直流电动机调速课程设计-直流电动机的调速方法
直流电机的调速方法
电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。 但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎 没什么调速作用;还会在调速电阻上消耗大量电能。
二、直流电动机调速的种类与方法
直流电机调速的种类分别有: 1.调节电枢供电电压U
改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定 转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑 调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速 响应,但是需要大容量可调直流电源。 2.改变电动机主磁通
1.ቤተ መጻሕፍቲ ባይዱ节电枢供电电压U
三、直流电动机调速方法的特点
直流电动机三种调速方法的特点: 不同的需要,采用不同的调速方式 1.调电枢电压,适合应用在0~基速以下范围内调速。不能达
到电动机的最高转速。 2.在电枢全电压状态,调激磁电压,适合应用在基速以上,
弱磁升速。 不能得到电动机的较低转速。 3.在全磁场状态,调电枢电压,电枢全电压之后,弱磁升速。
适合应用在调速范围大的情况。这是直流电动机最完善的 调速方式,但设备复杂,造价高。
直流电机的调速方法
• 一组:韩爽 刘磊 刘畅 韩玉迪
目录
一、直流电动机调速的定义与工作原理 二、直流电动机调速的种类与方法 三、直流电动机调速方法的特点
一、直流电动机调速的定义与工作原理
• 定义:直流电机调速器就是调节直流电动机速度 的设备。
• 工作原理:是通过改变输出方波的占空比使负载上 的平均电流功率从0-100%变化、从而改变负载、 灯光亮度/电机速度。利用脉宽调制(PWM)方式、 实现调光/调速、它的优点是电源的能量功率、能 得到充分利用、电路的效率高。
基于单片机的直流电机调速系统的课程设计
一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。
二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。
但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。
由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。
磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。
电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。
传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。
随着电力电子的发展,出现了许多新的电枢电压控制法。
如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。
调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。
脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。
如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。
平均转速Vd与占空比的函数曲线近似为直线。
简述直流电动机的调速方法。
简述直流电动机的调速方法。
直流电动机是一种无刷直流电机,其工作原理基于电枢的旋转,其调速方法
主要有以下几种:
1. 电阻调速:将直流电动机接入电阻器中,通过改变电阻的大小来控制电动机的转速。
这种方法的优点是调速范围宽,但缺点是调速效率低,而且电阻器易损坏。
2. 电容调速:在直流电动机的转轴上加装电容,通过改变电容的大小来控制电动机的转速。
这种方法的优点是调速效率高,但缺点是需要较大的电容,而且容易引起电动机故障。
3. 串激调速:在直流电动机的转轴上串联一个电阻和一个电感,通过改变它们的相对大小来控制电动机的转速。
这种方法的优点是调速范围宽,但缺点是需要复杂的电路,而且容易引起电动机故障。
4. 反相调速:在直流电动机的转轴上加装一个电容器和一个电阻,通过改变它们的相对大小来控制电动机的转速。
这种方法的优点是调速效率高,但缺点是需要较大的电容器,而且容易引起电动机故障。
除了以上几种调速方法外,还有一些其他的方法,例如脉冲调速、积分调速等。
这些方法在实际应用中要根据具体情况选择使用。
直流电动机的调速方法的选择应该考虑到调速范围、调速效率、电动机的性能和稳定性等因素。
在实际应用中,需要根据具体的情况和要求选择合适的调速方法。
直流电动机调速方法
n0
调节过程:
增加电阻 Ra R R n ,n0不变;
调速特性:
转速下降,机械特性 O 曲线斜率变大,特性
变软。
第6页/共32页
n U R I Ke Ke
nN
n1
Ra
n2 n3
R1
R2
R3
IL
I
图2-1 调阻调速特性曲线 6
2.1.1 改变电枢回路电阻调速
工作效率:
工作效率
电机电磁功率 电源输出功率
14
第14页/共32页
2.2.1 旋转变流机组
图2-4旋转变流机组供第电15页的/共直3流2页调速系统(G-M系统)
15
• G-M系统工作原理
由原动机(柴油机、交流异步或同步电动机) 拖动直流发电机 G 实现变流
由 G 给需要调速的直流电动机 M 供电,拖动 直流发电机 G E发电作为G的励磁电源。
20
第20页/共32页
晶闸管整流电路原理
➢ 为便于讨论,假设电路已工作
于稳态,id的平均值不变。
2
O
➢ 假设负载电感很大,负载电流 u
d
id连续且波形近似为一水平线
O
i
d
在许多需要调速和快速正反向的电力拖动领 域中得到了广泛的应用
2
第2页/共32页
2.1 直流电机调速方法
他励直流电动机等效电路
他励直流电动机等效 回路:定子电感,定 子电阻,供电电压, 定子电流,励磁绕组
+
-
U
+ Ea -
Ia
M
Ra+Rc If
以及励磁电流。
+ Uf
-
3
第3页/共32页
单片机课程设计PWM直流电动机调速控制系统方案
单片机原理及应用—— P W M直流电机调速控制系统概括直流电动机具有良好的启动性能和调速特性。
具有起动转矩大、调速平稳、经济大范围、调速容易、调速后效率高等特点。
本文设计的直流电机调速系统主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路和独立按键组成的电子产品组成。
电源采用78系列芯片,采用PWM波方式实现电机+5V、+15V调速,PWM为脉宽调制,通过51单片机改变占空比实现。
通过独立的按键实现电机的启停、调速和转向的手动控制,LED实现测量数据(速度)的显示。
电机转速采用霍尔传感器检测输出方波,通过51单片机统计1秒内方波脉冲个数,计算电机转速,实现直流电机的反馈控制。
关键词:直流电机调速; H桥驱动电路; LED显示屏; 51单片机目录摘要2摘要错误!未定义书签。
目录3第 1 章引言41.1 概述41.2 国外发展现状41.3 要求51.4 设计目的及6第 2 章项目论证与选择72.1 电机调速模块72.2 PWM调速工作模式72.3 PWM脉宽调制方式错误!未定义书签。
2.4 PWM 软件实现错误!未定义书签。
第三章系统硬件电路设计83.1 信号输入电路83.2 电机PWM驱动模块电路9第 4 章系统的软件设计104.1 单片机选型104.2 系统软件设计分析10第 5 章 MCU 系统集成调试135.1 PROTEUS 设计与仿真平台错误!未定义书签。
18传统开发流程对比错误!未定义书签。
第一章简介1.1 概述现代工业的电驱动一般要求部分或全部自动化,因此必须与各种控制元件组成的自动控制系统相联动,而电驱动可视为自动电驱动系统的简称。
在这个系统中,生产机械可以自动控制。
随着现代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动电驱动正朝着计算机控制的生产过程自动化方向发展。
以实现高速、高质量、高效率的生产。
在大多数集成自动化系统中,自动化电力牵引系统仍然是不可或缺的组成部分。
单片机课程设计完整版《PWM直流电动机调速控制系统》
单片机原理及应用课程设计报告设计题目:学院:专业:班级:学号:学生姓名:指导教师:年月日目录设计题目 (3)1 设计要求及主要技术指标: (4)1.1 设计要求 (4)1.2 主要技术指标 (5)2 设计过程 (6)2.1 题目分析 (9)2.2 整体构思 (10)2.3 具体实现 (12)3 元件说明及相关计算 (14)3.1 元件说明 (14)3.2 相关计算 (15)4 调试过程 (16)4.1 调试过程 (16)4.2 遇到问题及解决措施 (20)5 心得体会 (21)参考文献 (22)附录一:电路原理图 (23)附录二:程序清单 (24)设计题目:PWM直流电机调速系统本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED液晶显示器、霍尔测速电路以及独立按键组成的电子产品。
电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。
电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;定时中断;电动机;PWM波形;LED显示器;51单片机1 设计要求及主要技术指标:基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM 调速控制装置。
1.1 设计要求(1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。
(2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。
(3)设计一个4个按键的键盘。
K1:“启动/停止”。
K2:“正转/反转”。
K3:“加速”。
K4:“减速”。
(4)手动控制。
在键盘上设置两个按键----直流电动机加速和直流电动机减速键。
在手动状态下,每按一次键,电动机的转速按照约定的速率改变。
直流电动机调速课程设计
直流电动机调速课程设计一、课程目标知识目标:1. 让学生理解直流电动机的基本构造、工作原理和调速方法;2. 使学生掌握直流电动机调速的相关理论知识,如电枢电压调速、励磁电流调速和串电阻调速;3. 帮助学生了解直流电动机调速在实际应用中的关键作用和价值。
技能目标:1. 培养学生运用所学知识分析和解决实际直流电动机调速问题的能力;2. 让学生学会使用相关仪器、设备进行直流电动机调速实验,提高动手操作能力;3. 培养学生团队协作、沟通交流的能力,以小组合作形式完成实验任务。
情感态度价值观目标:1. 激发学生对直流电动机调速技术的兴趣,培养科技创新精神;2. 培养学生严谨、务实的科学态度,关注实际问题的解决;3. 增强学生的环保意识,认识到调速技术在节能减排方面的重要性。
课程性质:本课程为高二年级物理课程,旨在让学生掌握直流电动机调速的基本原理和实际应用。
学生特点:高二年级学生已具备一定的物理知识基础,具有较强的逻辑思维能力和动手操作能力。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力和问题解决能力。
通过课程学习,使学生能够达到上述课程目标,并为后续相关课程的学习奠定基础。
在教学过程中,关注学生的学习进度,及时调整教学策略,确保课程目标的实现。
二、教学内容1. 理论知识:(1)直流电动机的基本构造、工作原理及分类;(2)直流电动机调速原理,包括电枢电压调速、励磁电流调速和串电阻调速;(3)调速性能指标及影响调速性能的因素。
2. 实践操作:(1)使用仿真软件或实验设备进行直流电动机调速实验;(2)学习并掌握相关仪器、设备的使用方法;(3)小组合作完成实验任务,分析实验结果,探讨调速方法在实际应用中的优缺点。
3. 教学大纲:(1)第1课时:介绍直流电动机的基本构造、工作原理及分类;(2)第2课时:讲解直流电动机调速原理及调速方法;(3)第3课时:分析调速性能指标及影响调速性能的因素;(4)第4课时:实践操作,进行直流电动机调速实验;(5)第5课时:总结实验结果,讨论调速方法在实际应用中的优缺点。
直流电机调速系统课程设计报告指导书
直流电机调速系统课程设计指导书一、实验目的1、通过对KZ-D系统开环机械特性和闭环机械特性的实测及研究,加深对负反应控制的根本原理的理解。
2、掌握操作实际系统的方法和必要参数的测定方法。
3、研究系统各参数间的根本关系及各参数变化对系统的影响。
4、加深比照例积分调节器动态传输特性的认识,了解其在无静差自动控制系统中的作用。
5、通过实践掌握工程实践中常见的双闭环无静差调速系统参数设计计算和ST调试方法。
5 DD03-2电机导轨﹑测速发电机及转速表6 DJ13 直流复励发电机7 DJ15 直流并励电动机8 D42 滑线变阻器串联形式:0.41A,1.8kΩ并联形式:0.82A,900Ω9 数字存储示波器自备10 万用表自备三、实验线路及原理晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。
在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。
实验系统的组成原理图如图5-1所示。
图1-1 实验系统原理图四、实验容(1) 测定晶闸管直流调速系统主电路总电阻值R,电感值L,s K , 测定直流电动机电势常数C e 测定晶闸管直流调速系统机电时间常数T M (2) 转速调节器的调试,电流调节器的调试(3) 设计调速系统。
调速指标为D =10,S <10%;测定系统开环机械特性和∆n nom ,判断能否满足调速指标;如果不能满足,可采用转速负反应;计算及整定比例调节器参数、反应系数;测定闭环系统的机械特性。
(4) 设计及调试双闭环无静差KZ -D 调速系统要求额定转速时S ≤2%,电流超调量σi %<5%,转速起动到额定转速时,超调量σn ed n %<10%,负载扰动恢复时间小于05.s ,电动机过载倍数λ=12.,电流反应系数A V 615.4=β。
晶闸管直流电动机调速系统设计设计
晶闸管直流电动机调速系统设计目录1设计概述 (1)1.1 设计意义及要求 (1)1.2 方案分析 (1)1.2.1 可逆调速方案 (1)1.2.2 控制方案的选择 (2)2主电路的设计与分析 (3)2.1 整流电路 (3)2.2 斩波调速电路 (4)3控制电路的设计与分析 (5)3.1 触发电路的设计与分析 (6)3.2脉宽调制(PWM)控制的设计与分析 (6)3.2.1 欠压锁定功能 (7)3.2.2系统的故障关闭功能 (7)3.2.3软起动功能 (7)3.2.4 波形的产生及控制方式分析 (8)3.3 延时、驱动电路的设计 (8)3.4 ASR和ACR调节器设计 (9)3.4.1 ASR(速度调节器) (9)3.4.2 ACR(电流调节器) (10)结束语 (12)参考文献 (12)附录 (13)晶闸管直流电动机调速系统设计1设计概述1.1 设计意义及要求有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆的调速系统。
改变电枢电压的极性,或改变励磁磁通的方向,都能够改变直流电机的旋转方向。
当电机采用电力电子装置供电时,由于电力电子器件的单向导电性,需要专用的可逆电力电子装置和自动控制系统1.2 方案分析1.2.1 可逆调速方案使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。
电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢且需要设计很复杂的电路,故在设计中不采用这种方式。
电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。
电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。
直流电动机双闭环调速系统课程设计
直流电动机双闭环调速系统课程设计一、引言直流电动机是一种常见的电动机,广泛应用于工业生产和日常生活中。
在实际应用中,为了满足不同的工作要求,需要对电动机进行调速。
传统的电动机调速方法是通过改变电源电压或者改变电动机的极数来实现,但这种方法存在调速范围小、调速精度低、调速响应慢等问题。
因此,现代工业中普遍采用电子调速技术,其中双闭环调速系统是一种常用的调速方案。
二、直流电动机双闭环调速系统的原理直流电动机双闭环调速系统由速度环和电流环组成。
速度环是通过测量电动机转速来控制电动机的转速,电流环是通过测量电动机电流来控制电动机的负载。
两个环路相互独立,但又相互联系,通过PID控制器对两个环路进行控制,实现电动机的精确调速。
三、直流电动机双闭环调速系统的设计1.硬件设计硬件设计包括电源模块、电机驱动模块、信号采集模块和控制模块。
其中电源模块提供电源,电机驱动模块将电源转换为电机驱动信号,信号采集模块采集电机转速和电流信号,控制模块根据采集到的信号进行PID控制。
2.软件设计软件设计包括PID控制器设计和程序编写。
PID控制器是直流电动机双闭环调速系统的核心,其作用是根据采集到的信号计算出控制量,控制电机的转速和负载。
程序编写是将PID控制器的计算结果转换为电机驱动信号,实现电机的精确调速。
四、直流电动机双闭环调速系统的实现1.电路连接将电源模块、电机驱动模块、信号采集模块和控制模块按照设计要求连接起来。
2.参数设置根据电机的参数和工作要求,设置PID控制器的参数,包括比例系数、积分系数和微分系数等。
3.程序编写根据PID控制器的计算结果,编写程序将其转换为电机驱动信号,实现电机的精确调速。
五、直流电动机双闭环调速系统的应用直流电动机双闭环调速系统广泛应用于工业生产和日常生活中,如机床、风机、水泵、电梯等。
其优点是调速范围广、调速精度高、调速响应快、负载能力强等。
六、总结直流电动机双闭环调速系统是一种常用的电子调速方案,其原理是通过速度环和电流环相互独立但相互联系的方式,通过PID控制器对两个环路进行控制,实现电动机的精确调速。
直流电动机的调速方法
直流电动机的调速方法直流电动机分为有换向器和无换向器两大类。
直流电动机调速系统较早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。
这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。
该法只适用在一些小功率且调速范围要求不大的场合。
30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。
这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。
但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。
近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。
特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。
电力电子技术中IGBT等大功率器件的发展正在取代晶闸管,出现了性能更好的直流调速系统。
直流电动机的转速n和其他参量的关系可表示为(1)式中Ua——电枢供电电压(V);Ia ——电枢电流(A);Ф——励磁磁通(Wb);Ra——电枢回路总电阻(Ω);CE——电势系数,,p为电磁对数,a为电枢并联支路数,N为导体数。
由式1可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。
1. 改变电枢回路电阻调速各种直流电动机都可以通过改变电枢回路电阻来调速,如图1(a)所示。
此时转速特性公式为(2)式中Rw为电枢回路中的外接电阻(Ω)。
{{分页}}图1(a) 改变电枢电阻调速电路图1(b) 改变电枢电阻调速时的机械特性当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R=(Ra+Rw)增大,电动机转速就降低。
第2章1直流电动机调速方法讲课教案
常用的可控直流电源有以下三种
旋转变流机组——用交流电动机和直流发 电机组成机组,以获得可调的直流电压。
静止式可控整流器——用静止式的可控整 流器,以获得可调的直流电压。
直流斩波器或脉宽调制变换器——用恒定 直流电源或不控整流电源供电,利用电力 电子开关器件斩波或进行脉宽调制,以产 生可变的平均电压。
i
O
用晶闸管 VT1 和VT4 中仍流过
VT 2,3
O i
电流id,并不关断
2
O u
VT 1,4
至ωt=π+a 时刻,给VT2和VT3 O
加触发脉 冲 ,因VT2 和 VT3本
已承受正电压,故两管导通
wt
I
d
I
d
I
d
I
d
wt Id
wt
wt wt wt
wt
b)
图2-8 单相半控桥带 阻感负载时的电路及波形 21
制电压 Uc 来移动触发脉冲
的相位,即可改变整流电压
Ud ,从而实现平滑调速。
图2-8a 单相全控桥电路
20
晶闸管整流电路原理
➢ 为便于讨论,假设电路已工作
于稳态,id的平均值不变。
2
O
➢ 假设负载电感很大,负载电流 u
d
id连续且波形近似为一水平线
O
i
d
u2过零变负时,由于电感的作
iO
VT 1,4
n0
调节过程:
增加电阻 Ra R R n ,n0不变;
调速特性:
转速下降,机械特性 O 曲线斜率变大,特性
变软。
UR n I
Ke Ke
nN
n1
Ra
n2 n3
直流电机调速控制系统设计
成绩电气控制与PLC课程设计说明书直流电机调速控制系统设计.Translate DC motor speed Control system design学生王杰学号学院班级信电工程学院13自动化专业名称电气工程及其自动化指导教师肖理庆2016年6月14日目录1 ××11.1 ××××××11.1.1 ××××错误!未定义书签。
1.1.2 ××××1……1.2 ××××××11.2.1 ××××8……2 ×××××82.1 ××××××102.1.1 ××××10……3 ×××××123.1 ××××××123.1.1 ××××12……参考文献13附录14附录114附录2141 直流电机调速控制系统模型1.1 直流调速系统的主导调速方法根据直流电动机的基础知识可知,直流电动机的电枢电压的平衡方程为:R I E U a +=式(1.1)公式中:U 为电枢电压;E 为电枢电动势;R I a 为电枢电流与电阻乘积。
由于电枢反电势为电路感应电动势,故:n C E φe =式(1.2)式中:e C 为电动势常数;φ为磁通势;n 为转速。
由此得到转速特性方程如下:φe a C R I U /)(n -=式(1.3)由式(1.3)可以看出,调节直流电动机的转速有以下三种方法:1.改变电枢回路的电阻R ——电枢回路串电阻调速。
直流电动机调速课程设计
山学院烟台南电机与拖动课程设计题目直流电机调速姓名:闫会会所在学院:烟台南山学院所学专业:自动化班级:09自动化02班学号: 200902010243指导教师:刘丽丽完成时间: 2012-9-23任务书电机与拖动课程设计的目的与任务电机与拖动是自动化专业的一门重要专业基础课。
它主要是研究电机与电力拖动的基本原理,以及它与科学实验、生产实际之间的联系。
通过学习使学生掌握常用交、直流电机、变压器及控制电机的基本结构和工作原理;掌握电力拖动系统的运行性能、分析计算,电动机选择及实验方法等。
电机与拖动课程设计是理论教学之后的一个实践环节,通过完成一定的工程设计任务,学会运用本课程所学的基本理论解决工程技术问题,为学习后续有关课程打好必要的基础。
一.设计课题及要求直流电机调速一台他励直流电动机,参数如下:P N =4KW UaN=170V IaN=34.4A nN=1450r/min RL=0.076Ω1. 用其拖动通风机负载运行,若采用电枢串电阻调速时,要使转速降至200r/min,试设计电枢电路中的调速电阻。
2. 用其拖动恒转矩负载运行,负载转矩等于电动机的额定转矩,采用改变电枢电压调速时,要使转速降至1000r/min,试设计电枢电压值。
3. 用其拖动恒功率负载运行,采用改变励磁电流调速,要使转速增至1800r/min,试设计CeΦ的值。
二.课程设计的基本要求1.使学生具有自主设计电路原理读图、查阅参考书籍和手册及资料文献的的能力。
2.设计、计算、文件选取、画出设计电路图3.撰写严谨的、有理论根据的、实事求是的、文理通顺的字迹端正的实验报告电机与拖动课程设计报告。
三.电机与拖动课程设计时间1.设计电路原理读图、查阅参考书籍和手册及资料文献(1.5天)。
2.设计、计算、文件选取、画出设计电路图(1.5天)。
3.验收及校验(1.5天)4.完成课程设计报告(0.5天)四.课程设计报告要求课程设计报告要求字迹工整、文字通顺;其撰写内容包括:1.目录2.课程设计的意义、任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安科技大学继续教育学院《电力拖动技术课程设计》报告书直流电动机调速设计专业:电气自动化****:**班级: 09电气自动化大专指导老师:**提交日期: 2012 年 3 月摘要在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。
直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速范围、制动性能,宜于在大范围内平滑调速,良好的起动性以及简单的控制电路等优点,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
本文设计了直流电机控制系统的基本方案,阐述了该系统的基本结构、工作原理、运行特性及其设计方法。
本系统采用霍尔元器件测量电动机的转速,本设计主要研究直流电机的控制和测量方法,从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。
经过驱动放大电路对直流电机进行调速控制。
并将转速显示出来。
从而实现快速的调节电机转速关键字:直流调速SummaryIn the electrical era, the motor plays an important role in industrial and agricultural production and daily life. DC motor as the most common type of motor, with a very good linear mechanical properties of a wide speed range, the braking performance, it is appropriate to smooth speed in a wide range, good start, and a simple control circuit advantages, has been widely used in many of the governor or the fast forward and reverse the field of electric drive.Designed the basic scheme of the DC motor control system, described the basic structure of the system, working principles, operating characteristics and its design method. The system uses the Hall components to measure the motor speed, the design of DC motor control and measurement methods, which the motor control accuracy, faster response and energy conservation are all of great significance. After the driver amplifier for DC motor speed control. And speed is displayed. Enabling rapid adjustment of motor speedKeywords: DC speed control前言在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。
早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。
随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。
直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。
随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。
【1】目录摘要 (1)前言 (2)第一章直流电动机 (4)第二章直流电动机的结构与工作原理 (5)2.1 直流电动机的结构 (5)2.2 直流电动机的工作原理 (6)第三章他励直流电动机的调速 (8)3.1调速指标 (8)3.2 电枢串电阻调速 (10)3.3改变电枢电源电压调速 (11)3.4弱磁调速 (12)第四章课程设计内容 (13)4.1 采用电枢串电阻调速: (13)4.2 采用电枢电压调速: (14)4.3 采用改变励磁电流调速 (14)第五章故障分析 (15)总结 (16)致谢 (17)参考文献 (17)第一章直流电动机直流电动机是将直流电能转换为机械能的旋转机械。
它与交流电动机(如三相异步电动机)相比,虽然因结构比较复杂、生产成本较高、故障较多等,目前已不如交流电动机应用普遍,但由于它具有优良的调速性能和较大的启动转矩,得到广泛应用。
本节仅就直流电动机的结构与工作原理、直流电动机的分类及在印刷设备中的应用、直流电动机的启动与调速做一简单介绍。
下图为直流电动机的结构原理图,图中的N和S是一对固定不动的磁极,用以产生所需要的磁场。
容量较大一些的电机,磁场都是由直流励磁电流通过绕在磁极铁心上的励磁绕组产生。
为了清晰,图中只画出了磁极的铁心,没有画出励磁绕组。
在N极和S极之间有一个可以绕轴旋转的绕组。
直流电机这部分称为电枢,而实际电机的电枢绕组嵌在铁心槽内,电枢绕组的电流称为电枢电流。
线圈两端分别与两个彼此绝缘而且与线圈同轴旋转的铜片连接,铜片上有各压着一个固定不动的电刷。
在直流电动机中,为了产生方向始终如一的电磁转矩,外部电路中的直流电流必须改变成电机内部的交流电流,这一过程称为电流的换向。
换向的铜片称为换向片。
互相绝缘的换向片组合的总体称为换向器。
【3】SNFBAEabcd线框 A.B. 电刷 E.F.换向器第二章直流电动机的结构与工作原理2.1 直流电动机的结构直流电动机主要由磁极、电枢、换向器三部分组成。
(1)磁极。
磁极是电动机中产生磁场的装置,如图1所示。
它分成极心1和极掌2两部分。
极心上放置励磁绕组3,极掌的作用是使电动机空气隙中磁感应强度的分布最为合适,并用来挡住励磁绕组;磁极是用钢片叠成的,固定在机座4(即电机外壳)上,机座也是磁路的一部分。
机座常用铸钢制成。
4图1直流电动机的磁极及磁路1-极心 2-极掌 3-励磁绕组 4-机座(2)电枢。
电枢是电动机中产生感应电动势的部分。
直流电动机的电枢是旋转的,电枢铁心呈圆柱状,由硅钢片组成,表面冲有槽,槽中放有电枢绕组。
(3)换向器(整流子)。
换向器是直流电动机的一种特殊装置,其外形如图2所示,主要由许多换向片组成,每两个相邻的换向片中间是绝缘片。
在换向器的表面用弹簧压着固定的电刷,使转动的电枢绕组得以同外电路联结。
换向器是直流电动机的结构特征,易于识别。
【2】图2换向器 1—换向片 2—连接部分图3 钩型换向器图4 槽型换向器。
图4 直流电机纵向剖视图1—换向器 2—电刷装置 3—机座 4—主磁极 5—换向极6—端盖 7—风扇 8—电枢绕组 9—电枢铁心2.2 直流电动机的工作原理U + -ABNSII FFCabd图2-2 直流电动机原理图图2-2是直流电动机的示意图。
若在A、B之间外加一个直流电压,A接电源正极,B 接负极,则线圈中有电流流过。
当线圈处于图5所示位置时,有效边ab在N极下,cd在s极上,两边中的电流方向为a→b,c→d。
由安培定律可知,ab边和cd边所受的电磁力为:F=BIL式中,I为导线中的电流,单位为安(A)。
根据左手定则知,两个F的方向相反,如图5所示,形成电磁转矩,驱使线圈逆时针方向旋转。
当线圈转过180°时,cd边处于N 极下,ab边处于S极上。
由于换向器的作用,使两有效边中电流的方向与原来相反,变为d→c、b→a,这就使得两极面下的有效边中电流的方向保持不变,因而其受力方向、电磁转矩方向都不变。
由此可见,正是由于直流电动机采用了换向器结构,使电枢线圈中受到的电磁转矩保持不变,在这个电磁转矩作用下使电枢按逆时针方向旋转。
这时电动机可作为原动机带动生产机械旋转,即由电动机向机械负载输出机械功率。
在直流电动机中,除了必须给电枢绕组外接直流电源外,还要给励磁绕组通以直流电流用以建立磁场。
电枢绕组和励磁绕组可以用两个电源单独供电,也可以由一个公共电源供电。
按励磁方式的不同,直流电动机可以分为他励、并励、串励和复励等形式。
由于励磁方式不同,它们的特性也不用。
他励电动机的励磁绕组和电枢绕组分别由两个电源供电,如图2-3所示。
他励电动机由于采用单独的励磁电源,设备较复杂。
但这种电动机调速范围很宽,多用于主机拖动中。
【5】图2-3 他励电动机第三章 他励直流电动机的调速为了提高劳动生产率和保证产品质量,要求生产机械在不同情况下有不同的工作速度,如扎钢机在扎制不同的品种和不同厚度的钢材时,就必须有不同的工作速度以保证生产的需要,这种人为改变速度的方法称为调速。
可以用机械的方法或电气的方法实现调速。
这里只分析电气调速方法及其性能特点。
电气调速是人为的改变电气参数,有意识地使电动机工作点由一条机械特性曲线转换到另一条机械特性曲线上,为了生产需要而对电动机转速进行的一种控制,它与电机在负载或电压随机波动时而引起的转速扰动变化是两个不同的概念。
根据直流电动机调速公式n=ψ+-Ce Rpa Ra Ia U )(可见,当电枢电流不变时(即负载不变),只要在电枢电压U 、电枢电路附加电阻和每极磁通ф三个参数中,任意改变一个,都能引起转速的变化。
因此,他励直流电动机可以有三种调速方法。
为了评价各种调速方法的优缺点,对对调速方法提出了一定的技术经济指标,通常称为调速指标。