解三角形应用(1)(几何图形的边角关系)

合集下载

直角三角形的边角关系(含答案)

直角三角形的边角关系(含答案)

第十四章直角三角形的边角关系基础知识梳理1.锐角三角函数.在Rt△ABC中,∠C是直角,如图所示.(1)正切:∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=AA∠∠的对边的邻边.(2)正弦:∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=A∠的对边邻边.(3)余弦:∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=A∠的邻边邻边.(4)锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(5)锐角的正弦和余弦之间的关系.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.即:如果∠A+∠B=90°,那么sinA=cos(90°-A)=cosB;cosA=sin(•90•°-•A)•=sinB.(6)一些特殊角的三角函数值(如下表).三角函数角sin cos tan30°12323345°2222160°32123(7)已知角度可利用科学计算器求得锐角三角函数值;同样,•已知三角函数值也可利用科学计算器求得角度的大小.(8)三角函数值的变化规律.①当角度在0°~90°间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小).②当角度在0°~90°间变化时,余弦值随着角度的增大(或减小)而减小(•或增大).(9)同角三角函数的关系.①sin2A+cos2A=1;②tanA=sincosAA.2.运用三角函数解直角三角形.由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.如图所示,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.(1)三边之间的关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab.所以,在直角三角形中,只要知道除直角外的两个元素(其中至少有一个是边),•就可以求出其余三个未知元素.解直角三角形的基本类型题解法如下表所示:类型已知条件解法两边两直角边a,bc=22a b+,tanA=ab,B=90°-A一直角边a,斜边cb=22c a-,sinA=ac,B=90°-A一边、一锐角一直角边a,锐角AB=90°-A,b=tanaA,c=sinaA斜边a,锐角A B=90°-A,a=c·sin,b=c·cosA注意:解直角三角形需要注意的问题:(1)尽量使用原始数据,使计算更加准确;(2)不是解直角三角形的问题,添加合适的辅助线转化为解直角三角形的问题;(3)恰当使用方程或方程组的方法解决一些较复杂的解直角三角形的问题;(4)在选用三角函数式时,尽量做乘法,避免做除法,以使运算简便;(5)必要时画出图形,分析已知什么,求什么,它们在哪个三角形中,•应当选用什么关系式进行计算;(6)添加辅助线的过程应书写在解题过程中.3.解直角三角形的实际问题.解直角三角形的实际问题涉及到如下概念和术语.(1)坡度、坡角.如图所示,坡面的垂直高度h和水平宽度L的比叫做坡度(或叫做坡比),用字母i表示,即i=hl.坡面与水平面的夹角记作α(叫做坡角),则i=hl=tanα.(2)仰角、俯角.当从低处观测高处的目标时,视线和水平线所成的锐角称为仰角.当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.如图所示.(3)方位角和方向角.①方位角:正北方向顺时针旋转与已知射线所成的角叫做方位角.如图所示的∠α(0°<α<360°).②方向角:正北或正南方向与已知射线所成的锐角叫做方向角.如图14-5所示的∠β(0°<β<90°),若∠β=30°,则方向角可记作南偏西30°.(4)燕尾槽的深度、燕尾角.燕尾槽的横断面如图所示,AE是燕尾槽的深度,AD是外口宽,BC是里口宽,∠B是燕尾角.考点与命题趋向分析(一)能力1.通过实例认识锐角三角函数(sinA ,cosA ,tanA ),知道30°,45°,60•°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.2.运用三角函数解决与直角三角形有关的简单实际问题. (二)命题趋向分析1.三角函数是代数与几何衔接点之一,是三角学的基础,近年来锐角三角函数常与四边形、相似形、坐标系、圆等相结合出题,多涉及实际应用问题,如梯子的倾斜程度、坡度等问题.【例1】(2004年河南省)如图1,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时梯子的倾斜角为75°.如果梯子底端不动,顶端靠在对面墙上,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角为45°,则这间房子的宽AB 是________米.(1) (2) 【分析一】AB=AC+CB=tan 75a ︒+tan 45b︒.如图2,在Rt △ACB 中,∠C=90°.∠A=15•°,•∠ABC=75°, 在∠ABC 内部作∠ABD=15°,则∠BDC=30°,∠DBC=60°, 设BC=1,则BD=2,3, ∵∠A=∠ABD=15° ∴AD=BD=2 ∴3 ∴tan75°=AC BC23+3∴∴sin75°=ACAB 如图1所示:NB=CB=b 米∴b 米∴米 在Rt △MAC 中,sin75°=AMMC∴4a=()b解得-1)a∴AB=AC+CB=tan 75a ︒+tan 45b︒+b=(a+)a=a (米)【分析二】在图1中连MN ,可由MC=NC ,∠MCN=60°得等边三角形MCN ,作MH•⊥BN 于H .由∠A=∠MHB=90°,∠MCA=∠MNH=75°,MC=MN .可证△MAC ≌△MHN ,得AM=MH .•再证四边形MABH 为矩形,可得AB=MH=AM=a 米. 【解】此空应填a .2.涉及特殊角的三角函数值的应用题是近年中考中的热点,•对学生的综合能力要求较高,要勤于观察生活中的数学现象,并善于将生活中的实际问题转化为数学问题并加以解决.【例2】(2004年哈尔滨市)如图,在测量塔高AB 时,•选择与塔底在同一水平面的同一直线上的C 、D 两点,用测角仪器测得塔顶A 的仰角分别是30°和60°.•已知测角器高CE=1.5m ,CD=30m .求塔高AB .(答案保留根号) 【分析】由CD=30m ,可求EG=30m ,考虑到∠AGF 是△AEG 的外角,可知EG=AG ,故AG=30m ,在Rt △AGF 中可求AF 长.AB=AF+FB 问题得以解决. 【解】由题意可知:EG=CD=30米 ∵∠AEG=30°,∠AGF=60°∴∠EAG=30°∴EG=AG=30米在Rt△AFG中,sin60°=AF AG∴AF=AG·sin60°=30×32=153(米)∴AB=AF+FB=153+32(米)答:塔高AB为(153+32)米.【规律总结】本题发现EG=AG=30米,以及熟记特殊角三角函数值是关键.3.近10年来含特殊角的三角函数值的应用问题中中考中呈现上升趋势,•这类考题往往给定一些角的三角函数值供考生选用,且这类题多以中档解答题为主,望读者引起注意.【例3】(2004年沈阳市)某地一居民楼,窗户朝南,窗户的高度为h米,•此地一年中的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大为β(如图1).小明想为自己家的窗户设计一个直角形遮阳篷BCD,要求它既能最大限度地遮挡夏天炎热的阳光,•又能最大限度地使冬天温度的阳光射入室内.小明查阅了有关资料,获得了所在地区∠α和∠β的相应数据:∠α=24°36′,∠β=73°30′,小明又量得窗户的高AB=1.65米.若同时满足下面两个条件:(1)•当太阳光与地面夹角为α时,要想使太阳光刚好全部射入室内;(2)•当太阳光与地面夹角为β时,要想使太阳光刚好不射入室内.请你借助图形(如图2),帮助小明算一算,•遮阳篷BCD中,BC和CD的长各是多少?(精确到0.01米)以下数据供计算中选用:sin24°36′=0.416 cos24°36′=0.909tan24°36′=0.458 cot24°36′=2.184sin73°30′=0.959 cos73°30′=0.284tan73°30′=3.376 cot73°30′=0.296【分析】图中有两个直角三角形,即△BCD 和△ACD .•利用这两个直角三角形求解.另外题中所给数据中cot24°36′实际上是tan24°36′的倒数,今后我们会学习到. 【解】∵在Rt △BCD 中,tan ∠CDB=BCCD,∠CDB=∠α ∴BC=CD ·tan ∠CDB=CD ·tan α ∵在Rt △ACD 中,tan ∠CDA=ACCD,∠CDA=∠β ∴AC=CD ·tan ∠CDA=CD ·tan β ∵AB=AC-BC=CD ·tan β-CD ·tan α =CD (tan β-tan α) ∴CD=tan tan AB βα-= 1.653.3760.458-≈0.57(米)∴BC=CD ·tan ∠CDB ≈0.57×0.458≈0.26(米) 答:BC 的长约为0.26米,CD 的长约为0.57米.【规律总结】本题的解决关键是把∠α、∠β置于两个直角三角形中,另外要细心体会把实际问题转化为数学模型的过程和方法.4.运用解直角三角形知识解决实际问题是近年中考的热点题型,•主要涉及测量(特别是底部不可到达的物体的高度的测量)、航空、航海、工程等领域,且说理性题(如船会不会触礁,速度应提高多少,巡逻艇能否追上走私船等)比重有所加大.这类题主要考查学生应用相关知识解决实际问题的能力. 【例4】(2003年青岛)如图14-11所示,•人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只,正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26•海里/时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问 (1)需要几小时才能追上?(点B 为追上时的位置) (2)确定巡逻艇追赶方向(精确到0.1°)(参考数据:sin66.8°≈0.9191,cos66.8°≈0.3939,•sin67.•4•°≈0.•9231,cos67.4°≈0.3843,sin68.4°≈0.9298,cos68.4°≈0.3681,•sin70.•6•°≈0.9432,cos70.6°≈0.3322).【分析】由于已知速度,本题第(1)问可利用直角△ABO 的各边长列方程求解,•第(2)问可利用sin ∠AOB=ABOB,求出∠AOB 的度数. 【解】(1)设需要t 小时才能追上,则AB=24t ,OB=26t .在Rt △ABO 中,OB 2=AB 2+OA 2,即(26t )2=(24t )2+102,解得t=±1,t=-1不合题意,舍去,∴t=1,即需要1小时才能追上. (2)在Rt △ABO 中 ∵sin ∠AOB=AB OB =2426t t =1213≈0.9231, ∴∠AOB ≈67.4°即巡逻艇的追赶方向是北偏东67.4°.解题方法与技巧1.数形结合思想.【例1】已知tan α=34,求sin cos sin cos αααα+-的值. 【分析】利用数形结合思想,将已知条件tan α=34用图形表示.【解】如图所示,在Rt △ABC 中,∠C=90°,∠A=α,设BC=3k ,AC=4k ,则AB=22AC BC +=22(4)(3)k k +=5k .∴sin α=BC AB =35k k =35 cos α=4455AC k AB k ==, ∴原式=34553455+-=-7.方法2:转化思想 【例2】已知tan α=34,求sin cos sin cos αααα+-的值. 【分析】可将所求式子的分子、分母都除以cos ,转化为含有sin cos αα的式子,•再利用tan α=sin cos αα进行转化求解. 【解】将式子sin cos sin cos αααα+-的分子、分母都除以cos α,得原式=31tan143tan114αα++=--=-7【规律总结】因为tanα=34所以α不等于90°,所以cosα≠0,因此分子分母可以同时除以cosα.实现转化的目的.方法3:方程思想【例3】去年某省将地处A、B两地的两所大学合并成了一所综合性大学,•为了方便A、B两地师生的交往,学校准备在相距2千米的A、B•两地之间修筑一条笔直的公路(即图中的线段AB),经测量,在A地的北偏东60°方向,B地的西偏北45°的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?【分析】过C作AB的垂线段CM,把AM、BM用含x的代数式3x,x表示,利用AM+MB=2列方程得,3x+x=2,解出CM的长与0.7千米进行比较,本题要体会设出CM的长,列方程解题的思想方法.【解】作CM⊥AB,垂足为M,设CM为x千米,在Rt△MCB中,∠MCB=∠MBC=45°,则MB=CM=x千米.在Rt△AMC中,∠CAM=30°,∠ACM=60°tan∠ACM=AM CM∴AM=CM·tan60°=3x千米∵AM+BM=2千米∴3x+x=2∴x=3-1≈1.732-2=0.732∴CM长约为0.732千米,大于0.7千米∴这条公路不会穿过公园.方法4:建模思想【例4】如图所示,一艘轮船以20里/时的速度由西向东航行,•途中接到台风警报,台风中心正以40里/时的速度由南向北移动,距离台风中心2010•里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A•正南方向的B处,且AB=100里.(1)若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,•试求轮船最初遇到台风的时间;若不,请说明理由.(2)现轮船自A处立即提高船速,向位于东偏北30°方向,相距60里的D港驶去,为使台风到来之前到达D港,问船速至少应提高多少?(取整数,13≈3.6)【分析】本题是航海问题,把航海问题抽象成纯数学问题,建立起“解直角三角形”的“数学模型”.【解】(1)设途中会遇到台风,且最初遇到台风的时间为t小时,此时,轮船位于C 处,台风中心移到E处,连结CE,则有AC=20t,AE=AB-EB=100-40t,EC=2010在Rt△ACE中,AE2+AC2=EC2∴(20t)2+(100-40t)2=(2010)2∴t2-4t+3=0△=(-4)2-4×1×3=4>0∴途中会遇到台风解方程①得t1=1,t2=3∴最初遇到台风的时间为1小时.(2)设台风抵达D港的时间为t小时,此时台风中心至M点,过D作DF⊥AB,垂足为F,连结DM.在Rt△ADF中,AD=60,∠FAD=60°∴DF=303,FA=30又FM=FA+AB-BM=130-40tMD=2010∴(303)2+(130-40t)2=(2010)2整理,得4t2-26t+39=0解之得t1=13134-,t2=13134+∴台风抵达D港的时间为13134-小时,到D港的速度为60÷13134-≈25.5(海里/时).因此为使台风抵达D 港之前轮船到D 港,轮船应提高6海里/时.方法5:说理性问题的解法【例5】如图,MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心,500m 为半径的圆形区域为居民区,•取MN 上另一点B ,测得BA 的方向为南偏东75°,已知MB=400m ,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?【分析】说明输水路线是否穿过居民区,应过A 作MN 的垂线段AH ,计算出AH 的长,然后把AH 与500m 比较大小.【解】过A 作AH ⊥MN ,垂足为H ∵MK ∥BG∴∠GBH=∠KMH=30°又∵∠GBA=75°,∠HBA=45° ∴∠BAH=45° ∴AH=BH设AH 为xm ,则BH=xm ,在Rt △MHA 中,∠HMA=∠KMA-∠KMB=60°-30°=30°. ∵tan ∠HMA=AHMH∴MH=tan 30x =33x =3x∵MB=MH-BH∴3x-x=400 解得x=200(3+1)∴AH ≈546.4m>500m答:输水路线不会穿过居民区.【规律总结】此题是说理性问题,这类题要求学生对基本概念、基本定理、基本思路有清醒的认识,能根据实际问题进行相关的计算,并利用计算所得结果说明问题的原因、依据.方法6:探索性问题【例6】某学校为了改善教职工居住条件,•准备在教学楼(正楼)的正南方向建一座住宅楼(正楼),要求住宅楼与教学楼等高,均为15.6米,已知该地区冬至正午时分太阳高度最低,太阳光线与水平线的夹角为30°,如果住宅楼与教学楼间相距19.2米,如图1所示.(1)此时住宅楼的影子落在教学楼上有多高?(精确到0.1米)(2)要使住宅楼的影子刚好落在教学楼的墙角,则两楼间的距离应是多少?•(精确到0.1米) 【分析】(1)如图所示,设冬至正午太阳最低时,住宅楼顶A•点的影子落在教学楼上的C 处,那么CD 的长就是影子落在教学楼上的高度.(2)如图2所示,BC 的长就是两楼间的距离.(1) (2) 【解】(1)如图1所示,作CE ⊥AB 于E , 在Rt △ACE 中,∠ACE=30°,EC=19.2, ∴AE=EC ·tan30°=19.2319.2 1.7323⨯≈11.1 CD=EB=AB-AE≈15.6-11.1=4.5(米)∴住宅楼的影子落在教学楼上约有4.5米高 (2)如图2所示,在Rt △ABC 中,∠ACB=30° BC=tan 30AB ︒3315.6×1.732≈27.0(米)∴要使冬至正午的太阳能够照到教学楼的墙角,两楼间的距离至少应为27.0米.【规律总结】此题为探索性题,结论没有直接给出,需要通过观察、分析、比较、概括、推理、判断等活动,逐步确定结论.方法7:开放性问题【例7】某处有一天线,高度超过10米,底部四周有铁丝网围墙,•使得不能直接到达天线底部,数学小组的同学们只有测倾器和测量长度用的量绳,请你为他们设计一个能测得天线高度的方案(包括测量方法,并推导计算公式).【分析】本题是一道开放性试题,是近年来有关解直角三角形的中考试题中,开放程度很高的题目,着重考查学生如何借助解直角三角形知识解决这类测量问题.解题中要注意测量工具所能测得的数据,以免审题失误.【解】如图所示,测倾器离地面b 米,在点B 处测得天线顶端仰角为α,从B•点向前走a 米,到达点C ,在点C 处测得天线顶端仰角为β,设AG 为x 米. 在Rt △AGC 中,CG=tan tan AG xββ= 在Rt △AGB 中,BG=tan tan AG xαα=∵BC=BG-CG ∴tan x α-tan x β=a∴x=11()tan tan aαβ-=tan tan tan tan a αββα-∴AM=AG+GM=tan tan tan tan a αββα-+b【规律总结】对于开放性问题,一般都有多种解题方法,首先应对解直角三角形知识有关的基本图形非常熟悉,然后才能给出设计方案,选择适合自己的解题方法,灵活巧妙地解答问题.方法8:综合性问题【例8】如图所示,已知A 为∠POQ 的边OQ 上一点,以A•为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角),当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平移,设OM=x ,ON=y (y>x ≥0),△AOM•的面积为S ,且cos α,OA 是方程2z 2-5z+2=0的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离; (2)求证:AN 2=ON ·MN ; (3)试求y 与x 之间的函数关系式及自变量x 的取值范围.(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.【分析】本题把解直角三角形与一元二次方程、相似三角形、平移、旋转、函数等知识糅合在一起,形成一道综合性很强的考题.本题从解一元二次方程入手,逐步挖掘隐含条件,构造直角三角形,将其转化为解直角三角形问题.【解】(1)解方程2z2-5z+2=0,得z1=12,z2=2∵α为锐角∴O<cosα<1∴OA=2,cosα=1 2∴α=60°,即∠POQ=∠MAN=60°∴ON=OA=2,如图14-20所示.当AM旋转到AM′时,点N移动到N′∴∠M′N′A=30°,∠OAN′=90°,在Rt△OAN′中,ON′=2AO=2×2=4,∴MN′=ON′-ON=4-2=2∴点N移动距离为2(2)如图1所示,在△OAN和△AMN中,∠AON=∠MAN,∠ANO=∠MNA,∴△AON•∽△MAN,∴ANMN=ONAN,∴AN2=ON·MN(1) (2) (3)如图2所示,过A作AH⊥OP于点H.∵MN=ON-OM=x-y,∴AN2=ON·MN=y(y-x)=y2-xy在Rt△AOH中,OH=OA·cos60°=2×12=1∴AH=OA·sin60°3∴HN=ON-OH=y-1在△ANH中,AN2=AH2+HN2=32+(y-1)2=y2-2y+4,∴y2-xy=y2-2y+4,整理得y=42x.∵y>O ∴2-x>O ∴x<2 又∵x ≥O∴x 的取值范围是O ≤x<2(4)如图2所示,在△AOM 中,OM 边上的高AH 为,∴S=12OM ·AH=12·x 2x∵S 是x ∴S 随x 的增大而增大∴O ≤ 【规律总结】本题通过作OM 边上的高AH ,从而将其转化为解直角三角形问题,在解有关综合性问题时,要注意挖掘隐含条件,合理运用相应知识,构造直角三角形,利用直角三角形的边角关系沟通各知识点间的联系.中考试题归类解析(一)锐角三角函数 【例1】(2003,大连)在Rt △ABC 中,∠C=90°,AC=4,BC=3,则B 的值为( ) A .45 B .35 C .43 D .34【思路分析】由勾股定理可知AB=5,根据锐角三角函数的定义可知cosB=35BC AB 解:答案B 【例2】(2003,南京)在△ABC 中,∠C=90°,tanA=1,那么cotB 等于( )A C .1 D .3【思路分析】由互为余角的三角函数关系可知:cotB=tanA=1 解:答案C【规律总结】本题也可由tanA=1得到∠A=45•°,•所以∠B=•45•°,• 故cotB=cot45°=1【例3】(2003,黄冈)已知∠A 为锐角,且cosA ≤12,那么( ) A .0°∠A ≤60° B .60°≤A ∠90° C .0°∠A ≤30° D .30°≤A ∠90°【思路分析】锐角三角函数的余弦值随角度的增大而减小,因为∠A 为锐角,所以O<cosA ≤12,即cos90°<cosA ≤cos60°,所以60°≤A<90° 解:答案B【例4】(2004,山西)计算:sin 248°+sin 242°-tan44•°·•tan45•°·•tan46•°=_______.【思路分析】利用互为余函数的关系化为同角函数,再利用同角三角函数公式就可求出值.【解】sin 248°+sin 242°-tan44°·tna45°tan46°=sin 248°+cos 248°-tan44°·cot44°tan45° =1-1×1 =0 故应填:0【规律总结】解决这样的问题一是要善于互化函数,往公式上靠,二是特殊角的三角函数值要记住.【例5】(2004,宁波)计算:(π-3)°-(12)-2+(-1)3-sin 245° 【思路分析】按运算法则和运算顺序直接计算即可. 【解】(π-3)°-(12)-2+(-1)3-sin 245° =1-211()2+(-1)3-(2)2 =1-4-1-12=-412【规律总结】在中考题中象这样代数值的运算和三角函数值的运算结合在一起的比较多.(二)解直角三角形【例1】已知如图所示,在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .【求证】S △ABC =12absinc=12bcsinA=12casinB . 【思路分析】要求面积关键是作高,构造出直角三角形利用锐角三角函数的定义加以理解.【证明】过A 点作AD ⊥BC 垂足为D 在Rt △ABD 中,sinB=ADAB∴AD=AB ·sinB=c ·sinB∴S=12AD ·BC=12ac ·sinB 同理可证,S=12absinc=12bcsinA【例2】如图,若CD 是Rt △ABC 斜边上的高,AD=3,CD=4,则BC=_____.【思路分析】先利用勾股定理求出AC 长再利用相似比就可求出BC 【解】∵AC 2=AD 2+DC 2 而AD=3 CD=4 ∴AC=3234+=5 Rt △CDA ∽Rt △BDCAD CD =ACBCBC=542033AC CD AD ⨯⨯==故应填:203【规律总结】:本题也可以利用射影定理去解.【例3】一艘渔船在A 处观测到东北方向有一小岛C ,周围4.8海里范围内是水产养殖场,渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C•在北偏东60°方向,这时渔船改变航线向正东(即BD )方向航行,这艘船是否有进入养殖场的危险. 【思路分析】是否有进入养殖场的危险就是看C 点到BD 的距离是多少,•如果大于4.8海里就没有进入养殖场的危险,否则就有危险.【解】过C 点作BD 的垂线与BD 交于E 点 ∠BAC=60°-45°=15° ∠BCA=45°-30°=15° 在Rt △CBE 中, sin ∠CBE=CEBCCE=BC·sin∠CBE=10×1 2=5(海里)∵4.8<5∴没有进入养殖场的危险.【规律总结】这种类型题关键是要构建直角三角形计算距离,再根据距离大小来判断是否有危险.中考试题集萃(一)填空题1.(2004,宁波)sin45°=________.2.(2004,衡阳)∠A为锐角,若cosA=13,则sin(90°-A)=_______.3.(2004,芜湖)在直角三角形ABC中,∠C=90°,已知sinA=35,则cosB=________.4.(2004,常州)若∠α′的余角是30°,则∠α′=_______°,sin∠α′=________. 5.(2004,江西)在△ABC中,若AC=2,BC=7,AB=3,则cosA=________.6.(2004,沈阳)在Rt△ABC中∠C=90°,tanA=23,AC=4,则BC=_______.7.(2004,上海)在△ABC中,∠A=90°,设∠B=θ,AC=b,则AB=______.(用b和θ的三角比表示)8.(2004,深圳)计算:3tan30°+cot45°-2tan45°+2cos60°=________.9.(2004,西宁)某人沿倾斜角为β的斜坡走了100m,则他上升的高度是______m. 10.(2004,潍坊)某落地钟钟摆的摆长为0.5m,来回摆动的最大夹角为20°,已知在钟摆的摆运过程中,摆锤离地面的最低高度为am,最大高度为bm,则b-a=_______m(不取近似值).(二)选择题1.小强和小明去测量一座古塔的高度(如图)他们在离古塔60m•的A处,用测角仪器测得塔顶的仰角为30°,已知测角仪器高AD=1.5m,则古塔BE的高为(• )A.(203-1.5)m B.(203+1.5)mC.31.5m D.28.5m2.在Rt△ABC中,如果各边长度都扩大为原来的2倍,则锐角A的正切值()A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化3.用科学计算器计算锐角α的三角函数值时,•不能直接计算出来的三角函数值是( )A .cot αB .tan αC .cos αD .sin α 4.计算sin30°·cot45°的结果是( )A .12B .2C .6D .45.=( )A .1-3 B -1 C .3-1 D . 6.在Rt △ABC 中,∠C=90°,AC=12,cosA=1213,则tanA 等于( ) A .513 B .1312 C .125 D .5127.已知α为锐角,tan αcos α等于( )A .12B .2C 8.在△ABC 中,∠C=90°,sinA=,则cosB 的值为( )A .12B .2C .2D .39.在△ABC 中,∠C=90°,AB=5,BC=3,CA=4,那么sinA 等于( ) A .34 B .43 C .35 D .45(三)解答题1.(2004,芜湖)在△ABC 中,∠A 、∠B 都是锐角,且sinA=12,,AB=10,•求△ABC 的面积.2.(2004,大连)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,•中柱CD=1m,∠A=72°,求跨度AB的长(精确到0.01m).3.(2004,南京)如图,天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B点测得C点的仰角为60°,已知AB=20m,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果保留根号).4.(2004,贵阳)某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6m的小区超市,超市以上是居民住房,在该楼的前面15m处要盖一栋高20m的新楼,当冬季正午的阳光与水平线的夹角为32°时,问:(1)超市以上的居民住房采光是否有影响?为什么?(2)若要使超市采光不受影响,两楼应相距多少米?(•结果保留整数,•参考数据:sin32°≈53100,cos32°≈106125,tan32°≈58)5.(2004,济南)如图表示一山坡路的横截面,•CM•是一段平路,•它高出水平地面24m,从A到B,从B到C是两段不同坡角的山坡路,山坡路AB的路面长100m,•把山坡路BC的坡角降到与AB的坡角相同,使得∠DBI=5°.(精确到0.01m)(1)求山坡路AB的高度BE.(2)降低坡度后,整个山坡的路面加长了多少米?(sin5°=0.0872,cos5°=0.9962,sin12°=0.2079,cos12°=0.9781)答案:一、填空题1.222.133.354.60°,325.236.837.b·cos或tanb83.100sinβ 10.12(1-cos10°)•二、选择题1.B 2.D 3.A 4.A 5.A 6.D 7.A 8.C 9.C 三、解答题1253 32.3.93m3.解:作CD⊥AB,垂足为D,设气球离地面的高度是xm在Rt△CBD中,∠CAD=45°∴AD=CD=x在Rt△CBD中,∠CBD=60°∴cot60°=BD CD∴BD=3 3∵AB=AD-BD,∴20=x-33x∴x=30+103.答:气球离地面的高度是(30+103)m.4.(1)如图设CE=x米,则AF=(20-x)米,tan32°=AFEF,即20-x=15·tan32°x=11∵11>6,∴居民住房的采光有影响.(2)如图:tan32°=ABBF,BF=20×85=32两楼应相距32米.5.(1)在Rt△ABE中BE=ABsin∠BAE=100sin5°=100×0.0872=8.72(米).(2)在Rt△CBH中CH=CF-HF=15.28BC=sin CH CBH ∠=15.28sin12︒≈73.497在Rt△DBI中DB=sin DIDBI∠=15.28sin5︒≈175.229∴DB-BC≈175.229-73.497=101.732≈101.73(米).。

(完整版)高中数学解三角形方法大全

(完整版)高中数学解三角形方法大全

解三角形1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。

已知三角形的几个元素求其他元素的过程叫作解三角形。

以下若无特殊说明,均设ABC ∆的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<<C B A 、、0,π<+<B A 0,ππ<-<-B A ,0sin >A , C B A sin )sin(=+,C B A cos )cos(-=+,2cos 2sinCB A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形板块一:正弦定理及其应用1.正弦定理:R CcB b A a 2sin sin sin ===,其中R 为ABC ∆的外接圆半径2.正弦定理适用于两类解三角形问题:(1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边;(2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解【例1】考查正弦定理的应用(1)ABC ∆中,若60=B ,42tan =A ,2=BC ,则=AC _____; (2)ABC ∆中,若30=A ,2=b ,1=a ,则=C ____;(3)ABC ∆中,若45=A ,24=b ,8=a ,则=C ____;(4)ABC ∆中,若A c a sin =,则cba +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ∆中,已知a 、b 、A(1)若A 为钝角或直角,则当b a >时,ABC ∆有唯一解;否则无解。

(2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <<sin 时,三角形有两解; 当b a ≥时,三角形有唯一解实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第七节解三角形应用举例一、教材概念·结论·性质重现1.仰角和俯角意义图示在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.2.方位角意义图示从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α.3.方向角意义图示相对于某一正方向的水平角(1)北偏东α,即由指北方向顺时针旋转α到达目标方向;(2)北偏西α,即由指北方向逆时针旋转α到达目标方向;(3)南偏西等其他方向角类似.4.坡角与坡度意义图示(1)坡角:坡面与水平面所成的二面角的度数(如图,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度).坡度又称为坡比.解三角形应用问题的步骤1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.(√) (2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.(×) (3)若点P 在点Q 的北偏东44°,则点Q 在点P 的东偏北46°. (×) (4)方位角大小的范围是[0,π),方向角大小的范围是⎣⎢⎡⎭⎪⎫0,π2.(×)2.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D 解析:由条件及图可知,∠A =∠CBA =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 3.如图,为测量一棵树OP 的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.30+303解析:在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=22×32-22×12=6-2 4.由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度OP=PB sin 45°=30(6+2)×22=(30+303)(m).4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.64解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=CD=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=CDsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.所以AB=64km.所以A,B两点间的距离为64km.5.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.考点1解三角形的实际应用——应用性考向1测量距离问题如图,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250m,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)解:在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1.因为∠ABD=120°,由正弦定理ABsin∠ADB=ADsin∠ABD,解得AD=3(km).在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32×CD.即CD2+3CD-6=0,解得CD=33-32(km),BC=BD+CD=33-12(km).两个小时小王和小李可徒步攀登1 250×2=2 500(m),即2.5km , 而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.1.若将本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,求这条索道AC 的长.解:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD , 所以200sin 30°=ADsin 120°. 所以AD =200×sin 120°sin 30°=200 3 (m). 在△ABC 中,DC =300 m ,∠ADC =150°,所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(2003)2+3002-2×2003×300×cos 150°=390 000,所以AC =10039 m.故这条索道AC 长为10039 m.2.若将本例条件“∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km ”变为“∠ADC =135°,∠CAD =15°,AD =100 m ,作CO ⊥AB ,垂足为O ,延长AD 交CO 于点E ,且CE =50 m ,如图”,求角θ的余弦值.解:在△ACD 中,∠ADC =135°, ∠CAD =15°,所以∠ACD =30°. 由正弦定理可得AC =100×sin 135°sin 30°=100 2.在△ACE 中,由正弦定理可得sin ∠CEA =AC ·sin ∠CAE CE=3-1,所以cos θ=cos ⎝ ⎛⎭⎪⎫∠CEA -π2=sin ∠CEA =3-1.距离问题的解题思路这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.提醒:①基线的选取要恰当准确;②选取的三角形及正弦、余弦定理要恰当. 考向2 测量高度问题如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°.若山高AD =100 m ,汽车从B 点到C 点历时14 s ,则这辆汽车的速度约为________m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.22.6 解析:因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°, 所以∠BAD =60°,∠CAD =45°. 设这辆汽车的速度为v m/s ,则BC =14v . 在Rt △ABD 中,AB =AD cos ∠BAD =100cos 60°=200. 在Rt △ACD 中,AC =AD cos ∠CAD =100cos 45°=100 2. 在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC , 所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6 m/s.解决高度问题的注意事项(1)在解决有关高度问题时,理解仰角、俯角是关键.(2)高度问题一般是把它转化成解三角形问题,要注意三角形中的边角关系的应用.若是空间的问题要注意空间图形向平面图形的转化.1.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表” )和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭” ).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即∠ABC)为26.5°,夏至正午太阳高度角(即∠ADC)为73.5°,圭面上冬至线与夏至线之间的距离(即BD的长)为a,则表高(即AC的长)为()A.a sin 53°2sin 47°B.2sin 47°a sin 53°C.a tan 26.5°tan 73.5°tan 47°D.a sin 26.5°sin 73.5°sin 47°D解析:由题意得,∠BAD=73.5°-26.5°=47°.在△ABD中,由正弦定理可得,BDsin∠BAD=ADsin∠ABD,即asin 47°=ADsin 26.5°,则AD=a sin 26.5°sin 47°.在△ACD中,ACAD=sin∠ADC=sin 73.5°,所以AC=a sin 26.5°·sin 73.5°sin 47°.故选D.2.如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).在地面上的A ,B 两点测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =50米,则OP 为( )A .15米B .25米C .35米D .45米B 解析:如图所示:由于∠OAP =30°,∠PBO =45°,∠ABO =60°,AB =50米,OP ⊥AO ,OP ⊥OB .设OP =x ,则OA =3x ,OB =x ,在△OAB 中,由余弦定理得OA 2=OB 2+AB 2-2OB ·AB ·cos ∠ABO , 即(3x )2=502+x 2-2×50x ×12,所以x 2+25x -1 250=0,解得x =25或x =-50(舍).3.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =80米,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点间的距离为________米.805 解析:如图,在△ACD 中,∠DCA =15°,∠ADC =150°,所以∠DAC =15°.由正弦定理,得AC=80sin 150°sin 15°=406-24=40(6+2)(米).在△BCD中,∠BDC=15°,∠BCD=135°,所以∠CBD=30°.由正弦定理,得CDsin∠CBD=BCsin∠BDC,所以BC=CD·sin∠BDCsin∠CBD=80×sin 15°sin 30°=40(6-2)(米).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=1 600(8+43)+1 600(8-43)+2×1 600(6+2)×(6-2)×12=1 600×16+1 600×4=1 600×20,解得AB=805(米),则A,B两点间的距离为805米.考点2正余弦定理在平面几何中的应用(2020·青岛模拟)如图,在平面四边形ABCD中,AB⊥AD,AB=1,AD =3,BC= 2.(1)若CD=1+3,求四边形ABCD的面积;(2)若sin∠BCD=325,∠ADC∈⎝⎛⎭⎪⎫0,π2,求sin∠ADC.解:(1)如图,连接BD,在Rt△ABD中,由勾股定理可得,BD2=AB2+AD2=4,所以BD=2.在△BCD 中,由余弦定理可得,cos C =BC 2+CD 2-BD 22BC ·CD =2+(1+3)2-222×2×(1+3)=22. 因为C 为三角形的内角,故C =π4, 所以S △ABD =12AB ·AD =12×1×3=32, S △BCD =12BC ·CD sin C =12×2×(1+3)×22=1+32, 故四边形ABCD 的面积S =1+232.(2)在△BCD 中,由正弦定理可得BC sin ∠BDC =BDsin ∠BCD , 所以sin ∠BDC =BC ·sin ∠BCD BD=35. 因为∠ADC ∈⎝ ⎛⎭⎪⎫0,π2,所以∠BDC ∈⎝ ⎛⎭⎪⎫0,π2, 所以cos ∠BDC =45,在Rt △ABD 中,tan ∠ADB =AB AD =33, 故∠ADB =π6,所以sin ∠ADC =sin ⎝ ⎛⎭⎪⎫∠BDC +π6=35×32+45×12=4+3310.正余弦定理解平面几何问题的注意点(1)图形中几何性质的挖掘往往是解题的切入点,或是问题求解的转折点. (2)根据条件或图形,找出已知,未知及求解中需要的三角形,用好三角恒等变换公式,运用正弦定理,余弦定理解题.(3)养成应用方程思想解题的意识.1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),AB =5,BC =8,CD =3,AD =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 kmA 解析:在△ACD 中,由余弦定理得cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230. 在△ABC 中,由余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=89-AC 280. 因为∠B +∠D =180°,所以cos B +cos D =0,即34-AC 230+89-AC 280=0,解得AC 2=49.所以AC =7.2.(2020·山师附中高三模拟)如图,在平面四边形ABCD 中,已知AB =26,AD =3,∠ADB =2∠ABD ,∠BCD =π3.(1)求BD ;(2)求△BCD 周长的最大值.解:在△ABD 中,设BD =x ,∠ABD =α,则∠ADB =2α, 因为AB sin 2α=AD sin α, 所以cos α=63.由余弦定理得cos α=x 2+24-946x =63. 整理得x 2-8x +15=0,解得x =5或x =3. 当x =3时,得∠ADB =2α=π2, 与AD 2+BD 2≠AB 2矛盾,故舍去, 所以BD =5.(2)在△BCD 中,设∠CBD =β, 所以BD sin π3=BC sin ⎝ ⎛⎭⎪⎫2π3-β=CD sin β,所以BC =1033sin ⎝ ⎛⎭⎪⎫2π3-β,CD =1033sin β,所以BC +CD =1033·⎝ ⎛⎭⎪⎫32sin β+32cos β=10sin ⎝ ⎛⎭⎪⎫β+π6≤10. 所以△BCD 周长的最大值为15.考点3 解三角形与三角函数的综合问题(2020·合肥模拟)已知函数f (x )=cos 2x +3sin(π-x )sin ⎝ ⎛⎭⎪⎫x -π2-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)锐角△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,已知f (A )=-1,a =2,求△ABC 的面积的最大值.解:(1)f (x )=1+cos 2x 2-3sin x cos x -12=12cos 2x -32sin 2x =-sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2, 得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π. (2)因为△ABC 为锐角三角形,所以0<A <π2,所以-π6<2A -π6<5π6. 又f (A )=-sin ⎝ ⎛⎭⎪⎫2A -π6=-1, 所以2A -π6=π2,即A =π3.因为a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥2bc -bc =bc ,当且仅当b =c =2时,等号成立.又a =2,所以bc ≤4, 所以S △ABC =12bc sin A ≤ 3. 即△ABC 的面积的最大值为 3.解三角形与三角函数综合问题的一般步骤已知函数f (x )=32sin 2x -cos 2x -12(x ∈R ),设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =3,f (C )=0.(1)求角C ;(2)若向量m =(1,sin A )与向量n =(2,sin B )共线,求△ABC 的周长. 解:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1. 因为f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0且C 为三角形内角,所以C =π3. (2)若向量m =(1,sin A )与向量n =(2,sin B )共线, 则sin B -2sin A =0. 由正弦定理得b =2a ,由余弦定理得cos π3=a2+4a2-3 2·a·2a=12,解得a=1,b=2,故△ABC的周长为3+ 3.。

(完整版)解直角三角形总结

(完整版)解直角三角形总结

解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。

1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的。

因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。

如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。

(2)两锐角之间的关系:A+B=90°。

(3)三条边之间的关系:。

以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。

2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。

由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。

所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。

这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。

四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°-A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°-A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。

解直角三角形完整版PPT课件

解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。

解三角形(知识点)

解三角形(知识点)

解三角形(知识点)第一章:解三角形一、正弦定理和余弦定理1、正弦定理:在∆AB C 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有A B ===CR a b c sin sin sin 2 (R 为∆AB C 的外接圆的半径)2、正弦定理的变形公式:①=A a R 2sin ,=B b R 2sin ,=c R C 2sin ; ②A =R a 2sin ,B =Rb 2sin ,=R Cc 2sin ; ③=A B C a b c ::sin :sin :sin ;3、三角形面积公式:=A ==B ∆AB S bc ab C ac C 222sin sin sin 111. 4、余弦定理:在∆AB C 中,有=+-A a b c bc 2cos 222,推论:=-+222cos 2A a c b bc-+=222cos 2c a b ac B ,推论: -+=222cos 2b a c ab C ,推论:=-+222cos 2C c b a ab二、解三角形处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解1、三角形中的边角关系(1)三角形内角和等于180°;(2)三角形中任意两边之和大于第三边,任意两边之差小于第三边;(3)三角形中大边对大角,小边对小角;(4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径.=-+222cos 2B b c a ac(5)在余弦定理中:2bc cos A =-+a c b 222.(6)三角形的面积公式有:S =12ah , S =12ab sin C=12bc sin A=12ac sinB , S =--⋅-c P b P a P P ()()()其中,h 是BC 边上高,P 是半周长.2、利用正、余弦定理及三角形面积公式等解任意三角形(1)已知两角及一边,求其它边角,常选用正弦定理.(2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理.(3)已知三边,求三个角,常选用余弦定理.(4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理.(5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理.3、利用正、余弦定理判断三角形的形状常用方法是:①化边为角;②化角为边.4、三角形中的三角变换(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。

解直角三角形的边角关系

解直角三角形的边角关系

解直角三角形的边角关系解直角三角形的边角关系-解直角三角形常用公式-直角三角形的判定方法-手机版移动版一、直角三角形的判定方法判定1:有一个角为90°的三角形是直角三角形。

判定2:若a²+b²=c²,则以a、b、c为边的三角形是以c 为斜边的直角三角形(勾股定理的逆定理)。

判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。

那么判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。

判定7:一个三角形30°角所对的边等于某一邻边的一半,则这个三角形为直角三角形。

(与判定3不同,此定理用于已知斜边的三角形。

)二、解直角三角形:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

三、解直角三角形——锐角三角形函数(1)互余角的三角函数值之间的关系:若∠ a+∠ b=90°,那么sina=cosb或sinb=cosa(2)同角的三角函数值之间的关系:①sin^2a+cos^2a=1②tana=sina/cosa③tana=1/tanb④a/sina=b/sinb=c/sinc(3)锐角三角函数随角度的变化规律:角a的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。

直角三角形的定义有一个角为90°的三角形,叫做直角三角形(rt△)(英文:right triangle)。

四、解直角三角形概念:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。

解直角三角形及其应用--知识讲解

解直角三角形及其应用--知识讲解

解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,一角,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,3b =. 【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan6043b a B ==⨯=°. 由cos a B c =知,48cos cos 60a c B ===°. (2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【高清课程名称:解直角三角形及其应用 高清ID 号:395952 关联的位置名称(播放点名称):例1(1)-(3)】【变式】(1)已知∠C=90°,a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=252.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC是半圆⊙O的直径,D是AC的中点,四边形ABCD的对角线AC、BD交于点E,(1)求证:△ABE∽△DBC;(2)已知BC=52,CD=52sin∠AEB的值;(3)在(2)的条件下,求弦AB的长.【答案与解析】(1)∵AD CD,∴∠1=∠2,又BC是⊙O的直径,∴∠BAC=∠BDC=90°.∴△ABE∽△DBC.(2)由△ABE∽△DBC,∴∠AEB=∠DCB.在Rt△BDC中,BC=52,CD=5∴ BD =225BC CD -=, ∴ sin ∠AEB =sin ∠DCB=52552BD BC ==. (3)在Rt △BDC 中,BD =5,又∠1=∠2=∠3,∠ADE =∠BDA ,∴ △AED ∽△BAD . ∴AD DEDB AD=,∴ 2AD DE DB =. 又∵ 5CD AD ==,∴ CD 2=(BD -BE)·BD , 即25(5)5BE ⎛⎫=- ⎪ ⎪⎝⎭,∴ 35BE =. 在Rt △ABE 中,AB =BEsin ∠AEB =32355452⨯=. 【总结升华】本题综合了三角函数、相似三角形、勾股定理、圆等方面知识,尤其涉及三角函数问题,都是通过找出或构造直角三角形来解决问题. (1)根据圆周角定理易证△ABE ∽△DBC .(2)利用(1)的结论,将∠AEB 转化为Rt △BCD 中的DCB ∠.(3)在Rt △ABE 中求AB .举一反三:【高清课程名称:解直角三角形及其应用 高清ID 号:395952 关联的位置名称(播放点名称):例2】【变式】 (2015•河南模拟)如图,在等腰Rt △ABC 中,∠C=90°,AC=6,D 是AC 上一点,若tan ∠DBA=,则AD 的长为多少?【答案与解析】解:作DE ⊥AB 于E ,如图, ∵∠C=90°,AC=BC=6,∴△ACB 为等腰直角三角形,AB=AC=6, ∴∠A=45°,在Rt △ADE 中,设AE=x ,则DE=x ,AD=x , 在Rt △BED 中,tan ∠DBE==,∴BE=5x ,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=,即355FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案与解析】过点C作CE⊥AB于E.∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=180°-30°-60°=90°.∵ CD=10,∴ AC=12CD=5.在Rt△ACE中,AE=AC·sin∠ACE=5×sin 30°=52,CE=AC·cos ∠ACE=5×cos 30°=53 2,在Rt△BCE中,∵∠BCE=45°,∴5553(31)222AB AE BE=+=+=+≈6.8(米).∴雕塑AB的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。

八年级上册数学三角形中的边角关系

八年级上册数学三角形中的边角关系

八年级上册数学三角形中的边角关系一、三角形的概念。

1. 定义。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 例如,在△ABC中,线段AB、BC、CA是三角形的三条边,点A、B、C是三角形的三个顶点,∠A、∠B、∠C是三角形的三个内角。

2. 三角形的表示方法。

- 三角形用符号“△”表示,如三角形ABC记作“△ABC”。

二、三角形中的边关系。

1. 三角形三边关系定理。

- 三角形任意两边之和大于第三边。

- 例如,在△ABC中,AB + BC>AC,AB+AC > BC,BC + AC>AB。

- 可以通过实际测量来验证,比如取三根长度分别为3cm、4cm、5cm的小木棒,能拼成一个三角形,因为3 + 4>5,3+5>4,4 + 5>3。

- 反之,三角形任意两边之差小于第三边。

即AC - AB < BC,AC - BC < AB,AB - BC < AC。

2. 判断三条线段能否组成三角形。

- 只需要判断较短的两条线段之和是否大于最长的线段。

- 例如,对于三条线段2cm、3cm、6cm,因为2+3 = 5<6,所以这三条线段不能组成三角形;而对于3cm、4cm、5cm的线段,由于3 + 4>5,所以能组成三角形。

3. 三角形边的不等关系的应用。

- 在解决一些几何问题中,经常会用到三角形三边关系。

- 例如,已知三角形的两边长分别为3和5,求第三边的取值范围。

设第三边为x,根据三边关系可得5 - 3<x<5 + 3,即2<x<8。

三、三角形中的角关系。

1. 三角形内角和定理。

- 三角形的内角和等于180°。

- 可以通过多种方法证明,如剪拼法:把三角形的三个角剪下来,拼在一起,可以发现正好拼成一个平角,从而证明三角形内角和为180°;也可以通过作辅助线,利用平行线的性质来证明。

- 在△ABC中,∠A+∠B +∠C = 180°。

高考数学 解三角形应用举例

高考数学 解三角形应用举例

第23讲 解三角形应用举例1.仰角和俯角在视线和水平线所成的角中,视线在水平线!!! 上方 ###的角叫仰角,在水平线!!! 下方 ###的角叫俯角(如图①).2.方位角从指北方向!!!顺时针 ###转到目标方向线的水平角叫方位角,如B 点的方位角为α(如图②).3.方向角相对于某一正方向的水平角(如图③)(1)北偏东α,即由指北方向!!! 顺时针 ###旋转α到达目标方向. (2)北偏西α,即由指北方向!!! 逆时针 ###旋转α到达目标方向. (3)南偏西等其他方向角类似.4.坡度(比)坡角:坡面与水平面所成的!!! 二面角 ###的度数(如图④,角θ为坡角).坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡度(比)). 5.解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位、近似计算的要求等.1.思维辨析(在括号内打“√”或“×”).(1)公式S =12bc sin A =12ac sin B =12ab sin C 适用于任意三角形.( √ )(2)东北方向就是北偏东45°的方向.( √ ) (3)俯角是铅垂线与视线所成的角.( × )(4)方位角大小的范围是[0,2π),方向角大小的范围一般是⎣⎡⎭⎫0,π2.( √ ) 解析 (1)正确.三角形的面积公式对任意三角形都成立. (2)正确.数学中的东北方向就是北偏东45°或东偏北45°的方向. (3)错误.俯角是视线与水平线所构成的角.(4)正确.方位角是由正北方向顺时针转到目标方向线的水平角,故大小的范围为[0,2π),而方向角大小的范围由定义可知为⎣⎡⎭⎫0,π2. 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( B )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析 如图所示,∠ACB =90°.又AC =BC ,∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.3.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( A ) A .50 2 m B .50 3 m C .25 2 m D .2522m解析 由正弦定理得 AB =AC ·sin ∠ACB sin B=50×2212=502(m).4.在相距2千米的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C .解析 如图所示,由题意知∠C =45°, 由正弦定理得AC sin 60°=2sin 45°,∴AC =222×32= 6. 5.一船向正北航行,看见正东方向有相距8海里的两个灯塔恰好在一条直线上.继续航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船每小时航行!!! 8 ###海里.解析 如图,由题意知在△ABC 中, ∠ACB =75°-60°=15°,∠B =15°,∴AC =AB =8.在Rt △AOC 中,OC =AC ·sin 30°=4. ∴这艘船每小时航行412=8(海里).一 距离问题求解距离问题的一般步骤(1)选取适当基线,画出示意图,将实际问题转化为三角形问题. (2)明确要求的距离所在的三角形有哪几个已知元素. (3)确定使用正弦定理或余弦定理解三角形.【例1】 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的点C ,点D ,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,则点A ,B ###km.解析 如图,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3(km). 在△BCD 中,∠BCD =45°, ∠BDC =75°,∠CBD =60°. ∴BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得 AB 2=(3)2+⎝⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,∴AB =5(km),即A ,B 之间的距离为 5 km.二 高度问题高度问题一般是把它转化成三角形的问题,要注意三角形中的边角关系的应用,若是空间的问题要注意空间图形和平面图形的结合.【例2】 要测量电视塔AB 的高度,在点C 测得塔顶A 的仰角是45°,在点D 测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为!!! 40 ###m.解析 设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°,得BC =x .在Rt △ADB 中,由∠ADB =30°,得BD =3x .在△BDC 中,由余弦定理,得BD 2=BC 2+CD 2-2BC ·CD ·cos 120°,即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40 m.三 角度问题解决角度问题的注意点(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用. 【例3】 在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,红方侦察艇以每小时14 n mile 的速度沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解析 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°. 根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.1.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=( B )A .217B .2114 C .32114D .2128解析 如题图所示,在△ABC 中,AB =40海里,AC =20海里,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,故BC =207(海里).由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217,由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos (∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 第1题图第2题图2.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD =( B )A .30°B .45°C .60°D .75°解析 依题意可得AD =2010 m ,AC =30 5 m ,又CD =50 m ,所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010= 6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.3.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡A 处测得∠DAC =15°,沿山坡前进50 m 到达B 处,又测得∠DBC =45°,根据以上数据可得cos θ解析 由∠DAC =15°,∠DBC =45°,可得∠BDA =30°,∠DBA =135°,∠BDC =90°-(15°+θ)-30°=45°-θ,由内角和定理可得∠DCB =180°-(45°-θ)-45°=90°+θ,根据正弦定理可得50sin 30°=DB sin 15°,即DB =100sin 15°=100×sin (45°-30°)=252(3-1),又25sin 45°=252(3-1)sin (90°+θ), 即25sin 45°=252(3-1)cos θ,得到cos θ=3-1. 4.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB .∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB,得600sin 45°=CB sin 30°,有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006,则此山的高度CD =100 6 m.易错点 不注意实际问题中变量的取值范围错因分析:三角形中的最值问题,可利用正弦、余弦定理建立函数模型(或三角函数模型),转化为函数最值问题.求最值时要注意自变量的范围,要考虑问题的实际意义.【例1】 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度 的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解析 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400 =900⎝⎛⎭⎫t -132+300. 故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20. 故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.【跟踪训练1】 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解析 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin (A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由AB sin C =AC sin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m). 所以索道AB 的长为1 040 m.(2)设乙出发t 分钟后,甲、乙两游客距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙距离最短.(3)由BC sin A =AC sin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.课时达标 第23讲[解密考纲]本考点考查利用正弦定理、余弦定理求解三角形,解决实际应用问题.题型一般为填空题或解答题,题目难度中等偏难.一、选择题1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站北偏东40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( B )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°解析依题意作出图形可知,A在B北偏西10°的地方.2.有一长为1千米的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则斜坡长为(C)A.1千米B.2sin 10°千米C.2cos 10°千米D.cos 20°千米解析由题意知DC=BC=1,∠BCD=160°,∴BD2=DC2+CB2-2DC·CB·cos 160°=1+1-2×1×1×cos(180°-20°)=2+2cos 20°=4cos210°,∴BD=2cos 10°.3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°方向直线航行,30分钟后到达B处.在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(A)A.10 2 海里B.10 3 海里C.20 3 海里D.20 2 海里解析如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得BCsin 30°=ABsin 45°,解得BC=102(海里),故选A.4.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔的高度是(D)A.100 2 m B.400 mC.200 3 m D.500 m解析由题意画出示意图,设塔高AB=h m,在Rt△ABC中,由已知得BC=h m,在Rt△ABD中,由已知得BD=3h m,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD cos ∠BCD,得3h2=h2+5002+h·500,解得h=500(m).5.长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C1.4 m的地面上,另一端B在离堤足C处的2.8 m的石堤上,石堤的倾斜角为α,则坡度值tan α=(A)A.2315B.516C.23116D.115解析由题意,可得在△ABC中,AB=3.5 m,AC=1.4 m,BC=2.8 m,且∠α+∠ACB=π.由余弦定理,可得AB2=AC2+BC2-2×AC×BC×cos∠ACB,即 3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cos α=516,所以sin α=23116,所以tan α=sin αcos α=2315.6.(2018·四川成都模拟)如图所示,为测一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60 m,则该建筑物的高度为(A)A.(30+303) m B.(30+153) mC.(15+303) m D.(15+153) m解析设建筑物高度为h,则htan 30°-htan 45°=60,即(3-1)h=60,所以建筑物的高度为h=(30+303)m.二、填空题7.一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8 2 n mile,此船的航速是!!!32###n mile/h.解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =8 2 n mile ,∠BSA =45°,由正弦定理,得82sin 30°=12v sin 45°,∴v =32 n mile/h.8.某人在地上画了一个角∠BDA =60°,他从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点N ,则N 与D 之间的距离为!!! 16米 ###.解析 如图,设DN =x 米,则142=102+x 2-2×10×x cos 60°,∴x 2-10x -96=0. ∴(x -16)(x +6)=0.∴x =16. ∴N 与D 之间的距离为16米.9.如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°.从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =!!! 150 ###m.解析 在△ABC 中,AC =1002,在△MAC 中,MA sin 60°=ACsin 45°,解得MA =1003,在△MNA 中,MN 1003=sin 60°=32,故MN =150,即山高MN 为150 m.三、解答题10.已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇,岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°=5314,sin 22°=3314解析 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为每小时x 海里,则BC =0.5x ,AC =5海里,依题意,∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos 120°,所以BC 2=49,BC =0.5x =7,解得x =14.又由正弦定理得 sin ∠ABC =AC ·sin ∠BACBC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.11.(2018·广东广州模拟)如图,某测量人员为了测量西江北岸不能到达的两点A ,B 之间的距离,她在西江南岸找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D ,从D 点可以观察到点A ,C ;找到一个点E ,从E 点可以观察到点B ,C ;并测量得到数据:∠ACD =90°,∠ADC =60°,∠ACB =15°,∠BCE =105°,∠CEB =45°,DC =CE =1(百米).(1)求△CDE 的面积; (2)求A ,B 之间的距离.解析 (1)连接DE ,在△CDE 中,∠DCE =360°-90°-15°-105°=150°,S △ECD =12DC ·CE ·sin 150°=12×sin 30°=12×12=14(平方百米).(2)依题意知,在Rt △ACD 中,AC =DC ·tan ∠ADC =1×tan 60°= 3. 在△BCE 中,∠CBE =180°-∠BCE -∠CEB =180°-105°-45°=30°. 由正弦定理,得BC =CE sin ∠CBE·sin ∠CEB =1sin 30°×sin 45°= 2.因为cos 15°=cos(60°-45°)=cos 60°cos 45°+sin 60°sin 45° =12×22+32×22=6+24. 连接AB ,在△ABC 中,由余弦定理得, AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB = (3)2+(2)2-23×2×6+24=2-3, 所以AB =2-3=6-22(百米). 12.(2018·河北石家庄重点高中摸底)某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值. 解析(1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310 km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中,BE =BD 2+DE 2=⎝⎛⎭⎫33102+⎝⎛⎭⎫9102=335(km).故道路BE 的长度为335km.(2)设∠ABE =α,∴∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE=335sinπ3=65,∴AB =65sin ⎝⎛⎭⎫2π3-α,AE =65sin α. ∴S △ABE =12AB ·AE sin π3=9325sin ⎝⎛⎭⎫2π3-α·sin α= 9325⎣⎡⎦⎤12sin ⎝⎛⎭⎫2α-π6+14≤9325⎝⎛⎭⎫12+14=273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE 面积的最大值为273100km 2.。

三角形的角度与边长关系

三角形的角度与边长关系

三角形的角度与边长关系三角形是几何学中最基本的图形之一,由三条边和三个角组成。

在三角形中,角度与边长之间存在着重要的关系。

本文将探讨三角形的角度与边长之间的关系,并着重介绍三角形内角和外角的性质。

一、三角形内角和在任意三角形中,三个内角的和总是等于180度。

这个性质被称为三角形内角和定理。

假设三角形的三个内角分别为 A、B 和 C,则有如下等式成立:A +B +C = 180°这个定理可以用来计算未知角的度数,或者验证一个给定的三角形是否合法。

例如,我们知道一个三角形的两个内角分别为 45°和 60°,则可以用内角和定理计算出第三个角的度数:A +B +C = 180°45° + 60° + C = 180°105° + C = 180°C = 180° - 105°C = 75°因此,该三角形的第三个角为 75°。

二、三角形外角和三角形的任何一个内角的补角称为外角。

在三角形中,三个外角的和总是等于360度。

换句话说,任何一个角的外角加上它所对的内角都等于360度。

这个性质被称为三角形外角和定理。

对于一个三角形,我们可以表示如下:外角A + 外角B + 外角C = 360°这个定理可以用来解决与外角和相关的问题。

例如,我们知道一个三角形的一个内角为80°,则可以用外角和定理计算出该角的外角的度数:外角A + 80° = 360°外角A = 360° - 80°外角A = 280°因此,该角的外角为280°。

三、三角形边长关系除了内角和外角的关系外,三角形的角度与边长之间也存在一些重要的关系。

1. 三角形的内角与边长的关系:在一个三角形中,较长的边所对应的角度较大,较短的边所对应的角度较小。

三角形的边角关系公式

三角形的边角关系公式

三角形的边角关系公式
(1)三角形三内角和等于180°,这个定理的证明方法有很多种,(即辅助线的做法,)体现了几何中的一题多解的思维方法,这也是几何与众不同都地方.(2)三角形的一个外角等于和它不相邻的两个内角之和;
(3)三角形的一个外角大于任何一个和它不相邻的内角;
(4)三角形两边之和大于第三边,两边之差小于第三边;
(5)在同一个三角形内,大边对大角,大角对大边.
(6)三角形中的四条特殊的线段:角平分线,中线,高,中位线.
(注①:等腰三角形中,顶角平分线,中线,高三线互相重叠
①:三角形的中位线是两边中点的连线,它平行于第三边且等于第三边的一半)(7)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等.
(8)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等.
(9)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍.
(10)三角形的三条高的交点叫做三角形的垂心.
(11)三角形的中位线平行于第三边且等于第三边的1/2.
(12)三角形的一边与另一边延长线的夹角叫做三角形的外角.
注意:①三角形的内心、重心都在三角形的内部
.①钝角三角形垂心、垂心在三角形外部.(三条高的延长线交于一点,在三角形的外部)
①直角三角形垂心、垂心在三角形的边上.(直角三角形的垂心为直角顶点,外心为斜边中点.)
①锐角三角形垂心、垂心在三角形内部.。

解三角形的实际应用举例课件

解三角形的实际应用举例课件

THANKS
感谢观看
06
解三角形的案例研究
案例一:卫星定位在航海中的应用
总结词
卫星定位技术能够通过接收来自卫星的信号来确定地 面或海上的位置,在航海中有着广泛的应用。
详细描述
卫星定位系统可以用于船舶的航行、港口管理、海洋资 源开发和海洋科学研究等方面。在船舶航行中,卫星定 位可以提供准确的船位信息,帮助船舶进行精确的航行 和航道规划;在港口管理中,卫星定位可以提供准确的 港口地形和气象数据,帮助进行安全和高效的港口运营; 在海洋资源开发和海洋科学研究中,卫星定位可以提供 大面积的海洋环境信息,为资源开发和科学研究提供数 据支持。
案例五:建筑设计中的优化问题
总结词
建筑设计中的优化问题旨在寻找最优的设计方案,以满 足建筑的功能需求和美学要求。
详细描述
建筑设计中的优化问题需要考虑建筑的结构设计、材料 选择、能源效率等多个方面。利用解三角形的方法,可 以分析建筑设计的各种因素,并寻找最优的设计方案。 例如,可以利用三角形的稳定性原理来进行结构设计; 可以利用三角形的面积公式来进行材料预算和优化;可 以利用三角形的光学原理来进行采光和照明设计等。
案例三:机器人视觉在自动化生产线中的应用
要点一
总结词
要点二
详细描述
机器人视觉利用图像处理和计算机视觉等技术,使机器人 能够识别和处理生产过程中的各种物体。
在自动化生产线中,机器人视觉可以用于产品检测、定位 和分拣等方面。通过图像处理技术,机器人视觉可以识别 产品的外观特征,如形状、颜色和纹理等,并对产品进行 精确的分类和检测。同时,机器人视觉还可以通过立体视 觉等技术,获取物体的三维信息,帮助机器人进行精确的 操作和控制。
的定位、导航和避障等操作。

解直角三角形教学设计

解直角三角形教学设计

解直角三角形教学设计作为一位无私奉献的人民教师,很有必要精心设计一份教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

教学设计应该怎么写呢?以下是店铺收集整理的解直角三角形教学设计(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

解直角三角形教学设计1教学目标:理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高分析问题、解决问题的能力。

教学重点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。

教学难点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形,提高分析问题、解决问题的能力。

教学过程:一、课前专训根据条件,解下列直角三角形在Rt△ABC中,∠C=90°(1)已知∠A=30°,BC=2;(2)已知∠B=45°,AB=6;(3)已知AB=10,BC=5;(4)已知AC=6,BC=8。

二、复习什么叫解直角三角形?三、实践探究解直角三角形问题分类:1、已知一边一角(锐角和直角边、锐角和斜边)2、已知两边(直角边和斜边、两直角边)四、例题讲解例1、在△ABC中,AC=8,∠B=45°,∠A=30°.求AB.例2、⊙O的半径为10,求⊙O的内接正五边形ABCDE的边长(精确到0.1).五、练一练1.在平行四边形ABCD中,∠A=60°,AB=8,AD=6,求平行四边形的面积.2.求半径为12的圆的内接正八边形的边长(精确到0.1).六、总结通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家.七、课堂练习1.等腰三角形的周长为,腰长为1,则底角等于_________.2.Rt△ABC中,∠C=90°,∠A=60°,a+b=+3,解这个直角三角形.3.求半径为20的圆的内接正三角形的边长和面积.八、课后作业1.在菱形钢架ABCD中,AB=2 m,∠BAD=72,焊接这个钢架约需多少钢材(精确到0.1m)2.思考题(选做):CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为10,sin ∠COD =,求:(1)弦AB的长;(2)CD的长.解直角三角形教学设计2一、教学目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

高中数学5解三角形应用_几何图形的边角关系试题苏教版必修52

高中数学5解三角形应用_几何图形的边角关系试题苏教版必修52

5. 解三角形应用(1)(几何图形的边角关系)【教学•建构】探究 1 如图,半圆O 的直径为2,A 为直径延长线上一点,2,OA B =为半圆上一点,以AB 为一边向OAB ∆的外侧作等边ABC ∆.(1)问点B 在什么位置时,四边形OACB 的面积最大? (2)当OC 平分AOB ∠时.(I )求证:OAC OBC π∠+∠=; (II )求OC 的长度.变式 B Q P A ,,,为平面上四点,其中B A ,为定点,且3=AB ,动点Q P ,满足1===QB PQ AP ,设APB ∆和PQB ∆的面积分别为T S ,,试求:(1)求22T S +的最大值;(2)当22T S +取最大值时,APB ∆的形状如何?OABC探究2 在路边安装路灯,灯柱AB 与地面垂直,BC 与灯柱AB 所在平面与道路垂 直,120ABC ∠=,路灯C 采用锥形灯罩,射出的光线如图中阴影部分所示,已知60ACD ∠=,路宽24AD =米,设灯柱高AB h =(米),ACB θ∠=(3045θ≤≤) (1)求灯柱的高h (用θ表示);(2)若灯杆BC 与灯柱AB 所用材料相同,记此用料长度和为S ,求S 关于θ的函数表达式,并求出S 的最小值.探究3 在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若已知3,4π==A a .(1)求ABC ∆周长的最大值; (2)求ABC ∆面积的最大值.CBAD探究4 如图某污水处理厂要在一个矩形污水处理池()ABCD 的池底水平铺设污水净化管道FHE Rt ∆(,H 是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H 是AB 的中点,,E F 分别落在线段,BC AD 上.已知20AB =米,1AD =BHE θ∠=.(1)试将污水净化管道的长度L 表示为θ的函数,并写出定义域;(2)若sin cos θθ+=L ;(3)问:当θ取何值时,污水净化效果最好?并求出此时管道的长度.【应用•探究•思考】1. 如图,某城市有一条公路从正西方AO 通过市中心O 后转向东北方OB ,现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,现要求市中心O 到AB 的距离为10km ,设OAB α∠=.(1)试求AB 关于角α的函数关系式;(2)问角α多大时,才能使AB 最短,并求最短距离.E2. 如图,直角三角形ABC 中,∠B =90,AB=1,BC .点N M ,分别在边AB 和AC 上(M 点和B 点不重合),将△AMN 沿MN 翻折,△AMN 变为△MN A ',使顶点A '落在边BC 上(A '点和B 点不重合).设∠AMN =θ.(1)用θ表示线段AM 的长度,并写出θ的取值范围; (2)求线段N A '长度的最小值.3. 某居民小区内建有一块矩形草坪ABCD,AB =50米,BC = 休闲散步,该小区物业管理公司将在这块草坪内铺设三条小路OE 、EF 和OF ,考虑到小 区整体规划,要求O 是AB 的中点,点E 在边BC 上,点F 在边AD 上,且∠EOF =90°, 如图所示.(1)设∠BOE =α,试将OEF ∆的周长l 表示成α的函数关系式,并求出此函数的定义域; (2)经核算,三条路每米铺设费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.【复习•思考】整理笔记,巩固记忆课堂教学内容.。

三角形三边关系

三角形三边关系
3. 一个等腰三角形的一边是5cm,另一边是 9cm,则这个三角形的周长是19cm ______________ 或23cm
应用反思,拓展延伸
已知a、b、c是三角形的三条边
化简|a+b-c|+|c-b-a|
解:因为a、b、c是三角形的三边 所以 a+b-c>0(两边之和大于第三边) c-b-a <0(两边之差小于第三边) 所以|a+b-c|+|c-b-a|=a+b-c-c+b+a =2a+2b-2c
请用所学的数学知识解释:
.B
人 行 横 道
为什么经常有行 人斜穿马路而不 走人行横道
1.三角形任意两边之和大于第三边 2.两点之间 的所有连线中,线段 最短
.A
例题解析,再探新知
例:等腰三角形中周长为18cm 1、如果腰长是底边长的2倍,求各边的长; 2、如果一边长为4cm,求另两边的长。
解: (1)设等腰三角形的底边长为xcm, 则腰长为2xcm,根据题意,得 x+2x+2x=18
按边分类
等腰三角形
腰和底不等的三角形
等边三角形(又叫正三角形)
练一练:
1.如图是用三根细棍组成 的图形, 其中符合三角形 概念的图形是( D )
A
B
C
D
2.图中有几个三角形?请聪明的你用符 号表示出来这些三角形;
C D
A
图1-2
B
ΔABC, ΔBCD, ΔABD
3、如图,回答下列问题:
A
8 个三角形; (1)、图中有____ (2)、∠1是哪个三角形的角? △BDO 和△BDC
B
D
E
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形应用(1)(几何图形的边角关系)
【教学•建构】
探究1 如图,半圆O 的直径为2,A 为直径延长线上一点,2,OA B
=为半圆上一点,以AB 为一边向OAB ∆的外侧作等边
ABC ∆. (1)问点B 在什么位置时,四边形OACB 的面积最大?
(2)当OC 平分AOB ∠时.
(I )求证:OAC OBC π∠+∠=;
(II )求OC 的长度.
变式 B Q P A ,,,为平面上四点,其中B A ,为定点,且3=AB ,
动点Q P ,满足1===QB PQ AP ,设A P B ∆和PQB ∆的面积分别为T S ,,
试求:
O A
B C
(1)求22T S +的最大值;
(2)当22T S +取最大值时,APB ∆的形状如何?
探究2 在路边安装路灯,灯柱AB 与地面垂直,BC 与灯柱AB 所在平面与道路垂
直,120ABC ∠=,路灯C 采用锥形灯罩,射出的光线如图中阴影部分所示,已知60ACD ∠=,路宽24AD =米,设灯柱高AB h =(米),ACB θ∠=(3045θ≤≤)
(1)求灯柱的高h (用θ表示);
(2)若灯杆BC 与灯柱AB 所用材料相同,记此用料长度和为S ,求S 关于θ的函数表达式,并求出S 的最小值.
探究3 在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若已知3,4π
==A a .
(1)求ABC ∆周长的最大值;
(2)求ABC ∆面积的最大值.
探究4 如图某污水处理厂要在一个矩形污水处理池
()ABCD 的池底水平铺设污水净化管道FHE Rt ∆(,
H 是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H 是AB 的中点,,E F 分别落在线段,BC AD 上.已知20AB =米,
AD =BHE θ∠=.
(1)试将污水净化管道的长度L 表示为θ的函数,并写出定义域;
(2)若
sin cos θθ+=L ;
(3)问:当θ取何值时,污水净化效果最好?并求出此时管

的长度.
【应用•探究•思考】
1. 如图,某城市有一条公路从正西方AO 通过市中心O 后转向东北方OB ,现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,现要求市中心
O到AB的距离为10km,设OABα
∠=.
(1)试求AB关于角α的函数关系式;
(2)问角α多大时,才能使AB最短,并求最短距离.
2. 如图,直角三角形ABC中,∠B=,AB=1,BC=.点
M,分别在边AB和AC上(M点和B点不
N
重合),将△AMN沿MN翻折,△AMN变
为△MN
A',使顶点A'落在边BC上(A'点
和B点不重合).设∠AMN=.
(1)用θ表示线段AM的长度,并写出θ的取值范围;(2)求线段N
A'长度的最小值.。

相关文档
最新文档