环氧树脂固化反应的原理

合集下载

防腐三步五涂施工方案

防腐三步五涂施工方案

防腐三步五涂——涂装方案书一、概述:依贵公司要求,对其混凝土地面进行防腐玻璃钢地坪的改造。

现将防腐三步五涂施工方案呈报如下。

地板要求达到:固化后可达到整洁美观效果,表面光滑便于清洁;具备无缝防尘、防霉防菌、耐油污、耐溶剂、防腐、着色自由等特性,维护保养简便,使用寿命长,性价比高。

二、环氧树脂固化反应原理:环氧树脂有很高的粘接强度,这是由于其结构中含有羟基、醚基及环氧基,使环氧树脂的分子和相邻接口之间容易产生电磁引力,环氧树脂与固化剂是直接加成反应,因此在固化过程中没有副产物产生,也不会产生气泡,而且在液体时就高度缔合,因此固化产物的收缩率小。

环氧树脂在未固化前是热塑性的线型结构,加入固化剂后才使其成体型网状结构。

但由于其反应为有机反应,施工后有七天养护期,使反应更完全、更彻底。

1、施工基层的要求和处理裂缝、坑洞的处理1.先将缝切割成“V”型,清除缝内的杂物、碎石;2.用砂浆材料或合适的弹性腻子材料填缝。

3.待完全干燥固化后将表面打磨平整一致即可。

3、防腐三步五涂施工工艺步骤简述验收标准图示素地处理(打磨一)用多磨头工业打磨机配合专用刀头对地面进行研磨,使表充分粗糙。

打磨均匀,无死角,底涂涂装前表面无明显灰尘。

打磨效果如图示。

防腐底涂使用滚筒(或抛洒法)将防腐底涂材料均匀地涂装于打磨后的地坪表面,使其充分粘结。

根据地面情况涂装1-3道,必须使地面吸收饱满。

涂层均匀、固化均匀、无漏涂,地面需充分渗透、湿润,密封。

完成后表面需完全密封。

点补对局部凹陷严重区域进行逐一填补,使其区域平整,点补完成后方可进行下一道工艺。

-------铺布根据客户要求铺玻璃纤维布一层或多层,用防腐中涂润湿。

待干燥后打磨-------防腐砂浆层防腐中涂配以石英砂、高标水泥、粉料调和搅拌均匀,使用镘刀均匀刮涂于底涂层上,在涂装过程中应充分修复凹陷、坑洞处;施工完毕后关闭门窗,使其充分固化。

涂层均匀、固化均匀、无漏涂。

中涂完成后可提高防腐地坪整体抗压性能及耐冲击性能。

环氧地坪漆的工作原理

环氧地坪漆的工作原理

环氧地坪漆的工作原理
环氧地坪漆的工作原理是通过环氧树脂和固化剂的化学反应形成固化膜,从而起到保护和装饰地面的作用。

具体工作原理如下:
1. 环氧树脂涂料的成膜过程:环氧树脂涂料中的环氧树脂与固化剂发生反应,形成均匀的自由基聚合体系,进而与土壤、水分等接触,引发可聚合物形成无定形无机膜的聚合反应。

2. 固化反应过程:环氧树脂与固化剂发生反应,产生强度高、耐磨损、耐腐蚀的固化膜。

3. 初期反应过程:环氧树脂与固化剂的反应开始,涂料开始固化,表面温度升高,涂层表面开始固化。

4. 固化与硬化过程:环氧树脂与固化剂反应进行到一定程度,形成韧性涂膜。

5. 复聚反应过程:环氧树脂与固化剂反应继续进行,固化膜进一步增强。

总结起来,环氧地坪漆的工作原理即为环氧树脂与固化剂的反应过程,形成坚固的保护膜,提高地面的耐磨损性、耐腐蚀性和装饰效果。

环氧树脂固化原理

环氧树脂固化原理

环氧树脂固化原理
环氧树脂固化原理是指将环氧树脂与固化剂进行反应,形成一种坚硬、耐热、耐化学腐蚀等性能优良的三维网络结构。

环氧树脂的固化是一个聚合反应过程,其机理可以分为两个主要步骤:环氧基团的开环和固化剂与开环产物的反应。

首先,环氧基团的开环是环氧树脂固化的关键步骤。

环氧树脂分子中含有活性的环氧基团(C-O-C),在固化剂的作用下,
环氧基团会发生开环反应,使树脂分子链中的环氧基团打开,并形成一种缺氧的活性端基。

这个开环反应的过程可以通过热激活或者添加催化剂来促进。

接下来,环氧树脂的开环产物与固化剂发生反应,形成强固的三维网络结构。

常用的固化剂有多种,如胺类、酸类、酸酐类等。

这些固化剂中的官能团与环氧开环产物中的活性端基进行反应,形成共价键,将树脂分子彼此连接起来。

这个反应过程称为缩聚反应,通过缩聚反应,环氧树脂分子之间形成交联结构,使树脂呈现出固态的特性。

总的来说,环氧树脂固化原理可以归纳为环氧基团的开环和开环产物与固化剂的反应两个步骤。

通过这两个步骤的相互作用,环氧树脂能够形成坚固的结构,具有良好的物理、化学性能,被广泛应用于各个领域中。

聚氨酯环氧树脂丙烯酸酯固化机理

聚氨酯环氧树脂丙烯酸酯固化机理

聚氨酯环氧树脂丙烯酸酯固化机理聚氨酯(Polyurethane)、环氧树脂(Epoxy Resin)和丙烯酸酯(Acrylic Ester)是常见的固化剂,它们在不同的应用领域中广泛使用,如涂料、胶粘剂、粘附剂等。

下面将详细介绍这三种固化剂的固化机理。

聚氨酯是通过异氰酸酯与多元醇的反应生成的一类聚合物。

在聚氨酯的固化中,主要涉及到两种化合物:异氰酸酯和多元醇。

以下是聚氨酯固化的具体机理:1.异氰酸酯的反应:异氰酸酯分子中含有两个异氰基(-N=C=O),它们与多元醇中的羟基(-OH)反应生成尿素基团(-NH-CO-NH-)。

这个反应被称为异氰酸酯与水的反应。

2.多元醇的反应:多元醇分子中的羟基(-OH)与异氰酸酯中的异氰基反应生成尿素基团(-NH-CO-NH-)。

这个反应被称为多元醇与异氰酸酯的反应。

3.异氰酸酯与多元醇的反应:异氰酸酯中的异氰基与多元醇中的羟基反应生成尿素基团(-NH-CO-NH-),同时产生了多元醇与异氰酸酯的键合。

最终,通过上述反应,异氰酸酯与多元醇发生反应,产生了交联的聚氨酯聚合物,即硬聚氨酯。

二、环氧树脂固化机理环氧树脂是由环氧基团(-CH2-CHO-)构成的聚合物,与固化剂反应后形成网络结构。

以下是环氧树脂固化的具体机理:1.环氧树脂的环氧基团开环反应:环氧树脂中的环氧基团与固化剂中活性氢原子发生反应,环氧基团开环,并与固化剂形成新的化学键。

2.环氧树脂与固化剂的加成反应:在环氧树脂的环氧基团开环后,环氧基团与固化剂中的双键或其他官能团结合,发生加成反应。

这个反应导致了环氧树脂与固化剂之间的化学键合。

通过上述反应,环氧树脂与固化剂发生化学反应,形成了交联的网络结构,即固化的环氧树脂。

丙烯酸酯是一类可以通过自由基聚合反应进行固化的化合物。

以下是丙烯酸酯固化的具体机理:1.自由基引发反应:通过添加引发剂或通过热、光等因素产生的自由基引发剂,引发丙烯酸酯的自由基聚合反应。

2.自由基聚合:通过自由基反应,丙烯酸酯的活性单体进行自由基聚合反应,形成无定型聚合物链。

环氧树脂的固化机理及常用固化剂

环氧树脂的固化机理及常用固化剂

环氧树脂的固化机理及其常用固化剂反应机理酸催化反应机理催化剂:质子给予体,促进顺序:酸>酚>水>醇固化剂分类1反应型固化剂▪可与EP分子进行加成,通过逐步聚合反应交联成体型网状结构▪一般含有活泼氢,反应中伴随氢原子转移,如多元伯胺、多元羧酸、多元硫醇和多元酚2催化型固化剂▪环氧基按阳离子或阴离子聚合机理进行固化,如叔胺、咪唑、三氟化硼络合物常见固化剂▪脂肪胺固化剂▪芳香族多元胺▪改性多元胺▪多元硫醇▪酸酐类固化剂1脂肪胺固化剂脂肪胺固化特点:▪活性高,可室温固化▪反应剧烈放热,适用期短▪一般需后固化,室温7d再80-100℃2h ▪固化物热形变温度低,一般80-90℃▪固化物脆性大▪挥发性及毒性大2芳香族多元胺芳香族多胺特点:▪固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺▪活性低,大多加热固化▪氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应▪多为固体,熔点高,工艺性差▪液化,低共熔点混合,多元胺与单缩水甘油醚加成3改性多元胺a、环氧化合物加成:▪加成物分子量变大,沸点粘度增加,挥发性与毒性减弱,改善原有脆性b、迈克尔加成:▪丙烯腈与多元胺▪胺的活泼氢对α,β不饱和键能迅速加成▪腈乙基化物降低活性,改善与EP相容性特别有效c、曼尼斯加成:曼尼斯反应(Mannich reaction)为多元胺和甲醛、苯酚缩合三分子缩合。

▪产物能在低温、潮湿、水下施工固化EP▪典型产品T-31:二乙烯三胺+甲醛+苯酚▪适应土木工程用于混凝土、钢材、瓷砖等材料▪粘结的快速修复和加固d、硫脲-多元胺缩合:▪硫脲与脂肪族多元胺加热至100℃缩合放出氨气▪能在极低温下(0℃以下)固化EPe、聚酰胺化:▪9,11-亚油酸与9,12-亚油酸二聚反应▪然后2分子与DETA(二乙烯三胺)进行酰胺化反应挥发性毒性很小▪与EP相容性良好,化学计量要求不严▪固化物有很好的增韧效果▪放热效应低,适用期长,固化物耐热性较低,HDT为60℃左右4多元硫醇▪类似于羟基▪聚硫醇化合物(液体聚硫橡胶)就是典型多元硫醇,单独使用活性很低,室温反应及其缓慢几乎不能进行▪适当催化剂作用下固化反应以数倍多元胺速度进行▪在低温固化更为明显5酸酐类固化剂▪反应速率很慢,不能生成高交联产物,一般不作为固化剂▪低挥发性,毒性低,刺激性低▪反应缓慢,放热量小,适用期长▪固化物收缩率低,耐热性高▪固化物机械强度高,电性能优良▪需加热固化,时间长▪EP常用固化剂,仅次于多元胺主要酸酐:▪顺酐>苯酐>四氢苯酐>甲基四氢苯酐▪六氢苯酐>甲基六氢苯酐▪甲基纳迪克酸酐▪均苯四甲酸二酐▪改性酸酐▪酸酐分子中负电性取代基则活性增强阴/阳离子型催化剂▪催化剂仅仅起催化作用,本身不参与交联▪用量主要以实验值为准▪催化环氧开环形成链增长1常用阴离子催化剂1、叔胺类多用DMP-10(二甲氨基苯酚),DMP-30,酚羟基显著加速树脂固化速率,放热量大适用期短,EP快速固化(24h/25℃)2、咪唑类多用液态2-乙基-4-甲基咪唑(仲胺活泼氢和叔胺),适用期长(8-10h),中温固化,热形变温度高,与芳香胺耐热水平(100℃)相当阳离子型固化剂,路易斯酸链终止于离子对复合2常用阳离子催化剂▪路易斯酸:BF3,SnCl4,AlCl3等,为电子接受体▪BF3使用最多,具有腐蚀性,反应活性非常高一般与胺类或醚类络合物,如三氟化硼-乙胺络合物, BF3:400,为87℃结晶物质,室温稳定,离解温度90℃,离解后活性增大环氧树脂固化的三个阶段▪液体-操作时间:树脂/固化剂混合物仍然是液体适合应用▪凝胶-进入固化:混合物开始进入固化相(也称作熟化阶段),这时它开始凝胶或“突变”成软凝胶物。

环氧树脂光固化机理

环氧树脂光固化机理

环氧树脂的光固化机理
环氧树脂的光固化机理主要基于其分子结构中不饱和双键对光引发剂吸收紫外光或可见光后产生的活性自由基的反应。

以下是具体的步骤:
1. 光引发剂吸收光能:
光固化过程中,首先需要添加特定的光引发剂,这类物质可以吸收紫外光或特定波长的可见光能量,从而被激发到激发态。

2. 光引发剂分解:
吸收了光能的光引发剂分子发生内部化学变化,从激发态跃迁回到基态时释放出足够的能量,使自身发生断裂,生成具有高活性的自由基或阳离子。

3. 链引发:
这些由光引发剂产生的自由基或阳离子与环氧树脂中的环氧基团(环氧基—O—C==C—R)进行反应,打开环氧环,形成一个新的碳中心自由基或阳离子,启动聚合链的增长过程。

4. 链增长:
新生成的碳中心自由基或阳离子能够迅速与树脂体系中未反应的
环氧基团结合,继续打开环氧环,并且不断重复这一过程,形成一个较长的聚合物链。

5. 链终止:
当两个带相反电荷的活性末端相遇时(对于阳离子聚合,可能是阴离子与阳离子;对于自由基聚合,则是自由基与自由基),会发生偶合或转移反应,从而终止链的增长。

或者,当自由基或阳离子捕获稳定剂(如氢原子、醇类等)时,也会导致链终止。

6. 交联网络形成:
通过上述链增长和链终止的过程,大量的环氧树脂分子彼此之间通过化学键连接起来,形成了三维立体的交联网络结构,实现材料的固化。

总的来说,环氧树脂光固化是一个由光引发剂在光的作用下产生自由基或阳离子引发环氧树脂交联固化成固体的过程。

这种固化方式速度快,效率高,无溶剂排放,环保性较好,广泛应用于涂料、胶粘剂、电子封装材料等领域。

紫外光固化环氧树脂

紫外光固化环氧树脂

紫外光固化环氧树脂紫外光固化环氧树脂是一种应用广泛的高分子材料,具有固化速度快、成膜性能优异等特点,在各个领域都有重要的应用价值。

下面将从紫外光固化环氧树脂的原理、应用领域以及优势等方面进行阐述。

一、紫外光固化环氧树脂的原理紫外光固化环氧树脂是通过紫外线照射使其发生光引发剂的活化,从而引发环氧树脂的聚合反应,最终形成固化膜的过程。

紫外线照射在特定波长范围内,能够激发光引发剂,使其转变为活性自由基或离子,进而引发环氧树脂的交联反应,形成硬化膜。

1. 3D打印:紫外光固化环氧树脂在3D打印中得到广泛应用。

其固化速度快,可实现快速成型,且成品具有优异的力学性能和表面质量。

因此,在快速成型、原型制作等领域有着重要的应用。

2. 电子封装:紫外光固化环氧树脂具有优异的电气绝缘性能和耐热性,可用于电子元器件的封装和保护。

其固化速度快,可大幅提高生产效率,同时具有较低的挥发性,有利于环境保护。

3. 涂装领域:紫外光固化环氧树脂作为一种环保型涂料,被广泛应用于木器、金属、塑料等材料的表面涂装。

其固化速度快,可实现快速上色和干燥,具有较高的附着力和耐磨性。

4. 光纤领域:紫外光固化环氧树脂被用于光纤连接器的固化。

由于其固化速度快且光学透明度高,能够快速实现光纤连接器的固化和封装,提高光纤连接的稳定性和可靠性。

三、紫外光固化环氧树脂的优势1. 快速固化:紫外光固化环氧树脂在紫外线照射下,固化速度极快,通常只需要几秒钟即可完成固化过程,大大提高了生产效率。

2. 低能耗:紫外光固化环氧树脂固化过程不需要加热,只需紫外线照射即可,相比传统热固化工艺,能耗更低。

3. 环保无溶剂:紫外光固化环氧树脂不含溶剂,固化过程中无挥发性有机物的释放,符合环保要求。

4. 优异的性能:紫外光固化环氧树脂固化后形成的膜具有优异的物理、化学性能,如硬度高、耐磨性好、电气绝缘性能优良等。

紫外光固化环氧树脂是一种具有快速固化、低能耗、环保无溶剂以及优异性能的高分子材料。

胶水固化原理

胶水固化原理

胶水固化原理胶水固化原理是指在粘合剂与被粘材料接触后,通过化学或物理作用使粘合剂形成坚固稳定的结合状态的过程。

一般来说,粘合剂的固化形式可以分为化学固化和物理固化两种。

1. 化学固化化学固化主要是指通过粘合剂与被粘材料的化学反应,产生新的化学键,使粘合剂与被粘材料固定在一起的过程。

常见的化学固化粘合剂有环氧树脂、聚氨酯、酚醛等。

(1)环氧树脂固化原理环氧树脂是一种常用的化学固化粘合剂,它由环氧树脂和固化剂两部分组成。

固化剂包括聚胺、酸酐、酰胺等,与环氧树脂中的环氧基固化反应,生成环氧基填充后的网状结构,从而使粘接处达到坚固的状态。

(2)聚氨酯固化原理聚氨酯是另一种常用的化学固化粘合剂,其固化原理是通过聚异氰酸酯和多元醇等反应,产生尿素键和酯键,形成交联结构,从而固化粘合剂与被粘材料。

化学固化粘合剂有较高的强度和耐热性,但需要在一定条件下进行反应,如温度、压力、时间等,因此生产过程较为复杂。

2. 物理固化热固性胶水主要是树脂与硬化剂混合后,在一定温度下发生交联反应,使粘合剂从液态变为固态的过程。

常见的热固性胶水有酚醛树脂、尿素甲醛树脂等。

(2)紫外线固化胶水固化原理紫外线固化胶水是指在紫外线照射下,通过引发剂的作用促使粘合剂中的聚合物发生交联反应,使其从液态变为固态的过程。

紫外线固化胶水固化速度快,不需要加热,并且对被粘材料的热敏性较小。

胶水的固化原理是通过化学或物理反应将粘合剂与被粘材料紧密结合,从而形成坚固稳定的结合状态,具有很重要的应用价值。

在现代社会,粘合技术已经成为了一个重要的行业,应用范围也非常广泛。

例如在汽车制造、家电制造、房屋建筑等领域中,都需要使用各种各样的胶水来粘合材料,以达到安全和耐久的要求。

随着科技的不断发展,新型的胶水材料也不断涌现。

近年来,新型环保型胶水的应用逐渐普及,这类胶水使用生物基原材料而非化学合成原材料,具有环保、健康的特点。

智能胶水的研发也让胶水技术达到了新的高度。

环氧树脂固化剂 原理

环氧树脂固化剂 原理

环氧树脂固化剂原理一、交联反应环氧树脂的固化过程是一种典型的交联反应,通过这种反应,环氧树脂由线型结构转变为网状结构。

固化过程中,环氧树脂中的环氧基与固化剂中的活泼氢发生反应,生成羟基。

这些羟基进一步相互反应,形成三维网状结构。

这种网状结构使得环氧树脂变得坚硬和耐热,从而实现了从液态到固态的转变。

二、固化剂种类环氧树脂的固化剂种类繁多,根据其性质和应用需求有多种分类方式。

根据固化机理,可以分为胺类、酸酐类、聚合物类等。

胺类固化剂如脂肪胺、芳香胺等,反应速度快,但耐热性较差;酸酐类固化剂如邻苯二甲酸酐、顺丁烯二酸酐等,耐热性好,但反应速度较慢;聚合物类固化剂如聚酰胺、酚醛树脂等,具有良好的综合性能。

三、温度与时间环氧树脂的固化过程受温度影响较大。

在室温下,固化反应速度较慢,需要较长时间才能完全固化。

提高温度可以加快固化反应速度,缩短固化时间。

但温度过高可能导致固化过度,产生裂纹或变形。

因此,选择合适的温度和时间是实现环氧树脂良好固化的关键。

四、催化剂在环氧树脂的固化过程中,催化剂起到了加速反应的作用。

催化剂的种类和用量对固化速度和固化产物的性能都有重要影响。

常见的催化剂有酸、碱、过渡金属化合物等。

选择合适的催化剂可以提高固化速度,改善固化产物的性能。

五、填料与改性为了改善环氧树脂的力学性能、电性能和热性能等,常常需要添加填料进行改性。

填料的选择和用量应根据具体的应用需求而定。

常用的填料有硅微粉、玻璃纤维、碳纤维等。

填料的加入可以降低成本、提高耐磨性、增强刚性等。

同时,填料还可以通过表面改性来改善与环氧树脂的相容性,进一步提高复合材料的性能。

环氧树脂固化反应的原理

环氧树脂固化反应的原理

环氧树脂固化反应的原理环氧树脂固化反应的原理,目前尚不完善,根据所用固化剂的不同,一般认为它通过四种途径的反应而成为热固性产物; 1环氧基之间开环连接;2环氧基与带有活性氢官能团的固化剂反应而交联;3环氧基与固化剂中芳香的或脂肪的羟基的反应而交联;4环氧基或羟基与固化剂所带基团发生反应而交联; 不同种类的固化剂,在硬化过程中其作用也不同;有的固化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物;具有单反应基团的胺、醇、酚等,这种固化剂,叫催化剂;多数固化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物;1、胺类固化剂胺类固化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且固化剂本身的毒性较大,易升华;胺类固化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等;胺本身可以看作是氮的烷基取代物,氨分子NH3中三个氢可逐步地被烷基取代,生成三种不同的胺;即:伯胺RNH2、仲胺R2NH 和叔胺R3N; 由于胺的种类不同,其硬化作用也不同:1伯胺和仲胺的作用含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用;使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物; 2叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子;2、酸酐类固化剂酸酐是由羧酸分子结构中含有羧基—COOH与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物; 酸酐类固化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能如力学强度、耐磨性、耐热性及电性能等均较好;但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外;绝大多数是易升华的固体,而且一般要加热固化; 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下:酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构; 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯;但这不是主要的反应;3、树脂类固化剂含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的固化剂;如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等;它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用;常用的是低分子聚酰胺和酚醛树脂; 1低分子聚酰胺不同于尼龙型的聚酰胺;它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂;由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大;它们的分子量在500~9000之间,有熔点很高,胺值很低的固态树脂,也有胺值为300的液态树脂;其中胺值是低分子聚酰胺活性的描述,胺值高的活性大,与环氧树脂反应速度快,但可使用期短,胺值低的活性小,与环氧树脂反应速度慢,但可使用期长, 低分子聚酰胺分子中有各种极性基团,如仲胺基;伯胺基以及酰胺基,硬化后的环氧树脂对各种金属、木材、玻璃和塑料有良好的粘附力;聚酰胺分子中有较长的脂肪碳链,起到内部增塑作用,因此硬化后的环氧树脂有一定的韧性;低分子聚酰胺与环氧树脂的配合比例一般从40/60到60/40;在此范围内,可获得较好的胶接强度,热稳定性和耐化学试剂作用;一般聚酰胺用量多,体系柔性及抗冲击性能好;环氧树脂比例高,高温下粘结强度比较高,耐化学试剂作用好; 低分子聚酰胺作固化剂特点是:无毒或低毒,挥发性小,易与环氧树脂混合,反应缓慢,一般多用作常温固化剂; 2酚醛树脂酚醛树脂与环氧树脂的相互作用比较复杂, 热固性酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基起反应及酚醛树脂中的酚羟基与环氧基起开环醚化反应所以酚醛树脂能把环氧树脂从线型变成体型,环氧树脂也能把酚醛树脂从线型变成体型,彼此相辅相成,最后形成相互交联的不溶不熔的体型大分子;4、咪唑类固化剂咪唑类化合物是一种新型固化剂,可在较低温度下固化而得到耐热性优良的固化物,并且具有优异的力学性能; 咪唑类化合物的反应活性根据其结构不同而有所不同;一般碱性愈强,固化温度愈低,在结构上受l位取代基影响较大; 咪唑1midaxole是具有两个氮原子的五元环,一个氮原子构成仲胺,一个氮原子构成叔胺;所以咪唑类固化剂既有叔胺的催化作用,又有仲胺的作用;如2-乙基-4-甲基咪唑;。

脂环族环氧树脂固化机理

脂环族环氧树脂固化机理

脂环族环氧树脂固化机理脂环族环氧树脂是一种常用的高性能材料,广泛应用于航空航天、电子电气、汽车、船舶等工业领域。

而了解脂环族环氧树脂的固化机理对于合理应用和改进该材料具有重要意义。

脂环族环氧树脂是由环氧基团和脂环族基团组成的复合材料。

在固化过程中,环氧基团与脂环族基团发生反应,形成交联结构,从而使树脂固化成为硬而耐用的材料。

脂环族环氧树脂的固化机理可以分为两个主要步骤:环氧开环反应和交联反应。

首先,环氧基团发生开环反应,打开环氧环,并与固化剂中的活性氢原子发生加成反应,形成羟基。

这个过程也称为环氧开环反应,是固化反应的第一步。

环氧开环反应的速率受到多种因素的影响,如温度、固化剂的种类和含量、环氧树脂的结构等。

较高的温度和适当的固化剂可以加速环氧树脂的固化速率。

另外,环氧树脂的结构也会影响开环反应的速率。

一般来说,含有较多环氧基团的树脂固化速率较快。

在环氧开环反应之后,交联反应开始进行。

交联反应是指羟基与环氧基团之间的反应,形成强的化学键,使树脂形成网状结构。

这个过程需要较长的时间,通常需要在较高的温度下进行。

交联反应的速率也受到多种因素的影响,如温度、固化剂的种类和含量。

较高的温度和适当的固化剂可以加速交联反应的进行。

此外,固化剂的选择也对交联反应的速率有影响。

不同的固化剂具有不同的活性,会影响反应的速率和固化的程度。

脂环族环氧树脂的固化过程是一个复杂的化学反应过程。

固化反应需要一定的时间才能完成,通常需要在较高的温度下进行。

固化时间的长短取决于树脂的结构、固化剂的种类和含量以及温度等因素。

总结起来,脂环族环氧树脂的固化机理包括环氧开环反应和交联反应两个主要步骤。

环氧开环反应是固化的第一步,通过环氧基团与固化剂中的活性氢原子发生加成反应形成羟基。

交联反应是固化的第二步,羟基与环氧基团之间发生反应形成强的化学键,使树脂形成网状结构。

了解脂环族环氧树脂的固化机理有助于合理应用和改进该材料,提高其性能和应用范围。

环氧树脂合成原理

环氧树脂合成原理

环氧树脂合成原理环氧树脂是一种重要的高分子材料,具有优异的性能和广泛的应用领域。

环氧树脂的合成原理是指通过特定的化学反应将环氧基团与含有活泼氢的化合物发生开环反应,形成环氧树脂分子链的过程。

环氧树脂的合成原理主要包括环氧化、缩合和固化三个阶段。

首先,环氧树脂的合成通常是从环氧化合物开始的。

环氧化合物是一类分子中含有两个或多个环氧基团的化合物,常见的环氧化合物有环氧乙烷、环氧丙烷等。

在合成环氧树脂的过程中,环氧化合物首先与含有活泼氢的化合物发生环氧化反应,活泼氢可以来自于酚类、醛类、酮类等化合物。

环氧化反应是环氧树脂合成的起始阶段,也是决定环氧树脂性能的重要环节。

其次,环氧树脂的合成还包括缩合反应。

在环氧化合物发生环氧化反应后,得到的产物往往是含有羟基的化合物。

这些含有羟基的化合物会在一定的条件下发生缩合反应,形成环氧树脂的前体物。

缩合反应是环氧树脂合成过程中的关键步骤,它决定了环氧树脂分子链的长度和结构,直接影响到环氧树脂的性能和用途。

最后,环氧树脂的合成还需要进行固化处理。

在环氧树脂的应用中,为了使其具有良好的力学性能和化学稳定性,通常需要将其与固化剂进行反应,形成三维网络结构。

固化反应是环氧树脂合成的最后一个阶段,通过固化反应可以使环氧树脂分子之间形成交联结构,从而提高环氧树脂的硬度、强度和耐热性能。

总的来说,环氧树脂的合成原理是一个复杂的化学过程,需要精确控制反应条件和原料配比,才能得到具有良好性能的环氧树脂产品。

通过对环氧化、缩合和固化三个阶段反应的深入研究,可以进一步优化环氧树脂的合成方法,提高环氧树脂的品质和性能,拓展其在各个领域的应用范围。

环氧树脂作为一种重要的高分子材料,其合成原理的研究和应用具有重要的科学意义和工程价值。

环氧树脂的合成原理和固化原理

环氧树脂的合成原理和固化原理

环氧树脂的合成原理和固化原理环氧树脂是一种常用的高分子材料,具有优良的物理性能和化学性能,广泛应用于涂料、胶粘剂、电子材料等领域。

它的合成原理和固化原理是非常重要的,下面将详细介绍。

1. 环氧树脂的合成原理环氧树脂的合成原理主要涉及两个基本化学反应:环氧化和缩聚反应。

环氧化反应是将环状的两个碳原子与一个氧原子相连,形成一个环氧基团。

环氧基团具有高度的反应活性,可以与其他化合物发生反应。

环氧树脂的合成通常是通过环氧化反应制备环氧前驱体。

环氧化反应的机理是环状的不饱和键(通常是烯烃基)与过氧化物反应,生成环氧基团。

过氧化物可以是过氧化氢、过氧化苯酚等。

在反应中,过氧化物的氧原子与烯烃基的双键发生加成反应,形成一个氧化物中间体。

然后,中间体中的氧原子与烯烃基的另一个碳原子发生加成反应,生成环氧基团。

缩聚反应是环氧基团之间的反应,将两个环氧基团连接起来形成链状结构。

缩聚反应通常需要添加催化剂,如胺类化合物或酸类化合物。

催化剂可以使环氧基团发生开环反应,生成具有两个氢原子的中间体。

然后,中间体中的两个氢原子与其他环氧基团的氧原子发生加成反应,形成链状结构。

2. 环氧树脂的固化原理环氧树脂的固化是指环氧树脂与固化剂反应生成三维网络结构的过程。

固化剂可以是胺类化合物、酸类化合物、酸酐类化合物等。

在固化过程中,固化剂中的活性基团与环氧基团发生反应,形成共价键。

这些共价键连接起来形成交联结构,使环氧树脂形成硬化的固体。

固化剂的选择对于环氧树脂的性能影响很大。

不同的固化剂可以调节环氧树脂的硬度、耐热性、耐化学品性等性能。

例如,胺类固化剂可以使环氧树脂固化速度较快,而酸类固化剂可以使环氧树脂具有较好的耐化学品性。

固化过程中的温度和时间也会影响固化的效果。

一般来说,提高温度可以加快固化速度,但过高的温度可能会导致固化剂的分解或环氧树脂的热降解。

环氧树脂的合成原理是通过环氧化反应和缩聚反应将环氧基团连接起来形成链状结构;固化原理是通过环氧树脂与固化剂的反应形成共价键,生成三维网络结构。

(整理)环氧树脂固化剂特点和反应机理

(整理)环氧树脂固化剂特点和反应机理

环氧树脂有机酸酐固化剂特点和反应机理有机酸酐类固化剂,也属于加成聚合型固化剂。

早在1936年,瑞士的Dr.pierre Castan 就开始用邻苯二甲酸酐固化的环氧树脂作假牙的材料。

这一用法后来还在英国和美国申请了专利。

酸酐类用作固化剂在1943年美国就有专利报导。

酸酐类固化剂用于大型浇铸等重电部门,至今仍是这类固化剂应用的主要方向。

日本这类固化剂消费量每年在3 kt以上,约占环氧树脂固化剂全部用量的23%,仅次于有机多胺的用量。

在我国,以邻苯二甲酸酐为固化剂的环氧树脂浇铸、以桐油酸酐为固化剂的环氧树脂电机绝缘,都有20多年的应用历史。

近年来,随着电气、电子工业的发展,酸酐类固化剂在中、小型电器方面也获得广泛的应用,特别是弱电方面,也获得了充分重视,如集成电路的包封、电容器的包封等。

在涂料方面,如粉末涂料,这类固化剂也受到重视。

酸酐类固化剂与多元胺类固化剂相比,有许多优点。

从操作工艺性上看,主要有以下几点:一是挥发性小,毒性低,对皮肤的刺激性小;二是对环氧树脂的配合量大,与环氧树脂混熔后粘度低,可以加入较多的填料以改性,有利于降低成本;三是使用期长,操作方便。

从固化物的性质上看,它主要特征有:一是由于固化反应较慢,收缩率较小;二是有较高的热变形温度,耐热性能优良,固化物色泽浅;三是机械、电性能优良。

但是,酸酐类固化剂所需的固化温度相对比较高,固化周期也比较长;不容易改性;在贮存时容易吸湿生成游离酸而造成不良影响(固化速度慢、固化物性能下降);固化产物的耐碱、耐溶剂性能相对要差一些,等等,则是这类固化剂的不足之处。

在已知的酸酐化合物中,多数正在被广泛用作环氧树脂固化剂,大约有20余种,可以分为单一型、混合型、共熔混合型。

从化学结构上分,则可分为直链型、脂环型、芳香型、卤代酸酐型;如按官能团分类,又有单官能团型、两官能团型,两官能团以上的多官能团型无实用价值。

和多胺类固化剂的情况相类似,官能团的数量也直接影响固化物的耐热性;另外,也可按游离酸的存在与否分类,因为游离酸的存在对固化反应起着促进作用。

环氧树脂固化原理

环氧树脂固化原理

环氧树脂固化原理
环氧树脂固化原理是指环氧树脂与固化剂反应生成3D网络结
构的化学反应过程。

环氧树脂(Epoxy Resin)是一种双酚类化合物与双羧酸类化
合物或酰胺类化合物通过开环聚合反应得到的聚合物。

环氧树脂分子结构中含有较多的环氧基团(C-O-C),具有很高的活性。

环氧树脂在室温下是液体状态,需要与固化剂反应生成3D交
联结构才能变得固态。

固化剂(也称为硬化剂或交联剂)是与环氧基团反应生成交联结构的化合物。

固化剂可以是多种化学物质,例如胺类化合物、酸酐类化合物等。

固化剂的选择取决于应用领域和所需的性能。

环氧树脂和固化剂发生反应时,固化剂中的活性基团与环氧树脂中的环氧基团发生开环反应,环氧树脂分子链中的氧原子与固化剂分子链中的活性基团发生共价键结合,形成新的化学键,从而形成3D网络结构。

固化反应的进行会导致环氧树脂分子
链之间和分子内部发生交联,形成高分子量、高强度的固体结构。

环氧树脂的固化反应通常需要一定的温度和时间条件才能发生。

在固化过程中,温度和时间的控制对于固化剂的反应速率和反应程度起着重要的影响。

固化温度和时间应根据具体的固化剂和环氧树脂体系进行选择,以确保固化反应能够完全进行,并获得所需的材料性能。

环氧树脂固化后,具有优异的力学性能、化学稳定性和耐热性能,广泛应用于涂料、粘合剂、复合材料、电子封装材料等领域。

(整理)环氧树脂的固化机理及其常用固化剂

(整理)环氧树脂的固化机理及其常用固化剂

3.8 环氧树脂通过逐步聚合反应的固化环氧树脂的固化剂,大致分为两类:(1)反应型固化剂可与EP分子进行加成,并通过逐步聚合反应的历程使它交联成体型网状结构。

特征:一般都含有活泼氢原子,在反应过程中伴有氢原子的转移。

如多元伯胺、多元羧酸、多元硫醇和多元酚等。

(2)催化型固化剂可引发树脂中的环氧基按阳离子或阴离子聚合的历程进行固化反应。

如叔胺、咪唑、三氟化硼络合物等。

3.8.1 脂肪族多元胺1、反应机理催化剂(或促进剂):质子给予体促进顺序:酸≥酚≥水>醇(催化效应近似正比于酸度)如被酸促进(先形成氢键)形成三分子过渡状态(慢)2、常用固化剂四乙烯五胺多乙烯多胺试比较它们的活性、粘度、挥发性与固化物韧性的相对大小?脂肪胺类固化剂的特点(1)活性高,可室温固化。

(2)反应剧烈放热,适用期短;(3)一般需后固化。

室温固化7d左右,再经2h/80~100℃后固化,性能更好;(4)固化物的热变形温度较低,一般为80~90 ℃;(5)固化物脆性较大;(6)挥发性和毒性较大。

课前回顾1、海因环氧树脂的结构式与主要性能特点?2、二氧化双环戊二烯基醚环氧树脂的特点?3、TDE-85环氧树脂的结构式与性能特点?4、脂肪族环氧树脂的特点及用途?5. 有机硅环氧树脂的特点?6、环氧树脂的固化剂可分为哪两类,分别按什么反应历程进行固化?特点是什么?两类固化剂的代表有哪些?7、脂肪族多元胺固化剂的催化剂有哪些?活性顺序是怎样的?8、常用的脂肪族多元胺有哪些?多乙烯多胺的结构通式?它们的活性与挥发性相对大小顺序?9、脂肪族多元胺类环氧固化剂的主要特点有哪些?3、化学计量胺的用量(phr)= 胺当量×环氧值胺当量= 胺的相对分子量÷胺中活泼氢的个数phr意义:每100份树脂所需固化剂的质量份数。

例题:分别用二乙烯三胺和四乙烯五胺固化E-44环氧树脂,试计算固化剂的用量(phr值)。

若E-44用10%的丙酮或者669(环氧值为0.75)稀释后(质量比为100:10),又如何计算? 胺当量(DETA)=103/5=20.6胺当量(TEPA)=189/7=27(1)未稀释,环氧值=0.44Phr(DETA)=0.44×20.6=9.1Phr(TEPA)=0.44×27=11.9(2)用丙酮稀释,环氧值=0.44×100/110=0.4Phr(DETA)=0.4×20.6=8.2Phr(TEPA)=0.4×27=10.8用669稀释,环氧值=0.44×100/110+0.75×10/110=0.468Phr(DETA)=0.468×20.6=9.6Phr(TEPA)=0.468×27=12.63.8.2 芳香族多元胺’二胺基二苯基甲烷(DDM)二胺基二苯砜(DDS)芳族多元胺固化剂的特点优点:固化物耐热性、耐化学性、机械强度均比脂肪族多元胺好。

环氧树脂固化剂特点和反应机理

环氧树脂固化剂特点和反应机理

环氧树脂有机酸酐固化剂特点和反应机理有机酸酐类固化剂,也属于加成聚合型固化剂。

早在1936年,瑞士的Dr.pierre Castan 就开始用邻苯二甲酸酐固化的环氧树脂作假牙的材料。

这一用法后来还在英国和美国申请了专利。

酸酐类用作固化剂在1943年美国就有专利报导。

酸酐类固化剂用于大型浇铸等重电部门,至今仍是这类固化剂应用的主要方向。

日本这类固化剂消费量每年在3 kt以上,约占环氧树脂固化剂全部用量的23%,仅次于有机多胺的用量。

在我国,以邻苯二甲酸酐为固化剂的环氧树脂浇铸、以桐油酸酐为固化剂的环氧树脂电机绝缘,都有20多年的应用历史。

近年来,随着电气、电子工业的发展,酸酐类固化剂在中、小型电器方面也获得广泛的应用,特别是弱电方面,也获得了充分重视,如集成电路的包封、电容器的包封等。

在涂料方面,如粉末涂料,这类固化剂也受到重视。

酸酐类固化剂与多元胺类固化剂相比,有许多优点。

从操作工艺性上看,主要有以下几点:一是挥发性小,毒性低,对皮肤的刺激性小;二是对环氧树脂的配合量大,与环氧树脂混熔后粘度低,可以加入较多的填料以改性,有利于降低成本;三是使用期长,操作方便。

从固化物的性质上看,它主要特征有:一是由于固化反应较慢,收缩率较小;二是有较高的热变形温度,耐热性能优良,固化物色泽浅;三是机械、电性能优良。

但是,酸酐类固化剂所需的固化温度相对比较高,固化周期也比较长;不容易改性;在贮存时容易吸湿生成游离酸而造成不良影响(固化速度慢、固化物性能下降);固化产物的耐碱、耐溶剂性能相对要差一些,等等,则是这类固化剂的不足之处。

在已知的酸酐化合物中,多数正在被广泛用作环氧树脂固化剂,大约有20余种,可以分为单一型、混合型、共熔混合型。

从化学结构上分,则可分为直链型、脂环型、芳香型、卤代酸酐型;如按官能团分类,又有单官能团型、两官能团型,两官能团以上的多官能团型无实用价值。

和多胺类固化剂的情况相类似,官能团的数量也直接影响固化物的耐热性;另外,也可按游离酸的存在与否分类,因为游离酸的存在对固化反应起着促进作用。

环氧树脂的固化

环氧树脂的固化
固化产物对酸、碱、盐等腐蚀性介质 具有良好的抵抗能力。
绝缘性
固化后的环氧树脂是一种优良的绝缘 材料,可用于电气工程中。
固化产物的化学性能
耐化学药品性
固化产物对多种化学药品具有稳定性,不易发生化学反应。
热稳定性
固化产物在高温下能保持较好的稳定性,不易分解或变形。
耐候性
固化产物在户外环境中能长期保持性能稳定,不易受紫外线、氧 化等因素影响。
环氧树脂结构
环氧树脂的分子结构中含有环氧基、 羟基等极性基团和脂肪族、芳香族等 非极性基团,因此具有许多优异的性 能。
环氧树脂的性质
物理性质
环氧树脂通常是黏稠液体或低熔点固体,无色或淡黄色,透明或半透明,有良 好的黏附力和浸润性。
化学性质
环氧树脂在固化过程中,环氧基会与固化剂中的活性基团发生化学反应,形成 三维网状结构,从而赋予固化物优异的力学性能、耐化学药品性能和电性能等 。
高固化质量。
固化工艺的优化与改进
固化温度与时间的控制
根据环氧树脂的性质和工件要 求,合理调整固化温度和时间 ,以获得最佳的固化效果。
新型固化技术的探索
研究新型固化技术,如微波固 化、超声波固化等,以进一步 缩短固化时间、降低能耗和提 高产品质量。
固化设备的改进
针对现有固化设备的不足之处 进行改进,如提高加热效率、 优化温度控制系统等,以提高 固化质量和效率。
催化剂
催化剂可以加速固化反应,提高生产效率。常用的催化剂 包括有机胺、有机酸、金属盐等。
固化剂种类和用量
不同种类的固化剂具有不同的反应活性和机理,对固化产 物的性能也有显著影响。同时,固化剂的用量也直接影响 固化反应的进行程度和产物的性能。
湿度和氧气

环氧树脂的固化

环氧树脂的固化

甲基四氢 邻苯二甲 酸酐
C9H10O3
166.17
淡黄色透明油状液体
沸点 115~155℃
溶解性 溶于丙酮、 乙醇、 甲苯等
毒性 低毒
(3)胺类固化剂经过数代发展,型号繁多,种类庞杂,各有所长,在此不作赘述。
四、实验仪器
烧杯,牛皮纸,电子天平,果冻盒模具
五、实验步骤及现象
实验操作 用电子天平称取 8g 环氧树脂 E51,置于小果冻盒中。直接 在果冻盒中称取约 3.2g 酚醛 胺。剧烈搅拌混匀后静置。 实验现象 起初是黄色透明粘稠液体。 静 置后有少量气泡生成, 放出少 量热。 手触碰时有暖感。 无进 一步现象。 邻组刘政阳的发生明显的爆 聚, 体积增大, 有大量气泡嵌 在内部。 其表面呈现多孔泡沫 状。 现象解释 爆聚现象是由于固化过程传 热不均,局部过热使传热过 快, 而过热又加速了反应, 从 而造成了爆聚现象。 在本实验 中,小果冻盒的散热面积不 大, 而且投料时特意让固化剂 量偏多, 静置后就有可能会发 生爆聚。 当然这也于操作条件 有关, 并不能保证爆聚现象的 发生。 一个是因为卡安太大了, 把中 间的环氧卡住了。 而且它的背 面有一个别针, 使它无法在体 系中平衡存在。 如果让它在粘 度适当的时候摆正,再固化, 真是基本不可能做到。 丑点就 丑点吧。
三、实验药品
3
高分子化学实验
环氧树脂
化工系 毕啸天 2010011811
环氧 E51,改性胺,聚醚胺,酚醛胺,MeTHPA (1)环氧 E51 技术指标及简介: 外观无明显机械杂质; 环氧值 (eq/ 100g) 0.48~0.54; 无机氯值 (eq/ 100g) ≤ 1 × 10 -3; -2 有机氯值( eq/ 100g )≤ 2 × 10 ;挥发物 %≤ 2;色泽号≤ 2;粘度 40 ℃ (mPaS) ≤ 2500 E51 环氧值高、粘度低、色泽浅,广泛用作粘接剂、无溶剂涂料、自流平地平料、浇注 料。制备的涂料色彩艳丽、抗剥性好、施工方便。制备的浇注料工艺性好、流动性好、机械 强度高、绝缘性能好、收缩率小、吸水率低。 (2)MeTHPA 性质 物质 英文名 Methyl Tetrahydroph thalic Anhydride 熔点 -20℃ 分子式 分子量 外观性状 密度 1.20~1. 22 用量 25.5g
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环氧树脂固化反应得原理
环氧树脂固化反应得原理,目前尚不完善,根据所用固化剂得不同,一般认为它通过四种途径得反应而成为热固性产物。

(1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团得固化剂反应而交联; (3)环氧基与固化剂中芳香得或脂肪得羟基得反应而交联; (4)环氧基或羟基与固化剂所带基团发生反应而交联。

不同种类得固化剂,在硬化过程中其作用也不同、有得固化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物。

具有单反应基团得胺、醇、酚等,这种固化剂,叫催化剂、多数固化剂,在硬化过程中参与大分子之间得反应,构成硬化树脂得一部分,如含多反应基团得多元胺、多元醇、多元酸酐等化合物。

1、胺类固化剂胺类固化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且固化剂本身得毒性较大,易升华、胺类固化剂包括;脂肪族胺类、芳香族胺类与胺得衍生物等。

胺本身可以瞧作就是氮得烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同得胺。

即:伯胺(RNH2)、仲胺(R2NH))与叔胺(R3N)、由于胺得种类不同,其硬化作用也不同: (1)伯胺与仲胺得作用含有活泼氢原子得伯胺及仲胺与环氧树脂中得环氧基作用、使环氧基开环生成羟基,生成得羟基再与环氧基起醚化反应,最后生成网状或体型聚合物。

(2)叔胺得作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂得环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新得环氧基环,继续反应下去,最后生成网状或体型
结构得大分子。

2、酸酐类固化剂酸酐就是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成得化合物。

酸酐类固化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂得性能(如力学强度、耐磨性、耐热性及电性能等)均较好、但由于硬化后含有酯键,容易受碱得侵蚀并且有吸水性,另外除少数在室温下就是液体外。

绝大多数就是易升华得固体,而且一般要加热固化。

酸酐与环氧树脂得硬化机理,至今尚未完全阐明,比较公认得说法如下:酸酐先与环氧树脂中得羟基起反应而生成单酯,第二步由单酯中得羟基与环氧树脂得环氧基起开环反应而生成双酯,第三步再由其中得羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基得不溶不熔得体型结构。

除了上述反应之外,第一步生成得单酸中得羧基也可能与环氧树脂分子上得羟基起酯化反应,生成双酯。

但这不就是主要得反应、
3、树脂类固化剂含有硬化基团得一NH一,一CH2OH,一SH,一COOH,一OH等得线型合成树脂低聚物,也可作为环氧树脂得固化剂、如低分子聚酰胺。

酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等、它们分别能对环氧树脂硬化物得耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用。

常用得就是低分子聚酰胺与酚醛树脂。

(1)低分子聚酰胺不同于尼龙型得聚酰胺、它就是亚油酸二聚体或就是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成得一种琥珀色粘稠状树脂。

由于原材料得性质,反
应组分得配比与反应条件不同,低分子聚酰胺得性质差别很大、它们得分子量在500~9000之间,有熔点很高,胺值很低得固态树脂,也有胺值为300得液态树脂。

其中胺值就是低分子聚酰胺活性得描述,胺值高得活性大,与环氧树脂反应速度快,但可使用期短,胺值低得活性小,与环氧树脂反应速度慢,但可使用期长, 低分子聚酰胺分子中有各种极性基团,如仲胺基。

伯胺基以及酰胺基,硬化后得环氧树脂对各种金属、木材、玻璃与塑料有良好得粘附力。

聚酰胺分子中有较长得脂肪碳链,起到内部增塑作用,因此硬化后得环氧树脂有一定得韧性。

低分子聚酰胺与环氧树脂得配合比例一般从40/60到60/40。

在此范围内,可获得较好得胶接强度,热稳定性与耐化学试剂作用、一般聚酰胺用量多,体系柔性及抗冲击性能好;环氧树脂比例高,高温下粘结强度比较高,耐化学试剂作用好。

低分子聚酰胺作固化剂特点就是:无毒或低毒,挥发性小,易与环氧树脂混合,反应缓慢,一般多用作常温固化剂。

(2)酚醛树脂酚醛树脂与环氧树脂得相互作用比较复杂, 热固性酚醛树脂中得羟甲基与环氧树脂中得羟基及环氧基起反应及酚醛树脂中得酚羟基与环氧基起开环醚化反应所以酚醛树脂能把环氧树脂从线型变成体型,环氧树脂也能把酚醛树脂从线型变成体型,彼此相辅相成,最后形成相互交联得不溶不熔得体型大分子。

4、咪唑类固化剂咪唑类化合物就是一种新型固化剂,可在较低温度下固化而得到耐热性优良得固化物,并且具有优异得力学性能。

咪唑类化合物得反应活性根据其结构不同而有所不同。

一般碱性愈强,固化温度愈低,在结构上受l位取代基影响较大。

咪唑(1midaxole)
就是具有两个氮原子得五元环,一个氮原子构成仲胺,一个氮原子构成叔胺、所以咪唑类固化剂既有叔胺得催化作用,又有仲胺得作用。

如2-乙基-4—甲基咪唑。

相关文档
最新文档