小学数学应用题类型汇总

合集下载

小学数学应用题21种类型总结

小学数学应用题21种类型总结

小学数学应用题21种类型总结以下是一些小学数学常见的应用题类型总结:1. 长度问题:例如给出一段线段的长度,计算另一段线段的长度。

2. 运算问题:例如给出一组数字,进行加减乘除运算。

3. 相等问题:例如给出一组数字,找出相等的数字,或者给出几个相等的数字,找出缺失的数字。

4. 比较问题:例如给出两个数,比较大小或者找出其中较大/较小的数。

5. 分配问题:例如将一组物品平均分配给一些人,计算每个人能分到多少。

6. 比例问题:例如给出一组物品的比例关系,计算另一组物品的数量。

7. 时钟问题:例如给出时钟的时间,计算经过一段时间后的时间。

8. 面积问题:例如给出一个图形的面积,计算另一个图形的面积。

9. 体积问题:例如给出一个物体的体积,计算另一个物体的体积。

10. 距离问题:例如给出两个地点之间的距离,计算另两个地点之间的距离。

11. 速度问题:例如给出一个物体的速度和时间,计算它经过的距离。

12. 天气问题:例如给出一些天气数据,计算平均温度或者最高/最低温度。

13. 日期问题:例如给出一个日期,计算几天后/几天前的日期。

14. 货币问题:例如给出一些货币的面值和数量,计算总价值。

15. 数字问题:例如给出一些数字,按照一定规则进行排列或者解码。

16. 数列问题:例如给出一些数字,找出它们的规律或者下一个数字。

17. 百分比问题:例如给出一个数,计算它的百分之几或者多少是另一个数的百分之几。

18. 逻辑问题:例如给出一些条件,判断哪些条件成立或者给出一些条件,判断是否满足某个条件。

19. 单位换算问题:例如给出一个单位的数量,将它转换为另一个单位的数量。

20. 几何问题:例如给出一个图形的属性,计算另一个图形的属性。

21. 拼图问题:例如给出一些形状的拼图,找出缺失的形状。

小学数学常考的10种应用题类型_考前必看

小学数学常考的10种应用题类型_考前必看

小学数学常考的10种应用题类型_考前必看今天小编给大家带来小学数学常考的10种应用题类型,希望可以帮助到大家。

一、归一问题1.含义在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

2.数量关系总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数3.解题思路和方法先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

二、归总问题1.含义解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

小学数学应用题种类型类

小学数学应用题种类型类

小学数学应用题种类型类Company number【1089WT-1898YT-1W8CB-9UUT-92108】小学数学应用题的21种类型类,讲解详细,内容全面,例题经典1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱解(1)买1支铅笔多少钱0.6÷5=0.12(元)(2)买16支铅笔需要多少钱0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套解(1)这批布总共有多少米3.2×791=2531.2(米)(2)现在可以做多少套2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。

3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

三年级数学上册应用题七大类型重点考点

三年级数学上册应用题七大类型重点考点

一、加减法两步计算应用题例:红领巾小学三年级有男生257人,女生235人,已经体检身体的有387人,没有体检的有多少人?257+235-387=105(人)答:没有体检的有105人。

二、乘加乘减两步计算应用题例:红星小学三年级的同学乘四辆汽车去春游,前3辆车各坐68个同学,第4辆车坐74人,这次春游一共去了多少人?68×3+74=278(人)答:这次春游一共去了278人。

三、连乘两步计算应用题例:书法小组有6个同学,每人每天写24个大字照这样计算,一星期,这个书法小组共写多少个大字?一星期=7天24×6×7=1008 (个)答:这个书法小组共写1008个大字。

四、比较问题应用题例:一篇文章600字,小芳的爸爸平均每分钟能打67字,9分钟能打完吗?67×9=603(字) 603字>600字答:能打完。

五、长方形、正方形的周长例:一个长方形的周长与边长是9厘米的正方形周长相等,长方形的长14厘米,这个长方形的宽是多少?4x9=36(厘米)36-14×2=8 (厘米)8÷2=4(厘米)答:这个长方形的宽是4厘米。

六、有余数的除法应用题例:一根绳子长25米,先剪下10米,剩下的每两米做一根短跳绳。

可以做多少根短跳绳,还剩多少米?(25-10)÷2=7(根)……1(米)答:可以做7根跳绳,剩1米。

七、含有倍数条件的应用题例:一根绳子的5倍是45米,一根铁丝是这根绳子的7倍。

这根铁丝长多少米?(45÷5)×7=63(米)答:这根铁丝长63米。

小学数学应用题的类型

小学数学应用题的类型

小学数学应用题的类型
一、 工程问题。

一项工程,甲队单独做比乙队单独做少用5天完成,如果两队和做,6天可以完成,若两队单独完成这项工程,各需要多少天完成?
二、 百分数问题。

一仓库有合肥500袋,第一次运出了
51,第二次运出了 4
1,第三次运出了剩下的51,第四次运出了第三次的 107,现在仓库还剩多少袋? 三、 行程问题。

从甲城到乙城有一条铁路,客车行完全程需要5小时,货车行完全程需要7小时,现在货车从甲城开出1小时后,客车从乙城相对开出,相遇时,客车行了多少小时?
四、 比例问题。

小王身高1.68米,他站在阳光下影长是身高的一半,这时一棵树的影长是小王身高的4倍,这棵树高多少米?
五、 农药配制。

需要制成含纯酸80℅的溶液60千克,应取分别含纯酸85℅和75℅的溶液各多少千克?
六、 按比分配。

某厂制造机器零件558个,按 21、52、7
3的比分给甲、乙、丙三个工人来做,每个工人制造零件多少个?
七、 盈亏问题。

某学校种植树苗,每人种7棵剩7棵,每人种9棵缺9棵,问:种植多少棵树?参加多少人?
八、最大公约数与最小公倍数。

有三根绳子,分别长18米、24米、36米,把他们分成每段相等的份数,每段最多多少米?
九、百分数应用题。

新华书店运进3600本儿童读物,第一天卖出540本,第二天卖的是第一天的3倍还多180本,剩余的第三天全部卖完,每天各卖了百分之几?
十、通过问题。

一列火车全长80米,每分钟行50米,问:列车全部通过420米的大桥,需要多少分钟?
中牟县谢庄乡王庄小学教师台德成
1988年11月25日。

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

小学数学应用题13种类型解题方法

小学数学应用题13种类型解题方法

小学数学应用题13种类型解题方法
以下是小学数学应用题13种类型解题方法:
1. 对等关系类型:确定两个物品或人物之间的对等关系,例如“如果一个苹果的重量是1斤,那么两个苹果的重量是多少?”
2. 比例关系类型:确定两个或多个物品或人物之间的比例关系,例如“一个篮球场长50米,那么120米长的篮球场需要多大?”
3. 增减关系类型:确定两个物品或人物之间的增减关系,例如“小明有30元钱,买了一杯奶茶,还剩多少钱?”
4. 总量平均数类型:确定总量和平均数之间的关系,例如“班里有30个同学,平均每人有8本书,那么班里一共有多少本书?”
5. 比价关系类型:确定两个物品或服务之间的价值比较,例如“一瓶可乐比一瓶雪碧贵3元,一瓶雪碧多少钱?”
6. 时间关系类型:确定时间之间的关系,例如“如果8点钟开始读书,读完4个小时,那么读书到几点钟?”
7. 容量类型:确定两个容器之间的关系,例如“一杯水有200ml,那么3杯水有多少毫升?”
8. 多项式类型:确定多项式之间的关系,例如“如果5x+2=17,那么x=多少?”
9. 周长关系类型:确定周长之间的关系,例如“一个正方形的周长是48cm,那么它的面积是多少?”10. 面积类型:确定两个或多个图形面积之间的关系,例如“一个长方形的长是8cm,宽是6cm,它的面积是多少?”
11. 相似关系类型:确定两个或多个图形之间的相似关系,例如“如果两个三角形相似,其中一个三角形的底是5cm,那么另一个三角形的底是多少?”12. 倍数类型:确定两个物品或人物之间的倍数关系,例如“5个苹果的价格是25元,那么一个苹果的价格是多少?”
13. 百分比类型:确定一个数值的百分比,例如“如果一个物品原价是120元,打8折后的价格是多少?”。

小学数学所有应用题类型归类以及习题。

小学数学所有应用题类型归类以及习题。

应用题一.简单应用题1.求和例子1. 苗圃力有月季花150盆,菊花200盆,这两种花共有多少盆?例子2. 小明有7本图书,小方比小明多8本,小方有多少本图书?2.求差例子1. 车库里有21辆汽车,开出去了6辆汽车,车库里还有多少辆汽车?例子2. 芳芳的数学考试成绩是95分,语文考试成绩是88分,语文考试的成绩比数学考试成绩多多少分?例子3 小樱有35元钱,用了9元后,她余下的钱数和小惠的一样多,小惠有多少钱?3.求积例子1. 二班的同学排成6行做早操,每行的人数相同,都是8个同学,二班共有多少学生?例子2. 学校图书馆有音乐类图书56本,教育类图书是音乐类图书的2倍,文学类图书是教育类图书的3倍,学校图书馆有文学类图书多少本?4.求商例子1. 王大伯种了3200平方米水稻,共收获稻谷4160千克,平均每平方千米收获稻谷多少千克?例子2. 商店运来240千克苹果,要把它们装在木箱里,每个木箱只能装12千克,要用多少个这样的木箱才能把苹果装完?例子3.草地上有小白兔25只,小灰兔5只,小白兔的数量是小灰兔的多少倍?例子4.果园里有荔枝树1575棵,是芒果树的3.5倍,芒果树有多少棵?二.复合应用题例子1.工人王师傅过去制造一个零件要20分钟,由于进行了技术改造,现在只要8分钟。

过去每天能制造24个零件,现在每天能制造多少个零件?例子2.水果店运来梨子8筐,苹果5筐。

每筐苹果比每筐梨子重2千克,但运来的苹果比梨子少11千克。

求每筐梨子重多少千克?三.分数百分数应用题1.某车间有工人50人,其中男工人占全车间人数的几分之几?剩下的女工人又占车间的几分之几?2.渡口小学有学生200人,其中2/5的学生已评为十星学生。

这个学校的十星学生有多少?3.一部动画片的胶片长960米,放映这部动画片的3/8刚好用了12分钟,照这样的速度,放映完这部动画片还要多少分钟?4.运来红砖40000块,第一次用去总数的2/5,第二次用去总数的30%,两次一共用去多少红砖,还剩下多少红砖?5.小王把10000元存入银行,存期三年,年利率是5.4%。

小学五年级数学应用题类型有哪些

小学五年级数学应用题类型有哪些

小学五年级数学应用题类型一、整数应用题整数应用题涉及正整数、零和负整数的加减乘除运算。

在小学五年级中,整数应用题常常涉及温度变化、海拔高度、资产负债等实际情境。

示例:1.小明去年考试成绩为80分,今年进步了15%,今年的考试成绩是多少?2.从上海到北京的航班起飞时气温是15℃,到达北京时气温下降了9℃,到达北京时的气温是多少?二、面积和周长应用题面积和周长应用题主要涉及图形的边长、面积和周长的计算,包括矩形、正方形、三角形和圆等常见几何图形。

示例:1.一个长为6厘米,宽为4厘米的矩形花坛,花坛的面积是多少平方厘米?2.一个半径为8厘米的圆形花坛,花坛的周长是多少厘米?三、时间和速度应用题时间和速度应用题常常涉及到时间、速度和距离之间的关系。

在小学五年级中,其中包括车辆的速度、行人的速度、旅程的时间等。

示例:1.小明从家里到学校步行需要15分钟,如果换乘公交车只需要5分钟,那么小明步行的速度是多少米/分钟?2.一辆汽车以每小时60公里的速度行驶,从上海到北京的距离是1200公里,需要多长时间?四、分数应用题分数应用题涉及到分数的加减乘除运算,以及与整数的组合运算。

在小学五年级中,常常涉及到面积、容积、比例等问题。

示例:1.小红拿了一个长为2/3米,宽为1/5米的地毯,这块地毯的面积是多少平方米?2.一瓶可乐有1.5升,小明喝掉了其中的1/4,剩下的可乐有多少升?五、数字推理应用题数字推理应用题是指涉及到数字规律和逻辑推理的问题。

在小学五年级中,数字序列、矩阵等问题都属于数字推理应用题的范畴。

示例:1.数列5,8,11,14,17,…,请写出数列的第10项。

2.请在下面的方阵中填入适当的数字,使得每一行、每一列和每一条对角线上的数字之和都相等。

以上是小学五年级数学应用题的主要类型,通过这些题目的练习,学生可以提高自己的数学应用能力,并在实际生活中更好地运用数学知识。

人教版四年级上册数学暑假作业:应用题分类精选,13种类型

人教版四年级上册数学暑假作业:应用题分类精选,13种类型

四年级数学暑假作业:应用题分类精选,13种类型一、归一问题:1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?二、归总问题:1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?2、小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?三、连乘问题:1、小东每天练2张毛笔字,每张上有16个字,小东一星期(7天)写了多少个字?2、一个方队,共8列,小明在第3列,小明前面有5个人,后面有6个人,这个方队共有多少人?3、一个方队有8列,小明在第6列,从前往后数,小明是第5个人,从后往前数,小明是第6个人,这个方队共有多少人?4、一学校为四川灾区捐款,学校共有6个年级,每个年级有3个班,平均每班捐款123元,他们一共捐了多少钱?5、每个书架有3层,每层可放书36本,学校有20个这样的书架。

一共可放书多少本?6、1只青蛙1天吃害虫98条,按这样计算,20只青蛙一个月(30天)能捉多少条害虫?7、三年级一班有38个同学,举行接力赛,每人跑2圈。

(操场长30米,宽20米)这个班的学生大约一共跑了多少米?8、一本小说大约50页,每页大约有25行字,每行大约30个字,这本书大概有多少字?9、铅笔每盒有24支,每支9角,小明想买2盒,小明要付多少元钱?10、新兴小区一幢楼有16层,共3个单元,每个单元每层住2户,这幢楼住多少户人家?11、六一节,老师准备给每个同学准备2个香蕉,1个苹果,全班有36人,一共要准备多少个水果?12、每盒有16个鸡蛋,每箱有4盒,6箱共需要多少个鸡蛋?四、连除问题:1、4台织布机一周织布1568米,平均每台织布机每天织布多少米?2、360人排成4个方阵,每个方阵有5列,平均每列站多少人?3、服装店一天工卖出3箱衣服,每箱6件,一共收入3600元,平均每件衣服多少元?4、7头猪一星期喂245千克食料,平均1头猪1天喂多少食料?5、1盒月饼有2层,每层有4个,一个工厂一天生产了560个月饼,这个工厂一天生产了几盒月饼?6、奶奶家养了59只母鸡,125只公鸡,把这些鸡关在8只鸡笼里,平均每只鸡笼里关几只鸡?7、森林里有420张桌子,想摆成7个大组,每个大组摆6列,平均每列有几张桌子?8、128个梨,每盒装8个,2盒装一箱。

小学数学应用题各种类型大全

小学数学应用题各种类型大全

小学数学应用题各种类型大全一、方程的应用1.学校建校舍计划投资45万元,实际投资40万元。

实际投资节约了百分之几?2.学校五月份计划用电480度,实际少用60度。

实际用电节省百分之几?(福建云宵小学)3.某厂计划三月份生产电视机400台,实际上半个月生产了250台,下半个月生产了230台,实际超额完成计划的百分之几?(南昌市青云谱区)4.现有甲、乙、丙三个水管,甲水管以每秒4克的流量流出含盐20%的盐水,乙水管以每秒6克的流量流出含盐15%的盐水,丙水管以每秒10克的流量流出水,丙管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒……三管同时打开,1分钟后都关上,这时流出的混合液含盐百分之几?(武汉大学附属外国语学校)5.新光小学书画班有75人,舞蹈班有48人,书画班人数比舞蹈班多百分之几?(南宁市)6.小明用一包绿豆做实验,其中发芽的种子有100粒,没有发芽的种子有25粒,求这包绿豆的发芽率。

(浙江温岭市)8.为灾区捐款,小华捐4.2元,比小丽多捐了0.4元,小华比小丽多捐几分之几?(河南安阳市)9.一件衣服打八折出售卖100元,实际90元卖出。

实际几折卖出?(浙江仙居县)10.食堂运来600千克大米,已经吃了4天,每天吃50千克。

剩下的5天吃完,平均每天吃多少千克?(南京市建邺区)11.3箱橘子比3筐苹果少24千克。

平均每箱橘子重20千克,每筐苹果重多少千克?(浙江台州市市区)12.在绿化祖国采集树种的活动中,某校四年级5个班级,每班采集树种20千克,五年级3个班共采集60千克,平均每班采集树种多少千克?(上海市)13.大桥乡修一条长2100米的水渠,已修了5天,平均每天修240米。

余下的任务要在3天内完成,平均每天应修多少米?(南京市秦淮区)14.小明到商店买了3个小型足球付出20元,找回1.85元,每个足球多少元?(银川市实验小学)15.某班有4个小队,每个小队有12名少先队员,在“希望工程”捐款活动中,共捐款240元。

小学数学必考30个类型的应用题汇总

小学数学必考30个类型的应用题汇总

工程问题4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2 ,又因为1/乙=1/17 所以1/甲=2/17,甲等于17÷2=8.5天由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?答案为40分钟。

解:设停电了x分钟,1-1/120*x=(1-1/60*x)*2解得x=40三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

00_小学数学典型应用题30类

00_小学数学典型应用题30类

01归一问题例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

02 归总问题例2 小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页?24×12=288(页)(2)小明几天可以读完《红岩》?288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。

例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。

后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50×30=1500(千克)(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。

02 和差问题例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

小学数学六年级应用题13种类型解题方法

小学数学六年级应用题13种类型解题方法

1、已知条件类:根据题干中给定的条件,推导出最终结论;
2、识别规律类:根据题干中给出的数据,找出规律,然后得出结果;
3、概率类:依据事物发生的可能性计算结果;
4、几何类:借助图形,利用已知信息
求未知数;5、省略号类:找出省略号读值,得出结论;6、二次根式类:根据题干中给出的二次根式,求出解;7、变量代换类:根据题干中的变
量的特点,替换变量,得出结论;8、方程组类:根据题干给出的方程组,求解出结果;9、类比类:根据题干中的类比情景,得出相应结果;10、
对比分析类:根据题干中的对比情景,得出结论;11、容斥原理类:根据
题干中的容斥原理,求出解;12、反证法类:根据题干中的给定条件,反
证出结果;13、短路法类:根据题干中的情景,分析各种结果,不断缩小
范围,得出最终答案。

小学数学应用题种类型总结

小学数学应用题种类型总结

小学数学应用题种类型总结小学数学是小学生必修的一门学科,也是学生将来学习更高一级的数学知识的基础。

数学应用题是小学数学中的重要部分,也是学生锻炼数学思维和解决实际问题的重要途径。

本文将对小学数学应用题种类型进行总结,旨在帮助小学生更好地掌握数学应用题解题方法,提高数学成绩。

一、整数运用题整数运用题主要涉及四则运算和应用计算机技术的情境运用,例如:小明有150元,他要买两本书,第一本书是80元,第二本书比第一本书贵10元,那么他还剩多少钱?这种类型题目不仅能锻炼孩子的加减乘除能力,同时还培养了孩子的实际动脑能力。

二、比例运用题比例运用是小学数学应用题中比较复杂的一种类型,包括直接比例和复合比例。

这类题目一般表现为一个数与另一个数的关系,例如:10瓶可乐喝了6天,那么30瓶可乐要喝几天?这种类型题目需要学生通过分析比例的关系来解决问题,对数学思维的培养有很好的帮助。

三、分数运用题分数是小学数学中的重要知识点,运用分数求解实际问题的题目也很多。

例如:5个小朋友共有18个水果,每个小朋友分得苹果6/5个,那么共有多少个苹果?这种题目考查了学生对分数的理解和运用,同时对于帮助学生的中华营养学的知识理解和操作能力的提高也有很大的帮助。

四、几何形体体积和表面积的计算题小学数学中的几何形体体积和表面积问题比较少,但是需要解决这些问题时软件性的问题时相对比较棘手的,需要孩子通过计算并把握几何形体表面和空间长宽高等多个维度的数值进行运算,例如地球表面积是多少平方千米?这种问题对于孩子维度思维能力的培养较有帮助。

五、时间、速度、距离等运用题时间、速度、距离等运用题也是小学数学应用题中很常见的题目类型,例如:从A地到B地一站车要1小时,一共走了100公里,那么一共要走几个小时?这种问题帮助孩子培养了时、距离、速度等方面的认识能力和判断能力。

结语:小学数学应用题类型很多,不同类型的题目需要不同的解题方法。

通过总结不同题型的特点,可以帮助学生更好地掌握解题技巧,从而提高数学成绩。

完整版)小学数学典型应用题归纳汇总30种题型

完整版)小学数学典型应用题归纳汇总30种题型

完整版)小学数学典型应用题归纳汇总30种题型小学数学典型应用题归纳汇总30种题型1.归一问题归一问题是指在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

解决这类问题需要掌握以下数量关系:总量÷份数=1份数量,1份数量×所占份数=所求几份的数量,另一总量÷(总量÷份数)=所求份数。

例如,如果买5支铅笔需要0.6元钱,那么买同样的铅笔16支需要多少钱呢?我们可以先求出买1支铅笔多少钱,即0.6÷5=0.12(元),再用该单价乘以16支铅笔的数量,即0.12×16=1.92(元),得出需要1.92元。

2.归总问题归总问题是指解题时,常常先找出“总数量”,然后再根据其他条件算出所求的问题。

这里的“总数量”可以是货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

解决这类问题需要掌握以下数量关系:1份数量×份数=总量,总量÷1份数量=份数,总量÷另一份数=另一每份数量。

例如,如果服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套呢?我们可以先求出这批布总共有多少米,即3.2×791=2531.2(米),再用每套衣服用布的米数除以总米数,即2531.2÷2.8=904(套),得出现在可以做904套。

3.和差问题和差问题是指已知两个数量的和与差,求这两个数量各是多少。

解决这类问题需要掌握以下数量关系:大数=(和+差)÷2,小数=(和-差)÷2.例如,如果甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?我们可以先用公式求出甲班人数,即(98+6)÷2=52(人),再用公式求出乙班人数,即(98-6)÷2=46(人),得出甲班有52人,乙班有46人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学应用题类型汇总导语:应用题是指将所学知识应用到实际生活实践的题目。

在数学上,应用题分两大类:一个是数学应用。

另一个是实际应用。

数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。

实际应用也就是有关于数学与生活题目。

以下是小编整理小学数学应用题类型汇总,以供参考。

只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

1、加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

2、减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

3、乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

4、除法应用题:a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d已知一个数的几倍是多少,求这个数的应用题。

5、常见的数量关系:总价 = 单价×数量路程 = 速度×时间工作总量=工作时间×工效总产量=单产量×数量有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

1、含有三个已知条件的两步计算的应用题。

求比两个数的和多几个数的应用题。

比较两数差与倍数关系的应用题。

2、含有两个已知条件的两步计算的应用题。

已知两数相差多少与其中一个数,求两个数的和。

已知两数之和与其中一个数,求两个数相差多少。

3、连乘连除应用题。

4、三步计算的应用题。

具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

1、平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式的总和÷=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。

求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。

此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为,汽车从乙地到甲地速度为 60 千米,所用的时间是,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =752、归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。

又称“单归一。

”两次归一问题,用两步运算就能求出“单一量”的归一问题。

又称“双归一。

”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量,然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量总数量÷单一量=份数例一个织布工人,在七月份织布 4774 米,照这样计算,织布 6930 米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。

693 0 ÷ =453、归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量,通过求总数量求得单位数量的个数。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量单位数量×单位个数÷另一个单位数量 = 另一个单位数量。

例修一条水渠,原计划每天修 800 米, 6 天修完。

实际 4 天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。

所以也把这类应用题叫做“归总问题”。

不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。

80 0 × 6 ÷ 4=12004、和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和,然后再求另一个数。

解题规律:÷2 = 大数大数-差=小数÷2=小数和-小数= 大数例某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少12 人,求原来甲班和乙班各有多少人?分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是÷2=41 ,乙班在调出46 人之前应该为41+46=87 ,甲班为 9 4 - 87=75、和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。

解题关键:找准标准数一般说来,题中说是“谁”的几倍,把谁就确定为标准数。

求出倍数和之后,再求出标准的数量是多少。

根据另一个数与标准数的倍数关系,再去求另一个数的数量。

解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车 115 辆,大货车比小货车的5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与倍对应,总车辆数应辆。

列式为÷ =18 , 18 × 5+7=976、差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

解题规律:两个数的差÷= 标准数标准数×倍数=另一个数。

例甲乙两根绳子,甲绳长 63 米,乙绳长 29 米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的 3 倍,甲乙两绳所剩长度各多少米?各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多倍,以乙绳的长度为标准数。

列式÷ =17 …乙绳剩下的长度, 17 × 3=51 …甲绳剩下的长度, 29-17=12 …剪去的长度。

7、行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。

解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

解题关键及规律:同时同地相背而行:路程=速度和×时间。

同时相向而行:相遇时间=速度和×时间同时同向而行:追及时间=路程速度差。

同时同地同向而行:路程=速度差×时间。

例甲在乙的后面 28 千米,两人同时同向而行,甲每小时行 16 千米,乙每小时行 9 千米,甲几小时追上乙?分析:甲每小时比乙多行千米,也就是甲每小时可以追近乙千米,这是速度差。

已知甲在乙的后面 28 千米, 28 千米里包含着几个千米,也就是追击所需要的时间。

列式 2 8 ÷=48、流水问题:一般是研究船在“流水”中航行的问题。

它是行程问题中比较特殊的一种类型,它也是一种和差问题。

它的特点主要是考虑水速在逆行和顺行中的不同作用。

船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

逆水速度:船逆流航行的速度。

顺速=船速+水速逆速=船速-水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。

解题时要以水流为线索。

解题规律:船行速度=÷2流水速度=÷2路程=顺流速度×顺流航行所需时间路程=逆流速度×逆流航行所需时间例一只轮船从甲地开往乙地顺水而行,每小时行 28 千米,到乙地后,又逆水航行,回到甲地。

逆水比顺水多行 2 小时,已知水速每小时 4 千米。

求甲乙两地相距多少千米?分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。

已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。

列式为 284 × 2=20 2 0 ×2 =40 40 ÷ =5 28 × 5=140 。

9、还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。

解题关键:要弄清每一步变化与未知数的关系。

解题规律:从最后结果出发,采用与原题中相反的运算方法,逐步推导出原数。

根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。

解答还原问题时注意观察运算的顺序。

若需要先算加减法,后算乘除法时别忘记写括号。

例某小学三年级四个班共有学生 168 人,如果四班调3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。

四班原有人数列式为 168 ÷ 4-2+3=43一班原有人数列式为 168 ÷ 4-6+2=38 ;二班原有人数列式为 168 ÷ 4-6+6=42 三班原有人数列式为 168 ÷4-3+6=45 。

相关文档
最新文档