分式方程的无解与增根-课件

合集下载

人教版八年级数学上册15.3分式方程(增根.无解)ppt精品课件

人教版八年级数学上册15.3分式方程(增根.无解)ppt精品课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
3x23x23 无m x解x,
二、利用分式方程解的情况确定所含字母的取值 范围
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
方法总结: 1.化整式方程求解. 2.根据题意列不等式组.(特别注意分式方程中分母 能为0)。
2019/7/8
最新中小学教学课件
thank
you!2019/7/8最新小学教学课件学习重点:
利用分式方程解的情况确定所含字母的取值。
练习:解方程:
x 1
3
x1
(x1)(x2)
.
一、分式方程增根的应用
例1、分式方程 有增根,求m的值。
1 m x 2 x 1
方法总结: 1.化为整式方程。(方程可以不整理) 2.确定增根。 3.把增根代入整式方程求出字母的值。
练习:已知关于x的方程 求实数K的值。
1 4x2
2 有 增x k根2
练习:解方程:
x 2 1 x 1 3x 3
.
例2、若关于x的分式方程 无解,求m的值.
xm 3 1 x1 x
方法总结: 1.化为整式方程(整式方程需要整理). 2. 分两种情况讨论 (1)整式方程无解 (2)分式方程有增根.

最牛归纳 分式方程增根或无解专题讲解PPT18页

最牛归纳 分式方程增根或无解专题讲解PPT18页
❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
最牛归纳 分式方程增根或无解专题讲 解
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。

八年级数学北师大版初二下册--第五单元5.4《分式方程:第二课时--解分式方程》课件

八年级数学北师大版初二下册--第五单元5.4《分式方程:第二课时--解分式方程》课件
分式方程 去分母 整式方程
知1-讲
解分式方程的一般步骤:
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程. (转化思想)
2、解这个整式方程. 3、检验 . 4、写出原方程的根.
例1 解方程
1 = 3. x- 2 x
解:方程两边都乘x(x-2),得x=3(x-2).
解这个方程,得x=3.
解得x=2.
检验:当x=2时,( x+2)( x-2)=0,
所以x=2是原方程的增根,即原方程无解.
易错总结:
分式方程转化为整式方程后,由于去分母使未 知数的取值范围发生了变化,有可能产生增根, 因此在解分式方程时一定要验根,如果不验根, 有可能误将x=2当成原分式方程的根.
2 易错小结
2.当k为何值时,关于x的方程
综上可知,当k<3且k≠-12时,原分式方程的
解为负数.
易错总结:
在解分式方程时,要注意出现未知数的取值使 原分式方程中的分式的分母为零,即产生增根 的情况.因此本题中要使方程的解为负数,除 了k<3外,还必须考虑原分式方程的分母不等 于0.
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
2+ x-1
a 1-x
=4
的解为正数,且使关于y的不等式组
ìïïïíïïïî
y+2- y 32
2( y-a) £
> 0
1,
的解集为y<-2,则符合条件的所有整数a的和为
( A) A.10
B.12
C.14
D.16
知识点 3 分式方程的增根
议一议
在解方程
1x-
x= 2
12- x
2 时,小亮的解法如下:
方程两边都乘 x-2,得 1-x=-1-2(x-2 ).

有增根和无解的区别课件

有增根和无解的区别课件

当分式方程有增根时,其最简公分母 为0。
无解的定义
无解是指分式方程在所有实数范 围内都没有解。
当分式方程无解时,其最简公分 母为0,但此时原方程的解不存
在。
无解的产生可能是由于分式方程 的系数或常数项存在矛盾或错误 ,导致无法找到满足所有条件的
解。
02
增根和无解的区别
数学表达上的区别
增根
在解分式方程、无理方程或绝对值方程时,如果解得的根使原方程的分母为0 ,则该根为增根。增根是原方程的“假根”,因为它不满足原方程的定义域。
03
增根和无解的判定方法
增根的判定方法
增根是指满足原方程但不满足分 式方程的解,通常是由于分式方 程的最简公分母为0而产生的。
增根的判定方法是通过将分式方 程转化为整式方程,然后求解整 式方程,得到解后再验证是否满
足原分式方程。
在验证过程中,如果解使得最简 公分母为0,则该解为增根,否
则为原分式方程的解。
05
增根和无解的实例解析
增根的实例解析
总结词
增根是由于解方程过程中,对方程进行变形时引入了额外的解,这些解并不满足 原方程。
详细描述
例如,在解方程 (x^2 - 4 = 0) 时,我们可以将其变形为 (x^2 = 4),从而得到解 (x = pm 2)。但实际上,原方程的解应该是 (x = 2) 或 (x = -2),因此,(x = -2) 是增根,因为它并不满足原方程。
无解的判定方法
无解是指分式方程没有满足条件的解,即不存在满足原方程的解。
无解的判定方法是当分式方程转化为整式方程后,无法找到满足原方程 的解,或者解使得最简公分母为0。
在判定无解时,需要仔细检查原方程是否有误或者是否无法找到满足条 件的解。

分式方程的增根与无解

分式方程的增根与无解
分式方程的增根 与无解
目录
• 分式方程的增根 • 分式方程的无解 • 分式方程增根与无解的关系 • 分式方程增根与无解的实例解析 • 分式来自程增根与无解的解题策略01
分式方程的增根
增根的定义
01
增根是指满足原方程但不满足分 式方程的解。
02
当分式方程的最简公分母等于0时 ,该解为增根。
增根的产生原因
分。
04
分式方程增根与无解的实 例解析
增根实例解析
01
02
03
增根的概念
增根是指满足原方程但不 满足分式方程的解。
增根的例子
考虑方程 $frac{x}{2} frac{3}{x - 2} = 1$,其增 根可能是 $x = 2$,因为 当 $x = 2$ 时,分母 $x 2$ 为零,使得方程无意 义。
当分式方程的最简公分母为0时,会 导致方程无解或解不唯一,从而产生 增根。
增根的产生与方程的化简过程有关, 如果化简过程中出现错误,也可能导 致增根的出现。
增根的判断方法
将一个解代入最简公分母,如果 最简公分母等于0,则该解为增
根。
通过解方程得到多个解,然后逐 一检验这些解,如果某个解使得 最简公分母等于0,则该解为增
增根与无解的联系
增根可能导致分式方程无解
01
如果分式方程有增根,那么该增根可能使得分式方程在某些条
件下无解。
无解不一定是增根引起的
02
分式方程无解的原因可能不仅仅是增根,还可能是原方程本身
没有解或者分式方程的解不满足某些条件。
增根和无解都是分式方程的特殊情况
03
增根和无解都是分式方程可能遇到的情况,需要特别注意和区
如果方程两边化简后不相等,则方程无解。

分式方程的增根与无解

分式方程的增根与无解

分式方程的增根与无解分式方程的增根:在分式方程化为整式方程的过程中,若整式方程的解使最简公分母为0(使整式方程成立,而在分式方程中分母为0),那么这个解叫做原分式方程的增根。

【引例】:解方程213222x x x x -=-- 解:去分母,方程两边乘以(2)x x -,得232x x --=-解得0x =检验,当0x =时(2)0x x -= 则0x =为原方程的增根所以原方程无解.说明:无解时,方程本身就是个矛盾等式,不论未知数取何值,都不能使方程两边的值相等。

如上题中,不论x 取何值,都不能使原方程两边的值相等,因此原方程无解。

又如对于方程20x=,不论x 取何值也不能使它成立,因此,这个方程也无解。

思考:是不是产生了增根的分式方程就是无解的,而无解的分式方程就一定会产生增根呢? 比如:方程22211x x x x x x+-=++,去分母后化为(3)(1)0x x -+=,解得3x =或1x =-,此时,1x =-是原方程的增根,但原方程并不是无解,而是有一个解3x =; 又比如分式方程21122x x =--,如果等式两边乘以最简公分母2(1)x -,去分母后的 整式方程无解,原分式方程无解。

此时没有产生增根。

而如果交叉相乘相等(即等式两边乘以22(1)x -)得到的整式方程的解为1x =,1x =为分式方程的增根。

原分式方程无解。

因此分式方程增根的产生与分式方程转化为整式方程的过程有关。

在分式方程转化为整式方程的过程中,去分母的方式不一样,得到增根的结果可能不一样。

再比如引例中,如果分式两边乘以公分母2(2)x x -,得到整式方程为2(2)3(2)2(2)x x x x x ---=-,解得2x =,检验,当2x =时,原分式方程无意义,则2x =为原方程的增根。

所以原方程无解。

所以,产生了增根的分式方程不一定无解,而无解的分式方程不一定会产生增根呢。

思考:有没有什么方法在解分式方程的过程中可以避免增根呢?有的,比如:方程22211x x x x x x +-=++,将等式右边化为0,得222101x x x x x x+--=++, 左边通分2222(1)0(1)x x x x --+=+,即2230(1)x x x x --=+,分子分解因式再约分,得30x x -=, 由分子30x -=,得3x =。

分式方程有增根和无解 PPT课件

分式方程有增根和无解 PPT课件

解得:

方法总结:1.化整式方程求根,且不能是增根. 2.根据题意列不等式组.
例2:k为何值时,关于x的方程
1 3 k2
解为正,求k的取 值范围?
x2 2x
1.若方程 -X--a-+-1-= 1的解是负数,求a 的取值范围.
2. a为何值时,关于x的方程 -a----1-- = 2 的解为非负数 x-1
复习回顾
1.解分式方程的思路是:
分式
转化
整式
方程
去分母
方程
2.解分式方程的一般步骤
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程.
“一化 二 解 (2)解这个整式方程. 三验 四结”
(3)把整式方程的根代入最简公分母,看结果是不是为零,使最 简公分母为零的根是原方程的增根,必须舍去.
(4)写出原方程的根.
• 4、分式方程 x 2 ● x 1 1- x
• 中的一个分 子被污染成了●,已知 这个方程无解,那么被污染的分子 ●应该是 。
(1)方程
X-4 x-5
=
1 X-5
有增根,则增根是_X_=_5
(2)
1-X x-2
=
1 2-X
-2
有增根,则增根是_X_=_2
(3) 解关于x的方程
x-3 x-1
=

解:方程两边都乘以(x+2)(x-2)得
2(x+2)-4x=3(x-2)②
解之得 x=2. 检验:当x=2时(x+2)(x-2) =0 ∴ x=2是原方程的增根. ∴原方程无解.
方程①中未知数x的取值范围是x≠2且x≠-2.去分母后 方程②中未知数x的取值范围扩大为全体数. ∴当求得的x值恰好使最简公分母为零时,x的值就是增根. 本题中方程②的解是x=2,恰好使公分母为零,

分式方程的增根与无解

分式方程的增根与无解

如何准确理解分式方程的增根与无解在分式方程教学中,我们要知道分式方程的增根与无解的意义是有区别的,分式方程有增根,一定是化简后整式方程的解(或根),分式方程无解不一定是化简后整式方程的解(或根),因而分式方程不一定有增根。

分式方程的增根是指在把分式方程是指把分式方程转化为整式方程时,即在去分母的过程中,因为分母含有未知数的字母,无形中可能使分式两边同时乘以一个为0的数,这样就导致未知数字母的取值范围扩大,使得方程的解可能是整式方程的解,但不一定是原分式方程的解.如果整式方程的解使原分式方程的分母为0,那么为个解(或根)就是分式方程的增根.;如果整式方程的解使原分式方程的分母不为0,那么为个解(或根)就是分式方程的根.所以说,分式方程的增根一定是去分母化简后整式方程的根,且使原分式方程中的分母等于0.分式方程无解有两种情况:一种是增根使分式方程无解,与上面理由相同;另一种是化简后整式方程无解而导致分式方程无解.我们知道一元一次方程标准形式中0=+b ax ,当0≠a 时,一元一次方程有解(或根);当0=a ,0≠b 时,左边=b ,右边=0,有左边≠右边,从而一元一次方程无解,导致原分式方程无解。

综上所述,可简记为:“分式方程有增根⇒分母=0”;“分式方程无解⇒⎩⎨⎧⇒⇒00未知数的系数=整式方程无解分母=分式方程无解”. 例1、 若关于x 的方程xm x x -=--113产生增根,求常数m 的值. 解:去分母,方程两边同乘以)1(-x 得m x -=-3分式方程有增根∴ 01=-x 解得:1=x把1=x 代入m x -=-3 有m -=-31∴ 2=m小结:解分式方程有增根一般通过三个步骤,求出字母系数的值:一是先把分式方程化为整式方程;二是求出分母为0时x 的值;三是把x 的值代入整式方程,求出字母系数的值.练习:1、若关于x 的方程xx x x m x x 1122+=+-+有增根,求m 的值. (参考答案:21或-=m )2、若关于x 的方程xx x a --=+-2132有增根,求a 的值.)1(=a 参考答案: 3、若分式方程:xx kx -=-+21212-有增根,求k 的值. (参考答案:1=k ) 例2、若关于x 的方程0111=--+x ax 无解,求a 的值. 解:去分母,方程两边同乘以)1(-x 得0)1(1=--+x ax整理得:02)1(=+-x a分式方程有无解∴ 01=-x 或 01=-a当01=-x 时,有1=x ∴021)1(=+⨯-a 得 1-=a当01=-a 时,有1=a由上可知:1-=a 或 1小结:分式方程无解,要考虑两个方面:一是分式方程有增根导致无解;另一个是化简后的整式方程无解导致原分式方程无解.练习:1、若关于x 的方程234222+=-+-x x ax x 无解,求a 的值. (参考答案:a =-4或1或6)23=。

分式方程的增根与无解详解

分式方程的增根与无解详解

分 式 方 程 的 增 根 与 无 解 讲 解例1解方程—24x 3•①x 2 x 4 x 2解:方程两边都乘以(x+2) (x-2 ),得2 (x+2) -4x=3 (x-2 ).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.例2解方程x 13 x2 .x 22 x解:去分母后化为x — 1 = 3— x + 2 (2+ x ).整理得0x = 8.因为此方程无解,所以原分式方程无解.例3 (2007湖北荆门)若方程 王卫二―丄无解,则m= ------------ .x 22 x解:原方程可化为x 3二—m.x 2 x 2方程两边都乘以x — 2,得x — 3=— m解这个方程,得x=3— m因为原方程无解,所以这个解应是原方程的增根.即 x=2,所以2=3— m 解得m=1.故当m=1时,原方程无解.ax例4当a为何值时,关于x的方程齐厂齐①会产生增根?解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原分式方程有增根,则x= 2或-2是方程②的根.把x = 2或一2代入方程②中,解得,a = —4或6.若将此题“会产生增根”改为“无解”,即:2 ax 3当a为何值时,关于x的方程厂2 厂门①无解?此时还要考虑转化后的整式方程(a—1)x二—10本身无解的情况,解法如下:解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原方程无解,则有两种情形:(1)当a—1 = 0 (即a= 1)时,方程②为0x =一10,此方程无解,所以原方程无解。

(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解•原方程若有增根,增根为x = 2或一2,把x = 2或一2代入方程②中,求出a= —4或6.综上所述,a= 1或a = —4或a=6时,原分式方程无解.例5: (2005扬州中考题)6A 、0B 、1C 、-1D 、1 或-1分析:使方程的最简公分母(x+1)(x-1)=0 则x=-1或x=1,但不能忽略增根除满足最简公 分母为零,还必须是所化整式方程的根。

八年级数学上册(人教课标)同步讲解:第十五章 认清“增根”和“无解”

八年级数学上册(人教课标)同步讲解:第十五章 认清“增根”和“无解”

分式方程的增根是由于把分式方程转化为整式方程时,去掉了原分式方程中分母不为的限制条件,从而扩大了未知数的取值范围,这样,整式方程的解可能使分式方程的分母为,分式方程无意义.因此,这个解虽然是变形后整式方程的解,但不是原分式方程的解,即为增根.可见,增根不是原分式方程的解,但却是分式方程去分母后所得整式方程的解.
分式方程无解分两种情况:一是原分式方程化为整式方程后,该整式方程无解;二是分式方程去分母后所得整式方程有解,但该解却是分式方程的增根.
可见,分式方程有增根与无解是完全不相同的,它们既有联系,又有区别.增根是无解的一种特殊情形,分式方程无解应从两个方面考虑.
一、利用分式方程有增根确定字母的值
解题妙招:解决此类问题的一般步骤是:①把分式方程化为整式方程;②求出使最简公分母为的未知数的值;③把未知数的值分别代入整式方程,求出字母系数的值.
例1 若分式方程无解,则的值为()
A.或
B.
C.或
D.
解析:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=m.
解得x=m-2.
令,解得或.
因为分式方程无解,将,分别代入x=m-2,得或.
所以或时,原分式方程无解.故选A.
二、利用分式方程无解求字母的值
解题妙招:解决此类问题,一定要从分式方程有增根和整式方程无解两个方面去考虑,以防出现漏解.例2 若关于的分式方程无解,则的值为.
解析:方程两边乘x(x-1),得x(x-a)-3(x-1)=x(x-1).化简,得.
当整式方程无解时,则,解得.
当分式方程有增根时,则最简公分母,解得或.
①时,无解;②当时,.
所以当或a=时,原分式方程无解.故填或.。

分式方程的增根与无解

分式方程的增根与无解

甲:如此说来,从方程 ①变形为方程②,这种变形并不能保证两个方程的解相同,那 么,如何知道从整式方程 ②解出的未知数的值是或不是原方程 ①的解呢?乙:很简单,两个字:检验。

可以把方程 ②解出的未知数的值一一代入去分母时方程乙:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大两边所乘的那个公分母,看是否使公分母等于 0,如果公分母为0,则说明这个值是增甲:啊?!为什么会无解呢?乙:无解时,方程本身就是个矛盾等式,不论未知数取何值,都不能使方程两边的值相等,如上题中,不论x 取何值,都不能使方程①两边的值相等,因此原方程无解,乙:不是!有增根的分式方程不一定无解,无解的分式方程也不一定有增根,你看:乙:求解过程完全正确,没有任何的差错。

甲:那为什么会出现这种情况呢?甲:增根是什么?了未知数的取值范围而产生的未知数的值.比如 根,否则就是原方程的解。

例1、解方程: 。

① 甲:那么,这个题中x = 0就是增根了,可原方程的解又是什么呢?为了去分母,方程两边乘以 gQ ,得収= J ②乙:原方程无解。

乙 可是当 so 时,原方程两边的值相等吗?又如对于方程,不论x 取何值也不能使它成立,因此,这个方程也无解。

甲:这我可没注意,检验一下不就知道了。

哟!当宫-D 时,原方程有的项的分母为0,甲:是不是有增根的分式方程就是无解的,而无解的分式方程就一定有增根呢? 乙:因为原来方程 ①中未知数x 的取值范围是且筈#2|,而去分母化为整式方程② 去分母后化为,解得蛊・3或疋=-1|,此时,I 翌=-1|是增根,但原方程并不后,未知数x 的取值范围扩大为全体实数。

这样,从方程②解出的未知数的值就有可 能不是方程①的解。

是无解,而是有一个解 解,但原方程也没有增根。

,而方程天,去分母后化为0 x =,原方程虽然无分式方程的增根与无解甲:原方程的解是X-CI 。

没有意义,是不是方程变形过程中搞错啦?因为原方程的最简公分母是(金-1液十2)|,所以方程的增根可能是x = l|^x = -2|乙:你说的没错,增根与无解都是分式方程的常客”它们虽然还没有达到形影不离的程度,但两者还是常常相伴而行的,在有些分式方程问题中,讨论无解的情形时应解之,得x 4 m.因为原方程无解,所以x 4 m为方程的增根.又由于原方程的增根为x 3.所以考虑增根,例如:---- =m例4、已知关于x的方程K-了无解,求m的值。

分式方程的增根和无解、不等式有解无解

分式方程的增根和无解、不等式有解无解

分式方程的增根和无解1.分式方程有增根,则m的值为2.分式方程的解为增根,则增根可能是3.关于x的分式方程产生增根,则m及增根x的值分别为4.已知关于x的分式方程有增根,则m的值是5.若解关于x的分式方程有增根x=-1,则a的值为6.若分式方程无解,则m的值为7.若分式方程无解,则m的值为8.分式方程无解,则a的值为9.分式方程的解是非正数,则a的取值范围是10.若关于x的分式方程的解为正数,则m的取值范围是含参不等式(有解、无解问题)1.若不等式组的解集为,则m的取值范围是2.若不等式组有解,则a的取值范围是3.若不等式组有解,则a的取值范围是4.若关于x的不等式组有解,则a的取值范围是5.若关于x的不等式组有解,则a的取值范围是6.不等式组无解,则a的取值范围是7.不等式组无解,则a的取值范围是8.已知关于x的不等式组无解,则a的取值范围是9.不等式组无解,则a的取值范围是10.不等式组无解,则m的取值范围是解分式方程1.下列方程不是分式方程的是( )A. B. C. D.6.分式方程有增根,则的值为7.分式方程有增根,则的值为8.若关于的分式方程无解,则的值为9.分式方程无解,则的值为10.分式方程无解,则的值为含参不等式(整数解问题)1.若关于x的不等式只有4个正整数解,则a的取值范围是2.若关于x的不等式只有3个正整数解,则m的取值范围是3.不等式组有且只有1个整数解,则a的取值范围是4.不等式组有且只有3个整数解,则a的取值范围是5.不等式组有且只有4个整数解,则实数a的取值范围是6.不等式组有且只有3个整数解,则a的取值范围是7.不等式组恰有5个整数解,则t的取值范围是8.若不等式组恰有2个整数解,则实数a的取值范围是9.若不等式组的所有整数解的和为5,则实数a的取值范围是10.若关于x的不等式组的所有整数解的和是-7,则m的取值范围是。

分式方程的增根与无解

分式方程的增根与无解

例谈分式方程的增根与无解分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 解方程2344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【说明】显然,方程①中未知数x 的取值范围是x ≠2且x ≠-2.而在去分母化为方程②后,此时未知数x 的取值范围扩大为全体实数.所以当求得的x 值恰好使最简公分母为零时,x 的值就是增根.本题中方程②的解是x =2,恰好使公分母为零,所以x =2是原方程的增根,原方程无解.例2 解方程22321++-=+-xx x x . 解:去分母后化为x -1=3-x +2(2+x ).整理得0x =8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.例3(2007湖北荆门)若方程32x x --=2m x-无解,则m=——————. 解:原方程可化为32x x --=-2m x -. 方程两边都乘以x -2,得x -3=-m .解这个方程,得x=3-m .因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m ,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根.把x =2或-2代入方程②中,解得,a =-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原方程无解,则有两种情形:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。

分式方程的增根与无解(1)

分式方程的增根与无解(1)

分式方程的增根与无解分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此. 分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 解方程2344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.例2 解方程22321++-=+-xx x x . 解:去分母后化为x -1=3-x +2(2+x ).整理得0x =8.因为此方程无解,所以原分式方程无解.例3(2007湖北荆门)若方程32x x --=2m x-无解,则m=——————. 解:原方程可化为32x x --=-2m x -. 方程两边都乘以x -2,得x -3=-m .解这个方程,得x=3-m .因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m ,解得m=1.故当m=1时,原方程无解.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根.把x =2或-2代入方程②中,解得,a =-4或6.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原方程无解,则有两种情形:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。

分式方程的增根与无解

分式方程的增根与无解

如何正确理解分式方程的增根与无解在分式方程教学中,我们要知道分式方程的增根与无解的意义是有区别的,分式方程有增根,一定是化简后整式方程的解(或根),分式方程无解不一定是化简后整式方程的解(或根),因而分式方程不一定有增根。

分式方程的增根是指在把分式方程是指把分式方程转化为整式方程时,即在去分母的过程中,因为分母含有未知数的字母,无形中可能使分式两边同时乘以一个为0的数,这样就导致未知数字母的取值范围扩大,使得方程的解可能是整式方程的解,但不一定是原分式方程的解.如果整式方程的解使原分式方程的分母为0,那么为个解(或根)就是分式方程的增根.;如果整式方程的解使原分式方程的分母不为0,那么为个解(或根)就是分式方程的根.所以说,分式方程的增根一定是去分母化简后整式方程的根,且使原分式方程中的分母等于0.分式方程无解有两种情况:一种是增根使分式方程无解,与上面理由相同;另一种是化简后整式方程无解而导致分式方程无解.我们知道一元一次方程标准形式中0=+b ax ,当0≠a 时,一元一次方程有解(或根);当0=a ,0≠b 时,左边=b ,右边=0,有左边≠右边,从而一元一次方程无解,导致原分式方程无解。

综上所述,可简记为:“分式方程有增根⇒分母=0”;“分式方程无解⇒⎩⎨⎧⇒⇒00未知数的系数=整式方程无解分母=分式方程无解”. 例1、 若关于x 的方程xm x x -=--113产生增根,求常数m 的值. 解:去分母,方程两边同乘以)1(-x 得m x -=-3分式方程有增根∴ 01=-x 解得:1=x把1=x 代入m x -=-3 有m -=-31∴ 2=m小结:解分式方程有增根一般通过三个步骤,求出字母系数的值:一是先把分式方程化为整式方程;二是求出分母为0时x 的值;三是把x 的值代入整式方程,求出字母系数的值.练习:1、若关于x 的方程xx x x m x x 1122+=+-+有增根,求m 的值. (参考答案:21或-=m )2、若关于x 的方程x x a -=+-132有增根,求a 的值.)1(=a 参考答案:3、若分式方程:x kx =-+212-例2、若关于x 的方程011=--+x ax 无解,求a 的值. 解:去分母,方程两边同乘以)1(-x 得0)1(1=--+x ax整理得:02)1(=+-x a分式方程有无解∴ 01=-x 或 01=-a当01=-x 时,有1=x ∴021)1(=+⨯-a 得 1-=a 当01=-a 时,有1=a由上可知:1-=a 或 1小结:分式方程无解,要考虑两个方面:一是分式方程有增根导致无解;另一个是化简后的整式方程无解导致原分式方程无解.练习:1、若关于x 的方程234222+=-+-x x ax x 无解,求a 的值. (参考答案:a =-4或1或6)23=。

八年级数学上册第3章分式方程的“增根”与“无解”(青岛版)

八年级数学上册第3章分式方程的“增根”与“无解”(青岛版)

分式方程的“增根”与“无解”学习了解分式方程以后,我们便知道了“增根”的知识,不少同学对“增根”与“无解”混为一谈,甚至根本无法理解,为了说明这两个概念,现帮助同学们重新定位.一、增根的概念将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根. 如,若方程2m x -+3=12x x+-有增根,则这个增根一定是x =2. 二、分式方程增根产生的原因在解分式方程的关键是要将分式方程转化为整式方程,而转化的关键又是去分母,由于对原分式方程的解来说,它必须使分式方程中各分式分母的值不为零,而对约去分母后得到的整式方程来说,却不要求分母的值非零,因为整式方程中各分母都是已知数,零不能作分母,当所得到的整式方程的某一根使原分式方程中至少有一个分式的分母为零时,即这个分母实际上是去分母时最简公分母的一个因式,那么最简公分母(整式)的值为零,即去分母过程中就相当于在方程两边同时乘以了0,不符合等式性质的要求,所以这个整式方程的根不适合原分式方程,它就是增根,因而,解分式方程时,必须要检验.三、无解的概念分式方程无解有两种情形:一是将原分式方程两边都乘以最简公分母,约去分母得到整理后的整式方程为ax =b ,此时若a =0,而b ≠0,则此整式方程无解,即原分式方程无解;二是化分式方程为整式方程,此整式方程的解是原分式方程增根,此时分式方程无解.如,若关于x 方程11-+x ax -1=0无解,试求a 的值. 将原方程去分母转化为(a -1)x +2=0,即(a -1)x =-2.此时,一方面,当a -1=0,即a =1时,此时整式方程无解,所以当a =1时,原方程无解.另一方面,对于方程(a -1)x +2=0,当x =1时,原方程无解.所以当(a -1)×1+2=0,即a =-1时,原方程无解.所以 a 的值为1或-1.在解本题时,注意考虑问题要全面,不要只考虑当原分式方程有增根时的情形,而忽略了当整式方程无解时,原分式方程也无解.另外,方程的无解和增根的具体区别与联系,我们以后还将进一步学习和运用.四、分式方程有增根与无解的关系不仔细推敲,会认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分分式方程求出的根是原分式方程变形后所得整式方程的根,但不是原分式方程的根,即这个根使最简公分母为0.如,解分式方程12xx+-=3-32x-,可得x=2,把x=2代入(2-x),得2-x=0.即x=2使分式方程的分母为0.所以x=2不是原方程的解,即x=2是原方程的增根,此方程无解.在本题中,分式方程有增根,方程无解,但并不是说只要有增根方程就无解,等大家进入高年级,学习了更多的知识,会发现有增根的分式方程并不全是无解的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3、若关于x的方程
x x
-
3 2

m 2-x
有无增解根, ,
求m的值。
解:原方程可化为x - 3 = - m
x -2 x-2
方程两边同乘以(x - 2),得
x -3=-m ∴x =3- m
1、化为整式方程。
∵原方程有无增解根 x 2,即2 3- m
解得,m =1
2、把增根代入整式方程
∴当m 1时,原方程有 无增 解根 。。求出字母的值。
1)原方程去分母后的整式方程无解,
2)原方程去分母后的整式方程有解,但解 是增根。
关于分式方程的增根与无解问题 的一般步骤:
1、去分母,化分式方程为整式方程。 2、解这个整式方程。 3、根据题意讨论这个解可能出现的 情况,得出有关字母系数的取值。
课堂作业:
基础题:
1、关于x的分式方程
3x x
1 1

1
m

x
1有增根,则m=__。
2、若关于x的分式方程
x x
1 5

10
m

2x
无解,m=__。
3、关于x的分式方程
x x
-
a
1
3
x

1无解,则a

__。
提高题:
4、若方程 2x a 1 的解是正数,求a的取值范围. x2
想一想
若方程 2x a 1的解是正数,求a的取值范围. x2
应用升华
1.如果 1 +3= 1- x
x -2 2-x
有增根,那么增根是___X_=__2____.
2.关于x的方程
x
2 2

k x2 4

3 x
2
有增根,
那么增根可能是____X_=__2__或___x_=__-__2__.
则k的值可能为__K_=_-_8_或__k_=_-_1_2__
方法总结:1、化为整式方程。2、确定增根。 3、把增根代入整式方程求出字母的值。
是分式方程的增根。
(× )
分式方程的增根与无解
分式方程的增根:在分式方程化为整式方程 的过程中,若整式方程的解使最简公分母为0, 那么这个根叫做原分式方程的增根。
分式方程无解则是指不论未知数取何值,都 不能使方程两边的值等.它包含两种情形:
(1)原方程去分母后的整式方程出现 0x=b(b≠0),此时整式方程无解; (2)原方程去分母后的整式方程有解, 但这个解却使原方程的分母为0,它是原 方程的增根,从而原方程无解.
解:方程两边都乘以(x+2)(x-2),得 2(x+2)-4x=3(x-2).
解这个方程,得x=2. 检验:当x=2时,(x+2)(x-2)=0, 所以x=2不是原分式方程的解. 所以原分式方程无解.
例2 解方程: x -1 = 3 - x +2 x +2 x +2
解:方程两边都乘以(x+2),得x-1=3-x+2(x+2)
整理得 0x=8. 因为此方程无解, 所以原分式方程无解.
深入探究 判断:
1、有增根的分式方程就一定无解。
(× )
2、无例解如的分:式方程x就-一3定有增根0。; X=-(3×) 3、分式方程若( x有增3根)(,x增-根1)代入最简公分母
中,其值一例定如为0。:2 = 0 0X=2 (√ ) x 4、使分式方程的分母等0哪些收获?
课后作业:
1、已知关于 x的方程
2x m x-2

3的解为正数,
则的范围是
2、若关于 x的方程
x x
k
1

x
k

1

1的解为负数,
则k的取值范围是
例4、当a为何值时,关于 x的方程
2 x-
2
+
ax x2 -
4
=
x
3 +
2
①有增根; ②无解。
解:方程两边都乘以(x+2)(x-2),
得2(x+2)+ax=3(x-2)
整理得(a-1)x=-10

(无(综把1解 2上x))=。 所当当若则把解2述或aa原增得x,--=-11分根,≠a2=20=式为a或0代时=即1方x-入,或-=a程22方=xa4代或1有==或程入x时增2一6=②或.方(-根4a2中--程1,或,)2②xa时得==中-,1a6,0=原时无-方,解4程原,或无分原6.解式方,方程 程无解.
人教版 八年级上册 第十五章
分式方程的增根与无解
知识回顾:
解分式方程的一般步骤
分式方程 去分母 整式方程
一化
解整式方程
二解
目标
X=a
检验
三检验
a是分式 最简公分母不为0 最简公分母为0 a不是分式
方程的解
方程的解
a就是分式 方程的增根
例1 解方程: 2 4x 3 x 2 x2 4 x 2
展示交流☞
若方程 2x a 1的解是正数,求a的取值范围. x2
关于这道题,有位同学作出如下解答:
解:去分母得,2x+a=-x+2.
化简,得 3x=2-a.

x= 2 a
3
因为方程的解为正数,所以
222333aaa0
0
,得a<2. 且a≠-4
2
所以,当a<2且a≠-4时,方程 2x a 1 的解是正数.
课堂练习: 1.当m为何值时,方程 x m 1 x 1 有增根.
x 1 x2 x x
2、关于x的方程 x a - 3 1无解,求a。 x -1 x
课堂小结:
1、分式方程的增根是在分式方程化为整式 方程的过程中,整式方程的解使最简公分母 为0的未知数的值。
2、分式方程无解则包含两种情形:
相关文档
最新文档