第十章双水相萃取
《双水相萃取技术》课件

03
双水相萃取技术的实验操作
实验准备
01
02
03
实验材料
准备双水相萃取所需的试 剂和材料,如蛋白质溶液 、双水相体系、离心管等 。
实验设备
确保实验所需的设备齐全 ,如离心机、天平、量筒 等。
安全措施
确保实验环境安全,穿戴 适当的实验服和护目镜, 避免试剂溅出。
实验步骤
加入蛋白质溶液
将待分离的蛋白质溶液加入离 心管中。
应用范围广泛
该技术在生物、医药、环保等领域有 广泛应用,可用于蛋白质、酶、细胞 等的分离和纯化。
操作简便高效
双水相萃取技术操作简单,分离速度 快,可实现大规模生产。
环境友好
该技术使用无毒或低毒性的物质,对 环境友好,符合绿色化学的发展趋势 。
技术展望
深入研究机理
进一步深入研究双水相萃取技术的机理,提高分 离效率和选择性。
蛋白质回收率测定
测定蛋白质的回收率,评估双水相萃取技术的效 果。
3
数据分析
对实验数据进行统计分析,了解双水相萃取技术 的分离效果和影响因素。
04
双水相萃取技术的优缺点
技术优势
高分离效率
双水相萃取技术能够实现高效率的分离过程,对于一些难以分离 的物质,如蛋白质、酶等,能够实现快速、准确的分离。
低成本
收集上清液
将上清液收集到适当的容器中 ,以便后续分析。
配制双水相体系
按照所需的浓度配制双水相体 系,确保比例准确。
离心分离
将离心管放入离心机中,设定 适当的转速和时间进行离心分 离。
清洗沉淀
清洗离心管中的沉淀,确保蛋 白质的纯度和回收率。
实验结果分析
1 2
萃取技术—双水相萃取技术(药物分离纯化课件)

内侧流 外侧 分配 萃取物
体 流体 系数
细胞色素 C 磷酸盐 PEG 0.18 肌红蛋白 磷酸盐 PEG 0.009 过氧化氢酶 磷酸盐 PEG 0.12 尿激酶 磷酸盐 PEG 0.65
内侧流 速,cm/s
16.3 4.0 16.3 16.3
外侧流 传质系 速,cm/s 数,cm/s
6.6 5.5?0 -6 5.0 7.5?0 -7 5.0 2.8?0 -5 5.0 2.0?0 -4
双水相萃取的应用--双水相萃取技术(萃取技术)
1.双水相萃取的应用
双水相分离条件 (1) 目的分子与细胞应分配在不同的相 (2) 分配系数应足够大 (3) 离心机容易分离
双水相萃取的应用
分离物质
举例
体系
NaDS-硫酸葡聚糖
酶 核酸 生长素 病毒 干扰素
细胞组织
过氧化氢酶的分离 分离有活性核酸DNA 人生长激素的纯化 脊髓病毒和线病毒纯化 分离β-干扰素
双水相萃取的应用--双水相萃取技术(萃取技术)
2.双水相萃取分离技术的发展方向 (1)廉价双水相体系的开发
优点: (1)蛋白质溶解度大。蛋白质在PPT浓度到15%以前没有沉淀,但在PEG浓度大于
5%时,溶解度显著地减小,在盐溶液中的溶解度更小。 (2)粘度小。PPT的粘度是粗dextran的1/2,传质好。 ⑶价格便宜。PPT几十$/kg,粗dex几百$/kg
系线
TMB:系线连接双节线上两点的 直线。
在临界点处,分配系数为1
临界点
药物分离与纯化技术课程
3.双水相相图
系线反映的信息:
(1)系线长度:衡量两相间相对差别的尺度。越长则两相间性质差 别越大,反之则越小;趋向于零时,(双节线上的点,临界点), 两相差别消失,成为均一相。
双水相萃取ppt

天然植物药用有效成分的分离与提取
中草药是我国医药宝库中的瑰宝 ,已有数千 年的历史 ,但由于天然植物中所含的化合物 众多 ,特别是中草药有效成分的确定和提取 技术发展缓慢 ,使我国传统中药难以进军国 际市场。因此 ,采用具有较高选择性和专一 性的双水相萃取技术对中草药有效成分的 提取是一项很有意义的工作。利用双水相 萃取中草药有效成分具有代表性的工作是 对黄岑甙和黄岑素的分离。
抗生素的分离与提取
数抗生素都存在于发酵液中 ,提取工艺路线复杂 ,能耗 高 ,提取过程易变性失活。而双水相萃取在抗生素中具 有较大的应用价值 ,萃取提取涉及到各类抗生素。β 内酰胺类抗生素是抗生素家族中应用最多的一类 ,主要 由青霉素类和头孢菌素类构成。对青霉素进行工业化意 义的双水相萃取是结合传统工艺溶媒萃取法进行的。先 以 PEG2000/ (NH4) 2SO4系统将青霉素从发酵液中提取 到 PEG相 ,后用醋酸丁酯(BA)进行反萃 ,再结晶 ,处理 1000ml 青霉素发酵液 ,得青霉素晶体 7. 228g ,纯度 84. 15 % ,三步操作总收率 76. 56 %。
酶工程药物的分离与提取
酶在医药方面的应用一是作为药用酶 ,二是用作化学合 成药物中的酶催化剂。迄今 ,双水相萃取技术已广泛应 用于生物大分子、细胞、细胞器、蛋白质、核酸、病毒、 细菌、蓝藻、叶绿素、线粒体、 菌体等的分离与提取 , 几乎所有的酶均可用此技术仅通过调节 pH、合物和盐的 种类或浓度 ,选择合适的分离条件就可进行理想的分离 纯化。目前双水相萃取技术已成功应用于已较大规模提 取纯化的酶有几十种 。其中成功地实现从微生物细胞碎 片中提取纯化甲酸脱氢酶 ,其分离经 4 次连续萃取 ,已 达处理 50kg 湿细胞规模 ,处理的酶蛋白含量已高达 150g ,收率为 90 %~100 % ,由于工艺简单 ,原材料成 本较低 ,产品的价格也有大幅度降低。
双水相萃取

3.影响物质分配的因素
大规模操作一般在室温下进行,不需冷却。这是基于: (a) 成相聚合物PEG对蛋白质有稳定作用,常温下蛋白质不会 发生变性;
(b) 常温下溶液粘度较低,容易相分离;
(c) 常温操作节省冷却费用。
3.影响物质分配的因素
3.5 生物分子疏水基团的影响
• 对于同一种双水相体系,微生物也会影响体系上下相的 比例以及胞内蛋白质在体系的分配系数。 • 这种分配的差异主要是由细胞破碎程度引起的,细胞壁 和细胞膜不同的化学结构也会导致体系上下相比例的改 变。 • 此外,因为PEG是一种常见的絮凝剂和沉淀剂,细胞物 质的絮凝和在不同相中的分配同时发生。所以PEG的存 在改变了物质的溶解曲线。
利用中空纤维膜传质面积大的特点,将膜分离与双水相 萃取相结合,可以大大加快萃取传质速率。利用膜将双水相 体系隔开,可解决双水相萃取的乳化和生物活性物质在界面 的吸附问题。因此,将膜分离同双水相萃取技术相结合,是 解决双水相体系易乳水相萃取技术的进展
5.2.2 双水相萃取同亲和层析相结合—亲和双水相
1.双水相体系概述
1.1 双水相萃取的原理 Sub Text title1
(1) 分配系数
双水相萃取与一般的水-有机物萃取的原理相似, 都 是依据物质在两相间的选择性分配。当萃取体系的性质 不同,物质进入双水相体系后,由于分子间的范德华力 、疏水作用、分子间的氢键、分子与分子之间电荷的作 用,目标物质在上、下相中的浓度不同,从而达到分离 的目的。
3.2 pH的影响
pH值对分配的影响源于两个方面的原因: 第一,pH值会影响蛋白质分子所带电荷的性质和数量。
第二,pH值影响磷酸盐的离解程度,从而改变H2PO4-和 HPO42- 之间的比例,进而影响相间电位差。这样蛋白质 的分配因pH值的变化发生变化。pH值的微小变化会使蛋 白质的分配系数改变2~3个数量级。
双水相萃取原理

双水相萃取原理
双水相萃取是一种将有机物从水溶液中分离出来的方法。
它基于水和有机溶剂不相溶的性质,通过两相之间的分配系数差异来实现目标物质的选择性提取。
双水相萃取的原理是利用两种互不相溶的溶剂(一般是水和有机溶剂),在某一条件下将目标物质在两相之间分配。
通常情况下,有机物更易溶于有机相,而无机物更易溶于水相。
具体的操作步骤如下:首先将水溶液和有机溶剂混合,形成两相体系。
然后经过搅拌或震荡,让目标物质在两相之间达到平衡分配。
接下来,待两相分离后将有机相和水相分开。
最后,可以通过蒸发或其他方法将目标物质从有机相中提取出来。
双水相萃取的选择性是基于目标物质在两相之间的分配系数差异。
分配系数是指物质在两相之间分配的比例,由物质的溶解度和两相的互溶性决定。
通常情况下,选择合适的有机溶剂和水相条件可以使目标物质在有机相中富集,而其他杂质则大部分留在水相中。
双水相萃取的优点是操作简单、成本低廉,适用于大量样品的初步分离和富集。
但是也存在一些局限性,例如只适用于水溶液中的有机物质,对目标物质的选择性有一定要求。
总之,双水相萃取是一种利用两相体系中的分配差异来实现目标物质提取的方法。
通过选择合适的有机相和水相条件,可以实现对目标物质的选择性富集,从而达到分离和纯化的目的。
双水相萃取

操作步骤
一、重点 双水相萃取放大容易:一般10ml离心管的实验结果可直接放大到工业规模。具体实验步骤: 1、配制一系列不同浓度、pH及离子强度的双水相,每个双水相改变一个参数。 2、加入料液,再加水使整个系统质量达到5~10g。离心管封口后充分混合。 3、1800-2000g下离心3-5min,使两相完全分离。 4、用吸管或移液管将上相和下相分别吸出,测定上、下相中目标产物的浓度或生物活性,计算分配系数。 5、上、下两相中目标产物的总量应与加入量对比,以检验是否存在沉淀或界面吸附现象,并可确认浓度或活 性测定中产生的系统误差。 6、分析目标产物的收率和纯化倍数,确定最佳双水相系统。 二、特点: 1、含水量高(70%~90%),适宜提取水溶性的蛋白质、酶等生物活性物质,且不易引起蛋白质的变性失活。 2、不存在有机溶剂残留问题。3、易于放大,各种参数可按比例放大而产物收率并不降低。
可形成双水相的双聚合物体系很多,如聚乙二醇(PEG)/葡聚糖(Dx),聚丙二醇/聚乙二醇,甲基纤维素/ 葡聚糖。双水相萃取中采用的双聚合物系统是PEG/Dx,该双水相的上相富含PEG,下相富含Dx。另外,聚合物与 无机盐的混合溶液也可以形成双水相,例如,PEG/磷酸钾(KPi)、PEG/磷酸铵、PEG/硫酸钠等常用于双水相萃 取。PEG/无机盐系统的上相富含PEG,下相富含无机盐。
原理
某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成 双水相系统(aqueous two-phase system,ATPS)。利用亲水性高分子聚合物的水溶液可形成双水相的性质, Albertsson于20世纪50年代后期开发了双水相萃取法(aqueous two-phase extraction),又称双水相分配法。 20世纪70年代,科学家又发展了双水相萃取在生物分离过程中的应用,为蛋白质特别是胞内蛋白质的分离和纯化 开辟了新的途径。
双水相萃取技术

三、双水相萃取3.1 双水相萃取的原理及特点3.1.1 双水相萃取的原理双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。
当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。
分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。
3.1.2 双水相萃取的特点双水相体系萃取具有如下特点:(1)含水量高(70%~90%),是在接近生理环境的温度和体系中进行萃取,不会引起生物活性物质失活或变性;(2)分相时间短,自然分相时间一般为5~15min;(3)界面张力小(10-7~10-4mN/m),有助于强化相际间的质量传递;(4)不存在有机溶剂残留问题;(5)大量杂质能与所有固体物质一同除去,使分离过程更经济;(6)易于工程放大和连续操作。
由于双水相萃取具有上述优点,因此,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。
3.2 双水相萃取在分离和提取各种蛋白质(酶)上的应用用聚乙二醇(PEG)/羟丙基淀粉酶(Reppal PEG)体系经两步法可从黄豆中分离磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)。
在黄豆匀浆中加入PEG4000,可絮凝细胞碎片及大部分杂蛋白。
在上清液中加入PEG4000(12%)-ReppalPES(40%),PGK在上相、GAPGH在下相的收率均在80%以上。
萃取过程的放大采用离心倾析机连续处理匀浆液,用离心萃取器完成双水相体系的两相分离,整个工艺具有处理量大、接触时间短、酶收率高的特点。
用PEG/(NH4)2SO4双水相体系,经一次萃取从A-淀粉酶发酵液中分离提取α-淀粉酶和蛋白酶,萃取最适宜条件为PEG1000(15%)-(NH4)2SO4(20%),pH=8,α-淀粉酶收率为90%,分配系数为19.6,蛋白酶的分离系数高达15.1。
双水相萃取课件

双水相萃取的原理
根据热力学第二定律,混合是熵增过程可以自发进行,但 分子间存在相互作用力,这种分子间作用力随相对分子质量增 大而增大。
当两种高分子聚合物之间存在相互排斥作用时,由于相对
分子质量较大的分子间的排斥作用与混合熵相比占主导地位,
即一种聚合物分子的周围将聚集同种分子而排斥异种分子,当
越广泛。
目前,双水相萃取技术已用于多种生物体、生
物组织以及大分子生物物质的分离与纯化,并取
得了较好地成效。
1、双水相萃取常用设备
双水相萃取的基本过程包括双水相的形成、溶 质在双水相中的分配和双水相的分离。 相混合设备 静态混合器是常用的相混合设备。
相分离设备
在双水相系统中,虽然两相较容易达到平衡, 但两相分离则比较困难,这是因为两相的密度差 小,且粘度较大。 达到分配平衡的两相进行分离时,采用重力沉 降法或离心沉降法。一般用离心沉降法。常用的 离心沉降设备有管式离心机和碟片式离心机。
双 水 相 萃 取
主要内容
双水相萃取及萃取的设备工艺流程
1 2 双水相体系的形成 相图 双水相中的分配平衡
3
4 影响双水相分配系数的主要因素
有机溶剂萃取的不足: 1.许多蛋白质都有极强的亲水性,不溶于有机剂 ;
2.蛋白质在有机溶剂相中易变性失活。
溶液的分相不一定完全依赖于有机溶剂,在一定 条件下,水相也可以形成两相(即双水相系统)甚至多 相。于是有可能将水溶性的酶、蛋白质等生物活性物 质从一个水相转移到另一水相中,从而完成分离任务
1)表面自由能的影响(大分子物质表面性质对K 影响很大) 2)表面电荷的影响(盐效应:两相系统中存在如 盐,对K影响很大) 3)综合考虑(影响因素很多,单因素定量很困难 ,最佳操作条件靠实验) 4)影响分配平衡的参数
双水相萃取

当萃取体系的性质不同,物质进入双水相体
系后,目标物质在上、下相中的浓度不同, 从而在上相和下相间进行选择性分配,与常 规的萃取分配关系相比,表现出更大或更小 的分配系数。
1.3 双水相萃取技术的基本原理
1.3.2 双水相萃取的原理
• 分配规律服从Nernst分配定律,即K=ct/cb。
• 在相体系固定时,预分离物质在相当大的浓度
• 蛋白质、生物酶、菌体、细胞、细胞器
• 亲水性生物大分子
• 氨基酸、抗生素等生物小分子物质的
Hale Waihona Puke 3双水相萃取技术的应用
蛋白质(酶)的分离和提取 抗生素的提取和纯化 天然食用色素的萃取 中草药的有效成分的提取
贵金属的分离与检测
3.1 蛋白质(酶)的分离和提取
• 对发酵液、细胞培养液、植物、动物组
织中细胞内、外的酶和蛋白质均可提取 • 绝大多数是用 PEG 作上相成相聚合物, 葡聚糖、盐溶液和羟甲基淀粉的其中一 种作下相成相物质
工艺复杂等 • 双水相体系优点:对贵金属以及稀有金属
的分离与检测环境友好、废弃物少、对
人体无害、运行成本低、工艺简单
3.5 贵金属的分离与检测
实例: • 利用聚乙二醇-硫酸铵双水相体系萃取分
离 废 弃 印 刷 线 路 板 处 理 液 中 的 金。
• 最佳条件:实验在温度为25℃,pH为 1.0,PEG2000的质量分数为15%, ( N H 4) 2S O 4的 质 量 分 数 为 2 0 % 。
范围内,分配系数K为常数,与溶质的浓度无关, 只取决于被分离物质本身的性质和特定的双水 相体系的性质。
1.3 双水相萃取技术的基本原理
1.3.2 双水相萃取的原理
A-B-水双水相体系 图
双水相萃取的原理及应用课件

双水相萃取的原理及应用
ATPE 的基本原理
34
双水相的特点
不足之处: 如易乳化、成相聚合物的成本较高、分离效率不高 等,
双水相萃取的原理及应用
ATPE 的基本原理
35
双水相萃取的应用
双水相系统平衡时间短,含水量高,界面张力低, 为生物活性物质提供了温和的分离环境。它还具备 操作简便、经济省时、易于放大。据报道,系统可 从10ml直接放大到1m3规模(105倍),而各种试验 参数均可按比例放大,产物收率并不降低。
21
相图:相平衡时物系的组成, 温度与压力的关系
系线反映的信息 杠杆规则:系线上各点均为分成组成相同,而体积不同 的两相。两相体积近似服从杠杆规则
性质差异:系线的长度是衡量两相间相对差别的尺度, 系线越长,两相间的性质差别越大;反之则越小.
双水相萃取的原理及应用
ATPE 的基本原理
22
影响双水相萃取的因素
ATPE 的基本原理
30
双水相的特点
对生物物质、天然产物、抗生素等的提取、纯化方面的优 势: (1)含水量高(70%~90%),在接近生理环境的体系中进行 萃取,避免生物活性物质失活或变性。
(2)可以直接从含有菌体的发酵液和培养液中提取所需的蛋 白质(或酶),可直接提取细胞内酶,避免破碎或过滤等 步骤。
5
ATPE 的历史:
Kula教授研究小组对双水相 的应用、工艺流程、操作参数、 工程设备、成本分析等进行了 大量研究,在应用上获得成功。 1978年首先将双水相萃取技术 用于酶的大规模分离纯化。
双水相萃取的原理及应用
ATPE 的历史:
6
ATPE 的历史:
双水相萃取可分离多肽、蛋 白质、酶、核酸、病毒、细胞、 细胞器、细胞组织,以及重金 属离子等,近年来,还应用于 一些小分子,如抗生素、氨基 酸和植物的有效成分等的分离 纯化。作为反应系统用于酶反 应,生物转化,发酵的产物生 产与分离的集成。
双水相萃取详细资料(ppt 44页)

方盼 赵梅
目录
(一)两水相的形成 (二)相图 (三)分配理论 (四)影响分配的参数 (五)应用
Question
• 常用的溶液萃取法能用来提 取生物大分子如蛋白质吗?
Reason
➢大部分萃取采用一个是水相,另一个是有机相 ➢蛋白质遇到有机溶剂,易变形失活 ➢有些蛋白质有极强地亲水性,不能溶于有机溶剂。
使蛋白质易分配于富含该PEG的相中,使分配系数 增大,而葡聚糖的分子量减小,会使分配系数降 低,这是一条普遍规律
这是因为成相聚合物的疏水性对酶等亲 水性物质的分配产生较大的影响。
同一聚合物的疏水性随分子量的增大而 增大,当PEG的分子量增加是,在质量浓 度不变的情况下,其两端羟基数减少,疏 水性增加,亲水性的蛋白质不再向富含 PEG相中聚集,而转向另一相。 那么,分子量降低时,蛋白质就易分配 于富含PEG的相了
结论:加入适当的 盐类,会大大促进 带相反电荷的生物 大分子的分离。
pH
pH值对分配的影响源于两个方面的原因: (一)pH值会影响蛋白质中可以解离基团
的解离度,因而改变蛋白质所带的电荷和 分配系数。
lnKlnK0R FT Z
(二)pH值会影响磷酸盐的解离程度, 改变H2PO4-和HPO42-之间的比例, 而影响分配系数。
双水相系统
PEG = 聚已二醇 Kpi = 磷酸钾 DX = 葡聚糖
双水相萃取:
利用生物大分子在两种水相之间的分配比 例不同而达到分离纯化生物大分子的目的。
(二)相图
两种高聚物的水溶液,当它们以不同的比例 混合时,可形成均相或两相,这种水性两相 的形成条件和定量关系,常用相图来表示, 它是一条双节线。
K=C1/C2 C1代表上相浓度,C2代表下相浓度。当相
(生化工程课件)两水相萃取

在两水相系统中进行转化翻译功能,如 酶促反应,可以把产物移入另一相中, 消除产物抑制,因而提高了产率。这实 际上是一种反应和分离耦合的过程,有 时也称为萃取生物转化;如果发生的是 一种发酵过程,则也称为萃取发酵,因 而此时也可以把两水相系统称为两水相 反应器。
相 图
相图
双结线, 上相(T,轻相) 下相(B,重相) 结点 临界点 系线
杠杆定律
19.3 双水相萃取过程的理论基础
表面自由能的影响 表面电荷的影响
表面积
电荷
3、物质在两相中的分配
和溶剂萃取法一样,物质在两水相中的分配用分配系数 K表示。
CT K= ——
CB Ct、CB——分别代表上相、下相中溶质的浓度 K—与温度、压力以及溶质和溶剂的性质有关,与溶质的浓度无关。 1)表面自由能的影响(大分子物质表面性质对K影响很大) 2)表面电荷的影响(盐效应:两相系统中如存在盐,对K影响较大) 3)综合考虑(影响因素很多,单因素定量很困难,最佳操作条件靠实验) 4)影响分配平衡的参数 (1)聚合物的影响; (2)体系中无机盐离子的影响; (3)体系PH的影响; (4)体系温度的影响; (5)体系中微生物的影响。
四、双水相萃取的应用
1. 双水相萃取法常用于胞内酶提取。 目前已知的胞内酶约2500种,但投入生产的很少。 原因之一是提取困难。胞内酶提取的第一步系将细胞 破碎得到匀浆液,但匀浆液黏度很大,有微小的细胞 碎片存在,欲将细胞碎片除去,过去是依靠离心分离 的方法,但非常困难。双水相系统可用于细胞碎片以 及酶的进一步精制。
双水相萃取

(2)双水相体系形成的原因:
聚合物的不相溶性(空间位阻)
聚合物的不相溶性:各个聚合物分子,都倾向于在其
周围有形状、大小和极性相同的分子,同时,由于不同
类型分子间的斥力大于同它们的亲水性有关的相互吸引 力,因此聚合物发生分离,形成两个不同的相。
对于某些聚合物溶液与一些无机盐溶液相混时,只要
浓度达到一定范围时,体系形成双水相的机理尚不清楚。
这种影响与蛋白质相对分子质量也存在关系,相对分子质量越
大,影响也随之增大。
(2)高聚物的浓度:
成相物质的总浓度越高,蛋白质越容易分配于其中的某一相;
而对于细胞等颗粒来说,在临界点附近细胞大多分配于其中的
某一相。
(3)盐的种类和浓度:
盐的种类和浓度对分配系数的影响,主要反映在相间电位和
蛋白质的疏水性差异上,这是由于当双水相系统中存在这些
加入盐使目标蛋白质转入富盐相来回收 PEG;B)将 PEG
相通过离子交换树脂,用洗脱剂先洗去 PEG,再洗出蛋 白质。 无机盐的循环:将含无机盐相冷却,结晶,然后用离 心机分离收集。除此之外还可用电渗析法、膜分离法回
收盐类或除去 PEG相的盐。
(3)双水相萃取在药物分离中的应用
①细胞匀浆液中 蛋白质的纯化
液膜萃取
反胶团萃取
内容提纲:
1.双水相体系 2.双水相萃取的基本原理 3.影响双水相分配的主要因素
4.双水相萃取技术的发展
5.双水相萃取操作及应用
1.双水相体系
(1)双水相系统:一定浓度的两种水溶性高聚物或一
种高聚物与盐类在水中能形成两层互不相溶的匀相水溶液, 这样的水相系统称为双水相系统。
5%PEG6000 上层组成:2%Dextran500 93%水 3%PEG6000 下层组成:7%Dextran500 90%水
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 如,PEG/KPi系统中上、下相(或称轻重相) 的PEG和磷酸钾浓度以及Cl离子在上、下相 中的分配平衡随添加NaCl浓度的增大而改变。
▪ 这种相组成即相性质的改变直接影响蛋白质 的分配系数。
▪ 离子强度对不同蛋白质的影响程度不同,利 用这一特点,通过调节双水相系统中的盐浓 度,可有效地萃取分离不同的蛋白质。
▪ PEG/磷酸钾(KPi)、PEG/磷酸铵、PEG/硫酸钠等常用于生 物产物的双水相萃取。PEG/无机盐系统的上相富含PEG, 下相富含无机盐。
典型的双水相体系
物质类型
物质P的名称
两种非离子型聚合物
聚丙二醇
P为带电荷聚电解质
P Q都为聚电解质 P为聚合物 Q为盐类
聚乙二醇(PEG)
硫酸葡聚糖钠盐 羧甲基葡聚糖钠盐 羧甲基葡聚糖钠盐 聚乙二醇
双水相系统的应用
双水相萃取自发现以来,无论在理论上还是实践上 都有很大的发展。在最近几年中更为突出,在若干生物 工艺过程中得到了应用,其中最重要的领域是蛋白质 的分离和纯化。
▪ (1) 产品的浓缩 ▪ (2)蛋白质的提取和纯化 ▪ (3)生物小分子的分离和纯化 ▪ (4) 中草药有效成分的提取 ▪ (5)生物活性物质的分析检测
11.3.4 温度的影响
温度影响双水相系统的相图, 因而影响蛋白质的分配系数。 但一般来说,当双水相系统离 双节线足够远时,温度的影响 很小,1-2度的温度改变不影响 目标产物的萃取分离。
大规模双水相萃取操作一般在
室温下进行,不需冷却。这是 基于以下原因:(1)成相聚合物 PEG对蛋白质有稳定作用,常 温下蛋白质一般不会发生失活 或变性;(2)常温下溶液粘度较 低,容易相分离;(3)常温操作 节省冷却费用。
• 氢键 • 电荷力 • 疏水作用 • 范德华力 • 构象效应
10.2双水相的形成及制备
聚合物的不相溶性(incompatibility): 当两种高分子聚合物之间存在相互排斥作用时,由于相对分 子质量较大,分子间的相互排斥作用与混合过程的熵增加相 比占主导地位,一种聚合物分子的周围将聚集同种分子而排 斥异种分子,当达到平衡时,即形成分别富含不同聚合物的 两相。 这种含有聚合物分子的溶液发生分相的现象称为聚合物的不 相容性。
双水相萃取的优点
▪ 操作条件温和,在常温常压下进行; ▪ 两相的界面张力小,一般在10-4N/cm量级,两相
易分散, ▪ 两相的相比随操作条件而变化; ▪ 上下两相密度差小,一般在10 g/L。因此两相分离
较困难,目前这方面研究较多 ▪ 易于连续操作,处理量大,适合工业应用。
▪ 双水相萃取是利用物质在不相溶的,两水相间分 配系数的差异进行萃取的方法
双水相中聚合物组成的影响
双水相系统作为一种成功的萃取方法,很大程度上取决于 使用的聚合物类型。
当两种不同聚合物的溶液混合时,可能存在三种情况:
a 完全混溶性(匀相溶液); b 物理的不相溶性(相分离); c 复杂的凝聚(相分离,聚合物聚集在同一相中,纯溶剂-水聚集在 另一相中)。
离子和非离子聚合物都可以使用在双水相系统的构成上,但是, 当这两种聚合物是离子化合物并带有相反电荷时,它们互相吸 引并发生复杂的凝聚。
影响物质在双水相系统中分配的因素主要有: 双水相系统的聚合物组成(包括聚合物类型、平均分子量); 盐类(包括离子的类型和浓度、离子强度、pH值); 溶质的物理化学性质(包括分子量、等电点); 体系的温度等;
▪ 这些参数并不是独立地起作用。要预测溶质在双水 相系统间的分配系数是困难的。
▪ 这些系统复杂性表现在如下的一些例子中:在一相 中引入疏水性基团会影响离子的分配和电位,在大 分子(亲水聚合物或蛋白质溶质)结构中构象的变化, 能使另一些原子暴露在微环境中。这些事实导致只 能用实验的方法来确定满足分配要求的操作条件。
第十章 双水相萃取
双水相萃取(aqueous two-phase extraction)是利用物质 在互不相溶的两水相间分配系数的差异来实现分离的一 新型分离技术。
它具有收率高、成本低、可连续化操作等技术优势,已被 广泛应用于生物化学、细胞生物学和生物化工等领域, 进行生物转化,蛋白质、核酸等产品的分离纯化。
• 是否分层或混合成一相,取决于: ▪ 熵增——与分子数目有关 ▪ 分子间作用力——与分子大小有关
▪ 可以构成双水相的体系有:
• 离子型高聚物-非离子型高聚物(分子间斥力) ▪ PEG-DEXTRAN
• 高聚物-相对低分子量化合物(盐析作用) ▪ PEG-硫酸铵
双水相萃取的原理
▪ 依据悬浮粒子与其周围物质具有的复杂的相 互作用:
上,称为系线。
a 系线 两相区
双节线 均相区
b
两相区 系线
双节线 均相区
临界点
图a和b分别为PEG/Dx和PEG/KPi系统的典型相图
在系线上各点处系统的总浓度不同,但均分成组成相同而 体积不同的两相。两相的体积近似服从杠杆规则,即
系线的长度是衡量两相间相对差别的尺度,系线越长,两 相间的性质差别越大,反之则越小。当系线长度趋向于零时, 即在图b的双节线上K点,两相差别消失,任何溶质在两相中 的分配系数均为1,因此K点称为临界点(critical point)。
物质Q的名称
聚乙二醇 聚乙烯醇
葡萄糖(Dex) 羟丙基葡萄糖
聚乙烯醇 葡萄糖 (Dex) 聚乙烯吡咯烷酮
聚丙二醇、聚乙二醇 甲基纤维素
羧甲基纤维素钠盐
磷酸钾、硫酸铵、硫酸钠 硫酸镁、酒石酸钾钠
图中把均相区与两相区分开的曲线,称为双节点曲线。如果体系总组成 位于双节点曲线下方的区域,两高聚物均匀溶于水中而不分相。如果体 系总组成位于双节点曲线上方的区域,体系就会形成两相。上相富集了 高聚物Q,下相富集了高聚物P。用A点代表体系总组成,B点和C点分别 代表互相平衡的上相和下相组成,称为节点。A、B、C三点在一条直线
双水相萃取法和传统的分离方法(如盐析或有机溶剂沉淀等)相比 也有很大的优势,处理量相同时,双水相萃取法比传统的分离方 法,设备需用量要少3~10倍,因此已被广泛地应用在生物化学、 细胞生物学和生物化工领域,进行生物转化、蛋白质、核酸和病 毒等产品的分离纯化和分析等。
用此法来提纯的酶已达数十种,其分离过程也达到相当规模,
双水相系统物理化学性质的影响
双水相系统的性质主要取决于下列物理化学参数:
密度(ρ)和两相间的密度差, 黏度(μ)和两相间的黏度差以及表面张力(σ)。
盐和缓冲液的影响
盐的种类和浓度对分配系数的影响主要反映在对 相间电位和蛋白质疏水性的影响。
在双聚合物系统中,无机离子具有各自的分配系数, 不同电解质的正负离子的分配系数个同,当双水相系 统中含有这些电解质时,由于两相均应各自保持电中 性,从而产生不同的相间电位,因此,盐的种类(离 子组成)影响蛋白质、核酸等生物大分子的分配系数。 盐浓度不仅影响蛋白质的表面疏水性,而且扰乱双水 相系统,改变各相中成相物质的组成和相体积比。
▪ 因使用的溶剂是水,因此称为双水相,在这 两相中水分都占很大比例(85%一95%),活 性蛋白或细胞在这种环境中不会失活,但可 以不同比例分配于两相,这就克服了有机溶 剂萃取中蛋白容易失活和强亲水性蛋白难溶 于有机溶剂的缺点。
双水相萃取法的特点是能够保留产物的活性,整个操作可 以连续化,在除去细胞或细胞碎片时,还可以纯化蛋白质2~5倍, 与传统的过滤法和离心法去除细胞碎片相比,无论在收率上还是 成本上都要优越得多。
用此方法提纯的酶已达数十种,其分离也达到 了相当规模。
近年来又进行了双水相萃取氨基酸类和病毒小 分子物质的研究,大大扩展了应用范畴并提 高了选择性,使双水相萃取技术具有更大的 潜力和美好的发展前景。
▪ 双水相现象是当两种聚合物或一种聚合物 与一种盐溶于同一溶剂时,由于聚合物之 间或聚合物与盐之间的不相容性,当聚合 物或无机盐浓度达到一定值时,就会分成 不互溶的两相。
▪ 大作业(8选5,有关膜分离的最少必选一题)
▪ 1,微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、都是以压力差为推 动力的膜分离过程,它们之间有何区别和联系?
▪ 2,就电渗析的应用举一个具体的例子来说明它的原理和工艺流程。 ▪ 3,名词解释:双水相萃取;超临界萃取;分配系数。 ▪ 4,反渗透和膜蒸馏过程都能制备超纯水,请举例说明两过程的异同。 ▪ 5,请阐述无载体液膜的分离机理并举例说明。 ▪ 6,阐述泡沫分离的原理及影响泡沫分离的因素,并说明它适用哪类体系的分离。 ▪ 7,超临界流体的主要特性是什么?请简要说明超临界萃取的工艺流程。 ▪ 8,请你列举出你所知道的其它新型分离技术,并简要举例说明。
ห้องสมุดไป่ตู้
10.3双水相中的分配系数及影响分配的因素
与溶剂萃取相同,溶质在双水相中的分配系数也用
k=c1/c2表示。为简便起见,用c1 和c2分别表示平衡状态下上
相和下相中溶质的总浓度。
溶质在双水相中的分配受表面自由能、表面电荷、疏水作用 及生物亲和作用等因素的影响,其中表面自由能、表面电荷 对分配行为的影响最为重要,因而对这两方面的理论研究也 比较深入。 溶质分配的理论研究对双水相萃取起到指导作用,使萃取过 程可通过控制相关的影响因素而得到优化。
▪ 可形成双水相的双聚合物体系很多,如聚乙二醇 (polyethylene glycol, PEG)/葡聚糖(dextran,Dx),聚丙二 醇(polypropylene glycol) / 聚乙二醇和甲基纤维素 (methylcellulose)/葡聚糖等。
▪ 双水相萃取中常采用的双聚合物系统为PEG/Dx,该双水相 的上相富含PEG,下相富含Dx。除双聚合物系统外,聚合 物与无机盐的混合溶液也可形成双水相。