高三数学复习试卷
数学基础试卷高三总复习
一、选择题(每题5分,共50分)1. 若函数f(x) = x^3 - 3x在区间[-1, 1]上的图像是连续不断的,且f(0) = 0,则f(x)在区间[-1, 1]上的零点个数是()A. 1个B. 2个C. 3个D. 4个2. 已知等差数列{an}的前n项和为Sn,且a1 = 3,S5 = 45,则公差d等于()A. 3B. 4C. 5D. 63. 函数y = log2(3x - 1)的定义域是()A. (1, +∞)B. (1, 2)C. (-∞, 1/3)D. (-∞, 1/3)∪(1, +∞)4. 若向量a = (2, -3),向量b = (3, 2),则向量a与向量b的夹角θ的余弦值是()A. 1/5B. 2/5C. 3/5D. 4/55. 已知等比数列{an}的公比q = 1/2,若a1 + a3 + a5 = 9,则a1等于()A. 16B. 8C. 4D. 26. 函数y = x^2 - 4x + 4在区间[-2, 2]上的最大值是()A. 0B. 2C. 4D. 87. 已知直线l的方程为x - 2y + 1 = 0,点P(2, 3)到直线l的距离是()A. 1B. 2C. 3D. 48. 若复数z = 1 + i,则|z|的值是()A. 1B. √2C. 2D. √39. 函数y = sin(2x + π/3)的周期是()A. πB. 2πC. 3πD. 4π10. 已知等差数列{an}的公差d = 2,若a1 = 3,则a10等于()A. 19B. 21C. 23D. 25二、填空题(每题5分,共50分)1. 若函数f(x) = x^2 - 2x + 1在区间[1, 3]上的图像是连续不断的,则f(x)在区间[1, 3]上的最大值是______。
2. 已知等差数列{an}的前n项和为Sn,且a1 = 5,S10 = 55,则公差d等于______。
3. 函数y = log3(2x - 1)的定义域是______。
河北省沧州市普通高中2025届高三上学期10月复习质量监测数学试卷
河北省沧州市普通高中2025届高三上学期10月复习质量监测数学试卷一、单选题1.已知集合{}{}223,3,2,1,2,3A xx x B =≥-=---∣,则A B =I ( ) A .{}1,2- B .{}2,1,2-- C .{}1,2,3- D .{}3,2,1,3---2.若复数z 满足12i z z-=-,则z =( ) A .1i -+ B .1i --C .11i 22--D .11i 22-+3.已知向量()()3,,0,1a x b ==-r r,若()2b a b ⊥+r r r ,则x =( )A .1-B .2-C .1D .124则此正四棱锥的体积为( )A .B .C .D .5.已知()3cos ,tan tan 5m αβαβ-==,则()cos αβ+=( )A .3355mm -+ B .155mm -+ C .3355m m ++D .5533m m -+6.已知函数()()12e ln 1,1211,1x x x f x x a x a x -⎧++≥⎪=⎨-+-+-<⎪⎩在R 上单调递增,则实数a 的取值范围是( )A .[]1,0-B .[]2,0-C .[]0,1D .[]0,27.当[]3π,3πx ∈-时,曲线cos y x =与11πcos 233y x ⎛⎫=+ ⎪⎝⎭的交点个数为( )A .4B .5C .6D .78.已知定义在R 上的函数()f x 满足()()11f x f x -=-+,()205x f x f ⎛⎫-= ⎪⎝⎭,若()00f =,且对任意的1x ,[]20,1x ∈,当12x x <时,都有()()12f x f x ≤恒成立,则下列结论一定正确的是( )A .1154f ⎛⎫= ⎪⎝⎭B .11108f ⎛⎫= ⎪⎝⎭C .1131251250f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .11202432f ⎛⎫=⎪⎝⎭二、多选题9.泊头鸭梨以个大、皮薄、汁多、肉细、味甜、形美及其较高的营养和药用价值而名扬海内外.为了解鸭梨种植园的亩收入(单位:万元)情况,从“高标准梨园”种植区抽取样本,得到的亩收入样本均值0.86y =,样本方差20.0009s =;从“标准化梨园”种植区抽取样本,亩收入X 服从正态分布()20.72,0.04N ,假设“高标准梨园”的亩收入Y 服从正态分布()2,N y s ,则( )(附:若随机变量Z 服从正态分布()2,N μσ,则()0.8414P Z μσ<+≈)A .()0.80.2P X >>B .()0.80.5P X ><C .()0.80.5P Y >>D .()0.80.8P Y ><10.设函数()()2(1)2f x x x =+-,则( )A .1x =是()f x 的极小值点B .()f x 的极大值为1C .当31,22x ⎛⎫∈-- ⎪⎝⎭时,()4230f x -≤+<D .若()0f x <,则(),2x ∈-∞11.在平面直角坐标系Oxy 中,曲线C 经过坐标原点,且C 上的点(),x y 满足:3x <,且到点()3,0F -的距离与到定直线()0x a a =>的距离之积为9,则( )A .3a =B .点⎛ ⎝⎭,1,⎛ ⎝⎭均在曲线C 上C .曲线C 在第二象限的点到xD .390y xy --≤三、填空题12.已知1F ,2F 分别为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,A 为C 上一点,且212AF F F ⊥,25AF =,1212F F =,则双曲线C 的渐近线方程为.13.若曲线()ln 22y x =+在点1,02⎛⎫- ⎪⎝⎭处的切线也是曲线e x y ax =-的切线,则实数a =.14.在甲、乙、丙、丁四人踢毽子游戏中,第一次由甲踢出,并且每次踢出都等可能踢给另外三人中的任何一人,若第二次踢出后恰好踢给丙,则此毽子是由乙踢出的概率为;第n 次踢出后,建子恰好踢给乙的概率为.四、解答题15.在ABC V 中,内角,A ,B ,C 满足()2sin cos sin sin A B B C C ++=. (1)证明:22tan tan 1tan AB A=-;(2)若4cos AC A ==ABC V 的面积.16.已知点(,A B 为椭圆()2222:10x yC a b a b+=>>上不同两点,点()10F ,为椭圆的一个焦点.(1)求椭圆C 的标准方程和离心率;(2)若ABF △的面积S =AB 的方程.17.如图,在四棱锥P ABCD -中,,B D 在以AC 为直径的圆上,π,,16PA AC BAC BC ∠===,PC PB ==(1)若AD //平面PBC ,求直线PD 与平面ABCD 所成角的正切值;(2)若AD =A PC D --的余弦值.18.已知函数()ln f x x =的图象与函数()g x 的图象关于直线1y x =-+对称. (1)求函数()g x 的解析式;(2)证明:()()()1,,0x f x g x ∞∀∈+->;(3)若圆()222:(1)0M x y r r -+=>与曲线()y f x =相交于,A B 两点,证明:AMB ∠为锐角.19.已知数列 a n 的每一项只能取1-或1,若数列 a n 中含有i 个“1-”,含有j 个“1”,3,i j i +≥,*j ∈N ,则称数列 a n 为(),i j -组合数列.(1)若数列 a n 为()2,2-组合数列,写出所有符合要求的数列 a n ;(2)若(,,,,m p k a a a m p k 互不相同)为某一()4,3-组合数列 a n 中的任意三项,则1m p k a a a =-的取法有多少种?(3)若(,,,,m p k a a a m p k 互不相同)为某一(),i j -组合数列 a n 中的任意三项,其中2100i j ≤≤≤,则存在多少正整数对(),i j ,使得1m p k a a a =的概率为12?。
数学高三复习基础试卷
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,则f'(1)的值为()A. 0B. 3C. -3D. -62. 已知等差数列{an}的前n项和为Sn,若S5 = 50,a1 + a5 = 10,则公差d的值为()A. 2B. 4C. 6D. 83. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆心坐标为()A. (2, 3)B. (3, 2)C. (2, -3)D. (3, -2)4. 已知等比数列{an}的首项a1 = 3,公比q = 2,则a5的值为()A. 24B. 48C. 96D. 1925. 已知函数f(x) = x^2 - 2x + 1,则f(x)的图像的对称轴为()A. x = 1B. x = -1C. y = 1D. y = -16. 已知数列{an}的前n项和为Sn,若S3 = 12,a1 + a3 = 6,则a2的值为()A. 2B. 4C. 6D. 87. 已知函数f(x) = 2x + 3,则f(-1)的值为()A. 0B. 1C. 2D. 38. 已知圆的方程为x^2 + y^2 - 2x - 4y + 4 = 0,则圆的半径为()A. 1B. 2C. 3D. 49. 已知等差数列{an}的首项a1 = 2,公差d = 3,则a10的值为()A. 29B. 31C. 33D. 3510. 已知函数f(x) = 3x^2 - 6x + 2,则f(x)的图像的顶点坐标为()A. (1, 2)B. (2, 1)C. (1, -2)D. (2, -1)二、填空题(每题5分,共25分)11. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为______。
12. 已知等差数列{an}的首项a1 = 1,公差d = 2,则a6的值为______。
13. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆心到直线2x + 3y - 6 = 0的距离为______。
高三一轮复习验收考试数学试题(文理)
高三一轮复习验收考试数学试题(文理)第Ⅰ卷(选择题:共60分)第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题:60分:第Ⅱ卷为非选择题:90分:共150分:考试时间为120分钟。
2.选择题答案用2B 铅笔在答题卡上把对应题目答案标号涂黑。
一、.选择题:本大题共12小题:每小题5分:共60分。
(1)设集合}}{{,,23|,,13|Z n n y y N Z m m x x M ∈+==∈+==若N y M x ∈∈00,:则00y x 与集合M,N 的关系是( )A. M y x ∈00B. M y x ∉00C. N y x ∈00D. N y x ∉00 (2)已知函数)(1sin 21sin 2R x x x y ∈++=。
设当y 取得最大值时角x 的值为α:当y 取得最小值时角x 的值为β:其中α:β均属于区间[2,2ππ-]:则)sin(α-β的值等于( ) A. 41-B. 415-C. 0D. 43(3)有等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1)4+b 1(x+1)3+b 2(x+1)2+b 3(x+1)+b 4:定义映射f ∶(a 1,a 2,a 3,a 4)→(b 1,b 2,b 3,b 4):则f (4,3,2,1)等于( )A (1,2,3,4) B.(0,3,4,0) C. (-1,0,2,-2) D. (0,-3,4,-1)(4)表示α,β表示平面:m, n 表示直线:则m ∥α的一个充分必要条件是( )A.α⊥β且m ⊥βB.α∩β=n 且 m ∥n∥n 且 n ∥α D.α∥β且β⊂m(5)设),31,(cos ),sin ,23(α=α=→→b a :且→→b a //:则锐角α为A. 30ºººº(6)设b a log 是一个整数:且2log log 1log a b bb a a>>:给出下列四个结论: ①21a b b>> ⑵0log log =+a b b a ③0<a<b<1 ④ab-1=0 其中正确结论的个数是( )(7)已知函数f(x)的定义域为R,且对于任意实数a :f -1(x+a)与f(x+a)互为反函数:若f(1)=2,则f(2)的值为( )A.0B. 1C. 2D. 3(8)等比数列{a n }中:a 1+a 2,=30, a 3+a 4=60 ,则a 7+a 8的值为( ) A. 240 B. -240 C. ±240 D. 1920(9)设函数f(x)的定义域为R,且f(-x )=-f(x):当x ∈(0, +∞)时,f(x+d)>f(x),(d>0)若f(-2)=0:则xf(x)<0的解集为( )A.ΦB.(-2, 0)C.(0, 2) D(-2, 0)∪(0, 2)(10)从5个数1,2,3,4,5中任取3个数x 1, x 2, x 3 :y 表示x 1, x 2, x 3中最大的一个:则y 的分布列为( ) A. B.η 1 2345p5151 51 51 51C. D.η 1 2345p0 0101 103 106(11)平面内有一长度为4 的线段AB,动点P 满足|PA|+|PB|=6,则|PA|的取值范围是( ) A. [1,5] B[1,6] C.[2, 5] D.[2,6](12)如图:在一块矩形的草地上(矩形的水平方向为b 米:竖直方向为a 米):一条弯曲的柏油小路(小路的任何地方的水平宽度都是1米)。
(完整版)高三数学第一轮复习单元测试--数列
高三数学第一轮复习单元测试(2)— 《数列》一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a , 则a = ( )A .4B .2C .-2D .-42.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( ) A .5 B .4 C .3 D .2 3.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于 ( )A .40B .42C .43D .454.在等差数列{a n }中,若a a+a b =12,S N 是数列{a n }的前n 项和,则S N 的值为 ( ) A .48 B .54 C .60 D .665.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= ( )A .310B .13C .18D .196.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .757.已知等差数列{a n }的前n 项和为S n ,若a a 2001+=,且A 、B 、C 三点共线 (该直线不过原点O ),则S 200= ( )A .100B .101C .200D .2018.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )A .122n +- B .3n C .2n D .31n -9.设4710310()22222()n f n n N +=+++++∈L ,则()f n 等于( )A .2(81)7n- B .12(81)7n +- C .32(81)7n +- D .42(81)7n +- 10.弹子跳棋共有60棵大小相同的球形弹子,现在棋盘上将它叠成正四面体球垛,使剩下的弹子尽可能的少,那么剩下的弹子有 ( ) A .3 B .4 C .8 D .9 11.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=L ,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2002B .2004C .2006D .200812.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n = .14.=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=1110113112111,244)(f f f f x f xx Λ则设 . 15.在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正 三棱锥”形的展品,其中第一堆只有一层, 就一个乒乓球;第2、3、4、…堆最底层(第 一层)分别按右图所示方式固定摆放.从第一 层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示).16.已知整数对排列如下()()()()()()()()()()()()Λ,4,2,5,1,1,4,2,3,3,2,4,1,1,3,2,23,1,1,2,2,1,1,1, 则第60个整数对是_______________.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)数列{a n }的前n 项和记为S n ,()111,211n n a a S n +==+≥(1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且315T =,又112233,,a b a b a b +++成等比数列,求T n 18.(本小题满分12分) 设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…),证明:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…)19.(本小题满分12分)已知数列3021,,,a a a Λ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列;201110,,,a a a Λ是公差为d 的等差数列;302120,,,a a a Λ是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a Λ是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? 20.(本小题满分12分) 某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数. 21.(本小题满分12分)等差数列{}n a 中,12a =,公差d 是自然数,等比数列{}n b 中,1122,b a b a ==.(Ⅰ)试找出一个d 的值,使{}n b 的所有项都是{}n a 中的项;再找出一个d 的值,使{}n b 的项不都是{}n a 中的项(不必证明);(Ⅱ)判断4d =时,是否{}n b 所有的项都是{}n a 中的项, 并证明你的结论;(Ⅲ)探索当且仅当d 取怎样的自然数时,{}n b 的所有项都是{}n a 中的项,并说明理由. 22.(本小题满分14分)已知数列{n a }中,112--=n n a a (n ≥2,+∈N n ),(1)若531=a ,数列}{n b 满足11-=n n a b (+∈N n ),求证数列{n b }是等差数列; (2)若531=a ,求数列{n a }中的最大项与最小项,并说明理由; (3)(理做文不做)若211<<a ,试证明:211<<<+n n a a .参考答案(2)1.D .依题意有22,,310.a c b bc a a b c +=⎧⎪=⎨⎪++=⎩4,2,8.a b c =-⎧⎪=⎨⎪=⎩2.C . 3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C . 3.B . ∵等差数列{}n a 中12a =,2313a a += ∴公差3d =. ∴45613345a a a a d d d ++=+++=1312a d +=42. 4.B . 因为461912a a a a +=+=,所以1999()2a a S +==54,故选B . 5.A . 由等差数列的求和公式可得31161331,26153S a d a d S a d +===+可得且0d ≠ 所以6112161527312669010S a d d S a d d +===+,故选A . 6.B .12322153155a a a a a ++=⇒=⇒=,()()1232228080a a a a d a a d =⇒-+=,将25a =代入,得3d =,从而()()11121312233103530105a a a a a d ++==+=⨯+=.选B .7.A . 依题意,a 1+a 200=1,故选A .8.C .因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C .9.D . f (n )=3(1)432[12]2(81)127n n ++-=--,选D . 10.B . 正四面体的特征和题设构造过程,第k 层为k 个连续自然数的和,化简通项再裂项用公式求和.依题设第k层正四面体为(),k k k k k 2213212+=+=++++Λ则前k 层共有()()()()6062121212121222≤++=+++++++k k k k k L ,k 最大为6,剩4,选B .11.A .认识信息,理解理想数的意义有,20025014984995002501,5004984995002004500321500321=+++++⨯∴++++=a a a a a a a a ΛΛ,选A .12.C .由已知4a =2a +2a = -12,8a =4a +4a =-24,10a =8a +2a = -30,选C .13.由112332(3)n n n n a a a a ++=+⇔+=+,即133n n a a +++=2,所以数列{n a +3}是以(1a +3)为首项,以2为公比的等比数列,故n a +3=(1a +3)12n -,n a =12n +-3. 14.由()()11=+-x f x f ,整体求和所求值为5.15.2)1()()(111211+==-++-+=⇒+=--+n n a a a a a a n a a n n n n n ΛΛ )(n f 的规律由)2(2)1()1()(≥+==--n n n a n f n f n ,所以22)1()(223)2()3(222)1()2(1)1(222+=--+=-+=-=n n f n f f f f f f Λ所以)]321()321[(21)(222n n n f +++++++++=ΛΛ 6)2)(1(]2)1(6)12)(1([21++=++++=n n n n n n n n 16.观察整数对的特点,整数对和为2的1个,和为3的2个,和为4的3个,和为5的4个,和n 为的 n -1个,于是,借助()21321+=++++n n n Λ估算,取n=10,则第55个整数对为()1,11,注意横坐标递增,纵坐标递减的特点,第60个整数对为()7,517.(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥ 又21213a S =+= ∴213a a = 故{a n }是首项为1,公比为3得等比数列 ∴13n n a -=. (2)设{b n }的公差为d ,由315T =得,可得12315b b b ++=,可得25b =, 故可设135,5b d b d =-=+又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+解得122,10d d == ∵等差数列{b n }的各项为正,∴0d >,∴2d = ∴()213222n n n T n n n-=+⨯=+18.ο1必要性:设数列}{n a 是公差为1d 的等差数列,则:--=-+++)(311n n n n a a b b )(2+-n n a a =--+)(1n n a a )(23++-n n a a =1d -1d =0,∴1+≤n n b b (n =1,2,3,…)成立; 又2)(11+-=-++n n n n a a c c )(12++-n n a a )(323++-+n n a a =61d (常数)(n =1,2,3,…) ∴数列}{n c 为等差数列.ο2充分性:设数列}{n c 是公差为2d 的等差数列,且1+≤n n b b (n =1,2,3,…), ∵2132++++=n n n n a a a c ……① ∴432232++++++=n n n n a a a c ……②①-②得:)(22++-=-n n n n a a c c )(231++-+n n a a )(342++-+n n a a =2132++++n n n b b b ∵+-=-++)(12n n n n c c c c 2212)(d c c n n -=-++∴2132++++n n n b b b 22d -=……③ 从而有32132+++++n n n b b b 22d -=……④ ④-③得:0)(3)(2)(23121=-+-+-+++++n n n n n n b b b b b b ……⑤ ∵0)(1≥-+n n b b ,012≥-++n n b b ,023≥-++n n b b , ∴由⑤得:01=-+n n b b (n =1,2,3,…),由此,不妨设3d b n =(n =1,2,3,…),则2+-n n a a 3d =(常数) 故312132432d a a a a a c n n n n n n -+=++=+++……⑥ 从而3211324d a a c n n n -+=+++31524d a a n n -+=+……⑦ ⑦-⑥得:3112)(2d a a c c n n n n --=-++,故311)(21d c c a a n n n n +-=-++3221d d +=(常数)(n =1,2,3,…), ∴数列}{n a 为等差数列.综上所述:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…). 19.(1)3,401010.102010=∴=+==d d a a . (2)())0(11010222030≠++=+=d d d d a a , ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=432110230d a ,当),0()0,(∞+∞-∈Y d 时,[)307.5,a ∈+∞.(3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列,当1≥n时,数列)1(1011010,,,++n n n a a a Λ是公差为n d 的等差数列.研究的问题可以是:试写出)1(10+n a 关于d 的关系式,并求)1(10+n a 的取值范围. 研究的结论可以是:由()323304011010d d d d a a +++=+=, 依次类推可得 ()⎪⎩⎪⎨⎧=+≠--⨯=+++=++.1),1(10,1,11101101)1(10d n d d d d d a n nn Λ 当0>d 时,)1(10+n a 的取值范围为),10(∞+等.20.设第n 天新患者人数最多,则从n+1天起该市医疗部门采取措施,于是,前n 天流感病毒感染者总人数,构成一个首项为20,公差为50的等差数列的n 项和,()()N n ,n n n n n n S n∈≤≤-=⨯-+=3015255021202,而后30-n 天的流感病毒感染者总人数,构成一个首项为()60503050120-=-⨯-+n n ,公差为30,项数为30-n 的等差数列的和,()()()()(),n n n n n n Tn148502445653026050306050302-+-=-⨯--+--=依题设构建方程有,(),n n n n ,T S n n 867014850244565525867022=-+-+-∴=+化简,120588612=∴=+-n ,n n 或49=n (舍),第12天的新的患者人数为 20+(12-1)·50=570人.故11月12日,该市感染此病毒的新患者人数最多,新患者人数为570人.21.(1)0d =时,{}n a 的项都是{}n b 中的项;(任一非负偶数均可); 1d =时,{}n a 的项不都是{}n b 中的项.(任一正奇数均可); (2) 4d =时,422(21),n a n n =-=-123n n b -=⨯131 2(21)2n m a -+=⨯-=131(2n m -+=为正整数),{}n b 的项一定都是{}n a 中的项 (3)当且仅当d 取2(*)k k ∈N (即非负偶数)时,{}n b 的项都是{}n a 中的项. 理由是:①当2(*)d k k =∈N 时,2(1)22[1(1)],n a n k n k =+-⋅=+-⋅2n >时,11122112(1)2(C C 1)n n n n n n n b k k k k ------=⋅+=++⋅⋅⋅++,其中112211C C n n n n n k k k-----++⋅⋅⋅+ 是k 的非负整数倍,设为Ak (*A ∈N ),只要取1m A =+即(m 为正整数)即可得n m b a =, 即{}n b 的项都是{}n a 中的项;②当21,()d k k =+∈N 时,23(23)2k b +=不是整数,也不可能是{}n a 的项. 22.(1)1111111121n n n n n a b a a a ---===----,而1111-=--n n a b ,∴11111111=-=-=-----n n n n n a a a b b .)(+∈N n∴{n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有nn b a 11=-,而5.31)1(25-=-+-=⋅n n b n ,∴5.311-=-n a n .对于函数5.31-=x y ,在x >3.5时,y >0,0)5.3(12<--=x y',在(3.5,∞+) 上为减函数. 故当n =4时,5.311-+=n a n 取最大值3. 而函数5.31-=x y 在x <3.5时,y <0, 0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1. (3)先用数学归纳法证明21<<n a ,再证明n n a a <+1. ①当1=n 时,211<<a 成立; ②假设当k n =时命题成立,即21<<k a ,当1+=k n 时,1121<<ka )23,1(121∈-=⇒+kk a a ⇒211<<+k a 故当1+=k n 时也成立,综合①②有,命题对任意+∈N n 时成立,即21<<n a . (也可设x x f 12)(-=(1≤x ≤2),则01)(2'>=xx f , 故=1)1(f 223)2()(1<=<=<+f a f a k k ).下证: n n a a <+10122)1(21=⋅-<+-=-+kk k k n n a a a a a a ⇒n n a a <+1.。
高三一轮数学复习备考试卷归纳
高三一轮数学复习备考试卷归纳高三年级数学复习试题一、选择题:本大题共8小题,每小题5分,共40分..1.若复数的实部与虚部相等,则实数()A(A)(B)(C)(D)2.已知,猜想的表达式为().A.B.C.D.3.等比数列中,,则“”是“”的B(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件4.从甲、乙等名志愿者中选出名,分别从事,,,四项不同的工作,每人承担一项.若甲、乙二人均不能从事工作,则不同的工作分配方案共有B(A)种(B)种(C)种(D)种5.已知定义在上的函数的对称轴为,且当时,.若函数在区间()上有零点,则的值为A(A)或(B)或(C)或(D)或6.已知函数,其中.若对于任意的,都有,则的取值范围是D(A)(B)(C)(D)7.已知函数有且仅有两个不同的零点,,则BA.当时,,B.当时,,C.当时,,D.当时,,8.如图,正方体中,为底面上的动点,于,且,则点的轨迹是A(A)线段(B)圆弧(C)椭圆的一部分(D)抛物线的一部分第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设等差数列的公差不为,其前项和是.若,,则______.510.的展开式中的系数是.16011.设.若曲线与直线所围成封闭图形的面积为,则______.12.在直角坐标系中,点与点关于原点对称.点在抛物线上,且直线与的斜率之积等于,则______.13.数列的通项公式,前项和为,则___________。
301814.记实数中的_大数为,_小数为.设△的三边边长分别为,且,定义△的倾斜度为(ⅰ)若△为等腰三角形,则______;1(ⅱ)设,则的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题共14分)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)讨论的单调性;(III)若存在_大值,且,求的取值范围.(18)(共14分)解:(Ⅰ)当时,..所以.又,所以曲线在点处的切线方程是,即.(Ⅱ)函数的定义域为,.当时,由知恒成立,此时在区间上单调递减.当时,由知恒成立,此时在区间上单调递增.当时,由,得,由,得,此时在区间内单调递增,在区间内单调递减. (III)由(Ⅱ)知函数的定义域为,当或时,在区间上单调,此时函数无_大值.当时,在区间内单调递增,在区间内单调递减,所以当时函数有_大值._大值.因为,所以有,解之得.所以的取值范围是.16.(本小题满分13分)已知函数的一个零点是.(Ⅰ)求实数的值;(Ⅱ)设,求的单调递增区间.(Ⅰ)解:依题意,得,………………1分即,………………3分解得.………………5分(Ⅱ)解:由(Ⅰ)得.………………6分………………7分………………8分………………9分.………………10分由,得,.………………12分所以的单调递增区间为,.………………13分117.(本小题满分13分)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{bn}的通项公式bn;(2)设数列{an}的通项an=loga(1+)(其中a0且a≠1)记Sn是数列{an}的前n项和,试比较Sn与logabn+1的大小,并证明你的结论.(1)解:设数列{bn}的公差为d,由题意得,∴bn=3n-2(2)证明:由bn=3n-2知Sn=loga(1+1)+loga(1+)+…+loga(1+)=loga[(1+1)(1+)…(1+)]而logabn+1=loga,于是,比较Sn与logabn+1的大小比较(1+1)(1+)…(1+)与的大小.取n=1,有(1+1)=取n=2,有(1+1)(1+推测:(1+1)(1+)…(1+)(_)①当n=1时,已验证(_)式成立.②假设n=k(k≥1)时(_)式成立,即(1+1)(1+)…(1+)则当n=k+1时,,即当n=k+1时,(_)式成立由①②知,(_)式对任意正整数n都成立.于是,当a1时,Snlogabn+1,当0a1时,snlogabn+1 p=18.(本小题满分13分)已知函数,,其中.(Ⅰ)求的极值;(Ⅱ)若存在区间,使和在区间上具有相同的单调性,求的取值范围.18.(本小题满分13分)(Ⅰ)解:的定义域为,………………1分且.………………2分①当时,,故在上单调递减.从而没有极大值,也没有极小值.………………3分②当时,令,得.和的情况如下:↘↗故的单调减区间为;单调增区间为.从而的极小值为;没有极大值.………………5分(Ⅱ)解:的定义域为,且.………………6分③当时,显然,从而在上单调递增.由(Ⅰ)得,此时在上单调递增,符合题意.………………8分④当时,在上单调递增,在上单调递减,不合题意.……9分⑤当时,令,得.和的情况如下表:↘↗当时,,此时在上单调递增,由于在上单调递减,不合题意.………………11分当时,,此时在上单调递减,由于在上单调递减,符合题意.综上,的取值范围是.………………13分19.(本小题满分14分)如图,椭圆的左焦点为,过点的直线交椭圆于,两点.当直线经过椭圆的一个顶点时,其倾斜角恰为.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段的中点为,的中垂线与轴和轴分别交于两点.记△的面积为,△(为原点)的面积为,求的取值范围.19.(本小题满分14分)(Ⅰ)解:依题意,当直线经过椭圆的顶点时,其倾斜角为.………………1分设,则.………………2分将代入,解得.………………3分所以椭圆的离心率为.………………4分(Ⅱ)解:由(Ⅰ),椭圆的方程可设为.………………5分设,.依题意,直线不能与轴垂直,故设直线的方程为,将其代入,整理得.………………7分则,,.………………8分因为,所以,.………………9分因为△∽△,所以………………11分.………………13分所以的取值范围是.………………14分(20)(本小题共13分)设是由个有序实数构成的一个数组,记作:.其中称为数组的“元”,称为的下标.如果数组中的每个“元”都是来自数组中不同下标的“元”,则称为的子数组.定义两个数组,的关系数为.(Ⅰ)若,,设是的含有两个“元”的子数组,求的_大值;(Ⅱ)若,,且,为的含有三个“元”的子数组,求的_大值.(20)(共13分)解:(Ⅰ)依据题意,当时,取得_大值为2.(Ⅱ)①当是中的“元”时,由于的三个“元”都相等,及中三个“元”的对称性,可以只计算的_大值,其中.由,得.当且仅当,且时,达到_大值,于是.②当不是中的“元”时,计算的_大值,由于,所以.,当且仅当时,等号成立.即当时,取得_大值,此时.综上所述,的_大值为1.高三数学复习试题整理一、选择题。
高三数学第一轮复习试卷
一、选择题(每题5分,共50分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得最小值,则下列选项中正确的是()A. a > 0, b = 0, c < 0B. a < 0, b = 0, c > 0C. a > 0, b ≠ 0, c > 0D. a < 0, b ≠ 0, c < 02. 下列各数中,无理数是()A. √3B. -√2C. 3/4D. 1.4143. 若复数z满足|z - 2i| = 3,则复数z在复平面内对应的点的轨迹是()A. 圆B. 线段C. 直线D. 双曲线4. 已知函数f(x) = log2(x - 1),则f(x)的定义域是()A. (1, +∞)B. (0, 1)C. (1, 2]D. (2, +∞)5. 若等差数列{an}的前n项和为Sn,且S3 = 9,S5 = 21,则该数列的公差d是()A. 2B. 3C. 4D. 56. 下列命题中,正确的是()A. 若两个函数的图像关于y轴对称,则这两个函数互为反函数B. 若两个函数的图像关于x轴对称,则这两个函数互为反函数C. 若两个函数的图像关于原点对称,则这两个函数互为反函数D. 若两个函数的图像关于直线y = x对称,则这两个函数互为反函数7. 已知函数f(x) = x^3 - 3x,若存在实数a和b,使得f(a) + f(b) = 0,则a + b的值为()A. 0B. 1C. -1D. 28. 下列方程中,无解的是()A. x^2 + 2x + 1 = 0B. x^2 + 2x - 1 = 0C. x^2 - 2x + 1 = 0D. x^2 - 2x - 1 = 09. 若不等式x^2 - 4x + 3 < 0的解集是()A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∩ (3, +∞)D. (1, +∞) ∪ (-∞, 3)10. 已知函数f(x) = (x - 1)/(x + 1),则f(-1)的值为()A. 0B. 1C. -1D. 不存在二、填空题(每题5分,共50分)11. 已知等差数列{an}的前n项和为Sn,若a1 = 2,d = 3,则S10 = ________.12. 若复数z = a + bi(a, b ∈ R),则|z|^2 = ________.13. 函数f(x) = log2(3 - 2x)的定义域为 ________.14. 若等比数列{an}的公比q = -2,且a1 = 3,则第5项a5 = ________.15. 已知函数f(x) = x^2 - 2x + 3,则f(-1) = ________.16. 若不等式x^2 - 4x + 3 ≤ 0的解集为A,则不等式x^2 - 4x + 3 > 0的解集为 ________.17. 已知函数f(x) = 2x - 1,则f(-3) + f(2) = ________.18. 若复数z满足|z - 2i| = 3,则复数z在复平面内对应的点的坐标是________.19. 已知函数f(x) = (x - 1)/(x + 1),则f(1)的值为 ________.20. 若等差数列{an}的前n项和为Sn,且S3 = 9,S5 = 21,则该数列的第4项a4 = ________.三、解答题(每题20分,共60分)21. (本题满分20分)已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f(2) = 5,求a,b,c的值。
高三文科数学高考复习试题(附答案)
高三文科数学高考复习试题(附答案)考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
下面是店铺为大家整理的高三文科数学高考复习试题,请认真复习!高三文科数学高考复习试题一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内.1.函数y=log2x-2的定义域是( )A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)2.设集合A={(x,y) | },B={(x,y)|y=2x},则A∩B的子集的个数是( )A.1B.2C.3D.43.已知全集I=R,若函数f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x| <0},则M∩∁IN=( )A.[32,2]B.[32,2)C.(32,2]D.(32,2)4.设f(x)是R上的奇函数,当x>0时,f(x)=2x+x,则当x<0时,f(x)=( )A.-(-12)x-xB.-(12)x+xC.-2x-xD.-2x+x5.下列命题①∀x∈R,x2≥x;②∃x∈R,x2≥x;③4≥3;④“x2≠1”的充要条件是“x≠1或x≠-1”.其中正确命题的个数是( )A.0B.1C.2D.36. 已知下图(1)中的图像对应的函数为,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是( )7.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2)B.(1,1.4)C.(1,32)D.(32,2)8.点M(a,b)在函数y=1x的图象上,点N与点M关于y轴对称且在直线x-y+3=0上,则函数f(x)=abx2+(a+b)x-1在区间[-2,2)上( )A.既没有最大值也没有最小值B.最小值为-3,无最大值C.最小值为-3,最大值为9D.最小值为-134,无最大值9.已知函数有零点,则的取值范围是( )A. B. C. D.二、填空题:将正确答案填在题后横线上.10.若全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为_______ _.11.若lga+lgb=0(a≠1),则函数f(x)=ax与g(x)=-bx的图象关于________对称.12.设 ,一元二次方程有正数根的充要条件是 = .13.若函数f(x)在定义域R内可导,f(2+x)=f(2-x),且当x∈(-∞,2)时,(x-2) >0.设a=f(1),,c=f(4),则a,b,c的大小为.14、已知。
高三总复习数学前四章测试题
高三数学(理)试卷(前四章)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2=680A x x x ∈-+≤N ,集合{}=28xB x ≥,则A ∩B =( )A .{3,4}B .{2,3,4}C .{2,3}D .{4}2.已知函数无极值,则实数c 的取值范围为( )A .B .C .D .3.为得到函数 的图象,只需将函数图象上所有的点( )A .横坐标缩短到原来的倍 B .横坐标伸长到原来的 倍C .横坐标缩短到原来的倍,再向右平移个单位 D .横坐标伸长到原来的倍,再向右平移个单位4.设0.60.6a =,0.6log 1.5b =,0.61.5c =,则a ,b ,c 的大小关系是( ) A .a b c << B .a c b << C .b a c << D .b c a <<5.已知α,β均为第一象限角,那么“α>β”是“sin α>sin β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.在下列区间中函数()243x f x x =-+的零点所在的区间为( )A .1(,1)2B .1(0,)2C .3(1,)2D .(1,2)7.已知 , ,且 ∥ ,则的值是A .B .C .D .8.下列命题中,真命题是( )A .∃x 0∈R ,sin 2⎝ ⎛⎭⎪⎫x 03+cos 2⎝ ⎛⎭⎪⎫x 03=13 B .∀x ∈(0,π),sin x >cos xC .∃x 0∈R ,x 20+x 0=-2D .∀x ∈(0,+∞),e x>x +19.已知函数2log ,0()3,0x x x f x x >⎧=⎨≤⎩,则1(())4f f 的值是( )A .19-B .9-C .19D .910.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .1C .-1D .e 11.函数2018()4cos(2018)x f x x e =-(e 为自然对数的底数)的图像可能是( )12.设函数的最大值为M ,最小值为m ,则的值是( )A . 2B .1C .22019D .32019第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在区间上任选两个数x 和y ,则事件“y<sin x ”发生的概率为____________.14.已知4cos 35πα⎛⎫+= ⎪⎝⎭,则13sin 6πα⎛⎫-⎪⎝⎭的值是_____________. 15.函数22log (23)y x x =+-的单调递减区间为 _______.16.函数f (x )满足f (x +2)=f (x ),且当-1≤x ≤1时,f (x )=|x |.若函数y =f (x )的图象与函数g (x )=log a x (a >0,且a ≠1)的图象有且仅有4个交点,则a 的值为______________.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明222cos ))ππ(2(x x e f x x e ⎛⎫-++ ⎪⎝⎭=+()20191M m +-过程或演算步骤.17. 已知cos α-sin α=5213,α∈⎝⎛⎭⎫0,π4. (1)求sin αcos α的值; (2)求sin ⎝⎛⎭⎫π2-2αcos ⎝⎛⎭⎫π4+α的值.18. 给定命题p :对任意实数x ,都有ax 2+ax +1>0成立;命题q :关于x 的方程x 2-x +a=0有实数根,若p ∧q 为真,求a 的取值范围。
黑龙江省龙东地区2025届高三上学期一轮复习联考(期中)数学试卷(二)
黑龙江省龙东地区2025届高三上学期一轮复习联考(期中)数学试卷(二)一、单选题1.已知复数(2i)43i z -=+,则z 的共轭复数是()A .12i+B .12i-+C .12i-D .12i--2.已知集合{}1,3A =,集合{}2230B x x x =--<,则集合A B = ()A .{}1,3B .{}1C .{}3D .∅3.已知命题:(1,2)p x ∃∈-,e 30x x --<,则p 的否定是()A .(1,2),e 30x x x ∀∈---≥B .(1,2),e 30x x x ∃∈---≥C .(1,2),e 30x x x ∀∈∉---<D .(1,2),e 30x x x ∃∉---<4.已知n S 为等差数列{}n a 的前n 项和,若1112320a a +=,则13S =()A .39B .52C .65D .785.sin10(tan 20+= ()A .tan 20°B .2tan 70°C .tan 70°D .2tan 20°6.若单位向量,a b 满足32a b += ,a b 的夹角为()A .π6B .π3C .2π3D .5π67.在数学领域中,数形结合思想是极为关键的一种思想方法,它将数的概念与几何图形的特性相融合,使抽象的数学问题更加具体,复杂的几何问题更加直观.正如我国著名数学家华罗庚教授所言:“数与形本相互依存,岂能分开?”华罗庚教授的话简洁有力地诠释了数形结合,数和形作为不可分割的统一体,彼此相互依存.已知()2),()cos f x x g x x ==,则如图表示的是()A .()()f xg x B .()()f x g x +C .()()f x g x -D .()()f xg x 8.已知()f x '是()f x 定义在()0,∞+上的导函数,同时1()()f x f x x-'<,对任意0a b >>,则必有()A .()()af b a bf a b +<+B .()()bf b b af a a -<-C .()()bf a a af b b-<-D .()()af a b bf b a+<+二、多选题9.若x ∈R ,则“22320x x --<”成立的充分不必要条件可以为()A .[1,2)x ∈-B .(0,1)x ∈C .(0,2)x ∈D .(1,1)x ∈-10.若函数21()ln 2f x ax x x x =-+在区间(0,)+∞上存在单调递减区间,则实数a 可以是()A .0B .13C .12D .111.已知函数π()cos()(0,0,)2f x A x A ωϕωϕ=+>><的部分图象如图所示,则下列命题正确的是()A .2ω=B .π3ϕ=C .()f x 在5π[,3π]2上的最小值为2-D .将函数()f x 的图象向右平移π3个单位长度得到()g x 的图象,()g x 是偶函数三、填空题12.函数3()2(0,1)x f x a x a a -=+>≠的图象恒过的定点为.13.已知π3π[,]34x ∈,函数ππ())cos 244f x x x x =+++在x θ=处取得最小值,则3πsin )2θθ++=.14.已知定义在R 上的函数()f x ,满足(3)(5)2f x f x -+-=,(22)f x +为偶函数,()f x 满足(2)2f =,则20231()i f i ==∑.四、解答题15.已知正实数,p q 为常数,且1p >,无穷数列{}n a 的各项均为正整数,且对任意正整数2n ≥,1n n a pa q -=+恒成立.(1)证明:无穷数列1n q a p ⎧⎫+⎨⎬-⎩⎭为等比数列;(2)若2p =,11a q ==,()2log 1n n b a =+,求数列{}n b 的通项公式及数列{}n b 的前n 项和n S .16.已知函数2()12x xbf x a +=+⋅,若()f x 是定义域为R 的奇函数.(1)求出函数()f x 的解析式;(2)求不等式2(1)(35)0f x f x ++-<的解集.17.在△ABC 中,角,,A B C 所对的边分别为,,,1a b c b =且sin sin sin()B c CB C a c-=+-.()a c ≠(1)求△ABC 的外接圆半径;(2)若△ABC 为锐角三角形,求△ABC 周长的取值范围.18.已知函数()1ln e x f x ax x -=++.(1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程;(2)若函数()()21ln e x h x f x x x -=++-,讨论函数()h x 的单调性.19.一个混沌系统通常用一个变量来描述其在某个特定时刻的状态,为了保持系统的不规则性和不可预测性,这个状态变量需要通过特定的数学规则进行变换,以反映系统内在的动态行为.这种变换通常涉及复杂的非线性函数,它们能够使得系统的微小变化在长时间内产生巨大的影响,这种现象被称为“蝴蝶效应”.若对于一数列{}n x 都满足1()n n x f x +=,并且2()(2)f x ax a x =-++.(1)当1a =时,对*N n ∀∈满足1()n n x f x +=,若0n x ≠,求{}n x 的通项公式;(2)当1a =-时,{}n x 不是常数列,且0n x ≠,{}n x 中是否存在连续的三项构成等差数列?若存在,请求出,若不存在,说明理由;(3)若1a =-时,12x =,21n n n x S x +=,证明:1214n S S S +++< .。
高三数学第一轮复习(1)—集合和简易逻辑
高三数学第一轮复习(1)—集合和简易逻辑第I 卷(共60分)一、选择题(本大题共12小题;每小题5分;共60分;在每小题给出的四个选项中;只有一项是符合题目要求的)1、定义}|{B x A x x B A ∉∈=-且;若}6,3,2{},5,4,3,2,1{==N M ;则N -M 等于( ) A .M B .N C .{1;4;5} D .{6}2、全集U ={x ∈N |1≤x ≤9},A ={1,3,5,7,8};则满足A ∩B ={1;3;5;7}的集合B 的个数为A . 1B . 4C . 15D . 16 ( ) 3、下列四组条件中;p 是q 的充分非必要条件是 ( )A . p :x ≠0;q :xy ≠0B . p :a >b ;q :ba 11< C . p :a =b ;q :a +b =2ab D . p :⎩⎨⎧<<<<1010b a ;q :⎩⎨⎧<-<-<+<1120b a b a4、命题“M ∩N =M 则M ⊆N ”的否命题是 ( )A . 如果M ⊆N 则M ∩N =MB . 如果M ⊆N 则M ∩N ≠MC . 如果M ∩N ≠M 则M ⊄ND . 如果M ∩N ≠M 则N ⊆M5、若非空集S ⊆{1,2,3,4,5},且若a ∈S,必有(6-a)∈S,则所有满足上述条件的集合S 共有 A .6个 B .7个 C .8个 D .9 个 ( )6、命题“若△ABC 不是等腰三角形;则它的任何两个内角不相等.”的逆否命题是( ) A .“若△ABC 是等腰三角形;则它的任何两个内角相等” B .“若△ABC 任何两个内角不相等;则它不是等腰三角形” C .“若△ABC 有两个内角相等;则它是等腰三角形”D .“若△ABC 任何两个角相等;则它是等腰三角形” 7、(05年高考天津卷)给出下列三个命题: ① 若1->≥b a ,则bba a +≥+11; ② 若正整数m 和n 满足n m ≤,则2)(n m n m ≤-; ③ 设),(11y x P 为圆9:221=+y x O 上任一点;圆2O 以),(b a Q 1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切;其中假命题的个数为 ( ) A .0 B .1 C .2 D .38、两个集合A 与B 之差记作“/A B ”定义为:/{|,}A B x x A x B =∈∉;如果集合2{|log 1,}A x x x R =<∈;集合{||2|1,}B x x x R =-<∈;那么/A B 等于 ( ) A.{|1}x x ≤ B. {|3}x x ≥ C. {|12}x x ≤< D. {|01}x x <≤ 9、已知集合M={直线的倾斜角};集合N={两条异面直线所成的角};集合P={直线与平面所成的角};则下面结论中正确的个数为 ( )① (0,]2M N P π=; ② [0,)MN P π=; ③ ()[0,]2MN P π=; ④ ()(0,)2MN P π=.A. 4B. 3C. 2D. 1 10、(06年江西)若0,0a b >>;则不等式1b a x-<<等价于 ( ) A. 10x b -<<或10x a << B. 11x a b-<<C. 1x a <-或1x b >D. 1x b <-或1x a>11、(06年山东)设1232,()log (1),x e f x x -⎧=⎨-⎩ 2.2.x x <≥;则不等式()2f x >的解集为( ) A. (1,2)(3,)+∞B. )+∞C. (1,2)(10,)+∞D. (1,2)12、(06年湖北) 有限集合S 中元素的个数记作()card S ;设A 、B 都为有限集合;给出下列命题: ① AB =∅的充要条件是()()()card A B card A card B =+;② A B ⊆的必要条件是()()card A card B ≤; ③ A B ⊄的充分条件是()()card A card B ≤; ④A B =的充要条件是()()card A card B =.其中真命题的序号是 ( )A. ③、④B. ①、②C. ①、④D. ②、③高三数学第一轮复习(1)—集合和简易逻辑姓名: 得分:第Ⅱ卷(非选择题;共90分)二、填空题(本大题共4小题;每小题4分;共16分把答案填在题中横线上)13、设集合A= {x |x 2+x -6=0};B={x |m x +1= 0};则B 是A 的真子集的一个充分不必要的条件是___ ____. 14、已知{}1(,)|3,(,)|31y A x y B x y y kx x -⎧⎫====+⎨⎬+⎩⎭;全集{}(,)|,U x y x R y R =∈∈。
高三数学一轮复习测试卷
一、选择题(每题5分,共50分)1. 下列函数中,在其定义域内是增函数的是()A. y = x^2B. y = 2^xC. y = log2(x)D. y = -x2. 已知等差数列{an}的首项为a1,公差为d,则下列等式中不正确的是()A. a1 + a2 = 2a1 + dB. a1 + a3 = 2a2C. a1 + a4 = 2a3 + dD. a1 + a5 = 2a43. 已知函数f(x) = x^3 - 3x,则f(x)的对称中心是()A. (0, 0)B. (1, -2)C. (-1, 2)D. (1, 2)4. 在三角形ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°5. 已知等比数列{bn}的首项为b1,公比为q,若b1 = 2,b3 = 8,则b5的值为()A. 16B. 32C. 64D. 1286. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像是()A. 双曲线B. 抛物线C. 直线D. 椭圆7. 在等差数列{an}中,若a1 = 3,a3 = 9,则该数列的公差d是()A. 2B. 3C. 6D. 98. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,则f(x)的极值点是()A. x = 0B. x = 1C. x = 2D. x = 39. 在三角形ABC中,若AB = AC,则下列结论正确的是()A. ∠A = ∠BB. ∠A = ∠CC. ∠B = ∠CD. ∠A = ∠B = ∠C10. 已知函数f(x) = |x - 1| + |x + 1|,则f(x)的值域是()A. [-2, 2]B. [0, 2]C. [2, +∞)D. (-∞, 2]二、填空题(每题5分,共50分)11. 已知等差数列{an}的首项为a1,公差为d,若a3 = 5,a5 = 9,则a1 =______,d = ______。
高三复习数学模拟试卷推荐
随着高考的临近,高三学子们都在紧张地复习,尤其是数学这门学科,因为数学成绩在高考中占有很大的比重。
为了帮助同学们更好地进行高三数学复习,以下是几款优秀的数学模拟试卷推荐,希望对大家的复习有所帮助。
一、汤神模拟卷汤神模拟卷以难度适中、计算量偏大而著称,特别重视对基础知识点的考察。
适合数学基础薄弱的同学刷题,或者想增强数学做题信心的同学。
同时,对于有一定基础的同学,通过做汤神模拟卷可以查漏补缺,提高解题速度。
二、宇哥模拟卷宇哥模拟卷题型新颖,适合发散思维,适合想冲击120~140分的学生。
宇哥的模拟卷题目出的比较灵活,技巧性和计算量都大,题目的综合性很强。
一个题目可以包含很多知识点和考点,因此,只要某个知识点不太清楚,这道题可能就没法做下去。
对于数学基础打的不牢固的学生,做宇哥模拟卷可能会有些困难。
不过,宇哥在微博也说过,希望大家做8套卷的时候重知识轻分数。
近两年宇哥的8套卷风格有所改变,题目难度明显下降,质量提升很多。
三、李林模拟卷李林老师的模拟卷难度一般,涵盖了所有考点,适合查缺补漏。
李林老师因押题而出名,近几年都有压中过真题。
因此,建议同学们做一做李林模拟卷,万一压中了呢?而且题目质量真的很好。
四、金太阳全国100所名校数学模拟试卷金太阳全国100所名校数学模拟试卷是2023年的最新高考模拟示范卷,适合全国各地的考生。
这套试卷由全国100所名校联合命题,题目质量高,具有很高的参考价值。
对于想要了解高考难度和题型分布的同学来说,这套试卷非常适合。
五、全国各地级市高三数学模拟试卷全国各地级市高三数学模拟试卷228套(纯word版),涵盖全国各地级市的高三数学模拟试卷。
这套试卷适合全国各地的考生,尤其是对于想要了解各地高考题型和难度的同学来说,这套试卷非常有价值。
总结:高三复习数学模拟试卷的选择对同学们的复习效果至关重要。
以上推荐的几款模拟试卷各有特点,同学们可以根据自己的实际情况选择合适的模拟试卷进行复习。
高三复习数学试题(附答案)
北
152o 122o
B
北
32 o
A
C
18.(本小题满分 14 分) 在 ABC 中, a, b, c 分别为 A, B, C 的对边,已知 a ,b,c 成等比数列, 且 a2 c2 ac bc . 求: (1)A 的大小; (2) b sin B 的值 .
c
19.(本小题满分 14 分) 某厂用甲、乙两种原料生产 A 、 B 两种产品,已知生产 1t A 产品, 1t B 产 品分别需要的甲、 乙原料数, 可获得的利润数及该厂现有原料数如下表所示. 问: 在现有原料下,
题分数 )
11.(文科选做) 等差数列 { an} 中,已知 a1 a10 12 ,那么 S10 的值是 __________.
(理科选做) 若数列 an 的前 n 项和 Sn n2 10n(n 1,2,3, ) ,则此数列的通项公式为
;数列 nan 中数值最小的项是第
项.
12. 在 ABC 中, a 3 3 , b 2 , C 150 ,则 c __________ .
高三复习数学试题
时间: 120 分钟
满分: 150 分
【一】 选择题 (本大题共 10 小题,每小题 5 分,共 50 分)
1.在 ABC 中 , 已知 a 4, b 4 3, B 600 ,则角 A 的度数为
(
)
A . 30 0
B. 45 0
C. 60 0
D. 900
2.在数列 { an} 中, a1 =1, an 1 an 2 ,则 a51 的值为
(
)
A . 99
B. 49
C.101
D. 102
4
3.已知 x 0 ,函数 y
数学高三总复习试卷
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,则f(x)的图像是:A. 上升的抛物线B. 下降的抛物线C. 双曲线D. 直线2. 下列不等式中正确的是:A. x^2 > xB. x^2 < xC. x^2 ≤ xD. x^2 ≥ x3. 已知数列{an}满足an = an-1 + 2,且a1 = 1,则数列{an}的通项公式是:A. an = 2n - 1B. an = 2nC. an = n^2 - 1D. an = n^24. 已知函数f(x) = log2(x + 1),则f(x)的值域是:A. (-∞, +∞)B. (-∞, 0)C. (0, +∞)D. (0, 1]5. 在△ABC中,a=3,b=4,c=5,则sinA的值是:A. 1/3B. 2/3C. 1/2D. 16. 下列命题中正确的是:A. 对于任意的实数x,都有x^2 ≥ 0B. 对于任意的实数x,都有x^3 ≥ 0C. 对于任意的实数x,都有x^2 + x ≥ 0D. 对于任意的实数x,都有x^2 - x ≥ 07. 已知函数f(x) = |x - 1| + |x + 1|,则f(x)的最小值是:A. 0B. 1C. 2D. 38. 在△ABC中,角A、B、C的对边分别为a、b、c,若a^2 + b^2 - c^2 = 0,则△ABC是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形9. 已知函数f(x) = ax^2 + bx + c,若f(x)在x=1时取得极值,则:A. a > 0,b > 0B. a < 0,b < 0C. a > 0,b < 0D. a < 0,b > 010. 下列函数中,在定义域内单调递增的是:A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = e^x二、填空题(每题5分,共50分)1. 若数列{an}满足an = 3an-1 - 2an-2,且a1 = 1,a2 = 2,则a3 = ________。
2023届高三数学一轮复习模拟冲刺卷(一)(含答案)
2023届高三数学一轮复习模拟冲刺卷(一)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={}x |-1≤x ≤2 ,B ={}0,2,4 ,则A ∩B =( ) A .{}0,2,4 B .{}0,2C .{}x |0≤x ≤4D .{}x |-1≤x ≤2或x =42.若复数z 满足z ()1-2i =3-i(i 为虚数单位),则复数z 的共轭复数为( ) A .1-i B .1+i C .-1-i D .-1+i3.已知一个圆锥的底面积为π,侧面积为2π,则该圆锥的体积为( )A .86 πB .46 πC .3π3D .22π34.函数y =tan ⎝⎛⎭⎫2x -π3 的单调增区间为( ) A .⎣⎡⎦⎤k π2-π12,k π2+5π12 (k ∈Z ) B .⎝⎛⎭⎫k π2-π12,k π2+5π12 (k ∈Z ) C .⎣⎡⎦⎤k π-π12,k π+5π12 (k ∈Z ) D .⎝⎛⎭⎫k π-π12,k π+5π12 (k ∈Z ) 5.已知椭圆C :x 2a 2 +y2b2 =1()a >b >0 的左、右焦点分别是F 1,F 2,直线y =kx 与椭圆C 交于A ,B 两点,||AF 1 =3||BF 1 ,且∠F 1AF 2=60°,则椭圆C 的离心率是( )A .716B .74C .916D .346.已知2cos ⎝⎛⎭⎫2α+π3sin ⎝⎛⎭⎫α+π6 =7,则cos ⎝⎛⎭⎫α-π3 =( ) A .-12 B .14 C .27 D .257.若直线y =kx +b 是曲线y =e x -2的切线,也是曲线y =e x -1的切线,则k +b =( )A .-ln 22B .1-ln 22C .ln 2-12D .ln 228.我国古代数学名著《九章算术》中有如下问题“今有北乡算八千七百五十八,西乡算七千二百三十六,南乡算八千三百五十六,凡三乡,发傜三百七十八人,欲以算数多少衰出之,问各几何?”意思是:北乡有8 758人,西乡有7 236人,南乡有8 356人,现要按人数多少从三乡共征集378人,问从各乡征集多少人?在上述问题中,需从西乡征集的人数是( )A .102B .112C .130D .136 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,A 、B 、C 、D 四地新增疑似病例数据信息如下,一定符合没有发生大规模群体感染标志的是( )A .A 地:中位数为2,极差为5B .B 地:总体平均数为2,众数为2C .C 地:总体平均数为1,总体方差大于0D .D 地:总体平均数为2,总体方差为3 10.已知向量a ,b ,c 满足a +b =()1,-1 ,a -3b =()-7,-1 ,c =()1,1 ,设a ,b 的夹角为θ,则( )A .||a =||bB .a ∥cC .θ=135°D .b ⊥c11.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,下列选项中,圆C 的面积可以是( )A .3π4B .4π5C .5π4 D .(6-25 )π12.如图所示,在正方体ABCD A 1B 1 C 1D 1中,E 是棱CC 1的中点,F 是侧面BCC 1B 1(包含边界)内的动点,且A 1F ∥平面D 1AE ,下列说法正确的是( )A .A 1F 与BE 是异面直线B .A 1F 不可能与D 1E 平行C .DF 不可能与平面AD 1E 垂直 D .三棱锥F ABD 1的体积为定值三、填空题:本题共4小题,每小题5分,共20分.13.已知m ≠0,f ()x =x e x +mxe x -m为偶函数,则m =________.14.若三个点M (3,26 ),N (2,23 ),Q (3,-26 )中恰有两个点在抛物线y 2=2px 上,则该抛物线的方程为________.15.已知f ()x =e x ,g ()x =x 2e x ,若存在实数x 1,x 2满足f ()x 1 =g ()x 2 ,则x 1x 2的最大值为________.16.任取一个正整数m ,若m 是奇数,就将该数乘3再加上1;若m 是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1,这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等),若m =5,则经过________次步骤后变成1;若第5次步骤后变成1,则m 的可能值之和为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知公差不为0的等差数列{}a n 的前3项和S 3=9,且a 1,a 2,a 5成等比数列.(1)求数列{}a n 的通项公式;(2)设T n 为数列{(-1)n a n }的前n 项和,求T 100.18.(12分)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为A 级时,产品为一等品;第三工序的加工结果为A 级,且第一、第二工序至少有一道工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:(1)用η(2)因第一工序加工结果为A 级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加x (0≤x ≤4)万元(即每件产品利润相应减少x 万元)时,第一工序加工结果为A 级的概率增加19x .问该改良方案对一件产品利润的期望是否会产生影响?并说明理由.19.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .C =π3,AB 边上的高为3 .(1)若S △ABC =23 ,求△ABC 的周长;(2)求2a +1b 的最大值.20.(12分)如图,三棱柱ABC A 1B 1C 1中,AA 1=AB =3,BC =2,E ,P 分别是B 1C 1和CC 1的中点,点F 在棱A 1B 1上,且B 1F =2.(1)证明:A 1P ∥平面EFC ;(2)若AA 1⊥底面ABC ,AB ⊥BC ,求二面角P CF E 的余弦值.21.(12分)双曲线C 2:x 2a 2 -y 2b 2 =1()a >0,b >0 的顶点与椭圆C 1:x 23+y 2=1长轴的两个端点重合,且一条渐近线的方程为y =33x . (1)求双曲线C 2的方程;(2)过双曲线C 2右焦点F 作直线l 1与C 2分别交于左右两支上的点P ,Q ,又过原点O 作直线l 2,使l 2∥l 1,且与双曲线C 2分别交于左右两支上的点M ,N .是否存在定值λ,使得||MN →·MN → =λPQ → ?若存在,请求λ的值;若不存在,请说明理由.22.(12分)已知函数f (x )=2ax -ln x ,其中a ∈R . (1)讨论函数f ()x 的单调性; (2)当a >0时,若x 1,x 2()0<x 1<x 2 满足f ()x 1 =f ()x 2 ,证明:f ()2ax 1 +f ()2ax 2 >4a 2()x 1+x 2 .答案1.答案:B解析:集合B 中的元素在区间[-1,2]内的只有0,2,所以A ∩B ={0,2}.故选B. 2.答案:A解析:∵z ()1-2i =3-i ,∴z =3-i1-2i =()3-i ()1+2i ()1-2i ()1+2i =5+5i 5 =1+i ,∴复数z的共轭复数为1-i.故选A.3.答案:C解析:设圆锥的底面半径、高、母线长分别为r ,h ,l ,则⎩⎪⎨⎪⎧πr 2=π,πrl =2π, 解得⎩⎪⎨⎪⎧r =1,l =2.所以h =3 . 圆锥的体积V =13 Sh =13 ×π×12×3 =3π3 ,故选C.4.答案:B解析:因为函数y =tan x 的单调递增区间为⎝⎛⎭⎫k π-π2,k π+π2 (k ∈Z ),所以k π-π2<2x -π3 <k π+π2 ,(k ∈Z ),解得k π2 -π12 <x <k π2 +5π12,(k ∈Z ),所以函数y =tan ⎝⎛⎭⎫2x -π3 的单调增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12 (k ∈Z ).故选B.5.答案:B解析:由椭圆的对称性,得||AF 2 =||BF 1 .设||AF 2 =m ,则||AF 1 =3m .由椭圆的定义,知||AF 1 +||AF 2 =2a ,即m +3m =2a ,解得m =a 2 ,故||AF 1 =3a 2 ,||AF 2 =a2.在△AF 1F 2中,由余弦定理,得||F 1F 2 2=||AF 1 2+||AF 2 2-2||AF 1 ||AF 2 cos ∠F 1AF 2,即4c 2=9a 24 +a 24 -2×3a 2 ×a 2 ×12 =7a 24 ,则e 2=c 2a 2 =716 ,故e =74.故选B. 6.答案:B解析:∵cos ⎝⎛⎭⎫2α+π3 =1-2sin 2⎝⎛⎭⎫α+π6 ,2cos ⎝⎛⎭⎫2α+π3sin ⎝⎛⎭⎫α+π6 =7, 即得2⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫α+π6 =7sin ⎝⎛⎭⎫α+π6 , 化简得⎣⎡⎦⎤4sin ⎝⎛⎭⎫α+π6-1 ⎣⎡⎦⎤sin ⎝⎛⎭⎫α+π6+2 =0, ∵sin ⎝⎛⎭⎫α+π6 ∈[]-1,1 ,∴sin ⎝⎛⎭⎫α+π6 =14, ∴cos ⎝⎛⎭⎫α-π3 =cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-π2 =sin ⎝⎛⎭⎫α+π6 =14 .故选B.7.答案:D解析:设曲线y =e x -2上的点P (x 1,y 1),y ′=e x -2,k 1=e x 1-2; 曲线y =e x -1上的点Q (x 2,y 2),y ′=e x ,k 2=e x 2; ∴l 1:y =e x 1-2x +e x 1-2-x 1e x 1-2, ∴l 2:y =e x 2x +e x 2-1-x 2e x 2∴⎩⎪⎨⎪⎧e x 1-2=e x 2,e x 1-2-x 1e x 1-2=e x 2-x 2e x 2-1, ∴x 2=-ln 2,∴k +b =e x 2+e x 2-1-x 2e x 2=12 +12 -1-(-ln 2)12 =ln 22 .故选D.8.答案:B解析:由题意得,三乡总人数为8 758+7 236+8 356=24 350.∵共征集378人,∴需从西乡征集的人数是7 23624 350 ×378≈112,故选B.9.答案:AD解析:对A ,因为甲地中位数为2,极差为5,故最大值不会大于2+5=7.故A 正确.对B ,若乙地过去10日分别为0,0,0,2,2,2,2,2,2,8则满足总体平均数为2,众数为2,但不满足每天新增疑似病例不超过7人,故B 错误.对C ,若丙地过去10日分别为0,0,0,0,0,0,0,0,1,9,则满足总体平均数为1,总体方差大于0, 但不满足每天新增疑似病例不超过7人,故C 错误.对D ,利用反证法,若至少有一天疑似病例超过7人,则方差大于110×()8-2 2=3.6>3.与题设矛盾,故连续10天,每天新增疑似病例不超过7人.故D 正确.故选AD.10.答案:BC解析:∵a +b =()1,-1 ,a -3b =()-7,-1 ,∴a =()-1,-1 ,b =()2,0 ,得||a =()-12+()-12=2 ,||b =2,故A错误;又c =()1,1 ,则a =-c ,则a ∥c ,故B 正确; cos θ=a ·b ||a ·||b =-222=-22 ,又θ∈[]0°,180° ,∴θ=135°,故C 正确;∵b ·c =2×1+0×1=2≠0,∴b 与c 不垂直,故D 错误.故选BC. 11.答案:BCD解析:因为AB 为直径,∠AOB =90°,(其中O 为坐标原点),所以点O 在圆C 上,由O 向直线2x +y -4=0作垂线,垂足为D ,则当D 恰为圆C 与直线2x +y -4=0的切点时,圆C 的半径最小, 此时圆的直径为点O (0,0)到直线2x +y -4=0的距离d =||-422+12=455 ,此时圆的半径为r =12 d =255 ,所以圆C 面积的最小值为S min =πr 2=π·⎝⎛⎭⎫255 2=4π5 .又3π4 <4π5 ,故A 错误;(6-25 )π>4π5 ,5π4 >4π5,故BCD 正确.故选BCD. 12.答案:ACD 解析:取BB 1,B 1C 1的中点N ,M ,连接A 1M ,A 1N ,MN ,BC 1,则A 1N ∥D 1E ,MN ∥BC 1∥AD 1, 又A 1N ⊂平面A 1MN ,MN ⊂平面A 1MN ,A 1N ∩MN =N ,D 1E ⊂平面AD 1E ,AD 1⊂平面AD 1E ,所以平面A 1MN ∥平面AD 1E ,又A 1F ∥平面D 1AE ,A 1F ⊂平面A 1MN ,所以点F 的轨迹是线段MN ,对于A :因为MN ∥BC 1,所以点F 一定不在BC 1上,所以A 1F 与BE 是异面直线,故A 正确;对于B :当点F 与点N 重合时,A 1F ∥D 1E ,故B 不正确;对于C :因为点F 的轨迹是线段MN ,又正方体中DB 1⊥平面AD 1E ,若DF ⊥平面AD 1E , 则DB 1∥DF ,这显然不可能,所以DF 不可能与平面AD 1E 垂直,故C 正确; 对于D :因为MN ∥AD 1,AD 1⊂平面ABD 1,MN ⊄平面ABD 1,所以MN ∥平面ABD 1, 所以点F 到平面ABD 1的距离是定值,所以三棱锥F ABD 1的体积为定值,故D 正确,故选ACD.13.答案:±1解析:因为f ()x 是偶函数,所以f ()-x =f ()x ,即x ()e x +m e x -m=-x ()e-x +me -x -m,解得m 2=1,即m =±1. 14.答案:y 2=8x解析:由抛物线的对称性知:M (3,26 ),Q (3,-26 )在y 2=2px 上, ∴6p =24,可得p =4,即抛物线的方程为y 2=8x .15.答案:2-ee解析:∵g ()x 2 =x 22 e x 2 =e2ln x 2-x 2=f ()2ln x 2-x 2 =f ()x 1 ,且f (x )=e x 在R 上单调递增,∴x 1=2ln x 2-x 2,x 1x 2 =2·ln x 2x 2-1.设h (x )=ln xx ,则h ′(x )=1-ln x x 2,当x ∈(0,e)时,h ′(x )>0;当x ∈(e ,+∞)时,h ′(x )<0. ∴h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴h (x )max =h (e)=1e ,∴⎝⎛⎭⎫x 1x 2 max =2-e e .16.答案:5 41解析:当m =5时,a 1=5,a 2=5×3+1=16,a 3=8,a 4=4,a 5=2,a 6=1,所以需5次步骤后变成1;若第5次步骤后变成1,则a 6=1,a 5=2,a 4=4,a 3=8或1 ,当a 3=8,a 2=16,a 1=32或a 1=5;当a 3=1时,a 2=2,a 1=4,所以m 的可能值是{}4,5,32 ,m 的可能值的和是4+5+32=41. 17.解析:(1)设等差数列{}a n 公差为d 且不为0,因为等差数列{}a n 的前3项和S 3=9,且a 1,a 2,a 5成等比数列.所以⎩⎪⎨⎪⎧a 1+a 2+a 3=9,a 22 =a 1a 5,整理得⎩⎪⎨⎪⎧3a 1+3d =9,()a 1+d 2=a 1·()a 1+4d ,解得:d =2或0(0舍去), 故a 1=1,所以a n =1+2n -2=2n -1. (2)由(1)知b n =(-1)n ·(2n -1),所以T 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100. 18.解析:(1)由题意可知:η的可能取值为23,8,5 产品为一等品的概率为:0.5×0.75×0.8=0.3, 产品为二等品的概率为:(1-0.5×0.75)×0.8=0.5, 产品为三等品的概率为:1-0.3-0.5=0.2, 所以η的分布列为E (η)=23×0.3+8×0.5+5×0.2=11.9.(2)改良方案对一件产品的利润的期望不会产生影响,理由如下:由题意可知:改良过程中,每件产品检测成本增加x (0≤x ≤4)万元,第一工序加工结果为A 级的概率增加19x ,设改良后一件产品的利润为ξ,则ξ可能的取值为23-x ,8-x ,5-x所以一等品的概率为⎝⎛⎭⎫0.5+19x ×0.75×0.8=0.3+x15, 二等品的概率为:⎣⎡⎦⎤1-⎝⎛⎭⎫0.5+x 9×0.75 ×0.8=0.5-x 15, 三等品的概率为:1-⎝⎛⎭⎫0.3+x 15 -⎝⎛⎭⎫0.5-x15 =0.2, 所以E (ξ)=⎝⎛⎭⎫0.3+x 15 (23-x )+⎝⎛⎭⎫0.5-x15 (8-x )+0.2×(5-x ) =6.9-0.3x +2315 x -115 x 2+4-0.5x -815 x +115 x 2+1-0.2x =11.9,因为E (ξ)=E (η),所以改良方案对一件产品的利润的期望不会产生影响.19.解析:(1)依题意S △ABC =12 ab sin C =12c ·3 =23 ,可得c =4,因为C =π3 ,所以ab =8.由余弦定理得a 2+b 2-ab =c 2,因此(a +b )2=c 2+3ab =40,即a +b =210 . 故△ABC 的周长为210 +4. (2)由(1)及正弦定理可得,2a +1b =2b +a ab =2b +a 2c =2sin B +sin A 3 =2sin ⎝⎛⎭⎫2π3-A +sin A 3 =7sin (A +θ)3,(其中θ为锐角,且tan θ=32 )由题意可知0<A <2π3 ,因此,当A +θ=π2 时,2a +1b 取得最大值213.20.解析:(1)证明:如图,连接PB 1交CE 于点D ,连接DF ,EP ,CB 1. 因为E ,P 分别是B 1C 1和CC 1的中点,故EP 綊12 CB 1,故PD DB 1 =12.又B 1F =2,A 1B 1=3,故A 1F FB 1 =12,故FD ∥A 1P .又FD ⊂平面EFC 且A 1P ⊄平面EFC ,所以A 1P ∥平面EFC .(2)由题意知AB ,BC ,BB 1两两垂直,以B 为坐标原点,以BB 1的方向为z 轴正方向,分别以BA ,BC 为x 轴和y 轴的正方向,建立如图所示空间直角坐标系B xyz .则C ()0,2,0 ,B 1()0,0,3 ,F ()2,0,3 ,E ()0,1,3 ,P ⎝⎛⎭⎫0,2,32 . 设n =()x 1,y 1,z 1 为平面EFC 的法向量,则⎩⎪⎨⎪⎧n ·EF →=0,n ·EC →=0, 即⎩⎪⎨⎪⎧2x 1-y 1=0y 1-3z 1=0 ,可取n =⎝⎛⎭⎫32,3,1 . 设m =()x 2,y 2,z 2 为平面PFC 的法向量,则⎩⎪⎨⎪⎧m ·PF →=0,m ·PC →=0 ,即⎩⎨⎧2x 2-2y 2+32z 2=0,-32z 2=0, 可取m =()1,1,0 .所以cos 〈n ,m 〉=n·m||n ||m =32+3⎝⎛⎭⎫322+9+1×1+1=9214 . 由题意知二面角P CF E 为锐角,所以二面角P CF E 的余弦值为9214.21.解析:(1)由椭圆C 1:x 23 +y 2=1得到:a =3 ,双曲线的渐近线方程为y =33 x ,得到:b a =33,解得:b =1.则双曲线C 2的方程x23-y 2=1.(2)若存在定值λ,使得||MN → ·MN → =λPQ → ,∵MN → 与PQ →同向,∴λ=||MN →2||PQ → ,∵F ()2,0 ,设l 1:x =ty +2,由⎩⎪⎨⎪⎧x =ty +2x 2-3y 2=3 消去x 整理得:()t 2-3 y 2+4ty +1=0,∴⎩⎪⎨⎪⎧y 1+y 2=-4tt 2-3y 1y 2=1t 2-3 ,由l 1交C 2左右两支于P 、Q 两点,有⎩⎨⎧t 2-3≠016t 2-4()t 2-3>0x 1x 2<0,即⎩⎪⎨⎪⎧t 2-3≠0()ty 1+2()ty 2+2<0,则t 2-3>0,||PQ → =1+t 2 ||y 1-y 2 =1+t 2 ()y 1+y 22-4y 1y 2 =1+t 2 ⎝ ⎛⎭⎪⎫-4t t 2-32-4t 2-3 =23()t 2+1t 2-3 ,由于l 2∥l 1,可设l 2:x =ty ,由⎩⎪⎨⎪⎧x =ty x 2-3y 2=3消去x 整理得:()t 2-3 y 2=3,∴y 2=3t 2-3, 由此||MN → 2 =()1+t 2||y -()-y 2 =()1+t 2 ·4y 2=12()1+t 2t 2-3 , ∴λ=||MN →2||PQ → =23 ,故存在定值λ=23 ,使得||MN → ·MN → =λPQ → . 22.解析:(1)函数f ()x 的定义域为()0,+∞ ,f ′(x )=2ax -1x . ①当a ≤0时,则当x ∈()0,+∞ 时,f ′()x ≤0恒成立, ∴f ()x 在()0,+∞ 上单调递减,无单调递增区间;②当a >0时,则由f ′()x =0得x =12a, ∴当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0; 当x ∈⎝⎛⎭⎫12a ,+∞ 时,f ′()x >0.∴f ()x 在⎝⎛⎭⎫0,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞ 上单调递增, 综上所述,当a ≤0时,f ()x 在()0,+∞ 上单调递减,无单调递增区间;当a >0时,f ()x 在⎝⎛⎭⎫0,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞ 上单调递增. (2)f (x )=2ax -ln x (x >0).∵x 1,x 2()0<x 1<x 2 满足f ()x 1 =f ()x 2 ,∴2ax 1-ln x 1=2ax 2-ln x 2,即ln x 1-ln x 2x 1-x 2 =2a , 欲证f ()2ax 1 +f ()2ax 2 >4a 2()x 1+x 2 ,即证ln ()2ax 1 +ln ()2ax 2 <0,即证x 1x 2<14a 2 ,又a >0,0<x 1<x 2,即证x 1x 2 <12a, 亦证x 1x 2 <x 1-x 2ln x 1-ln x 2 ,即ln x 1x 2 -x 1-x 2x 1x 2>0 即证2ln x 1x 2 + x 2x 1 - x 1x 2 >0, ∵0<x 1<x 2,设x 1x 2 =t (0<t <1),即证2ln t +1t-t >0. 设h (t )=2ln t +1t -t (0<t <1). ∵h ′(t )=2t -1t 2 -1=-(t -1)2t 2 <0在t ∈()0,1 上恒成立, ∴h ()t 在()0,1 上单调递减, ∴h (t )>h (1)=0.∴2ln t +1t-t >0. 即f ()2ax 1 +f ()2ax 2 >4a 2()x 1+x 2 成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三复试数学试卷
一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答.题.卡. 相.应.位.置.上..
1.已知集合 A = {-1, 0, 2} , B = {-1,1, 2} ,则 A B = .
2. 已知复数 z 满足(1 + i ) z = 2i ,其中i 是虚数单位,则 z 的模为
.
3. 某校高三数学组有 5 名党员教师,他们一天中在“学习强国”平台上的学习积
分依次为 35,35,41,38,51,则这 5 名党员教师学习积分的平均值为
.
4. 根据如图所示的伪代码,输出的a 的值为
.
5. 已知等差数列{a } 的公差d 不为 0,且a ,a ,a 成等比数列,则 a 1
n
的值为 .
1 2 4 d
6. 将一枚质地均匀的硬币先后抛掷 3 次,则恰好出现 2 次正面向上的
概率为 .
7. 在正三棱柱 ABC - A 1 B 1C 1 中, AA 1 = AB = 2 ,则三棱锥 A 1 - BB 1C 1 的体积为
.
8. 已知函数 f (x ) = sin(ωx - π 3
(ω> 0) ,若当 x = π时,函数 f (x ) 取得最大值,则ω的
6
最小值为 .
9. 已知函数 f (x ) = (m - 2)x 2 + (m - 8)x (m ∈ R ) 是奇函数,若对于任意的 x ∈ R ,关于 x
的不等式 f (x 2 +1) < f (a ) 恒成立,则实数a 的取值范围是 .
10. 在平面直角坐标系 xOy 中,已知点 A , B 分别在双曲线C : x 2 - y 2 = 1 的两条渐近
线上,且双曲线 C 经过线段 AB 的中点,若点 A 的横坐标为 2,则点 B 的横坐标为
.
11. 尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,
例如.地震时释放出的能量 E (单位:焦耳)与地震里氏震级 M 之间的关系为
lg E = 4.8 + 1.5M .2008 年 5 月汶川发生里氏 8.0 级地震,它释放出来的能量是 2019
年 6 月四川长宁发生里氏 6.0 级地震释放出来能量的 倍.
12. 已知∆ABC 的面积为 3,且 AB = AC ,若CD = 2DA ,则 BD 的最小值为
.
)
13.在平面直角坐标系xOy 中,已知圆C : x2 +y2 = 8 与圆C : x2 +y2 + 2x +y -a = 0 相
1 2
上存在点P ,使得∆ABP 为等腰直角三角形,则实数a 的值交于A, B 两点,若圆C
1
组成的集合为.
⎧|| x -1| -1|, x ≥ 0
14.已知函数f (x) =⎪x,若关于x 的方程 f 2 (x) + 2af (x) + 1 -a2 = 0 有五个
⎨
, x <0
⎩x - 1
不相等的实数根,则实数a 的取值范围是.
二、解答题:本大题共 6 小题,共计 90 分.请在答.题.卡.指.定.区.域.内作答.解答
时应写出文字说明、证明过程或演算步骤
15.(本小题满分 14 分)
如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,PC ⊥AB ,D, E 分别为BC, AC 的中点.
求证:(1)AB∥平面PDE;
(2)平面PAB ⊥平面PAC .
16.(本小题满分 14 分)
在∆ABC 中,已知AC = 4 ,BC = 3 ,cos B =-1 .
4
(1)求sin A 的值.
(2)求BA ⋅BC 的值.
2 b 0) 17.
(本小题满分 14 分)
如图,在平面直角坐标系 xOy 中,椭圆 E : x a 2
+ y 2
= 1 (a > > 的焦距为 4
,两条准线 b
间的距离为 8,A ,B 分别为椭圆 E 的左、右顶点。
(1)求椭圆 E 的标准方程:
(2)已知图中四边形 ABCD 是矩形,且 BC =4,点 M ,N 分别在边 BC ,CD 上,AM 与 BN 相交于第一象限内的点 P .
①若 M ,N 分别是 BC ,CD 的中点,证明:点 P 在椭圆 E 上; ②若点 P 在椭圆 E 上,证明:
BM
为定值,并求出该定值.
CN
18.(本小题满分 16 分)
在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转,如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为a 的正三角形
ABC 绕其中心 O 逆时针旋转 θ 到三角形 A B C , 且 θ∈(0, 2π
顺次连结
A ,A 1,
B ,B 1,
C ,C 1,A ,得到六边形徽标 AA 1BB 1CC 1.
(1) 当θ= π
时,求六边形徽标的面积;
6
(2) 求六边形微标的周长的最大值.
1 1 1
3 )
2
19.(本小题满分 16 分)
已知数列{a n } 满足: a 1 = 1 ,且当n ≥ 2 时, a n = λ
a n -1 +
(1)若λ= 1 ,证明:数列{a 2n -1} 是等差数列; (2)若λ= 2 .
1 - (-1)n
2
(λ∈ R ) . ①设b = a + 2
,求数列{b } 的通项公式;
n 2n
3
n
②设C = 1 ∑2n
a ,证明:对于任意的 p , m ∈ N * ,当 p > m ,都有C ≥ C . n n ⋅ 3n
i p m i -1
20.(本小题满分 16 分)
设函数 f (x ) = (ax - 1
- a )e x (a ∈ R ) ,其中e 为自然对数的底数.
x (1) 当a = 0 时,求函数 f (x ) 的单调减区间;
(2) 已知函数 f (x ) 的导函数 f '(x ) 有三个零点 x 1 , x 2 , x 3 (x 1 < x 2 < x 3 ) .
①求a 的取值范围;
②若m 1 , m 2 (m 1 < m 2 ) 是函数 f (x ) 的两个零点,证明: x 1 < m 1 < x 1 + 1 .
1 2 b ⎨ t
⎩ 附加题(40 分)
21.【选做题】本题包含 A 、B 、C 小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分,解答应写出文字说明、证明过程或演算步骤. A .[选修 4—2:矩阵与变换] (本小题满分 10 分)
已知a , b ∈ R ,向量 ⎡2⎤ 是矩阵 A = ⎡2 a ⎤
的属于特征值 3 的一个特征向量. α= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣
⎦
(1) 求矩阵 A ;
(2) 若点 P 在矩阵 A 对应的变换作用下得到点 P '(2, 2) ,求点 P 的坐标.
B .[选修 4—4:坐标系与参数方程] (本小题满分 10 分)
⎧x = -3 在平面直角坐标系 xOy 中,已知直线l 的参数方程⎪
y = -
+ t ( t 为参数),椭圆
C 的参数方程为⎧x = 2 cos θ
θ ⎩⎪ 2
C P l
⎨ y = sin θ (
为参数),求椭圆 上的点 到直线 的距离的最大
值.
C .[选修 4—5:不等式选讲] (本小题满分 10 分)
已知a ,b , c 都是正实数,且 1 + 1 + 1
= 1 . a b c
证明:(1) abc ≥ 27 ;
(2) b + c + a
a 2
b 2 c
2 ≥ 1 .
2
⎨0, X 为偶数
第 22 题、第 23 题,每题 10 分,共计 20 分,请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
22.(本小题满分 10 分)
如图,在直四棱柱 ABCD - A 1 B 1C 1 D 1 中,AD ∥BC ,AB ⊥ AD ,AB = AD = AA 1 = 2BC = 2 .
(1) 求二面角C 1 - B 1C - D 1 的余弦值;
(2) 若点 P 为棱 AD 的中点,点Q 在棱 AB 上,且直线 B 1C 与平面 B 1 PQ 所成角的
正弦值为
4 5
,求 AQ 的长. 15
23.(本小题满分 10 分)
一只口袋装有形状、大小完全相同的 5 只小球,其中红球、黄球、绿球、黑球、白球各 1 只.现从口袋中先后有放回地取球2n 次(n ∈ N *) ,且每次取 1 只球.
(1) 当n = 3 时,求恰好取到 3 次红球的概率;
(2) 随机变量 X 表示2n 次取球中取到红球的次数,随机变量Y = ⎧ X , X 为奇数,
⎩
求Y 的数学期望(用n 表示).。