2015年春七年级数学下册 12.1 定义与命题教案 (新版)苏科版

合集下载

新苏科版七年级数学下册《12章 证明 12.1 定义与命题》公开课教案_14

新苏科版七年级数学下册《12章 证明  12.1 定义与命题》公开课教案_14

课题:12.1定义与命题学习目标:1.了解定义、命题、真命题、假命题的意义。

2.了解命题的结构,会区分命题的条件与结论,并能初步对命题的真假性作出判断.学习重难点:1.结合具体实例,会区分命题的条件(题设)和结论.2. 当命题的条件和结论不十分明显时,能区分命题的条件(题设)和结论.学习过程:1、情境引入2、自主阅读教课书P144-145,思考下列问题。

(1)什么是定义?你能列举一下我们以前学习过的定义吗?(2)什么是命题?(3)命题由几部分组成?(4)按命题的正确与否,命题可分为几种?如何说明一个命题是假命题?一、亲历过程探究新知1、合作探究1你能说出下列名称的定义吗?(1)平行线(2)绝对值(3)方程的解。

2、合作探究21.比较下列句子在表述形式上哪些对事情作了判断?哪些没有对事情作出判断?(1)鸟是动物;(2)若a2=4,求a的值;(3)若a2=b2,则a=b;(4)a、b两条直线平行吗?(5)画一个角等于已知角;(6)0.33是无理数;(7)两直线平行,同位角相等.2.提问:“鸟是动物”与“鸟是动物吗?”这两句话一样吗?若不一样,有什么不同?3.总结.(1)命题的概念:(2)命题的特征:观察上题的(1)、(3)、(6)、(7),你能发现它们有什么共同的结构特征?命题由和两部分组成,是已知事项,是由已知事项推出的事项.例题:找出下列命题的条件和结论.(1)对顶角相等;(2)π是无理数.3、合作探究31.下列命题的条件是什么?结论又是什么?(1)如果a、b两数的积为0,那么a、b两数都为0;(2)如果两个角互为补角,那么这两个角和为180°;(3)两直线平行,同旁内角互补;(4)两直线相交,只有一个交点;(5)有公共端点的两个角是对顶角.2.追问:以上各个命题作出的判断正确吗?3. 真命题:假命题:练习:判断下列命题中,哪些是真命题?哪些是假命题?(1)相等的角是对顶角;(2)内错角相等;(3)大于90度的角是平角;(4)如果a>b,b>c,那么a>c.三、拓展提升,难点突破1. 指出下列命题的条件和结论,并改写“如果……那么……”的形式:(1)等边三角形是锐角三角形:(2)同角的补角相等:(3)直角都相等:2.下列命题是真命题?还是假命题?(1)若a∥b,b∥c,则a∥c;(2)如果a是有理数,则a2+1>0;(3)若a2>b2,则a>b;(4)若ab=0,则a=0;(5)如果两个角的两边互相平行,这两个角一定相等;(6)绝对值等于它本身的数是正数.四、总结反思本节课学到了什么?。

新苏科版七年级数学下册《12章 证明 12.1 定义与命题》公开课教案_4

新苏科版七年级数学下册《12章 证明  12.1 定义与命题》公开课教案_4

12. 1 《定义与命题》教学设计一、设计思路说理无疑是重要的,也是十分必要的.合情推理和演绎推理都是获得数学结论的重要途径,演绎推理关注的是发展合乎逻辑的思考.推理与证明的意识,步步有据有理的表达,这都离不开定义、命题,真、假命题等概念清晰的认可,为证明做必要的准备. 通过下课常去的地点名词,体会一些常用术语的描述,让学生感受理解有关名称和术语的重要性,引起学生对概念的关注. 回顾学过的多个结论性的句子,其中包括正确的和不正确的,通过讨论、交流、分析,引导学生感受命题及命题的组成,进而能独立判断一个句子是不是命题,并能说出命题中的条件和结论,由观察、操作、实验、猜想得到的结论并不是全都正确,判断一个命题是假命题,只要举出一个反例就可以说明了,而要确认一个命题是真命题就必须要用演绎推理的方法去说明理由,从而为后续学习“证明”打好基础.二、目标设计1.了解定义、命题、真命题的含义,会区分命题的条件和结论.2.在交流中发展有条理思考和有条理表达的能力.三、活动设计一、导入:下课常去的地点。

说明:这是两个常见的活动情境,意在引起学生注意,通过对小店、厕所等术语的描术,让学生明白,只有对常用的名称和术语有了共识,人们才可以正常交流.类似地,数学中要引进说理,必须对涉及的概念有共识,也就需要对概念下定义.活动一(快速抢答)(1)怎样的两个数是“互为相反数”?(2)怎样的三角形是“等腰三角形”?……二、新课学习(一)、个体自学第一部分:定义,命题请同学们自学课本P144页,完成下面内容1、(1)对名称和术语 ,就是给出它们的定义.(2)说一说:说出“平行线、绝对值、方程的解”的定义。

2、(1)_ 一件事情的句子,叫做命题注:判断,是对事物的情况有所断定的思维形式,任何一个判断,都或者是真(对)的,或者是假(错)的,否则不是判断!(2)比较下列句子在表述形式上哪些对事情作了判断?哪些没有对事情作出判断?哪些是命题?哪些不是命题?⑴等角的余角相等.⑵画一个角.⑶两直线平行,同位角相等.⑷a、b两条直线平行吗?⑸三角形的内角和等于180度;⑹若a2= b2,则a=b.说明:这些句子,一类是对某一件事情做出了判断;另一类是没有对某一件事情做出判断.引导学生通过对命题与非命题具体例子的辨析,了解什么是命题,什么不是命题.值得注意的是判断是不是正确,并不是构成判断的必要条件.可加些题目,口答,强化练习。

新苏科版七年级数学下册《12章 证明 12.1 定义与命题》公开课教案_6

新苏科版七年级数学下册《12章 证明  12.1 定义与命题》公开课教案_6

课题12.1 定义与命题教学设计【学习目标】1.了解定义、命题、真命题、假命题的含义。

2.会区分命题的条件和结论。

3.会判断一个命题的真假。

4.在交流中发展有条理的思考和表达的能力。

【学习重点】了解定义、命题、真命题、假命题的含义,会区分命题的条件和结论,会判断一个命题的真假【教学难点】举反例说明一个命题是假命题【教学过程】点?【设计意图】设计问题一,是让学生回忆这些概念的定义,引导学生感受数学中如何给概念下定义.定义的规则:(1)应相称,即定义概念和定义概念的外延相等;(2)不应循环;(3)一般不是否定判断;(4)应清楚确切.教学中通过具体的例子引导学生感受这些规则.环节2:问题二:“等角的余角相等.”与“等角的余角相等吗?”这两句话一样吗?如不一样,它们有什么不同?“经过一点有且只有一条直线与已知直线垂直”与“经过一点画已知直线的垂线”有什么不同?“四边形不是多边形”与“四边形不一定是多边形”又有什么不同?【设计意图】设计问题二中引号内的句子,一类是对某一件事情做出判断,另一类是没有对某一件事情做出判断.引导学生通过这两类(命题与非命题)具体例子的辨析,了解什么是命题,什么不是命题.归纳得出:命题的概念,判断一件事情的句子叫做命题.对命题进行说明:对某一件事情做出判断的句子,有的做出了正确的判断,有的做出了错误的判断.比如,“四边形不是多边形”这个句子的判断是错误的,避免学生误认为这样的句子不是命题.教学中结合这个例子,说明凡是做出判断的句子都是命题,不论判断是否正确.请学生列举一些命题,加强对命题概念的理解练习巩固:练习1:下列句子中,________________是命题,______________________不是命题.(填序号)⑴内错角相等;⑵平方等于4的数是2;⑶画一个角等于已知角;⑷0是负数;⑸两直线平行,同位角互补;⑹等角的补角相等;⑺a、b两条直线平行吗?⑻若a2= b2,则a=b.(9)今天的天气真好啊!环节3:问题三:观察下列命题,你能发现它们有什么共同的结构特征吗?(1)如果a>0,b<0,那么|a|=|b|.(2)如果两个角的和是一个直角,那么这两个角互为余角.(3)如果两个角都是同一个角的补角,那么这两个角相等.总结归纳:在数学中,命题一般都由条件和结论两部分组成。

苏教版七年级下册数学教案:12.1 定义与命题

苏教版七年级下册数学教案:12.1 定义与命题

12.1 定义与命题教学目标:1.了解定义、命题、真命题、假命题的含义;2.了解命题的结构,会区分命题的条件(题设)和结论,并能初步对命题的真假性作出判断.教学重点:结合具体实例,会区分命题的条件(题设)和结论.教学难点:当命题的条件和结论不十分明显时,能区分命题的条件(题设)和结论.教学过程(教师)新课引入——阅读材料在我们丰富的数学世界里有许多神奇的数.你听说过费尔马数、相亲数、圣经数、回文数、正直数、水仙花数吗?我先来介绍一下“水仙花数”吧!各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.比如153是“水仙花数”,因为13+53+33=153.同学们,你们能从113、407、220三个数中找出“水仙花数”吗?(1)提问:你的根据是什么?(2)概括定义的概念:一般地,对某一名称或术语进行描述或作出规定就叫做该名称或术语的定义.合作探究1你能说出下列名称的定义吗?(1)平行线;(2)绝对值;(3)方程的解.合作探究21.比较下列句子在表述形式上哪些对事情作了判断?哪些没有对事情作出判断?(1)鸟是动物;(2)若a2=4,求a的值;(3)若a2=b2,则a=b;(4)a、b两条直线平行吗?(5)画一个角等于已知角;(6)0.33是无理数;(7)两直线平行,同位角相等.2.提问:“鸟是动物.”与“鸟是动物吗?”这两句话一样吗?如果不一样,有什么不同?3.总结.(1)命题的概念;(2)命题的特征.师生交流1.提问:观察上题的(1)、(3)、(6)、(7),你能发现它们有什么共同的结构特征?2.概括:在数学中,命题一般可看作由题设(条件)和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.例题:找出下列命题的条件和结论.(1)对顶角相等;(2)π是无理数.合作探究31.下列命题的条件是什么?结论又是什么?(1)如果a、b两数的积为0,那么a、b两数都为0;(2)如果两个角互为补角,那么这两个角和为180°;(3)两直线平行,同旁内角互补;(4)两直线相交,只有一个交点;(5)有公共端点的两个角是对顶角.2.追问:以上各个命题作出的判断正确吗?3.教师在学生回答的基础上概括真命题、假命题的定义.练习判断下列命题中,哪些是真命题?哪些是假命题?(1)相等的角是对顶角;(2)内错角相等;(3)大于90度的角是平角;(4)如果a>b,b>c,那么a>c.能力检测1.下列句子中,哪些是命题?哪些不是命题?(1)画一个角等于已知角;(2)a、b两条直线平行吗?(3)直角三角形两锐角互余.(4)过一点画已知直线的垂线.(5)若a=b,则a2=b2.2.追问:如果是命题,那么它的条件是什么?结论又是什么?是真命题?还是假命题?拓展提高1.在数学运算中,除了加、减、乘、除等运算外,还可以定义新的运算.如定义一种“星”运算,“*”是它的运算符号,其运算法则是:a*b=(a+ b)(a-b)于是:5*3=(5+3)(5-3)=16;3*5=(3+5)(3-5)=-16;5*3*3=16*3=247.(1)按以上定义,填空:2*3=_____;2*3*5=_____.(2)请你参照以上方法,也定义一种新运算,并举几个运算的例子.2.下列命题是真命题?还是假命题?(1)若a∥b,b∥c,则a∥c;(2)如果a是有理数,则a2+1>0;(3)若a2>b2,则a>b;(4)若ab=0,则a=0;(5)如果两个角的两边互相平行,这两个角一定相等;(6)绝对值等于它本身的数是正数.总结(1)通过本节课的学习,有什么收获?(2)还有哪些疑问?课后作业1.课本习题12.1第1、2、3题;2.课外思考题(选做):请查阅费尔马数、相亲数、圣经数、回文数、正直数的定义,并谈谈你的体会!。

新苏科版七年级数学下册《12章 证明 12.1 定义与命题》公开课教案_2

新苏科版七年级数学下册《12章 证明  12.1 定义与命题》公开课教案_2

12.1 定义与命题教学目标1、了解定义、命题、真命题、假命题的含义;2、会区分命题的条件和结论,会判断一个命题的真假;3、在交流中发展有条理的思考和表达的能力。

重难点1、重点:了解定义、命题、真命题、假命题的含义;2、难点:会区分命题的条件和结论,会判断一个命题的真假。

教学过程一、各抒己见,新课引入1、定义:对名称或术语的含义进行描述或做出规定,就是给出它们的定义。

如相反数的定义:符号不同,绝对值相同的两个数互为相反数。

设计意图:从学生已有的生活经验、知识经验出发,吸引学生的注意力,活跃课堂气氛,并点明课题。

2、说一说下列数学术语的定义(1)平行线:(2)绝对值:(3)方程的解:设计意图:让学生回忆已学的数学术语的定义,巩固旧知,并对定义加深印象。

二、探索活动观察一幅卡通对话:小鼹鼠:爸爸,什么是法律?鼹鼠爸爸:法律就是法国的律师。

小鼹鼠:什么是法盲?鼹鼠爸爸:法盲就是法国的盲人。

问:爸爸的解释正确吗?设计意图:让学生对鼹鼠爸爸的解释作出判断,既是对定义的延伸,又引出命题的概念;同时吸引学生的注意力,活跃课堂气氛。

1、命题:对某一件事做出判断的句子。

问题一:“等角的余角相等. ”与“等角的余角相等吗?”这两句话一样吗?那句话做出了判断?问题二:“经过一点有且只有一条直线与已知直线垂直.”与“经过一点画已知直线的垂线”有什么不同?设计意图:让学生对两种语句进行分析与判断,从而归纳得出命题的特征。

再根据这些特征进行练习,熟悉的命题的定义与特点。

2、命题的特征:陈述句有判断3、判断下列句子是否是命题(1)0是偶数()(2)a,b两条直线平行吗?()(3)画两个相等的角()(4)两直线平行,同旁内角互补( )(5)两条直线相交,只有一个交点( )(6)四边形不是多边形( ) 设计意图:根据命题的特征对语句进行判断,对所学知识的及时应用,从练习中巩固所学知识。

4、命题的结构:命题一般可看作由条件(题设)和结论两部分组成,条件(题设)是已知事项,结论是由已知事项推出的事项。

新苏科版七年级数学下册《12章 证明 12.1 定义与命题》公开课教案_0

新苏科版七年级数学下册《12章 证明  12.1 定义与命题》公开课教案_0

教学设计---12.1 定义与命题一、内容简析本课时是单独成章的起始课,尽管没有知识的衔接和延续,但学生在前面的学习中,接触了不少的几何知识,对一些名词、术语有过较深刻的认识,这是学生能够很好了解定义的基础,同时,学生对本节课将要采取讨论、交流、举例说明等学习分式,在前面的学习中也有过体验,为今天这节课的学习作了必要的铺垫。

本课时教材对命题的相关知识是分散安排的,旨在重点让学生对定义、命题等概念有一个清楚的认识,同时,对命题的构成、命题的形式、命题的真假有一个较全面的了解,培养学生不同几何语言的转化能力和举例说明能力,为后续学习打下基础、做好铺垫,不必深入探究。

二、教学目标:1.了解定义、命题、真命题、假命题的含义;2.了解命题的结构,会区分命题的条件和结论,并能对命题的真假性作出判断.三、教学重难点:1.结合具体实例,会区分命题的条件和结论.2.当命题的条件和结论不十分明显时,能进行几何语言的转化,区分出命题的条件和结论.四、教学过程:(一)情境导入1.阅读材料(图片展示)在我们丰富的数学世界里有许多神奇的数,常见的有平方数、立方数等。

你听说过费尔马数、相亲数、圣经数、回文数、正直数、水仙花数吗?我先来介绍一下“水仙花数”吧!各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.比如153是“水仙花数”,因为13+53+33=153.问题:(1)你们能从113、407、220三个数中找出“水仙花数”吗?你的根据是什么?(2)有谁能概括一下,什么样的数叫“水仙花数”?【设计意图】1.目的:①通过活动,根据学生不同的理解,从而使学生了解“水仙花数”的含义。

②为让学生了解“定义”这一概念做铺垫。

2.效果:①很快找出了“水仙花数”②激发了学生的学习热情,产生对本节课的兴趣。

③为课题导入作了自然过渡2.引入课题:人们在说话、说理时,常常要使用一些名称或术语。

(二)活动探究活动一:1. 自学引导1:阅读课本第144页,了解定义、命题的意义。

初中数学(苏科版)七年级-12.1 定义与命题_教学设计_教案(课件免费下载)

初中数学(苏科版)七年级-12.1 定义与命题_教学设计_教案(课件免费下载)

教学准备1. 教学目标1.了解命题中的真命题、假命题、定理的含义;2.解命题的构成,能区分命题中的条件和结论。

3.经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理.4.培养学生的语言表达能力。

2. 教学重点/难点1.了解命题中的真命题、假命题、定理的含义;2.解命题的构成,能区分命题中的条件和结论。

3.经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理.3. 教学用具4. 标签教学过程第一环节:回顾引入活动内容:①什么叫做定义?举例说明.②什么叫命题?举例说明.活动目的:回顾上节知识,为本节课的展开打好基础.教学效果:学生举手发言,提问个别学生.第二环节:探索命题的结构活动内容:①探讨命题的结构特征观察下列命题,发现它们的结构有什么共同特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.(4)如果一个四边的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.②总结命题的结构特征(1)上述命题都是“如果……,那么……”的形式.(2)“如果……”是已知的事项,“那么……”是由已知事项推断出的结论.(3)一般地命题都可以写成“如果……,那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的结论,每个命题都有条件和结论.活动目的:对命题的结构进行分析,让学生会判断一个命题的条件和结论.教学效果:分小组交流讨论,教师引导进行归纳.应告诫学生当一个命题改写成“如果……那么……”的形式时,要注意改写时不要机械地添上“如果”和“那么”,应适当地补充一些修饰语句,使改写后的语句通顺,完整。

第三环节:思考探讨活动内容:①找出下述命题中的条件和结论,指出它们哪些是正确的命题?哪些是不正确的命题?你又是如何知道的呢?(1)如果两个角相等,那么它们是对顶角;(2)如果a>b,b>c,那么a=c;(3)两角和其中一角的对边对应相等的两个三角形全等;(4)菱形的四条边都相等;(5)全等三角形的面积相等.②探究真假命题的验证说明一个命题是假命题,通常举出一个反例就可以了,使之具备命题的条件,而不具有命题的结论,这种例子称为反例,但是要说明一个命题是正确的无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性呢?结论:正确的命题称为真命题,不正确的命题称为假命题.活动目的:使学生了解命题有真假之分,并且知道怎样去判断真假命题。

苏科版数学七年级下册12.1《定义与命题》说课稿

苏科版数学七年级下册12.1《定义与命题》说课稿

苏科版数学七年级下册12.1《定义与命题》说课稿一. 教材分析苏科版数学七年级下册12.1《定义与命题》是学生在学习了初中数学基础知识后,进一步深入研究数学概念和逻辑推理的重要章节。

本节内容主要包括定义与命题的概念、分类及书写格式。

通过学习,使学生掌握定义与命题的基本知识,培养学生的逻辑思维能力和数学语言表达能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数学概念和公式有一定的了解。

但学生在逻辑推理和数学语言表达方面还较为薄弱,需要通过本节课的学习,进一步培养和提高。

同时,学生对新鲜事物充满好奇,善于接受新知识,但注意力容易分散,需要教师通过丰富的教学手段和方法,激发学生的学习兴趣。

三. 说教学目标1.知识与技能目标:使学生掌握定义与命题的基本概念、分类及书写格式,学会如何阅读和理解数学定义与命题。

2.过程与方法目标:通过观察、思考、讨论等方法,培养学生的逻辑思维能力和数学语言表达能力。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的团队合作精神,使学生认识到数学在生活中的重要性。

四. 说教学重难点1.教学重点:定义与命题的概念、分类及书写格式。

2.教学难点:如何理解和运用定义与命题,培养学生的逻辑思维能力和数学语言表达能力。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动参与课堂,培养学生的逻辑思维能力和数学语言表达能力。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合现代教育技术,提高课堂教学效果。

六. 说教学过程1.导入新课:通过一个生活实例,引发学生对定义与命题的思考,激发学生的学习兴趣。

2.讲解概念:教师讲解定义与命题的概念、分类及书写格式,引导学生理解并掌握相关知识。

3.案例分析:教师展示典型例题,引导学生分析、讨论,培养学生运用定义与命题解决问题的能力。

4.小组讨论:学生分组讨论,交流自己对定义与命题的理解和应用,培养学生的团队合作精神。

2015年春季新版苏科版七年级数学下学期12.1、定义与命题学案3

2015年春季新版苏科版七年级数学下学期12.1、定义与命题学案3

3、下列关于判断一个数学结论是否正
A.只需观察得出
C.通过亲自实验得出
是否相等
、如图,从一只透明的空玻璃杯的侧面能看到杯子下面放了一枚硬币.
⑴如果向杯中注水,猜一猜这时从杯子的侧面还能看到这枚硬币吗?
、装有半杯水的透明玻璃杯中,插入一根笔直的筷子,这时我们会看到什么结论呢?
2、活动2。

你认为大圆内的10个小圆的周长之和与另一个大圆内的小圆的周长之和哪一个大一些?请你猜一猜,并用学过的知识和数学方法验证你的猜想。

四、课堂练习:
如果a=b,那么a2_____b2.
五、小结与思考
需观察得出
能肯定的是
AB A )
______
子上写着:。

七年级数学下册 第12章 证明 12.1 定义与命题教案1 (新版)苏科版

七年级数学下册 第12章 证明 12.1 定义与命题教案1 (新版)苏科版

课题:12.1 定义与命题教学目标: 教学时间:1.了解定义、命题、真命题、假命题的含义;2.了解命题的结构,会区分命题的条件(题设)和结论,并能初步对命题的真假性作出判断.教学重点:结合具体实例,会区分命题的条件(题设)和结论.教学难点:当命题的条件和结论不十分明显时,能区分命题的条件(题设)和结论.教学方法:教学过程:一.【情景创设】在我们丰富的数学世界里有许多神奇的数.你听说过费尔马数、相亲数、圣经数、回文数、正直数、水仙花数吗?我先来介绍一下“水仙花数”吧!各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.比如153是“水仙花数”,因为13+53+33=153.同学们,你们能从113、407、220三个数中找出“水仙花数”吗?二.【问题探究】问题1(1)提问:你的根据是什么?(2)概括定义的概念:一般地,对某一名称或术语进行描述或作出规定就叫做该名称或术语的定义.练一练:你能说出下列名称的定义吗?(1)平行线;(2)绝对值;(3)方程的解.问题2 比较下列句子在表述形式上哪些对事情作了判断?哪些没有对事情作出判断?(1)鸟是动物;(2)若a2=4,求a的值;(3)若a2=b2,则a=b;(4)a、b两条直线平行吗?(5)画一个角等于已知角;(6)0.33是无理数;(7)两直线平行,同位角相等.提问:“鸟是动物.”与“鸟是动物吗?”这两句话一样吗?如果不一样,有什么不同?总结.(1)命题的概念:(2)命题的特征.在数学中,命题一般可看作由题设(条件)和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.问题3:下列命题的条件是什么?结论又是什么?(1)如果a、b两数的积为0,那么a、b两数都为0;(2)如果两个角互为补角,那么这两个角和为180°;(3)两直线平行,同旁内角互补;(4)π是无理数(5)两直线相交,只有一个交点;(6)对顶角相等;(7)有公共端点的两个角是对顶角.提问:以上各个命题作出的判断正确吗?归纳:真命题:假命题:练一练:判断下列命题中,哪些是真命题?哪些是假命题?(1)相等的角是对顶角;(2)内错角相等;(3)大于90度的角是平角;(4)如果a>b,b>c,那么a>c.三.【变式拓展】问题4:下列命题是真命题?还是假命题?(1)若a∥b,b∥c,则a∥c;(2)如果a是有理数,则a2+1>0;(3)若a2>b2,则a>b;(4)若ab=0,则a=0;(5)如果两个角的两边互相平行,这两个角一定相等;(6)绝对值等于它本身的数是正数.问题4:在数学运算中,除了加、减、乘、除等运算外,还可以定义新的运算.如定义一种“星”运算,“*”是它的运算符号,其运算法则是:a*b=(a+b)(a-b)于是:5*3=(5+3)(5-3)=16;3*5=(3+5)(3-5)=-16;5*3*3=16*3=247.(1)按以上定义,填空:2*3=_____;2*3*5=_____.(2)请你参照以上方法,也定义一种新运算,并举几个运算的例子.四.【总结提升】通过本节课的学习,有什么收获?。

新苏科版七年级数学下册《12章 证明 12.1 定义与命题》公开课教案_25

新苏科版七年级数学下册《12章 证明  12.1 定义与命题》公开课教案_25

课题12.1 定义与命题主备人教学目标(1)了解定义、命题、真命题、假命题的含义。

(2)会区分命题的条件和结论。

(3)会判断一个命题是真命题还是假命题。

(4)发展逻辑思维能力以及有条理的思考和表达的能力教学重点了解定义、命题、真命题、假命题的含义,会找出一个命题的条件和结论,会判断一个命题的真假。

教学难点发展逻辑思维能力以及有条理的思考和表达的能力教学方法多媒体教学过程教师活动学生活动设计意图一、预备知识自行阅读课本P144内容1.什么是定义?2.什么是命题要求:画出关键词,标出有疑问的地方二、新知学习[模块一]情景一:情景二:老师在昆山南站的一个大厅里面排队取了一张标有时间、地点、车次、价格的纸片,工作人员通过一台机器仔细检查了我的包之后,老师就上了一辆很长很长的车,车跑得很快,平均速度每小时270千米,经过20几分钟就到达了上海。

1.定义:对名称或术语的含义进行描述或做出规定,就是给出它们的定义例如,缺乏法律意识或没有法律意识的成年人叫法盲无线不循环小数是“无理数”的定义学生自主学习学生解决问题一让学生对本节课的内容有一个初步的了解,知道要学什么?明确学习目标由生活中的两个对话情景,如果不能对某些名称或术语有共同的认识,就无法进行正常的交流,让学生感受学习定义的必要性。

给出定义的概念举例,让学生更好的理解定义的含义2.说一说_____________:在同一平面内,不相交的两条直线_____________:数轴上表示一个数的点到原点的距离互为相反数:__________________________________3.做一做(1)下列不互为相反数的是()A.3与-3B.-4与4C.a与-aD.-4与2 (2)若a、b互为相反数,则a+b=_________小结:定义是推理的依据,定义既可当作判定,也可当作性质.[模块二]活动:观看视频读一读:蛋糕是甜的蛋糕是甜的吗?好甜的蛋糕!哪一句是在做判断?1.命题:判断一件事情的句子叫命题命题的特征:判断句例如,蛋糕是甜的柠檬是酸的对顶角相等小动物入篮子游戏:学生回答抢答学生观看视频学生品读三句话,回答问题学生上台完成小游戏知道一些数学名词的定义定义既可当作判定,也可当作性质.应用定义解决问题引入第二个问题,命题的含义举例,让学生更好的理解定义的含义以“小动物入篮子”这种游戏的形式,练习判断一句话是不是命题,加深学生对命题的理解,引起学生兴趣,活跃课堂气氛2.命题的结构:条件:已知事项结论:由已知事项推出的事项例如,蛋糕是甜的。

苏科版数学七年级下册12.1《定义与命题》教学设计

苏科版数学七年级下册12.1《定义与命题》教学设计

苏科版数学七年级下册12.1《定义与命题》教学设计一. 教材分析《苏科版数学七年级下册12.1》这一章节主要让学生了解数学中的定义与命题的概念,学会如何阅读和理解数学定义与命题,并能够运用这些知识解决一些实际问题。

教材通过丰富的实例和生活中的问题,引导学生理解和掌握定义与命题的基本概念和运用方法。

二. 学情分析学生在七年级上册已经学习了数学中的概念和命题,对一些基本的数学概念和命题有了一定的了解。

但学生在理解和运用定义与命题方面还存在一些问题,如对定义与命题的关系理解不深,不能正确判断一个命题的真假等。

三. 教学目标1.知识与技能:让学生理解定义与命题的概念,学会阅读和理解数学定义与命题,能够运用定义与命题解决一些实际问题。

2.过程与方法:通过实例和问题,让学生学会如何分析定义与命题,提高学生分析问题和解决问题的能力。

3.情感态度价值观:培养学生对数学的兴趣,让学生体验到数学与生活的紧密联系,培养学生的团队协作能力。

四. 教学重难点1.重点:理解定义与命题的概念,学会阅读和理解数学定义与命题。

2.难点:掌握定义与命题的区别与联系,能够正确判断一个命题的真假。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过问题引导学生思考,通过案例让学生理解定义与命题的概念,通过小组合作让学生互相交流和解决问题。

六. 教学准备1.教材和教辅。

2.PPT或其他教学辅助工具。

3.相关的生活实例和问题。

七. 教学过程1.导入(5分钟)通过一个生活实例,引导学生思考什么是定义与命题,让学生对定义与命题有一个初步的认识。

2.呈现(10分钟)通过PPT或其他教学辅助工具,呈现定义与命题的概念和例题,让学生理解和掌握定义与命题的基本概念和运用方法。

3.操练(10分钟)让学生独立完成一些相关的练习题,巩固所学知识,教师进行个别指导和讲解。

4.巩固(10分钟)通过小组合作,让学生互相交流和解决问题,进一步巩固定义与命题的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12. 1 定义与命题
一、设计思路
说理无疑是重要的,也是十分必要的.合情推理和演绎推理都是获得数学结论的重要途径,演绎推理关注的是发展合乎逻辑的思考. 推理与证明的意识,步步有据有理的表达,这都离不开定义、命题,真、假命题等概念清晰的认可,为证明做必要的准备. 通过球赛、天气预报两个情境的展示,体会一些常用术语的描述,让学生感受理解有关名称和术语的重要性,引起学生对概念的关注. 回顾学过的多个结论性的句子,其中包括正确的和不正确的,通过讨论、交流、分析,引导学生感受命题及命题的组成,进而能独立判断一个句子是不是命题,并能说出命题中的条件和结论,由观察、操作、实验、猜想得到的结论并不是全都正确,判断一个命题是假命题,只要举出一个反例就可以说明了,而要确认一个命题是真命题就必须要用演绎推理的方法去说明理由,从而为后续学习“证明”打好基础.
二、目标设计
1.了解定义、命题、真命题的含义,会区分命题的条件和结论.
2.在交流中发展有条理思考和有条理表达的能力.
3.感受交流的重要性,积极参与团队协作
:一场中超足球赛正在紧张进行.解说员话
“好,漂亮很快要进球了,可惜越位了”
明天最低温度雷
)怎样的两个数是“互为相反数”?
什么不同?
说明:这些句子,一类是对某一件事情做出了判断;另一类是
角相等,那么这两个角是对顶角.
角相等,那么这个三角形是
生,
五、拓展练习
生互动思考与安排在一次测试中,老师出了题目:比较。

相关文档
最新文档