高中物理竞赛(力学)试题解

合集下载

高中物理竞赛(力学)练习题解

高中物理竞赛(力学)练习题解

1、(本题20分)如图6所示,宇宙飞船在距火星表面H 高度处作匀速圆周运动,火星半径为R 。

当飞船运行到P 点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的α倍。

因α很小,所以飞船新轨道不会与火星表面交会。

飞船喷气质量可以不计。

(1)试求飞船新轨道的近火星点A 的高度h 近和远火星点B 的高度h 远 ; (2)设飞船原来的运动速度为v 0 ,试计算新轨道的运行周期T 。

2,(20分)有一个摆长为l 的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点O 的距离为x 处(x <l )的C 点有一固定的钉子,如图所示,当摆摇摆时,摆线会受到钉子的阻挡.当l 肯定而x 取不同值时,阻挡后摆球的运动状况将不同.现将摆拉到位于竖直线的左方(摆球的高度不超过O 点),然后放手,令其自由摇摆,假如摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x 的最小值.3,(20分)如图所示,一根长为L 的细刚性轻杆的两端分别连结小球a 和b ,它们的质量分别为m a 和 m b . 杆可绕距a 球为L/4处的水平定轴O 在竖直平面内转动.初始时杆处于竖直位置.小球b 几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m 的立方体匀质物块,图中ABCD 为过立方体中心且与细杆共面的截面.现用一水平恒力F 作用于a 球上,使之绕O 轴逆时针转动,求当a 转过 角时小球b 速度的大小.设在此过程中立方体物块没有发生转动,且小球b 与立方体物块始终接触没有分别.不计一切摩擦.4、把上端A 封闭、下端B 开口的玻璃管插入水中,放掉部分空气后放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的长度b=1厘米,大气压强P 0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计.(1)求玻璃管内外水面的高度差h.(2)用手拿住玻璃管并缓慢地把它压入水中,当管的A 端在水面下超过某一深度时,放手后玻璃管不浮起.求这个深度.(3)上一小问中,放手后玻璃管的位置是否改变?如何改变?(计算时可认为管内空气的温度不变) 5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=30°(如右图).一条长度为l 的绳(质量不计),一端的位置固定在圆锥体的顶点O 处,另一端拴着一个质量为m 的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v 绕圆锥体的轴线做水平匀速圆周运动(物体和绳在上图中都没画出).aObA BCDF6、(13分) 一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽视不计.起先时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A 经过B 驶向C.设A 到B 的距离也为H,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.7.在两端封闭、内径匀称的直玻璃管内,有一段水银柱将两种志向气体a 和b 隔开.将管直立着,达到平衡时,若温度为T,气柱a 和b 的长度分别为l a 和l b ;若温度为T ',长度分别为l 抋和l 抌.然后将管平放在水平桌面上,在平衡时,两段气柱长度分别为l 攁和l 攂.已知T 、T 挕8.如图所示,质量为Kg M9=的小车放在光滑的水平面上,其中AB 部分为半径R=0.5m 的光滑41圆弧,BC 部分水平且不光滑,长为L=2m ,一小物块质量m=6Kg ,由A 点静止释放,刚好滑到C 点静止(取g=102s m ),求:①物块与BC 间的动摩擦因数②物块从A 滑到C 过程中,小车获得的最大速度9..如图所示,在光滑水平面上放一质量为M 、边长为l 的正方体木块,木块上搁有一长为L 的轻质光滑棒,棒的一端用光滑铰链连接于地面上O 点,棒可绕O 点在竖直平面内自由转动,另一端固定一质量为m 的均质金属小球.起先时,棒与木块均静止,棒与水平面夹角为α角.当棒绕O 点向垂直于木块接触边方向转动到棒与水平面间夹角变为β的瞬时,求木块速度的大小.10 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今渐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.mRωθ rmg图2.1111如图所示,一木块从斜面AC 的顶端A 点自静止起滑下,经过水平面CD 后,又滑上另一个斜面DF ,到达顶端F 点时速度减为零。

高中物理竞赛试题及答案

高中物理竞赛试题及答案

高中物理竞赛试题及答案一、选择题(每题5分,共40分)1. 一个物体从静止开始,以加速度a=2m/s²做匀加速直线运动,经过时间t=3s,其位移s是多少?A. 9mB. 12mC. 18mD. 24m2. 一个质量为m的物体在水平面上受到一个恒定的拉力F,摩擦系数为μ,求物体的加速度a。

A. F/mB. (F-μmg)/mC. μgD. F/(2m)3. 一个电子在电场中受到的电场力F=qE,其中q是电子的电荷量,E 是电场强度。

如果电子的初速度为v₀,那么电子在电场中做匀速直线运动的条件是什么?A. qE = mv₀²/2B. qE = mv₀C. qE = 0D. qE = mv₀²4. 一个质量为m的物体从高度h自由落下,忽略空气阻力,经过时间t时的速度v是多少?A. v = gtB. v = √(2gh)C. v = √(gh)D. v = 2gh5. 两个相同的弹簧,将它们串联起来,挂在天花板上,然后在下方挂一个质量为m的物体,求弹簧的伸长量。

A. mg/2kB. mg/kC. 2mg/kD. mg/k - m6. 一个质量为m的物体在光滑的水平面上,受到一个恒定的水平力F,求物体经过时间t后的速度v。

A. v = F/mB. v = F*t/mC. v = √(2Ft)D. v = √(Ft/m)7. 一个物体在水平面上以初速度v₀开始做匀减速直线运动,加速度大小为a,求物体在时间t内通过的位移s。

A. v₀t - 1/2at²B. v₀²/2aC. v₀t + 1/2at²D. v₀²/2a - 1/2at²8. 一个质量为m的物体在竖直方向上做自由落体运动,经过时间t时,其动能Ek是多少?A. 1/2mv₀²B. 1/2mgt²C. mg*tD. 1/2mgt二、计算题(每题15分,共60分)1. 一个质量为2kg的物体,在水平面上以10m/s²的加速度加速运动,如果物体与地面之间的摩擦系数为0.05,求作用在物体上的水平拉力F。

全国中学生高中物理竞赛集锦(力学)答案

全国中学生高中物理竞赛集锦(力学)答案
mg-T=ma(14)
T0-mg=ma(15)
T0=2T(16)
由(14)、(15)和(16)式得
(17)
托盘的加速度向上,初速度v2向下,设经历时间t2,托盘速度变为零,有
v2=at2(18)
由(7)、(12)、(17)和(18)式,得
(19)
即砝码1自与弹簧分离到速度为零经历的时间与托盘自分离到速度为零经历的时间相等。由对称性可知,当砝码回到分离位置时,托盘亦回到分离位置,即再经历t1,砝码与弹簧相遇。题中要求的时间
(23)
评分标准:本题20分。
第一小问13分:求得式(15)、(16)各3分,式(17)2分,求得式(19)并说明“ ”取“+”的理由给5分。第二小问7分:式(20)2分,式(22)2分,式(23)3分。
第二十届复赛
三、参考解答
位于通道内、质量为 的物体距地心 为 时(见图复解20-3),它受到地球的引力可以表示为
(1)
(2)
因而
(3)
由能量守恒
(4)
由(3)、(4)两式及mB=2mA得
(5)
(6)
评分标准:
本题(15)分.(1)、(2)式各3分,(4)式5分,(5)、(6)两式各2分。
九、设从烧断线到砝码1与弹簧分离经历的时间为△t,在这段时间内,各砝码和砝码托盘的受力情况如图1所示:图中,F表示△t时间内任意时刻弹簧的弹力,T表示该时刻跨过滑轮组的轻绳中的张力,mg为重力,T0为悬挂托盘的绳的拉力。因D的质量忽略不计,有
要求作斜抛运动的摆球击中 点,则应满足下列关系式:
,(5)
(6)
利用式(5)和式(6)消去 ,得到
(7)
由式(3)、(7)得到
(8)

高一力学竞赛试题

高一力学竞赛试题

高一物理力学综合竞赛试卷一、选择题:(每题4分,共40分)1、如图所示,一木板B 放在水平地面上,木块A 放在木板B 的上面,木块A 的右端通过轻质弹簧固定在竖直墙壁上.用力F 向左拉木板B ,使它们以速度v 运动,这时弹簧秤示数为F .下列说法中正确的是:A .木板B 受到的滑动摩擦力的大小等于F B .地面受到的滑动摩擦力的大小等于FC .若木板以2v 的速度运动,木块A 受到的滑动摩擦力的大小等于2FD .若用力2F 拉木板B ,木块A 受到的滑动摩擦力的大小等于F2、一个固定在水平面上的光滑物块,其左侧面是斜面AB ,右侧面是曲面AC 。

已知AB 和AC 的长度相同。

两个小球p 、q 同时从A 点分别沿AB 和AC 由静止开始下滑,比较它们到达水平面所用的时间:A.p 小球先到B.q 小球先到C.两小球同时到D.无法确定3、如图,甲、乙两木块用细绳连在一起,中间有一被压缩竖直放置的轻弹簧,乙放在水平地面上,甲、乙两木块质量分别为21m m 和,系统处于静止状态,此时绳的张力为F 。

在将细绳烧断的瞬间,甲的加速度为a ,则此时乙对地面压力为: A.g m m )(21+ B. F g m m ++)(21 C. F g m +2 D. 12()m a g m g ++4、“神舟三号”顺利发射升空后,在离地面340km 的圆轨道上运行了108圈。

运行中需要多次进行 “轨道维持”。

所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行。

如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能变化情况将会是: A.动能、重力势能和机械能都逐渐减小B.重力势能逐渐减小,动能逐渐增大,机械能不变C.重力势能逐渐增大,动能逐渐减小,机械能不变D.重力势能逐渐减小,动能逐渐增大,机械能逐渐减小5、质量为m 的物体在竖直向上的恒力F 作用下减速上升了H ,在这个过程中,下列说法中正确的有:A.物体的重力势能增加了mgHB.物体的动能减少了FHC.物体的机械能增加了FHD.物体重力势能的增加小于动能的减少6、人造卫星不但可以探索宇宙,把它和现代的遥感设备相结合,还可快速实现地球资源调查和全球环境监测。

高中的物理竞赛试题及答案

高中的物理竞赛试题及答案

高中的物理竞赛试题及答案高中物理竞赛试题一、选择题(每题3分,共30分)1. 一个物体从静止开始做匀加速直线运动,经过4秒后速度达到4m/s。

求物体的加速度。

A. 0.5 m/s²B. 1 m/s²C. 2 m/s²D. 4 m/s²2. 两个质量分别为m1和m2的物体,通过一根轻绳连接并悬挂在无摩擦的定滑轮上。

如果m1 > m2,系统将如何运动?A. 系统静止不动B. 系统加速下降C. 系统加速上升D. 系统减速上升3. 一个电子在电场中受到的电场力大小为F,如果电场强度增加到原来的两倍,电子受到的电场力将如何变化?A. 保持不变B. 增加到原来的两倍C. 增加到原来的四倍D. 增加到原来的八倍4. 一个物体在水平面上以初速度v0开始滑行,摩擦系数为μ。

求物体停止滑行所需的时间。

A. 无法确定B. \( \frac{v_0}{\mu g} \)C. \( \frac{v_0}{\sqrt{\mu g}} \)D. \( \sqrt{\frac{v_0}{\mu g}} \)5. 一个弹簧振子的振动周期为T,当振幅减半时,振动周期将如何变化?A. 保持不变B. 减半C. 增加到原来的两倍D. 增加到原来的四倍6. 一个点电荷Q产生电场的强度在距离r处为E,当距离增加到2r时,电场强度将如何变化?A. 保持不变B. 减半C. 增加到原来的两倍D. 增加到原来的四倍7. 一个物体在竖直方向上做自由落体运动,忽略空气阻力。

经过时间t后,物体的速度和位移分别是多少?A. 速度v=gt,位移s=1/2gt²B. 速度v=2gt,位移s=gt²C. 速度v=gt,位移s=gt²D. 速度v=2gt,位移s=2gt8. 一个物体从高度h自由落下,不计空气阻力。

求物体落地时的速度。

A. \( \sqrt{2gh} \)B. \( \sqrt{gh} \)C. \( 2\sqrt{gh} \)D. \( \sqrt{h/g} \)9. 一个物体在水平面上以初速度v0开始滑行,经过时间t后,其速度变为v。

第27届北京市高中力学竞赛决赛试题答案

第27届北京市高中力学竞赛决赛试题答案

小球从穿出小孔到相遇的时间
第 27 届北京市高中力学竞赛决赛试题
第 3 页 共 8页
tR
c o t


R
0
2 s2 i n c o t
管道在平面上移动的路程
2 1 sin 2 cot s ut 2 R

2
cot
10. 解:取物体为参考系,滑块受三个力:mg,FN 和 maM ,设滑块相 对 M 的加速度是 a , 则对 m: mg sin maM cos ma
二.计算题 7.解:设无限远处的引力势能 E p 0 。地球未塌缩时,设物体 m 脱离地 球的速度,即第二宇宙速度是 v 。则物体 m 在地球表面的引力势能
E p G Mm Mm ,势能增量 E p G 。 (G 为引力恒量,M 为地球质量) R R
物体要脱离地球到无限远处,其动能 E k 至少应等于 E p ,因此
2m0 mu 2m( cos u)
机械能守恒
1 1 1 1 2 (2m)0 mu 2 2m( sin ) 2 2m( cos u ) 2 2 2 2 2
可解得小球相对环的速度

2sin 2
0
环的速度
u 2( 2sin 2 cos ) ( 2) 2sin 2 0
u0 L 0.46 m / s t1 t 2
(22)
第 27 届北京市高中力学竞赛决赛试题
第 7 页 共 8页
而满足题中要求的 u0 的最小值应大于(20)式给出的值.综合以上 讨论, u0 的取值范围是
0.46 m / s L u0 t1 t 2 g 0.71m / s (23) 2h

高考物理力学竞赛试题(附答案)

高考物理力学竞赛试题(附答案)

高考物理力学试题考试时间:120分钟 满分160分一、本题共15小题,每小题4分,有的小题只有一个选项正确,有的小题有多个选项正确.1. 图示为高速摄影机拍摄到的子弹穿过苹果瞬间的照片。

该照片经过放大后分析出,在曝光时间内,子弹影像前后错开的距离约为子弹长度的1%~2%。

已知子弹飞行速度约为500m/s ,因此可估算出这幅照片的曝光时间最接近A .10-3sB .10-6sC .10-9sD .10-12s 2.如图所示,在高为H 的台阶上,以初速度0v 抛出一质量为m 的小石子,不计空气阻力,当小石子落到距抛出点的垂直高度为h 的台阶上时,小石子动能的增量为A.mgh B.221mv mgh + C.mgh mgH - D.221mv3. 有四名运动员在标准的田径场进行800米跑步竞赛,图中插小旗处是他们各自的起跑位置,他们都顺利地按规则要求完成了比赛,下列说法正确的是A .他们跑完的路程相同B .他们跑完的位移相同C .他们跑完的圈数相同D .他们到达的终点可以相同4.如图所示,一同学沿一直线行走,现用频闪照相记录了他行走中9个位置的图片,观察图片,能大致反映该同学运动情况的速度—时间图象是5.下列实例属于超重现象的是A .汽车驶过拱形桥顶端B .荡秋千的小孩通过最低点C .跳水运动员被跳板弹起,离开跳板向上运动D .火箭点火后加速升空 6.如图所示,物体A 靠在竖直墙面上,在力F 作用下,A 、B 保持静止。

物体B 的受力个数为:A .2B .3C .4D .57.如图所示,PQS 是固定于竖直平面内的光滑的 14 圆周轨道,圆心O 在S 的正上方。

在O和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是A .a 比b 先到达S ,它们在S 点的动能相等B .a 、b 同时到达S ,它们在S 点的速度不同C .a 比b 先到达S ,它们在S 点的速度相同D .b 比a 先到达S ,它们在S 点的动能相等8.如图所示,光滑轨道MO 和ON 底端对接且ON=2MO ,M 、N 两点高度相同。

高中物理竞赛 静力学

高中物理竞赛 静力学

静力学1如图所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A 端受的拉力T.2:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长 但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与 绳间光滑接触,试求盘对绳的法向支持力线密度.3、质量为m ,自然长度为2πa ,弹性系数为k 的弹性圈,水平置于半径为R 的固定刚性球上,不计摩擦。

而且a = R/2 。

(1)设平衡时圈长为2πb ,且b = 2a ,试求k 值;(2)若k =R2mg2 ,求弹性圈的平衡位置及长度。

4、均质铁链如图2悬挂在天花板上,已知悬挂处的铁链的切线与天花板的夹角为θ,而铁链总重为G , 试求铁链最底处的张力。

5、如图3所示,两不计大小的定滑轮被等高地固定在天花板上,跨过滑轮的轻绳悬挂三部分重物。

A 、B 部分的重量是固定的,分别是A G = 3牛顿和B G = 5牛顿,C G 则可以调节大小。

设绳足够长,试求能维持系统静止平衡的C G 取值范围。

6、如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。

θ图 37、如图所示,一个重量为G 的小球套在竖直放置的、半径为R 的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L (L <2R ),一端固定在大圆环的顶点A ,另一端与小球相连。

环静止平衡时位于大环上的B 点。

试求弹簧与竖直方向的夹角θ。

思考:若将弹簧换成劲度系数k ′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?8、光滑半球固定在水平面上,球心O 的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图中所示的A 位置开始缓慢拉至B 位置。

试判断:在此过程中,绳子的拉力T 和球面支持力N 怎样变化?9、如图所示,一个半径为R 的非均质圆球,其重心不在球心O 点,先将它置于水平地面上,平衡时球面上的A 点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B 点与斜面接触,已知A 到B 的圆心角也为30°。

第21届北京市高一物理竞赛决赛

第21届北京市高一物理竞赛决赛

第21届市高一物理〔力学〕竞赛决赛试题〔四中杯〕题 号 一二 总 分 78 9 10 11 分 数 阅卷人 复查人一、填空题〔共30分.第1小题4分;第2、3、4、6小题,每小题5分;第5小题6分〕1.如右图所示,两个小钢球A 、B 的质量顺次为m 2和m ,A 、B 球固定在长为l 的轻质硬杆的两端,杆的中点有一转轴使杆可在光滑水平面内无摩擦地转动.杆原来静止,一个质量为m 的橡皮泥小球以水平速度0v 垂直于杆的方向与A 球碰撞,碰后二者粘在一起,则碰后杆转动角速度为.2.质量为m (kg)的小孩坐在水平转盘的椅子上,椅子距转轴的距离为R (m),转盘由静止开始转动,角加速度为)(2s rad β,是一个常数β,则开始转动到t (s)时刻,椅子对小孩作用力的大小为.3.质量分布均匀的金属细圆环,半径为R ,质量为m ,在光滑水平桌面上绕通过圆心的竖直轴匀速转动,角速度为ω,这时金属环内部的X 力大小为 .4.人站在地面,跳跃前先蹲下重心降低约0.50m ,跳起后重心比正常高度高出约0.60m .设想人站在某一小行星上,行星密度与地球密度相同,已知地球半径6104.6⨯=地R m ,可估算出人通过跳跃能脱离小行星的半径=星R m .得 分5.如右下图所示.质量为m 的小车在高为h 的平台上向右运动,地面上人通过绳牵引小车,人沿地面向右匀速行走的速度为0v ,则人走到距小滑轮正下方的距离为s 时,小车的速度为.〔人从小滑轮正下方开始行走,开始时小车速度为0,人走到上述位置时对小车做的功为.〕此时绳上高为2h 的P 点的速度大小为.6.甲同学体重650N ,乙同学体重600N ,他们靠近站在水平地面上,甲同学想用600N 的力抱起乙,同时乙想用650N 的力抱起甲,他们这样做后产生的变化是.二、计算题〔共70分〕7.〔12分〕如右图所示,均质长方体质量为m ,底面长度为b ,水平力F 距地面高度为a ,接触面最大静摩擦系数为μ.问当F 逐渐增加时,物体是先滑动还是先翻到?得 分bamgF8.〔12分〕机车M 拉一车厢m ,从车站出发沿平直轨道由静止开始做匀加速运动,阻力与压力成正比,比例系数为2.0=μ.在10=t s时前进了200m ;此时车厢脱开,而机车牵引力保持不变.已知机车与车厢质量比为3=m M ,求车厢停止运动时与机车的距离是多少?m的嫦娥飞船在距离月球表面高9.〔12分〕如右图所示,设质量为得分为h处绕月球做圆周运动,为使飞船能在月球上登陆,飞船沿圆周轨道切线方向向前发射一个质量为m的物体,发射物体后飞船绕月球运行转过0180恰好到达月球表面.已知月球质量为M,半径为R.求:〔1〕发射物体的速度;〔2〕飞船从发射物体后运动到月球表面所用的时间.10.〔16分〕一平板车质量M=100kg ,停在光滑水平路面上,车身的平板离地面的高度为25.1=h m ,一个质量为25=m kg 的小物体置于车的平板上,它到车尾端的距离为00.1=D m ,与车板间的滑动摩擦系数为25.0=μ,如图所示.现给小车一个向右的初速度,()2/10s m g = 问: 〔1〕小车向右的初速度0v 为多大时,恰好物体不离开小车落地;〔2〕若s mv 2250=,物体将滑落地面,求物体落地时,落地点到车尾的距 离s .得 分11.〔18分〕如图所示,一个固定斜面,倾角θ= 45˚,斜面长L=2.00m,Array在斜面下端有一与斜面垂直的挡板,一质量为m的质点从斜面的最高点沿斜面下滑,初速度为零,质点沿斜面下滑到斜面最底端与挡板发生碰撞,设碰撞过程无机械能损失.已知质点与斜面间的摩擦因数μ=0.20,试求此质点从开始运动到与挡板发生接触第三次碰撞的过程中运动的总路程.第21届市高一物理竞赛〔力学〕决赛试题参考答案〔四中杯〕20XX6月1日一、填空题〔共30分.第1小题4分;第2、3、4、6小题,每小题5分;第5小题6分〕 1.lv 20. 解: 22320l mv l mv l mv +=2l v ω=2.()[]2222)(Rt R g m ββ++.3. πω22Rm .解:θθ∆≈∆=∆T T F 2sin 2R m T 2ωθ∆=∆ 4.3102.71.1⨯=月R .解:地球:mg mg mv 1.1)60.050.0(212=+=2地地R GM g = 小行星: 3221.121021⎪⎪⎭⎫⎝⎛===-地星地星星星星星R R M M mg mv R mM Gmv 地星R R 1.12=m m R R 36107.2106.41.11.1⨯=⨯⨯==地星5.220S Sv h +;2222021h S S mv +;2222042Sh S h v ++.6. 都没有抱起对方,甲对地压力变为N 600,乙对地的压力变为N 650.baf mg FNd二、计算题〔共70分〕 7.〔12分〕解: 设物体先翻倒,两者同时发生若先滑后翻倒若未滑先翻倒若,2,,2,,2,,22200m axm ax m ax m ax abf f a bf f a bf f mg f abmgf abmg F Fa bmgmg N F f ==<<>>=====-=-μμμμ 另解:假设先滑动,滑动翻倒同时发生时,先翻倒时,未翻倒时,当,22,22,22000abbd a bbd abbd a N Fad Nf mg N f F Fa Nd ==>><<===⎪⎩⎪⎨⎧=-=-=-μμμμμ8.〔12分〕解:1)()(a m M g m M F +=+-μS a v t 12=2112t S a =2Ma Mg F =-μ 其中:3=mM12t S v t = 3ma mg =-μ所以:144ma mg F =-μ 233ma mg F =-μ3a g =-μ解出: g t Sg a a μμ+=+=21122 且:3a g =-μ 停止时: 1232t S t a =所以:gt S t μ122= 212122422'gt S g t S S μμ=⎪⎭⎫ ⎝⎛=g t S g t S g t S g t S t t S S 21224123212121142342)2(212'μμμμ+=⎪⎪⎭⎫ ⎝⎛++= 241232122144''g t S gt S S S S μμ+=-=∆其中:s t 101=m S 200= 计算:m S 1600=∆9.〔12分〕解:〔1〕飞船圆运动 hR v m h R Mm G +=+2020)(发射m 20100)(v m m mv v m -+=发射后Rm m M Gv m m h R m m M G v m m )()(21)()(2102300220---=+--- R v m m h R v m m 3020)()()(-=+-解得: )2)((201h R h R GMRm m m h R GM m m v ++--+=〔2〕 3232)(22'h R T h R T +=⎪⎭⎫ ⎝⎛+0)(2v h R T +=π 所以:GMh R T t 2)2(22'3+==π10.〔16分〕()gM m v gM m g Mm v g M m v t a t a t v D gMm v t v gt Mmv v v t a v t a v gM mg a gmmga mgf m M M m M M m m M m μμμμμμμμμμμ)1(21)1()1(21)1(2121)1(')1('1202222020220000+=++-+=-+=+==+=+==-===== s m D M m g v /25)1(20=+=⇒μ sm D M m g v mgDmM M M v mgD M m v M M m Mv mgD V M m Mv VM m Mv /25)1(22)()()(2121)(2121)(0222202202200=+=⇒=+-=++-=+-+=μμμμ解:由动量守恒,()ta a v v t v v t tt ta v s m a s m a s m v M m M m M m )(225)12(54)12(542520064825.285.21/625.025.041,/5.2,/2252200220220--=--=±=-±=--=-=⨯-===取.. m S s m V V mgL MV mv MV MV mv MV L m h m S s t s m 45/25212121)(1,41M m 0.2525.145,5.0/25)12(2522512222120210==-=--+========--求出另解:由动量守恒:舍去,若落地时,μμ 11.〔18分〕()()()m L La aL a aL a L L mgL mgL mgL mgL mgL mgL mv L v mgL mgL mv v mgf 44.62a 2aL L s L :33220.0120.01,L ,20.0,45,cos sin cos sin sin cos cos sin ,2sin cos 21,,,1cos sin 21,,cos 221211*********11=++====+-====+-=+=-+==-==总路程距离为在第二次碰撞后上滑的按同样的道理可知质点得代入并以值代表上式符号右边的数用有上两式得则有若上滑的最大路程为开始沿斜面上滑以速度撞后质点与斜面挡板发生碰则有的速度为一次到达斜面最底端时若质点从斜面最高点第摩擦力为:面滑动过程中,受到的如图所示,质点在沿斜μθθμθθμθθθμθμθθθμθμθθμ。

高中物理力学综合试题和答案

高中物理力学综合试题和答案

物理竞赛辅导测试卷(力学综合1)一、(10分)如图所时,A 、B 两小球用轻杆连接,A 球只能沿竖直固定杆运动,开始时,A 、B 均静止,B 球在水平面上靠着固定杆,由于微小扰动,B 开始沿水平面向右运动,不计一切摩擦,设A 在下滑过程中机械能最小时的加速度为a ,则a=。

二、(10分) 如图所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在O 的正上方,OB 之间的距离为H ,某一时刻,当绳的BA 段与OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速度v M三、(10分)在密度为ρ0的无限大的液体中,有两个半径为R 、密度为ρ的球,相距为d ,且ρ>ρ0,求两球受到的万有引力。

四、(15分)长度为l 的不可伸长的轻线两端各系一个小物体,它们沿光滑水平面运动。

在某一时刻质量为m 1的物体停下来,而质量为m 2的物体具有垂直连线方向的速度v ,求此时线的X 力。

五、(15分)二波源B 、C 具有相同的振动方向和振幅,振幅为0.01m ,初位相相差π,相向发出两线性简谐波,二波频率均为100Hz ,波速为430m/s ,已知B 为坐标原点,C点坐标为x C =30m ,求:①二波源的振动表达式;②二波的表达式;③在B 、C 直线上,因二波叠加而静止的各点位置。

六、(15分) 图是放置在水平面上的两根完全相同的轻质弹簧和质量为m 的物体组成的振子,没跟弹簧的劲度系数均为k ,弹簧的一端固定在墙上,另一端与物体相连,物体与水平面间的静摩擦因数和动摩擦因数均为μ。

当弹簧恰为原长时,物体位于O 点,现将物体向右拉离O 点至x 0处(不超过弹性限度),然后将物体由静止释放,设弹簧被压缩及拉长时其整体不弯曲,一直保持在一条直线上,现规定物体从最右端运动至最左端(或从最左端运动至最右端)为一个振动过程。

全国高中物理竞赛题目附答案-全国高中物理竞赛

全国高中物理竞赛题目附答案-全国高中物理竞赛

全国高中物理竞赛题目附答案-全国高中物理竞赛第一题问题:在一个实验室中,研究人员用一根长30厘米的细绳拧成了一个均匀的扁圆环,并使绳中没有节点。

现用一个透明的粗绳绑在扁圆环的一部分上,被实验者拉紧,如图所示。

当实验者放手,绳可以自由滑动,且没有外部摩擦阻力。

实验者拉绳的作用力为10牛,拉绳的方向竖直向上。

已知绳的线密度为ρ,绳的横截面积为A。

试分析并计算此时扁圆环上存在的应力分布情况。

答案:设扁圆环上任意一点的切线方向为x轴方向,半径方向为y轴方向。

由牛顿第一定律可知,扁圆环上各点的切线方向的合力为零。

此时,切线方向上的应力等于拉绳的作用力,即:σ = F/A,其中,σ为应力,F为拉绳的作用力,A为绳的横截面积。

第二题问题:一个弹簧的伸长量跟受力的大小有关。

现有一个弹簧,质量忽略不计,劲度系数为k。

已知一个物体以速度v撞击弹簧,撞击后弹簧发生最大压缩,此时物体速度为零。

试分析并计算弹簧的最大压缩量。

答案:由动量守恒定律可知,物体撞击弹簧后,合外力为零,故动量守恒。

物体的初动量为mv,撞击后为0。

弹簧的质心相对物体的速度为v,则根据动量守恒定律:mv + Mv = 0,其中,m为物体的质量,v为物体的速度,M为弹簧的质量,V为弹簧质心相对物体的速度。

由此可得:v = -(mv) / M,将此结果代入动能定理可得:kx² / 2 = (1/2)mv²,其中,x为弹簧的最大压缩量。

将上式中的v代入,整理得:kx² = Mv²,x = √(Mv² / k)。

第三题问题:一根长度为L的均质细棒,质量为M,直角弯曲成一个半径为R的圆环,如图所示。

试分析并计算细棒上各点受到的压力分布情况。

答案:设细棒上任意一点的切线方向为x轴方向,圆环上的圆周方向为y轴方向。

由牛顿第一定律可知,细棒上各点的切线方向的合力为零。

此时,切线方向上的压力等于使细棒弯曲的力,即由压力造成的。

高中物理竞赛-物理奥赛训练--力学

高中物理竞赛-物理奥赛训练--力学

奥赛训练力学1、如图1所示,两个半径均为R的薄轴环(球心分别为O1和O2)在同一平面上。

令左边的圆环静止,右边圆环以速度v(方向沿O1O2的连线方向)从左边圆环旁边通过。

试求两圆环交叉点A的速度vA 与两环圆心间距d的关系。

2、半径为R、质量为M1的均匀圆球与一质量为M2的重物分别用细绳AD和ACE悬挂于同一点A,并处于平衡,如图2所示。

已知悬点A到球心O的距离为L,不考虑绳的质量和绳与球心的摩擦,试求悬挂圆球的绳AD与竖直方向AB的夹角θ。

3、如图3所示,原长L0为100厘米的轻质弹簧放置在一光滑的直槽内,弹簧的一端固定在槽的O端,另一端连接一小球。

这一装置可以从水平位置开始绕O点缓缓地转到竖直位置。

设弹簧的形变总是在其弹性限度内。

试在下述(a)、(b)两种情况下,分别求出这种装置从原来的水平位置开始缓缓地绕O点转到竖直位置时小球离开原水平面的高度h0 。

(a)在转动过程中,发现小球距原水平面的高度变化出现极大值,且极大值hm为40厘米。

(b)在转动的过程中,发现小球离原水平面的高度不断增大。

4、如图4所示,有一木板可绕其下端的水平轴转动,转轴位于一竖直墙面上。

开始时木板与墙面的夹角150,在夹角中放一正圆柱形木棍,截面半径为r,在木板外侧加一力F使其保持平衡。

在木棍端面上画一竖直向上的箭头。

已知木棍与墙面之间、木棍与木版之间的静摩擦系数分别为μ1=1.00, μ2≈0.577。

若极缓慢地减小所加的力F,使角慢慢张开,木棍下落。

问当夹角张到600时,木棍端面上的箭头指向什么方向?附三角函数表——θ**°15°30°60°sinθ** ** ** **cosθ** ** ** **m、高度5、如图5所示,在光滑水平面上放着一个质量为1为a的长方体滑块,长度为l(l>a)的光滑轻质杆斜靠在滑块的右上侧棱上,轻杆能绕O轴在竖直面内自由转动,杆的上端m小球。

开始时系统静止,轻杆处于竖直状态。

第22届北京市高一物理竞赛决赛试题参考答案(印刷版)

第22届北京市高一物理竞赛决赛试题参考答案(印刷版)

第22届北京市高一物理(力学)竞赛决赛试题参考答案(北京四中杯)2009年5月24日一、填空题(共30分.每小题5分)1、1000)(1000210)90110(J xF W2、能滑动摩擦力做功只与水平位移有关,B A的水平位移相同。

mgxmgl cos3、3.13s1100360121t tt 1为加速时间13.31t s 舍去不合理的负值由于计算过程中有近似,故t=3.0s~3.4s 均可4、21212222gh gh t h h g x112gh v ,222gh v ,221122t v t v x ,t t t 21,解出:21212222gh gh h h g x5、233232241火地T T 3232322火地飞火火地地r r T rT rT2332322332328121火地火地T T T T T2332322412火地飞T T T t6、mg51竖直向下lv m l v m l mg l mg B A 3233233l v A ,l v B32,g l 59g a A53,g a B 56,质心C :ga C109gmFmg10922mgF51二、计算题(共70分)7、法一:ma vv v t v v s62212121112sm a s v v a /4.1'2)(12122m a v v v t v v s144221212111222222233/45.1'2sm s a va v a 8、当0→2时任一时刻t 物体受的作用力为t F F 012,利用冲量定理:tF mV 1121mt F V 201。

当2时任一时刻t 物体受的作用力为:tF F 022利用冲量定理:220222121F tF F mV 2202242ttm F V 当t时速率:mF V20冲击力对物体所做总功为mF mVW8212229、对于球竖直方向:cosN mg (1)对于三角木块:1sin N N (2)以B 为支点:5.01N hN (3)以A 为支点:11N hN (4)由(1)(2)(3)得33minh 。

全国中学生(高中)物理竞赛初赛试题(含答案)

全国中学生(高中)物理竞赛初赛试题(含答案)

全国中学生(高中)物理竞赛初赛试题(含答案)一、选择题1. 下列哪个物理量在单位时间内保持不变?A. 加速度B. 速度C. 力D. 动能答案:B解析:速度是物体在单位时间内移动的距离,因此在单位时间内保持不变。

2. 一个物体在水平面上做匀速直线运动,下列哪个力是物体所受的合力?A. 重力B. 支持力C. 摩擦力D. 合力为零答案:D解析:物体做匀速直线运动时,所受的合力为零,即所有力的矢量和为零。

3. 下列哪个物理现象是光的折射?A. 镜子成像B. 光在水中的传播速度变慢C. 彩虹D. 光在空气中的传播速度变快答案:C解析:彩虹是光的折射现象,光在通过水滴时发生折射,形成七彩的光谱。

4. 下列哪个物理量是描述物体旋转状态的?A. 速度B. 加速度C. 角速度D. 力答案:C解析:角速度是描述物体旋转状态的物理量,表示物体在单位时间内旋转的角度。

5. 下列哪个物理现象是光的干涉?A. 镜子成像B. 光在空气中的传播速度变慢C. 彩虹D. 双缝干涉答案:D解析:双缝干涉是光的干涉现象,光通过两个狭缝后发生干涉,形成明暗相间的条纹。

二、填空题1. 物体在匀速直线运动时,所受的合力为零,即所有力的矢量和为零。

这个原理称为__________。

答案:牛顿第一定律解析:牛顿第一定律指出,物体在不受外力作用时,将保持静止或匀速直线运动状态。

2. 光在真空中的传播速度为__________m/s。

答案:3×10^8解析:光在真空中的传播速度是一个常数,为3×10^8m/s。

3. 下列哪个物理现象是光的衍射?A. 镜子成像B. 光在水中的传播速度变慢C. 彩虹D. 光通过狭缝后发生弯曲答案:D解析:光通过狭缝后发生弯曲的现象称为光的衍射,是光波与障碍物相互作用的结果。

4. 物体在匀速圆周运动时,所受的向心力大小为__________。

答案:mv^2/r解析:物体在匀速圆周运动时,所受的向心力大小为mv^2/r,其中m为物体质量,v为物体速度,r为圆周半径。

高中物理竞赛之力学部分:刚体力学大解析(可编辑精品)

高中物理竞赛之力学部分:刚体力学大解析(可编辑精品)
延伸:物体系的角动量守恒
内容:若选一系统,此系统中,有质点(多个)和刚体,此系统对于某一转动轴的合力矩为零,则整个系统对该转动轴的角动量守恒。即 =恒量
例题分析
例1:一长为l,质量为M的杆,可绕支点O自由转动,另一质量为m,速度为v的子弹射入距支点为a的棒内。问子弹刚穿进棒内时,棒的角速度为多少?(设棒穿进棒的时间很短)
分析:
则a=5m/s2, =2.5mT=40N
练习:1—78答案加速度为5.79m/s2,绳子的张力分别为69.9N,和75.8N。
(4)定轴转动的功能原理
转动动能:定轴转动的刚体中,所有的质元作圆周运动的动能之和即刚体的转动动能,
力矩的功:力矩作用下,使刚体发生转动,转动过程中转动动能发生变化,则力矩对刚体做了功,即力矩的功。
定轴转动的动能定理:
合外力矩对刚体做的功等于刚体转动动能的增加量

例题分析:
例:一质量为M,半径为R的圆盘,盘上绕有绳子,一端挂一质量为m的物体。问物体由静止开始下落高度h时,其速度为多大呢?
又因
解得:
练习:匀质杆的质量为m,长为l,一端为光滑的支点,最初处于水平位置,释放后杆向下摆动,求杆在铅垂直位置时,其下端点的线速度v。( )
利用上述定理分析细圆环对任意切线的转动惯量:J=3mR2/2
※定轴转动定律
刚体在做定轴转动时,刚体的角加速度与刚体所受到的合外力距成正比,与刚体的转动惯量成反比。
即M=J (类比与牛二定律F=ma)
例题分析:
例2.质量为M=16kg的实心滑轮,半径R为0.15m。一根细绳绕在滑轮上,一端挂一质量为m=8kg的物体。求(1)静止开始1秒钟后,物体下降的距离。(2)绳子的张力。
分析:左右两部分对中心转轴的转动惯量是一样的,则只要算出其中一部分的转动惯量就可以了,则将左边部分分成n等份,每分的质量为m/2n,

近期高中物理竞赛试题及答案

近期高中物理竞赛试题及答案

近期高中物理竞赛试题及答案试题一:牛顿第二定律的应用题目描述:一个质量为5kg的物体,在水平面上受到一个水平向右的力F=10N。

如果摩擦系数为0.2,求物体的加速度。

答案:首先计算摩擦力:f = μN = 0.2 × 5kg × 9.8m/s² = 9.8N。

然后应用牛顿第二定律:F - f = ma。

将已知数值代入:10N - 9.8N = 5kg × a。

解得加速度:a = 0.02m/s²。

试题二:动能定理的应用题目描述:一个质量为2kg的物体从静止开始,经过5秒后,速度达到10m/s。

求物体所受的恒定力。

答案:根据动能定理:F × s = 1/2 × m × v² - 0。

首先计算物体的动能变化:1/2 × 2kg × (10m/s)² = 100J。

然后根据位移公式:s = 1/2 × a × t²,其中a为加速度,t为时间。

由于v = at,可得a = v/t = 10m/s / 5s = 2m/s²。

代入位移公式:s = 1/2 × 2m/s² × (5s)² = 25m。

最后将动能变化和位移代入动能定理:F × 25m = 100J。

解得力:F = 100J / 25m = 4N。

试题三:理想气体状态方程题目描述:一个理想气体的初始状态为:压强P₁=1.0atm,体积V₁=2m³,温度T₁=300K。

当压强增加到P₂=2.0atm,温度不变,求气体的体积V₂。

答案:根据理想气体状态方程:P₁V₁/T₁ = P₂V₂/T₂。

由于温度不变,T₁=T₂,方程简化为:P₁V₁ = P₂V₂。

代入已知数值:1.0atm × 2m³ = 2.0atm × V₂。

高中物理竞赛试题及答案

高中物理竞赛试题及答案

高中物理竞赛试题及答案1. 题目:一物体从静止开始做匀加速直线运动,第3秒内通过的位移为15米,求物体的加速度。

答案:根据匀加速直线运动的位移公式,第3秒内的位移为\(\frac{1}{2}a(3^2) - \frac{1}{2}a(2^2) = 15m\),解得\(a =4m/s^2\)。

2. 题目:一个质量为2kg的物体在水平面上以10m/s的速度做匀速直线运动,若受到一个大小为5N的水平力作用,求物体的加速度。

答案:根据牛顿第二定律,\(F = ma\),所以\(a = \frac{F}{m} =\frac{5N}{2kg} = 2.5m/s^2\)。

3. 题目:一个质量为1kg的物体从10m高处自由下落,忽略空气阻力,求物体落地时的速度。

答案:根据自由落体运动的公式,\(v^2 = 2gh\),代入\(g =9.8m/s^2\)和\(h = 10m\),解得\(v = \sqrt{2 \times 9.8 \times 10} = 14.1m/s\)。

4. 题目:一物体在水平面上以10m/s的速度做匀速圆周运动,半径为5m,求物体所受的向心力。

答案:根据向心力公式,\(F = \frac{mv^2}{r}\),代入\(m = 1kg\),\(v = 10m/s\),\(r = 5m\),解得\(F = \frac{1 \times 10^2}{5}= 20N\)。

5. 题目:一物体从高度为20m的斜面顶端以10m/s的初速度滑下,斜面倾角为30°,求物体滑到斜面底端时的速度。

答案:根据能量守恒定律,\(mgh + \frac{1}{2}mv_0^2 =\frac{1}{2}mv^2\),代入\(g = 9.8m/s^2\),\(h = 20m\),\(v_0 = 10m/s\),\(\theta = 30°\),解得\(v = \sqrt{2gh\cos\theta + v_0^2} = \sqrt{2 \times 9.8 \times 20 \times\frac{\sqrt{3}}{2} + 10^2} = 22.6m/s\)。

物理奥赛真题力学答案解析

物理奥赛真题力学答案解析

物理奥赛真题力学答案解析近几年,物理奥赛在高中生中的知名度不断提高,越来越多的学生加入到物理奥赛的行列中。

而力学部分作为物理奥赛的重点考察内容之一,对于学生来说是一个重要的关卡。

本文将通过解析物理奥赛中的力学题目,帮助大家更好地理解力学的知识点和解题方法。

首先,我们来看一道典型的力学题目:题目:一辆质量为m的小车,以v速度匀速通过一个半径为R的水平弯道,小车与弯道之间的摩擦系数为μ。

在这个过程中,弯道对小车的作用力分别是什么?解析:根据题目中给出的条件,我们可以利用力学知识来分析此题。

在小车通过弯道的过程中,存在两个力作用在小车上:重力和摩擦力。

重力始终指向地面的垂直方向,记作G。

而摩擦力则是由弯道对小车的作用力所产生的,记作F。

根据题目描述,我们可以推导出以下关系式:G = mg (1)N = mg (2)F = μN (3)式中,m为小车的质量,g为重力加速度,N为弯道对小车的支持力,μ为摩擦系数。

由于小车以匀速通过弯道,所以其受力平衡,即水平向心力等于摩擦力。

即:mv^2/R = F。

将式(3)代入式(4)中可得:mv^2/R = μN由式(2)可得:N = mg将式(5)代入式(6)可得:mv^2/R = μmg整理得到:v^2 = μgR通过上述的解析过程,我们可以得出结论:在小车通过弯道的过程中,弯道对小车的作用力有重力和摩擦力。

其中,重力始终指向地面的垂直方向,摩擦力的大小与小车与弯道之间的摩擦系数和小车的质量有关。

此外,力学题目中常涉及到的还有动量守恒、机械能守恒、牛顿运动定律等内容。

下面我们就通过解析一道动量守恒的题目,继续深入了解力学的知识点和解题方法。

题目:一个质量为m1的小球以初速度v1碰撞一个静止的质量为m2的小球,碰撞后两个小球的速度分别是多少?解析:根据题目中给出的条件,我们可以利用动量守恒定律来解答此题。

动量守恒定律指出,在一个封闭系统中,当外力为零时,系统的总动量保持不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理竞赛(力学)试题解————————————————————————————————作者:————————————————————————————————日期:1、(本题20分)如图6所示,宇宙飞船在距火星表面H高度处作匀速圆周运动,火星半径为R 。

当飞船运行到P点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的α倍。

因α很小,所以飞船新轨道不会与火星表面交会。

飞船喷气质量可以不计。

(1)试求飞船新轨道的近火星点A的高度h近和远火星点B的高度h远;(2)设飞船原来的运动速度为v0 ,试计算新轨道的运行周期T 。

2,(20分)有一个摆长为l的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点O 的距离为x处(x<l)的C点有一固定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡.当l一定而x取不同值时,阻挡后摆球的运动情况将不同.现将摆拉到位于竖直线的左方(摆球的高度不超过O点),然后放手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x的最小值.3,(20分)如图所示,一根长为L的细刚性轻杆的两端分别连结小球a和b,它们的质量分别为ma和m b. 杆可绕距a球为L/4处的水平定轴O在竖直平面内转动.初始时杆处于竖直位置.小球b几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m的立方体匀质物块,图中ABCD为过立方体中心且与细杆共面的截面.现用一水平恒力F作用于a球上,使之绕O轴逆时针转动,求当a转过 角时小球b速度的大小.设在此过程中立方体物块没有发生转动,且小球b与立方体物块始终接触没有分离.不计一切摩擦.4、把上端A封闭、下端B开口的玻璃管插入水中,放掉部分空气后放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的长度b=1厘米,大气压强P0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计.(1)求玻璃管内外水面的高度差h.(2)用手拿住玻璃管并缓慢地把它压入水中,当管的A端在水面下超过某一深度时,放手后玻璃管不浮起.求这个深度.(3)上一小问中,放手后玻璃管的位置是否变化?如何变化?(计算时可认为管内空气的温度不变)5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=30°(如右图).一条长度为l的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端拴着一个质量为m的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v绕圆锥体的轴线做水平匀速圆周运动(物体和绳在上图中都没画出).aOb AB CDF6、(13分) 一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A 经过B 驶向C.设A 到B 的距离也为H,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.7.在两端封闭、内径均匀的直玻璃管内,有一段水银柱将两种理想气体a 和b 隔开.将管竖立着,达到平衡时,若温度为T,气柱a 和b 的长度分别为l a 和l b ;若温度为T ',长度分别为l 抋和l 抌.然后将管平放在水平桌面上,在平衡时,两段气柱长度分别为l 攁和l 攂.已知T 、T 挕8.如图所示,质量为Kg M9=的小车放在光滑的水平面上,其中AB 部分为半径R=0.5m的光滑41圆弧,BC 部分水平且不光滑,长为L=2m ,一小物块质量m=6Kg ,由A 点静止释放,刚好滑到C 点静止(取g=102s m ),求:①物块与BC 间的动摩擦因数②物块从A 滑到C 过程中,小车获得的最大速度9..如图所示,在光滑水平面上放一质量为M 、边长为l 的正方体木块,木块上搁有一长为L 的轻质光滑棒,棒的一端用光滑铰链连接于地面上O 点,棒可绕O 点在竖直平面内自由转动,另一端固定一质量为m 的均质金属小球.开始时,棒与木块均静止,棒与水平面夹角为α角.当棒绕O 点向垂直于木块接触边方向转动到棒与水平面间夹角变为β的瞬时,求木块速度的大小.10 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.11如图所示,一木块从斜面AC 的顶端A 点自静止起滑下,经过水平面CD 后,又滑上另一个斜面DF ,到达顶端F 点时速度减为零。

两斜面倾角不同,但木块与所有接触面间的摩擦系数相同,若AF 连线与水平面夹角为θ,试求木块与接触面间的滑动摩擦系数μ。

12.图中的AOB 是游乐场中的滑道模型,它位于竖直平面内,由两个半径都是R 的1/4圆周连接而成,它们的圆心1O 、2O 与两圆弧的连接点O 在同一竖直线上.B O 2沿水池的水面.一小滑块可由弧AO 的任意点从静止开始下滑.1.若小滑块从开始下滑到脱离滑道过程中,在两个圆弧上滑过的弧长相等,则小滑块开始下滑时应在圆弧AO 上的何处?(用该处到1O 的连线与竖直线的夹角表示). 2.凡能在O 点脱离滑道的小滑块,其落水点到2O 的距离如何?参考解答 1参考解答:对圆轨道应用动力学,有:v 0 =HR GM+ ①则椭圆轨道上P 点的速度:v P =2020)v (v α+=21α+HR GM+ ②对P →A 过程,机械能守恒:21m 2P v −H R GmM + = 21m 2A v −Ar GmM③ 比较P 、A 两点,用开普勒第二定律(此处特别注意,P 点的速度取垂直矢径的分mRωθ rmg图2.11 A F C Bθ DE速度): v 0r P = v A r A ④解①②③④四式可得: r A =α++1HR 同理,对P 和B 用能量关系和开普勒第二定律,可得:r B = α-+1HR 椭圆的长半轴:a =2r r B A + = 21HR α-+ 最后对圆轨道和椭圆轨道用开普勒第三定律可得椭圆运动的周期。

答:h 近 = α+α-1R H ,h 远 = α-α+1R H ;T = 0v )H R (2+π232)11(α- 。

2.参考解答摆线受阻后在一段时间内摆球作圆周运动,若摆球的质量为m ,则摆球受重力mg 和摆线拉力T 的作用,设在这段时间内任一时刻的速度为v ,如图预解20-5所示。

用α表示此时摆线与重力方向之间的夹角,则有方程式2cos mv T mg l xα+=- (1)运动过程中机械能守恒,令θ表示摆线在起始位置时与竖直方向的夹角,取O 点为势能零点,则有关系21cos [()cos )]2mgl mv mg x l x θα-=--- (2)摆受阻后,如果后来摆球能击中钉子,则必定在某位置时摆线开始松弛,此时T =0,此后摆球仅在重力作用下作斜抛运动。

设在该位置时摆球速度0v v =,摆线与竖直线的夹角0αα=,由式(1)得200()cos v g l x α=-, (3)代入(2)式,求出02cos 3()cos 2l x l x θα=-+ (4)要求作斜抛运动的摆球击中C 点,则应满足下列关系式:000()sin cos l x v t αα-=, (5)20001()cos sin 2l x v t gt αα-=-+ (6)利用式(5)和式(6)消去t ,得到220()sin 2cos g l x v αα-= (7)由式(3)、(7)得到 03cos 3α=(8) 代入式(4),求出43l αFaObAB C D(23)3arccos 2x l l θ⎡⎤+-=⎢⎥⎣⎦(9)θ越大,cos θ越小,x 越小,θ最大值为/2π,由此可求得x 的最小值:(23)3x l +=,所以(233)0.464x t l =-= (10)3..参考答案:如图所示,用b v 表示a 转过α角时b 球速度的大小,v 表示此时立方体速度的大小,则有v v =αcos b (1)由于b 与正立方体的接触是光滑的,相互作用力总是沿水平方向,而且两者在水平方向的位移相同,因此相互作用的作用力和反作用力做功大小相同,符号相反,做功的总和为0.因此在整个过程中推力F 所做的功应等于球a 、b 和正立方体机械能的增量.现用a v 表示此时a 球速度的大小,因为a 、b 角速度相同,l Oa 41=,l Ob 43=,所以得b a v v 31= (2)根据功能原理可知22221cos 434321cos 4421sin 4v v v m l l g m m l l g m m l F b b b a a a +⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛--=⋅ααα (3)将(1)、(2)式代入可得222)cos (21cos 434321cos 443121sin 4ααααb b b b a b a m l l g m m l l g m m l F v v v +⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=⋅ 解得 ()()[]ααα2cos 18182cos 13sin 9m m m g m m F l b a b a b ++--+=v4.玻璃管A 端浮在水面上方时,管受力平衡.设管中空气压强为P 1,则管所受内外空气压力之差(竖直方向)是f=(P 1-P 0)S 0(a)用ρ表示水的密度,P1=P0+ρgh, (b)则: f=ρghS. (c)f应与管所受重力平衡:ρghS=mg. (d)(2)管竖直没入水中后,设管A端的深度为H,管内气柱长度为l,则A端所在处水内压强为:P A=P0+Hρg, (f)管内气压,由管内水面在水下的深度可知:为:P2=P0+Hρg+lρg. (g)管所受两者压力之差(竖直方向)为:f'=(P2-P A)S=lρgS.(h)随着管的下降,管内水面也必下降,即管内水面在水下的深度增大〔若管内水面的深度不变(或减小),则P2不变(或减小),而因管A端的下降,管内空气的体积却减小了,这与玻-马定律不符〕.因此,P2增大,l减小,故f'减小.当管A端到达某一深度H0时,f'与管所受重力相等,超过这一深度后,f'小于重力,放手后管不浮起.由此,当H=H0时,f'=lρgS=mg, (i)这时,由玻-马定律:P2lS=P1(b+h)S. (k)代入数值后,(3)由上一小问解答的分析可知,当管A端的深度超过H0时,f'<mg.故放手后管的位置要变化,将自行下沉.评分说明:全题14分.(1)3分;(2)和(3)共11分.(1)中,利用(a)、(b)式求出(c)式的,给2分.直接用阿基米德原理得出管(及管内空气)所受浮力(c)式的,同样给2分.利用条件(d)得出结果(e)的,再给1分.因单纯运算或数值计算(包括单位换算)错误而结果错误的,扣1分.(2)、(3),这两小问的解答中考生需要通过分析得知f'随着管的下降而减小,从而确定放手后管不浮起的条件和管位置的变化.故两小问一起定评分说明.利用(f)、(g)得出(h)式的,给2分.直接求浮力而得出(h)式的,同样给2分.利用平衡条件得出(j)式的,再给1分.利用玻-马定律决定H0部分,占3分.分析f'随管的下降而减小,占4分,不要求严格论证,能说出管下降时l减小即可.用其他话说的,正确的,也可.不作分析的不给这4分.说出自行下沉的,再给1分.因单纯运算或数值计算(包括单位换算)错误而结果错误的,扣1分.g值取作10米/秒2而得出H0=0.51米的,同样给分.5、题目要求考生说明每问解法的根据.物体做水平匀速圆周运动有两种可能:一种是物体与锥体表面接触(见图1);一种是物体与锥体表面不接触(见图2).当接触时,物体受力如图1所示,T是绳对物体的拉力,N是支持力,mg是重力.物体与锥面间无摩擦.将力沿水平方向和竖直方向分解,按牛顿定律得:Tcosθ+Nsinθ=mg. (b)由(a)、(b)两式消去T,可得N跟v的关系如下:率,并将θ=30°代入,可得因为N是支持力,最小等于0,所以当v>v b时,物体不再与锥面接触.或:T=1.03mg.只受重力和绳子拉力作用(如图2所示).用α表示绳与圆锥体轴线之间的夹角,将力沿水平方向和竖直方向分解,按牛顿定律得:Tcosα=mg. (e)2T2-3mgT-2m2g2=0解此方程,取合理值,得:T=2mg.评分说明:全题12分.本题要求考生说明每问解法的根据,即要求得出(c)式,并将(1)、(2)两问中的速率与(c)式相比较.这部分内容占6分.不论考生用什么方法解题,得出(c)式的给4分,再将(1)、(2)两问中的速率与(c)式比较的,再各给1分.在(1)中,列(a)、(b)式及求解占3分.(a)、(b)两式中有一个列错的,扣2分.单纯运算错误,扣1分.答案最后结果写作T=mg的,不扣分.在(2)中,列(d)、(e)式及求解占3分.(d)、(e)两式中有一个列错的,扣2分.单纯运算错误,扣1分.若误认为 =30°,扣2分.6、设绳的P端到达B处时,左边绳与水平地面所成夹角为θ,物体从井底上升的高度为h,速度为v,所求的功为W,则:因绳总长不变,所以:v=v B cosθ. (c)将(b)、(c)两式代入(a)式,得:评分说明:全题13分.列出(a)式的,给3分.列出(b)式的,给3分.列出(c)式的,给5分.列出(d)式的,给1分.最后结果正确的,再给1分.7、对于a段气体,有:对于b段气体,有:压强关系有:p b-p a=p抇b-p抇a,(e)p a=p b. (f)由以上各式可得:评分说明:全题10分.(a)、(b)、(c)、(d)四式全都列对的,给4分;部分列对但无列错的,给1分;有列错的,不给分.(e)式列对给3分;(f)式列对给1分. 最后结果正确再给2分.8.解:由A 点滑到C 点,物块静止,由于系统水平方向动量守恒,C 处车也静止。

相关文档
最新文档