯曲时,截面对其中性轴的惯性矩。
适用条件:1.理想压杆;2.线弹性范围内
第10章 压杆稳定
第10章 压杆稳定
§10.1 §10.2 §10.3 §10.4 §10.5 §10.6
工程中的压杆稳定问题 理解
压杆稳定性概念 掌握
细长压杆临界压力的欧拉公式 掌握
压杆的临界应力 掌握
压杆的稳定性计算
掌握
提高压杆稳定性的措施
了解
关键术语
压杆,稳定性,屈曲,稳定失效,临界压力Fcr, 柔度λ(长细比),计算长度μl
重点 1、细长压杆临界压力的欧拉公式 2、压杆的临界应力 3、压杆临界载荷的欧拉公式的适用条件 4、压杆稳定性设计
难点 1、压杆临界压力的计算 2、压杆稳定性设计
§10.1 工程中的压杆稳定问题
构件的承载能力:
①强度 ②刚度 ③稳定性
工程中有些构件 具有足够的强度、刚 度,却不一定能安全 可靠地工作。
F
30mm
《材料力学》第九章 压杆稳定
第九章 压杆稳定§9—1 概述短粗压杆——[]σσ≤=AF Nmax (保证具有足够的强度) 细长压杆——需考虑稳定性。
一、压杆稳定性的概念:在外力作用下,压杆保持原有直线平衡状态的能力。
二、压杆的稳定平衡与不稳定平衡:三、临界的平衡状态:给干扰力时,在干扰力给定的位置上平衡;无干扰力时,在原有的直线状态上平衡。
(它是稳定与不稳定的转折点)。
压杆的临界压力:Fcr ( 稳定平衡的极限荷载)四、判断压杆稳定的标志——F cr稳定的平衡状态——cr F F 临界的平衡状态——cr F F =不稳定的平衡状态(失稳)——cr F F§9—2 两端铰支细长压杆的临界力假定压力以达到临界值,杆已经处于微弯状态且服从虎克定律,如图,从挠曲线入手,求临界力。
①、弯矩:w F x M cr -=)(②、挠曲线近似微分方程:w F x M w EI cr -=='')( 即,0=+''w EIF w cr令 EIF k cr =202=+''w k w ③、微分方程的解:kx B kx A w cos sin += ④、确定微分方程常数:0)()0(==L w w )sin (.0sin 0,B kx w kL ===→πn Kl =(n=0、1、2、3……)EIF L n k cr==∴π222L EI n F cr π=→临界力 F c r 是微弯下的最小压力,故,只能取n=1 ;且杆将绕惯性矩最小的轴弯曲。
2min2cr F L EI π=∴§9—3 其它支承下细长压杆的临界力2min2)(l EI F cr μπ=——临界力的欧拉公式(μ——长度系数,L ——实际长度,μL ——相当长度) 公式的应用条件:1、理想压杆;2、线弹性范围内;【例】:试由挠曲线近似微分方程,导出下述细长压杆的临界力公式。
解:变形如图,其挠曲线近似微分方程为:0)(m w F x M w EI cr -==''EI F k cr =2:令 crF m k w k w EI 022=+'' kx d kx c w sin cos += 边界条件为:.0,;0,0='==='==w w L x w w x, 2,,00πn kL F m d c cr=-== 为求最小临界力, “ n ”应取除零以外的最小值,即取:π2=kL所以,临界力为:2222)2/(4L EIL EI F cr ππ== (μ=0.5)【例】:求下列细长压杆的临界力。
材料力学第11章 压杆稳定
长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔
柔
度度
度
压压
压
杆杆
杆
可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假定压力已达到临界值,杆已经处于微弯状态,如图 , 从挠曲线入手,求临界力。
P
y P
x
M P
x
P ①弯矩: M (x, y) Py
②挠曲线近似微分方程:
y M P y EI EI
y P yyk 2 y0 EI
其中:k 2 P EI NEXT
压杆稳 ③微定分方程的解: 设:y Asin x B cos x
Pcr (2ELI)m2in
——压杆临界力欧拉公式的一般形式
—长度系数(或约束系数)
L—称为有效长度
对不同约束,由下表9-1给出
NEXT
压杆稳
定表9–1 各种支承约束条件下等截面细长压杆临界力的欧拉公式
支承情况
两端铰支 一端固支 一端固定 另端铰支 一端移动
一端固支 另端自由
一端固支 一端可移动 不能转动
设计该桥的校方将该桥的废钢材全部购买下来,制成 校徽,来告诫本校学生永远记住这一教训。
压杆稳 定
一个建筑,都是由很多杆件组合而成的,有的杆件 承受压力,有的杆件承受拉力,有的杆件承受剪切, 有的杆件承受弯曲,有的杆件承受扭转,有的杆件承 受以上几种情况的组合受力。对于长而细的承受压力 的杆件,它的破坏通常并不是由于强度不够而折断, 而是由于不能保持原来的直线而偏移,虽然没有折断 ,但偏移且离开了原来直线位置,同样会导致整个建 筑的破坏,这种现象在力学上称为“压杆失稳”。
(a) 稳定平衡 (b) 不稳定平衡
(c) 随遇平衡
RETURN
压杆稳
定 9.1.3 压杆失稳与临界压力 :
1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。 2.压杆的稳定平衡与不稳定平衡:
P Pcr
不
稳
稳
定
定
平
平
衡
衡
P Pcr
见稳定平衡.AVI
见不稳定平衡.AVI
NEX
压杆稳 3.压杆定失稳:
NEXT
(3)浦东沪东 造船沪东龙门吊 倒塌
08年5月30日零时25分左右,五莲路浦东大道上的沪东中华造船公 司两个各600吨的龙门吊在操作过程中发生意外,巨大的塔吊倒塌导致 三个操作的驾驶员当场死亡,另有多名伤者被送往东方医院抢救。
记者在现场看到,上午整个厂区都被封锁,清晨6点前来上班的员 工至今无法进入。周边居住的市民反映,当时感到一阵巨响,仿佛地都 摇了,还以为是地震,于是纷纷从楼上跑下来。
NEXT
(2)沪东中华造船集团有限公司
十几秒中36人丧生
• 01年7月17日上午8点,在上海市 沪东中华造船(集团)有限公司由 上海电力建筑工程公司承担的 600吨门式起重机在吊装过程中 发生特大事故。
• 36人死亡、3人受伤,同济大学9 人不幸全部遇难
• 早晨,机械学院的几位打算去沪 东造船厂指挥安装龙门起重机的 老师回机械南馆取资料,守门的 师傅替他们开了门。谁曾想,一 个多小时后,他们都在沪东造船 厂的事故中遇难。一行9人中, 有53岁的老教授,也有才30岁风 华正茂的博士后。
④确定积分常数: 由边界条件:y(0) y(L) 0
即:
A0B0
要使(A,
AsinkLBcoskL0
B)有非零解,0 sin kL
1 0
cos kL
sinkL0
k n P
L
EI
n 0,1,2,L
临界压力 Pcr 是最小的微弯压力,故只能取n=1 ;且杆 将绕惯性矩最小的轴弯曲。
Pcr
原因:忽略了对桥梁重量的精确计算导致悬臂桁架中个别 受压杆失去稳定产生屈曲,造成全桥坍塌;
NEXT
压杆稳 定
该桥计算时疏忽了对风荷载的验算,桥建成试通车后, 发现桥面已发生扭曲,于是委托麻省理工大学进行检测,麻 省理工大学制作了一个原桥的模型,进行风荷载试验,发现 桥面扭曲的直接原因是风荷载,于是麻省理工大学用6天时 间另搞了一个完善设计,在桥主梁侧面打开一些空洞,以减 少风荷载的影响,可惜这一方案尚未实施完毕,桥面已出现 剧烈扭曲,通过桥梁的最后一辆车是一辆轿车,受桥面扭曲 影响。在桥面上已无法行驶,在相关营救人员的援助下,车 主逃脱险境,之后不久桥就全部损坏。
丧失其直线形状的平衡
见CLDH0-4.AVI
4.压杆的临界压力
临界状态
稳
对应的
P Pcr
不 稳 度定 平 衡 Pcr
P Pcr
RETURN
§9.2 细长压杆的临界压力
9.2.1 两端铰支压杆的临界压力 9.2.2 其他支座条件下压杆的临界压力
压杆稳
定9.2.1 两端铰支压杆的临界压力
压杆稳
定 9.1.1 历史教训
(1)魁北克大桥
NEXT
压杆稳 定
魁北克大桥(1907年):这座大桥本该是美国著名设计 师特奥多罗·库帕的一个真正有价值的不朽杰作。库帕曾称他 的设计是“最佳、最省的”。可惜,它没有架成。 库帕自我陶 醉于他的设计,而忘乎所以地把大桥的长度由原来的500米加 到600米,以之成为当时世界上最长的桥。 桥的建设速度很 快,施工组织也很完善。正当投资修建这座大桥的人士开始 考虑如何为大桥剪彩时,人们忽然听到一阵震耳欲聋的巨响 ——大桥的整个金属结构垮了:19000吨钢材和86名建桥工人 落入水中,只有11人生还。
2 EImin
L2
NEXT
压杆稳
定Pcr
2 EImin
L2
(9 1)
——两端铰支压杆临界力的欧拉公式
公式(9-1)的应用条件: 1、理想压杆; 2、线弹性范围内; 3、一端为固定球铰支座,另一端为活动球铰支座。
RETURN
压杆稳
9.2定.2 其他支座条件下压杆的临界压力
其它支座情况下,压杆临界力的欧拉公式
原因:是两台六百吨一起起吊重八百吨的船头时,两台龙门吊的速 度不一样,前面一台倒了后面一台承受不了重量外加第一台的拉力就一 起跟着倒了。干坞里面的船也毁了…
RETURN
压杆稳 9.1.2定稳定平衡与不稳定平衡的例子
1. 不稳定平衡
NEXT
压杆稳 2. 稳定定平衡
NEXT
压杆稳 3. 稳定定平衡和不稳定平衡和随遇平衡
第9章 压杆稳定
第9章 压杆稳定 Column Stability
§9.1 压杆稳定的概念 §9.2 细长压杆的临界压力 §9.3 欧拉公式的适用范围,经验公式 §9.4 压杆稳定条件与合理设计 第9章 作业
§9.1 压杆稳定的概念
9.1.1 历史教训 9.1.2 稳定平衡与不稳定平衡的例子 9.1.3 压杆失稳与临界压力