第7章 电解质溶液解析

合集下载

高中化学第二册第七章探究电解质溶液的性质7.2研究电解质在溶液中的化学反应教案2高一第二册化学教案

高中化学第二册第七章探究电解质溶液的性质7.2研究电解质在溶液中的化学反应教案2高一第二册化学教案

7.2 研究电解质在溶液中的化学反应(共两课时)第1课时离子反应[设计思想]本节是在初中复分解反应发生的条件以及高中电解质与非电解质、强电解质与弱电解质、电离等基础上展开。

教学时,从离子反应的本质出发,通过学生实验,让学生展开讨论,引导学生运用电解质在水中发生电离,电离方程式等知识进行分析,并联系复分解反应趋于完成的条件,研究在什么条件下可使反应物的某些离子浓度减小,得出:电解质在溶液里发生反应的实质是离子间的反应,理解离子反应总是向离子浓度降低的方向进行的规律。

通过简单离子方程式的书写,认识用实际参加反应的离子来表示化学反应,即离子方程式以及离子方程式与化学方程式的区别与联系,理解离子方程式的意义。

一.教学目标1.知识与技能(1)离子反应发生的条件、本质及规律(B)(2)离子方程式意义(B)2.过程与方法通过盐酸与氢氧化钠的中和反应、碳酸根离子检验等实验,综合运用物质结构知识、电解质溶液电离等知识,经历分析问题、解决问题,逐步形成分析、比较、归纳的科学研究的方法。

3.情感态度与价值观通过盐酸与氢氧化钠的中和反应、碳酸根离子检验等实验现象的观察、记录、交流,体验化学的乐趣,感悟科学实验时认真、严谨、求真的重要意义。

二.教学重点和难点离子反应本质和理解离子反应总是向离子浓度降低的方向进行的规律。

三.教学用品药品:HCl、NaOH、NaCl、BaCl2、AgNO3、CuSO4、Na2CO3、K2CO3、(NH4)2CO3溶液、酚酞溶液。

仪器:试管、滴管四.教学流程1.流程图2.流程说明复习引入:通过典型例题,复习电解质、非电解质,强电解质、弱电解质知识,写出实验中有关物质的电离方程式,分析溶液中存在的离子,引入课题。

讨论:讨论HCl、NaOH、、NaCl 、BaCl2、AgNO3、CuSO4、Na2CO3溶液中存在的离子,为实验1中发生的反应作准备。

实验1:学生分组实验。

请完成下列实验(记录现象、写出化学方程式):(1)在滴加酚酞试液的氢氧化钠溶液中滴加盐酸;(2)、HCl 溶液中滴加Na2CO3溶液(3)NaOH溶液中滴加CuSO4溶液;(4)NaCl 溶液中滴加AgNO3溶液;(5)CuSO4溶液中滴加BaCl2溶液。

初中化学知识点讲解:电解质溶液

初中化学知识点讲解:电解质溶液

初中化学知识点讲解:电解质溶液初中化学知识点讲解:电解质溶液化学是自然科学的一种,主要在分子、原子层面,研究物质的组成、性质、结构与变化规律,创造新物质(实质是自然界中原来不存在的分子)。

以下是店铺为大家收集的初中化学知识点讲解:电解质溶液,欢迎大家借鉴与参考,希望对大家有所帮助。

电解质溶液的作用1、形成回路;2、提供反应环境(酸性、碱性);3、有的提供反应物。

电解质溶液导电的原因当电解质溶液通入直流电时,溶液中的阴阳离子分别向阳极和阴极移动,参加有电子得失的电解反应,在阳极上失去电子,在阴极上得到电子,形成了电子的定向移动,因此电解质溶液能够导电。

电解质溶液电导的测定一、实验目的和要求1、理解溶液的电导、电导率和摩尔电导的概念2、掌握电1.电解质溶液的作用1.形成回路;2.提供反应环境(酸性、碱性);3.有的提供反应物。

2.电解质溶液导电的原因当电解质溶液通入直流电时,溶液中的阴阳离子分别向阳极和阴极移动,参加有电子得失的电解反应,在阳极上失去电子,在阴极上得到电子,形成了电子的定向移动,因此电解质溶液能够导电。

3.电解质溶液电导的测定一、实验目的和要求1、理解溶液的电导、电导率和摩尔电导的概念2、掌握电导率仪的使用方法3、掌握交流电桥测量溶液电导的实验方法及其应用二、实验内容和原理1、电导率的概念电导是描述导体导电能力大小的物理量,以G来表示其中l/A为电导池常数,以Kcell来表示,к为电导率。

通常由于电极的l和A不易精确测量,因此在实验中用一种已知电导率的溶液先求出电导池的常数Kcell,然后再把欲测的的溶液放入该电导池中测出其电导值,在根据上式求出其电导率。

溶液的摩尔电导率是指把含有1mol电解质的溶液置于相距为1m 的两平行板电极之间的电导,以m表示。

摩尔电导率与电导率的关系为在很稀的溶液中,强电介质的摩尔电导率与其了、浓度的平方根成直线函数。

用公式表示为:若通过浓度的平方根与摩尔电导率作图,外推即可求得无限稀释时的摩尔电导率。

《电解质溶液》PPT课件_OK

《电解质溶液》PPT课件_OK
化合价:整数
氧化数:整数、分数,可能超过化合价的值。
决定电子得失数,如:Fe3O4→ FeO
Fe:+(8/3) → +2 , (8/3) -2 = 2/3 , 3×(2/3) = 2
Fe3O4 + 2e- + 2H+ === 3FeO +H2O 氧化数高的状态:氧化态
氧化数低的状态:还原态
6
二、氧化还原反应的概念
解质的溶液的电导,用Λm表示。
Λm
c
在SI制中摩尔电导率的单位是S·m2·mol-1,c的单
位为mol·m-3,而物质的量浓度习惯上常用
mol·dΛmm-3,故:c103
注意:摩尔电导率是指摩尔电荷的电导率;
摩尔浓度是指摩尔物质量;
两者可能不相等。
23
如:浓度为1mol·dm-3的MgCl2水溶液,其正、负 离子(Mg2+,Cl-)所带的电荷均为2mol·dm-3,故
3. 共价化合物中,元素的氧化数等于其电子 偏移个数,电负性大的元素的氧化数为负, 电负性小要氧化数为正。
4. 结构未知的化合物中,某元素的氧化数可 按如下规则求得:中性分子中各元素氧化 数的代数和等于零;复杂离子中各元素氧 化数的代数和等于该离子的电荷数。
5
例:K2MnO4、KMnO4、Cr2O72-、HClO中各原 子的氧化数各为多少?
21
κ/(Sm-1)
80 H2SO4
60 KOH
KCl 40
20
MgSO4
CH3COOH
0
5
10
15
c/(moldm-3)
298K 电导率与浓度的关系
强酸、强碱的电 导率较大,其次 是盐类,它们是 强电解质;而弱 电解质, CH3COOH 等为最低。

高中化学电解质溶液题目解析

高中化学电解质溶液题目解析

高中化学电解质溶液题目解析一、电解质溶液的定义和特点电解质溶液是指在溶液中能够导电的物质。

根据电解质的离子化程度,电解质溶液可分为强电解质溶液和弱电解质溶液。

强电解质溶液中的电解质完全离解成离子,能够导电;而弱电解质溶液中的电解质只有部分离解成离子,导电能力较弱。

二、鉴别电解质溶液的方法1. 导电性实验通过观察溶液是否能够导电来判断其是否为电解质溶液。

如果溶液能够导电,说明其中存在离子,是电解质溶液;如果溶液不能导电,说明其中不存在离子,是非电解质溶液。

例如,有一道题目如下:实验中,将硫酸、葡萄糖和纯净水分别溶解在水中,用导电实验判断它们的导电性。

解析:硫酸为强酸,完全离解成H+和SO42-离子,能够导电;葡萄糖为非电解质,不能离解成离子,不能导电;纯净水为非电解质,不能离解成离子,不能导电。

因此,硫酸溶液为电解质溶液,葡萄糖溶液和纯净水为非电解质溶液。

2. pH值测定电解质溶液中的酸性或碱性可以通过测定其pH值来确定。

pH值小于7的溶液为酸性溶液,pH值大于7的溶液为碱性溶液,pH值等于7的溶液为中性溶液。

例如,有一道题目如下:实验中,将硝酸、氨水和纯净水分别测定其pH值。

解析:硝酸为强酸,溶液呈酸性,pH值小于7;氨水为弱碱,溶液呈碱性,pH值大于7;纯净水为中性,pH值等于7。

因此,硝酸溶液为酸性溶液,氨水溶液为碱性溶液,纯净水溶液为中性溶液。

三、电解质溶液的离子方程式电解质溶液中的电解质可以通过离子方程式来表示其离解过程。

离子方程式是将电解质分解成离子的化学方程式。

例如,有一道题目如下:写出硫酸钠溶液的离子方程式。

解析:硫酸钠的化学式为Na2SO4。

根据离子方程式的规则,将Na2SO4分解成Na+和SO42-离子,离子方程式为2Na+ + SO42-。

四、电解质溶液的浓度计算电解质溶液的浓度可以通过溶解质的物质的质量或体积与溶液的体积之比来计算。

例如,有一道题目如下:已知某溶液中含有5g硫酸钠,溶液的体积为100mL,求该溶液的浓度。

电解质溶液课件 PPT

电解质溶液课件 PPT
解: 已知HAc的Ka=1、76*10-5
Kb AC-=Kw/Ka =1、0 ×10-14 /1、76×10-5 =5、68 ×10-10
pOH=-lg[OH-]=-lg7、54×10-6=5、12
pH=14-pOH=14-5、12=8、88
例 计算0、100mol、L-1NH4Cl溶液的 pH值。
Cb
=
—40—0×—0—、—10—-—10—0×—0、—10= 400 +100
0、06
(molБайду номын сангаасL-1)
pKa = pKa(NH4+ ) = 9、25
pH = pKa + lg—C—b = 9、25 + lg0—、—06 =9、73
Ca
0、02
三、缓冲容量与缓冲范围
(一)缓冲容量(buffer capacity)
Kb =
—Kw— = Ka
1、0×10-14 1—、—8×—1—0-5 =
5、6×10-10
酸与碱的离解常数具体反映了酸碱的强度,酸的 Ka越大,酸就越强;若碱Kb的越大,碱就越强, 在共轭酸碱对中,酸Ka的越大,则碱的Kb越小
第三节 溶液的酸碱性及PH值计算
一、水的质子自递平衡
➢水的离子积常数
Kw
例: 1L缓冲溶液中含有0、10molHAc与0、20molNaAc, 求该缓冲溶液的pH值。
解:该缓冲溶液中含有HAc-NaAc缓冲对 又 Ka(HAc) =1、76×10-5 Ca =0、10mol·L-1 Cb = 0、20 mol·L-1
pH = pKa + lg —CCa—b = 4、75 + lg00—、 、—2100
NaOH Na OH

电解质溶液课件

电解质溶液课件
局限性:只适用于水溶液,不能解释非水溶液酸碱反应; 范围限制在能电离出H+ 或OH-,不能解释氯化铵的酸
性,或碳酸钠的碱性。
二、酸碱质子理论
(一)酸碱的概念
酸:凡是能给出质子H+的物质(HCl,H3O+ ,H2O ,HCO3-) 碱:凡是能接受质子H+的物质(Cl-,H2O, OH-,CO32-)
H2O + Ac-
HAc + OH-
结论:一种酸和一种碱发生反应,总是伴随着一种新 酸和新碱的生成。酸1 和碱1是一对共轭酸碱对,同2.

酸碱反应实质是两对共轭酸碱对之间的质子传递反应
酸碱反应的 方向:
总是由较强的酸或是较强的碱作 用,向着生成较弱的酸或较弱的 碱的方向进行。
HCl+NH3 NH4++Cl-
强电解质 完全电离 强酸、强碱、大多数盐 弱电解质 不完全电离 弱酸、弱碱、部分盐
一 弱酸、弱碱的解离平衡
弱电解质在水溶液中的电离是可逆的
HAc + H2O
Ac- + H3O+
解离平衡:在一定温度下,当分子解离成离子和离子结合成
分子的速率相同时,溶液中各组分的浓度不再发生改变,即
达到动态平衡,这种状态称为解离平衡。
两性物质:既能给出质子又能接受质子的物质
酸碱质子理论中没有盐的概念
一般来说:共轭酸给出质子的能力越强, 酸性越强,它的共轭碱接受质子的能力 就越弱,共轭碱的碱性就越弱;共轭碱 越强,它的共轭酸就越弱。
如:H2OH++OH水为最弱的酸,它的共轭碱是最强的碱。
(二) 酸碱反应的实质
❖ 按照酸碱质子理论,酸碱反应的实质是质子 的传递,酸碱反应是两对共轭酸碱对共同作 用的结果。

电解质溶液课件

电解质溶液课件
REPORTING
电导的定义与测量
总结词
电导是衡量电解质溶液导电能力的物理量,其测量方法包括 电导率仪直接测量和电导池法。
详细描述
电导是电解质溶液导电能力的量度,定义为单位时间内通过 电导池的两个电极之间的电流与电位差的比值。电导率则是 指电解质溶液的电导值与其截面积和长度之比。
电导率与电导的关联
详细描述
在工业上,电导可用于监测和控制电解、电镀等工业过程,保证产品质量和节约能源。在环保领域, 电导可用于水质监测,评估水体的污染程度。在医疗领域,电导可用于研究生物体的生理和病理状态 ,如监测病人电解质平衡和肾功能等。
PART 05
电极过程动力学
REPORTING
电极过程动力学基础
定义
电极过程动力学是研究电极反应 速度以及影响电极反应速度因素
电解质溶液的性质
总结词
电解质溶液的性质主要包括导电性、离子反应和渗透压等。
详细描述
导电性是电解质溶液最基本的性质,其导电能力与电解质的种类、浓度和温度等因素有关。离子反应是电解质溶 液中的离子之间相互作用的过程,涉及到离子之间的结合、交换和分离等。渗透压是指电解质溶液对于半透膜的 压强,与电解质的种类和浓度有关,对于维持细胞内外平衡具有重要意义。
解离平衡常数(Ka或Kb)是描述解离平衡的重要参数,其值越大,解离程度越大。
解离常数
解离常数是平衡常数的一种,表 示电解质在水中解离成离子的平
衡状态。
解离常数的大小取决于电解质的 性质和温度,是判断电解质强弱
的重要依据。
解离常数的应用广泛,可以用于 计算电解质的浓度、比较不同浓
度电解质溶液的解离程度等。
温度对电极反应速率的影响比较复杂。一 般来说,温度越高,电极反应速率越快, 但也有例外情况。

高中化学 第二册 第七章 探究电解质溶液的性质 7.4 电解质溶液在通电情况下的变化(第1课时)教案 沪科版

高中化学 第二册 第七章 探究电解质溶液的性质 7.4 电解质溶液在通电情况下的变化(第1课时)教案 沪科版

7.4 电解质溶液在通电情况下的变化(共两课时)第1课时电解原理[设计思想]本课时包含三个部分:电解池与电解原理、饱和食盐水中离子得失电子能力大小、工业生产中电解原理的应用。

其中,电解原理是基础,旨在揭示电解池的实质即氧化还原反应的应用,并为研究溶液中离子得失电子能力大小的规律提供依据。

电解饱和食盐水既是研究电解原理的载体,也是连接化学基础知识与工业生产的载体。

通过电解水、饱和食盐水等具体的情境及实例,促进对电解原理及其规律的理解、巩固和深化。

本节是前面所学的氧化还原理论、电解质的电离、水的电离平衡以及平衡移动原理等知识的综合应用。

在进入本节内容的学习前,学生在初三学习了水的电解(知道阴、阳极产物以及产物体积比),在高一学习了饱和食盐水的电解(知道阴、阳极产物),本章已经学习了电解质的概念、水的电离、水的电解以及原电池等知识,且具备一定的逻辑推理能力和抽象思维能力。

本节课教学设计从分析电解水的原理出发,再与电解饱和食盐水作比较,进而深入探究。

因此教学流程的安排分三大块:通过水的电解初步认识电解原理——通过饱和食盐水电解完善对电解原理的认识——通过了解阳离子交换膜电解槽感受电解原理应用。

着重强化应用氧化还原理论分析实验现象的微观本质,让学生以主动的姿态进行科学论证,同时提高观察能力及对比、分析的思维能力。

一、教学目标1.知识与技能(1)饱和氯化钠溶液的电解(B)(2)电解池的构造与工作原理(B)2.过程与方法通过电解饱和食盐水的实验,运用观察、分析、抽象、概括的思维方法探究电解池结构以及工作原理。

3.情感态度与价值观(1)从对电解水、饱和食盐水实验现象的分析中,领悟宏观表象和微观本质的关系。

(2)通过对阳离子交换膜电解槽的认识,感受电解原理在工业生产中的应用和技术的进步。

二.教学重点和难点1.重点电解原理、饱和食盐水中离子的放电顺序2.难点电解饱和食盐水的阴极区产物三.教学用品电解水的实验用具一套电解饱和食盐水的微型学生实验用品四.教学流程1.流程图2.流程说明(1)回顾水的电解并讨论水导电的原因:以学生熟悉的知识作为起点,提出问题引导学生探究熟悉的现象背后隐含的本质,促使学生在分析水的导电原因的过程中,主动运用电解质概念、电离平衡以及平衡移动原理等知识从而深化理解。

分析化学《电解质溶液》7-4

分析化学《电解质溶液》7-4

§7.3 电 导
(2)测定难溶盐的溶解度 ①难溶盐饱和溶液的浓度极稀,可认为Λ m (盐) ≈ Λ m∞ (盐) Λ ∞ m (盐)的值可从离子的无限稀释摩尔电导率的数据表中得 到。 ②难溶盐的饱和溶液本身的电导率很低,这时水的电导率 就不能忽略,所以:
(难溶盐) (溶液) (H O)
解: I=1/2[0.3×3×12+0.3×32)=1.8
离子平均活度系数与离子强度的关系符合下列经 验关系(在稀溶液中):
ln γ
±
=-Aˊ I
3.强电解质溶液的离子互吸理论
(1)离子分模型及德拜—休克尔极限公式 德拜—休克尔(Debye— Hü ckel) 在1923年提 出了强电解质溶液理论:认为强电解质在浓度很低时 是完全电离的,并且认为强电解质与理想溶液的偏差 主要是由离子之间存在静电引力所引起的。这一理论 就称为离子互吸理论。 从离子互吸理论的观点出发,德拜和休克尔提出 了一个能够反映离子在溶液中存在状态及其行为的离 子氛模型。
mB m
但对于电解质溶液来说, 电解质的整体活度与浓 度不具有上述关系,但 对正负离子来说,却仍 然符合这种形式。
当溶液很稀,可看作是理想 溶液, B,m 1 ,则:
a B,m mB m
m a m
1.平均活度和平均活度系数
电解质溶液的化学势表达式:
HCl(aHCl ) H+ (aH+ ) Cl (aCl )
B 0.3310 (mol kg) 2 m
10
1
1
1
1 aB 1(mol kg-1) 2

lg
A | z z | I 1 I / m
3.强电解质溶液的离子互吸理论

高中化学 第二册 第七章 探究电解质溶液的性质 7.1 电

高中化学 第二册 第七章 探究电解质溶液的性质 7.1 电

7.1 电解质的电离(共3课时)第1课时电解质的电离[设计思想]通过硝酸钾、氢氧化钠、蔗糖固体,硝酸钾、氯化氢、氢氧化钠、蔗糖、酒精、甘油等水溶液,以及熔化的硝酸钾和蔗糖等导电性实验的比较、分析、归纳得出电解质和非电解质的概念,理解电解质与非电解质的区别:电解质必须满足三个条件:一是纯净物、二是化合物、三是在水溶液里或熔化状态下能电离。

如:KNO3是电解质,KNO3溶液并不是电解质,只是电解质溶液,混合物如溶液既不是电解质,也不是非电解质,而蔗糖、酒精是纯净的化合物是非电解质;理解电解质与金属导电的区别,电解质导电含化学变化,金属导电只是物理变化。

结合离子化合物、共价化合物的知识,在解释实验现象的过程中,理解电解质导电的原因是电解质在溶于水或熔融状态下,发生电离,电解质溶液中或熔融态的电解质有自由移动的离子,因而导电,即电解质因电离而导电;理解常见的酸、碱、盐是电解质。

一、教学目标1.知识与技能(1)电解质、非电解质(B)(2)电离(B)(3)电离方程式(A)2.过程与方法(1)通过硝酸钾、氢氧化钠、蔗糖固体,硝酸钾、氯化氢及其水溶液、氢氧化钠、蔗糖、酒精、甘油等水溶液,以及熔化的硝酸钾和蔗糖等导电性实验的比较,领悟比较性实验研究、分析、归纳的科学方法。

(2)结合离子化合物、共价化合物的知识,尝试解释实验现象,领悟物质结构决定物质性质的学科思想。

3.情感态度与价值观通过工农业生产和社会生活中应用电解质的事例分析,感悟学习电解质意义和作用;能运用电解质的知识分析并关注身边中的化学问题。

二.教学重点和难点1.重点电解质、非电解质,硝酸钾、氯化氢、氢氧化钠的电离方程式。

2.难点电离、用物质结构知识解释电离三.教学用品药品:硝酸钾、氯化氢、盐酸、氢氧化钠、蔗糖、酒精、甘油、水等。

仪器:电源、电灯、电极、烧杯、V 型玻璃管、酒精灯等。

挂图:氯化钠、氯化氢电离挂图(可用多媒体:电脑、投影仪)。

四.教学流程 1.流程图2.流程说明创设情境:通过教师演示:金属铜线、铝线、塑料线;饱和食盐水、蔗糖溶液导电性实验。

第7章电解质溶液解析

第7章电解质溶液解析

第7 章电解质溶液从本章开始,分三章讨论电化学问题。

电化学是研究电现象与化学现象之间的联系以及电能和化学能相互转化规律的科学。

它研究的内容包括:电解质溶液、电化学平衡和不可逆电极过程等,既有热力学问题,又有动力学问题,是物理化学的重要组成部分。

电现象与化学现象之间的联系,电能和化学能的转化都必须经过电化学装置才能实现。

电化学装置有电池和电解池两类。

在电池中,发生化学反应的同时,对外提供电流,结果将化学能转化为电能。

在电解池中情况相反,外界提供电流使化学反应发生,结果将电能转化为化学能。

无论是电池还是电解池,除了都包含两个电极外,还必须包含电解质溶液,也就是说电解质溶液是电化学装置的重要组成部分。

本章将专门讨论电解质溶液的性质。

§7.1 电解质溶液的基本特性电解质溶液是指溶质溶解于溶剂后完全或部分解离为离子的溶液。

相应溶质即为电解质。

某物质是否为电解质并不是绝对的。

同一物质在不同的溶剂中,可以表现出完全不同的性质。

例如HCl 在水中是电解质,但在苯中则为非电解质;葡萄糖在水中是非电解质,而在液态HF中却是电解质。

因此在谈到电解质时决不能离开溶剂。

一般把完全解离的电解质称为强电解质,部分解离的电解质称为弱电解质。

这种分类方法只是为了讨论问题的方便,并没有反映出电解质的本质。

原因是电解质的强弱随环境而变。

例如乙酸在水中为弱电解质,而在液氨中则为强电解质。

LiCl 和KI 都是离子晶体,在水中为强电解质,而在醋酸或丙酮中都变成了弱电解质。

目前,在电化学中应用最广泛的电解质溶液是电解质水溶液,本节主要讨论电解质水溶液的基本特性。

1. 正、负离子的静电相互作用电解质溶液中的离子之间,除了具有像中性分子之间的那种相互作用之外,根据库仑定律,还存在着静电相互作用,即同性离子相互排斥,异性离子相互吸引。

由分子运动论,两个中性分子之间的相互吸引力近似地与两粒子间距离的7次方成反比,而两个异性离子之间的静电吸引力却与两离子间距离的2次方成反比。

物理化学课件第7章_电解质溶液

物理化学课件第7章_电解质溶液
⒉电池 汽车、宇宙飞船、照明、通讯、
生化和医学等方面都要用不同类 型的化学电源。
⒊电分析 ⒋生物电化学
上一内容 下一内容 ²回主目录
O返回
2021-3-12
电化学分析
电化学传感器
电化学技术与环境监测 快速、灵敏、准确、结构简单、便于自动化
离子传感器:
掺EuF2 的氟化镧传感器监测饮用水或污水中氟的含量 硫化银+卤化银混合的晶体膜电极测定卤素离子(Cl- 、Br- 、I- ) 硫化银+金属硫化物膜电极 测定相应金属离子(如Cu2 + 、Pb2 + 、Cd2 + )
• 直到1950年代后,电化学中的动力学问题才 得到重视。新材料、新体系、新方法的利用, 对电化学的发展作用越来越大。
上一内容 下一内容 ²回主目录
O返回
2021-3-12
电化学发展趋势
i)向交叉领域发展: 有机电化学、生物电化学、 光谱电化学、量子电化学等等。
ii)向微观发展: 从原子、分子水平上研究电化 学体系。并进一步向上拓宽至纳米尺度,向 下拓宽至单分子 (单原子) 水平 纳米电 化学的兴起。这可能是解决电化学学科中一 些长期未决的基本科学问题的关键。
法拉第定律的文字表述
⒈ 在电极界面上发生化学变化物质的量与 通入的电量成正比。
⒉ 通电于若干个电解池串联的线路中,当 所取的基本粒子的荷电数相同时,在各 个电极上发生反应的物质,其物质的量 相同,析出物质的质量与其摩尔质量成 正比。
上一内容 下一内容 ²回主目录
O返回
2021-3-12
法拉第定律的数学表达式
W
f
0
GT . p 0
当充分发挥时, GT.p Wf(M)

第七章电解质溶液

第七章电解质溶液

.一元弱酸的解离平衡
H+ A H 2 O c H 3 O ++ A -c
Ka

a a H+ AcaHAc
f 1 ac
Ka
[H3O+][Ac-] [HA]c
达平衡时 [H + ] [A - ]c [H] A c 0- [H c + ]
Ka

[H+]2 c0 -[H+]
当 K a 很 c0较 小大 c0时 [H +]
HAc(aq) + H2O (l) H3O+ (aq) + Ac–(aq) 平衡移动方向
NH4Ac(aq)
NH+4(aq) + Ac–(aq)
同离子效应:在弱电解质溶液中,加入 与其含有相同离子的易溶强电解质而使弱电 解质的解离度降低的现象。
盐效应:在弱电解质溶液中加入其它强电解质时, 使弱电解质解离度增大的效应。
H3O+ + NH3
酸() 碱()
④ 非水溶液中的酸碱反应,也是离子 酸碱的质子转移反应。例如的生成:
H+
H+ CN l3H N + 4H +C - l
酸 (1 ) 碱 (2)酸 (2)碱 (1)
液氨中的酸碱中和反应:
H+
N 4 +H +N 2 -HN 3+ H N 3H 酸 (1 ) 碱 (2)酸 (2)碱 (1)
水溶液中能稳定存在的最强的酸是 水溶液中能稳定存在的最强的碱是-
酸越强,其共轭碱越弱; 碱越强,其共轭酸越弱。
酸性 HC : 4lH O 2S4O H 3P4O HA H c2C3O N4 +H H 2O

高中化学 第二册 第七章 探究电解质溶液的性质 7.1 电

高中化学 第二册 第七章 探究电解质溶液的性质 7.1 电

7.1 电解质的电离(共3课时)第3课时弱电解质的电离平衡[设计思想]弱电解质的电离平衡是在学生学习了电解质的电离和强、弱电解质的基础上,对化学平衡知识的拓展和深化。

电离平衡的建立及浓度等外界条件对电离平衡的影响,是本节的重点和难点。

教学设计重点是通过化学平衡知识复习,建立起新知识与旧知识之间的联系,运用类比推理的方法,认识到化学平衡的原理完全适用于弱电解质的电离平衡,引导学生运用所学化学平衡知识,加深对各种平衡体系的共性的认识。

教学中着重讨论以下几个问题:(1)弱电解质溶于水后不能完全电离的原因是什么?(2)建立电离平衡的条件是什么?(3)电离平衡的特征是什么?(4)改变外界条件对电离平衡会产生怎样的影响?让学生联系化学平衡的学习方法进行分析、讨论,获取电离平衡的知识,逐步形成探究知识、分析问题和解决问题的能力。

一、教学目标1.知识与技能(1)弱电解质电离平衡(B)(2)影响电离平衡的因素(B)2.过程与方法通过化学平衡知识复习,运用类比、推理、迁移的方法,建立电离平衡概念,学习分析影响电离平衡的因素的方法。

3.情感态度与价值观通过对弱电解质电离平衡的学习,体会自然界物质间相互对立统一,彼此依赖的和谐美以及“透过现象看本质”的辩证唯物主义的思想。

二.教学重点和难点弱电解质的电离平衡,浓度、温度对电离平衡的影响三.教学用品药品:0.1mol/L醋酸、水、醋酸钠晶体、pH试纸。

仪器:烧杯、酒精灯、玻璃棒等。

四.教学流程1.流程图2.流程说明复习引入:比较强、弱电解质的区别。

学生填写表格。

复习讨论:醋酸这种具有极性键的共价化合物溶于水时,具有怎样的特点?弱电解质溶于水后不能完全电离的原因是什么?电离过程是可逆的。

师生交流:回忆化学平衡的特征。

根据形成化学平衡的条件,归纳建立电离平衡需要什么条件?电离平衡的特点是什么?小结板书:归纳出电离平衡与电离平衡的特点。

得出:(1)弱电解质的电离过程是可逆的。

(2)在一定条件下(温度、浓度)v电离 =v结合≠0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章电解质溶液从本章开始,分三章讨论电化学问题。

电化学是研究电现象与化学现象之间的联系以及电能和化学能相互转化规律的科学。

它研究的内容包括:电解质溶液、电化学平衡和不可逆电极过程等,既有热力学问题,又有动力学问题,是物理化学的重要组成部分。

电现象与化学现象之间的联系,电能和化学能的转化都必须经过电化学装置才能实现。

电化学装置有电池和电解池两类。

在电池中,发生化学反应的同时,对外提供电流,结果将化学能转化为电能。

在电解池中情况相反,外界提供电流使化学反应发生,结果将电能转化为化学能。

无论是电池还是电解池,除了都包含两个电极外,还必须包含电解质溶液,也就是说电解质溶液是电化学装置的重要组成部分。

本章将专门讨论电解质溶液的性质。

§7.1 电解质溶液的基本特性电解质溶液是指溶质溶解于溶剂后完全或部分解离为离子的溶液。

相应溶质即为电解质。

某物质是否为电解质并不是绝对的。

同一物质在不同的溶剂中,可以表现出完全不同的性质。

例如HCl在水中是电解质,但在苯中则为非电解质;葡萄糖在水中是非电解质,而在液态HF中却是电解质。

因此在谈到电解质时决不能离开溶剂。

一般把完全解离的电解质称为强电解质,部分解离的电解质称为弱电解质。

这种分类方法只是为了讨论问题的方便,并没有反映出电解质的本质。

原因是电解质的强弱随环境而变。

例如乙酸在水中为弱电解质,而在液氨中则为强电解质。

LiCl和KI都是离子晶体,在水中为强电解质,而在醋酸或丙酮中都变成了弱电解质。

目前,在电化学中应用最广泛的电解质溶液是电解质水溶液,本节主要讨论电解质水溶液的基本特性。

1. 正、负离子的静电相互作用电解质溶液中的离子之间,除了具有像中性分子之间的那种相互作用之外,根据库仑定律,还存在着静电相互作用,即同性离子相互排斥,异性离子相互吸引。

由分子运动论,两个中性分子之间的相互吸引力近似地与两粒子间距离的7次方成反比,而两个异性离子之间的静电吸引力却与两离子间距离的2次方成反比。

这说明中性分子间的力为短程力,而带电离子间的静电引力为长程力。

当电解质溶液较稀时,离子之间的距离较远,各种近程力的作用可以略去不计,而长程力却不可忽略。

正是由于异性离子之间长程静电引力的存在,使得电解质溶液即使在很稀时仍表现出对理想溶液的热力学性质有较大的偏差。

离子的静电相互作用的强弱除与离子间的距离(溶液的浓度)有关外,还与溶剂的介电常数、离子的结构、大小、电荷、溶剂化程度等因素有关。

正负离子之间的库仑引力,有可能使它们产生缔合作用。

当电荷相反的离子接近到一定距离时,若它们之间的静电吸引势能会远远大于热运动动能,则在溶液中形成离子缔合体,这种离子缔合体可以是由两个电荷相同的异性离子组成的离子对,也可以是由三个离子或更多个离子缔合而成的离子簇团。

由于离子在溶液中不停地运动,一些离子缔合体存在的时间可能是短暂的。

在溶液中每一个瞬间都有许多离子缔合,同时又有许多缔合体分解。

从统计的观点来看,溶液中总是有一定数量的离子缔合体存在。

缔合体是靠库仑力形成,它和靠化学键形成的分子是不同的。

显然电荷数大的离子在相对介电常数小的溶剂中,离子间库仑引力较大,因而离子缔合的可能性也就大些。

由于缔合体作为一个整体在溶液中存在和运动,所以,在一定浓度的电解质溶液中,并非每个离子都能独立运动。

对于强电解质而言,在溶液中虽然完全离子化,但并非完全解离。

离子的这种缔合作用显然会影响与离子数量有关的电解质溶液的性质。

2. 离子的水化(溶剂化)作用在电解质水溶液中,除了离子之间的相互作用外,离子和水分子之间也会发生相互作用,这种作用Array称为离子的水化作用,如果是泛指一般的溶剂,则称为溶剂化作用。

如图7-1所示,离子发生水化作用时,一些极性水分子在离子周围取向,与离子紧密结合,形成水化离子。

水分子被束缚在离子周围的溶图7-1 水化离子模型剂化层内,不能独立移动,只能与离子一起移动,使游离的水分子数量减少,相当于离子实际浓度增大。

当溶液很稀时,由于水分子数量远远大于离子数,几乎所有水分子都是自由的,故水化作用对浓度的影响较小。

但随着浓度的增大,自由水分子所占比率越来越少,其影响也越来越大。

离子与水分子间的作用力在两者之间的距离超过几纳米时,已可忽略不计,因此离子周围存在着一个对水分子有明显电场作用的空间。

在这个空间内含有的水分子数称为离子水化数。

紧靠着离子的第一层水分子与离子结合得比较牢固。

它们基本上能与离子一起移动,不受温度的影响,这部分水化作用称为原水化或化学水化。

它所包含的水分子数目称为原水化数。

第一层以外的部分水分子也受到离子的吸引作用,使这部分水分子之间原有的结构状态发生改变。

与离子的联系比较松散的这部分水化作用,叫做二级水化或物理水化。

温度对它的影响很大,这部分水分子不与离子一起移动。

测定原水化数的方法有多种,但所得结果很不一致。

例如,Na+的水化数可由2到7。

这是因为各种方法测出的水化数,实际上都是原水化数加上部分二级水化数,而每种方法中所包括进去的多少又各有不同。

不过,在充分考虑了离子与水分子的各种相互作用能之后,可以通过统计力学方法,比较可靠地计算出离子水化数。

实际上,离子水化数只代表与离子相结合的水分子的有效数目。

离子水化的一般规律是:离子半径越小,或所带的电荷越大,则离子表面的静电势能就越高,离子的水化作用也就越强,水化数也就越大。

3. 离子的电迁移电解质溶液中的离子,在没有外力作用时,时刻都在进行着杂乱无章的热运动。

在一定时间间隔内,粒子在各方向上的总位移为零。

但是在外力作用下,离子沿着某一方向移动的距离将比其它方向大些,遂产生了一定的净位移。

如果离子是在外电场力作用下发生的定向移动,我们称为电迁移。

离子的电迁移不但是物质的迁移,而且也是电荷的迁移,所以离子的电迁移可以在溶液中形成电流。

由于正负离子沿着相反的方向迁移,所以它们的导电效果是相同的,也就是说正负离子沿着同一方向导电。

离子的电迁移速率除了与离子的本性(离子半径、所带电荷)、溶液的浓度、粘度及温度等有关外,还与电场的电势梯度dV有关。

在其它条件一定时,离子dl电迁移的速率v与电势梯度dV成正比,即dlv=U dV(7.1-1)dl式中U为比例系数,称为离子的电迁移率,其物理意义是离子在单位电势梯度下的电迁移速率,单位是m2.V-1.s-1。

离子的电迁移率是表征离子在电场中迁移的基本参数,是离子的特性。

表7-1是一些离子在298.2K时无限稀释水溶液中的电迁移率U∞,它表示的是在离子之间无相互作用时的电迁移率。

从表中可见离子电迁移率很小,数量级为10-8m2.s-1.V-1,所以电解时离子的移动通常很缓慢。

当电解质溶液中的电势梯度为1000V.m-1时,离子迁移速率的数量级仅为10-5m.s-1,这比室温下离子热运动的速率100m.s-1要小得多。

表7-1 298.2K时无限稀释水溶液中一些离子的电迁移率不同离子的电迁移率有很大差别。

在碱金属离子中,Li的离子半径最小,对极性水分子的作用电场较强,在其周围形成了紧密的水化层,使锂离子在水中的迁移阻力增大,所以尽管它是该系列中最轻的元素,在水溶液中的离子电迁移率却是最小的。

H+ (一般以H3O+的形式存在溶液中)和OH-在水溶液中和醇溶液中都表现出很大的电迁移率,这是因为它们和邻近的溶剂分子存在着一种快速的链式质子传递机理,见图7-2。

图7-2 H3O+与OH-的导电机理离子电迁移率的数值与溶液中离子的浓度有关,浓度高时,离子间相互作用增强,电迁移率减小。

共有的其它离子也有重要影响。

温度升高时,溶液的粘度下降,离子的迁移阻力减小,电迁移率增大。

§7.2 电解质溶液的导电过程和法拉第定律1. 电解质溶液的导电过程能导电的物体称为导体。

导体分为两类:一类是电子导体,如金属、石墨、某些金属氧化物(如PbO2、Fe3O4),金属碳化物(如WC)等,它们是靠自由电子在电场作用下的定向移动而导电的。

当电流通过这类导体时,除了可能产生热量外,不发生任何化学变化。

电子导体(例如金属导线)能够独立地完成导电任务;另一类是离子导体,如熔融的电解质、固体电解质和以水或其它有机物为溶剂而形成的电解质溶液,它们是靠离子在电场作用下的定向移动而导电的。

离子导体(例如CuSO4溶液)不能独立完成导电任务,欲使离子导体导电,必须有电子导体与之相连接。

例如,为了使电流在电解质溶液中通过,需要在溶液的两端分别插入金属导体,才能构成通路,于是就形成了金属-溶液-金属串联的系统(构成这种系统的装置就是电化学装置),其中的金属就是两个电极。

当电流通过离子导体时,除了可能产生热量外,在两个电极与溶液的接触面上必然伴随有化学反应发生和化学能与电能间的相互转化。

下面分别讨论在电池和电解池中电解质溶液的导电过程。

图7-3(a)为一电解池,当插在HCl水溶液中的Pt片A和B,分别用导线与图7-3 电化学装置示意图外电源的负极和正极接通后,在电源电场力的作用下,电源负极的电子通过导线迁移到铂电极A上,同时铂电极B上的电子通过导线迁移到电源正极。

要想维持金属导体电子的流动,铂电极A必须不断地失去电子,铂电极B必须不断地得到电子。

由于电子不能从电极A直接进入溶液到达电极B,因此在电极A和溶液的界面处就发生了消耗电子的还原反应过程2H++2e-=H2在电极B和溶液的界面处就发生了产生电子的氧化反应过程2Cl-=Cl2+2e-同时,由于铂电极A、B上分别带有负电荷和正电荷,使两电极间的溶液中存在有电场,所以两电极间电解质溶液中的H+、Cl-就会在电场力作用下定向移动,从而形成了溶液中的电流。

图7-1(b)为一原电池。

当H2和Cl2分别冲击插在HCl水溶液中的Pt电极 A、B时,在电极A 与溶液界面处,H2发生氧化反应H2→2H++2e-电子留在电极A上,使该电极带上负电,H+进入溶液,使电极A附近的溶液带上正电。

同样在电极B与溶液的界面处,Cl2发生还原反应Cl2+2e-→2Cl-电极B失去电子,带上正电,Cl-进入溶液,使电极B附近的溶液带上负电。

这样,当两电极上的反应分别达到平衡时,两电极间就有一定的电势差。

当外电路断开时,两电极上所带电荷产生的电场(电场强度的方向由A指向B)与两电极附近溶液所带电荷产生的电场(电场强度的方向由B指向A)大小相等,方向相反。

所以,在溶液内部,电场强度处处为零,电势处处相等,因此离子不产生电迁移,没有电流通过。

当外电路接通时,电极B上的电子在电场的作用下,通过导线流向电极A,也就是形成了自电极A流向电极B的电流,从而使两电极上的电荷减少,破坏了原来的平衡,导致了下面两种现象的同时发生:一是电极与溶液之间的电场变弱,于是,H2和Cl2又在化学力作用下进行反应,来补充两电极减少的电荷;二是两电极上的电荷在两极间溶液中产生的电场变弱,小于了两电极附近溶液中的电荷在两电极间溶液中产生的电场,因此在溶液中的电场强度不再处处为零,电势不再处处相等,而是电极A附近的溶液中的电势高于电极B附近溶液中的电势,于是溶液中的H+、Cl-在电场的作用下,分别向电极B和A迁移,形成了溶液中的电流。

相关文档
最新文档