小学奥数经典题型:鸡兔同笼(假设法

合集下载

鸡兔同笼解题技巧汇总

鸡兔同笼解题技巧汇总

鸡兔同笼解题技巧汇总鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。

它不仅有趣,还能锻炼我们的逻辑思维和数学运算能力。

下面就为大家汇总一些常见的解题技巧。

一、假设法假设法是解决鸡兔同笼问题最常用的方法之一。

我们可以先假设笼子里全是鸡或者全是兔,然后根据实际的脚数与假设情况下的脚数差异来计算鸡和兔的数量。

假设全是鸡:如果笼子里全是鸡,那么每只鸡有 2 只脚。

假设笼子里一共有 n 个头,那么脚的总数就是 2n 只。

但实际的脚数比这个假设的脚数要多,多出来的部分就是因为把兔当成鸡来计算造成的。

每只兔有 4 只脚,而每只鸡只有 2 只脚,每把一只兔当成鸡,就少算了 2 只脚。

所以用实际脚数与假设脚数的差值除以 2,就可以得到兔的数量。

假设全是兔:同理,如果假设笼子里全是兔,那么每只兔有 4 只脚,脚的总数就是 4n 只。

但实际脚数比这个假设的脚数要少,少的部分就是因为把鸡当成兔来计算造成的。

每把一只鸡当成兔,就多算了 2 只脚。

所以用假设脚数与实际脚数的差值除以 2,就可以得到鸡的数量。

例如:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有94 只脚。

假设全是鸡,脚的总数为:35×2 = 70(只)实际脚数比假设多:94 70 = 24(只)每只兔比鸡多的脚数:4 2 = 2(只)兔的数量:24÷2 = 12(只)鸡的数量:35 12 = 23(只)二、方程法方程法是一种比较直接和通用的方法。

我们可以设鸡的数量为x 只,兔的数量为 y 只,然后根据头的总数和脚的总数列出方程组来求解。

根据头的总数:x + y =总头数根据脚的总数:2x + 4y =总脚数例如:还是上面的例子,设鸡有 x 只,兔有 y 只。

x + y = 35 (1)2x + 4y = 94 (2)由(1)式得:x = 35 y (3)将(3)式代入(2)式:2×(35 y) + 4y = 9470 2y + 4y = 942y = 24y = 12将 y = 12 代入(1)式:x + 12 = 35,x = 23所以鸡有 23 只,兔有 12 只。

小学奥数 鸡兔同笼问题

小学奥数  鸡兔同笼问题

第五课鸡兔同笼问题例:鸡兔同笼,上有40个头,下有100只足。

鸡兔各有多少只?1、极端假设解法一:假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。

这是把兔看作鸡的缘故。

而把一只兔看成一只鸡,足数就会少4-2=2(只)。

因此兔有20÷2=10(只),鸡有40-10=30(只)。

解法二:假设40个头都是兔,那么应有足4×40=160(只),比实际多160-100=60(只)。

这是把鸡看作兔的缘故。

而把一只鸡看成一只兔,足数就会多4-2=2(只)。

因此鸡有60÷2=30(只),兔有40-30=10(只)。

解法三:假设100只足都是鸡足,那么应有头100÷2=50(个),比实际多50-40=10(个)。

把兔足看作鸡足,兔的只数(头数)就会扩大4÷2倍,即兔的只数增加(4÷2-1)倍。

因此兔有10÷(4÷2-1)=10(只),鸡有40-10=30(只)。

解法四:假设100只足都是兔足,那么应有头100÷4=25(个),比实际少40-25=15(个)。

把鸡足看作兔足,鸡的只数(头数)就会缩小4÷2倍,即鸡的只数减少1-1÷(2÷4)=1/2。

因此鸡有15÷1/2=30(只),兔有40-30=10(只)。

2、任意假设解法五:假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。

这说明有一部分鸡看作兔了,而把一只鸡看成一只兔,足数就会多4-2=2(只),因此把鸡看成兔的只数是36÷2=18(只)。

那么鸡实际有12+18=30(只),兔实际有28-18=10(只)。

解法六:假设100只足中,有鸡足80只(0至100中的任意整数,最好是2的倍数),则兔足有100-80=20(只),那么它们一共有头80÷2+20÷4=45(个),比实际多45-40=5(个)。

鸡兔同笼问题解决技巧汇总

鸡兔同笼问题解决技巧汇总

鸡兔同笼问题解决技巧汇总“鸡兔同笼”是一个古老而有趣的数学问题,它常常出现在小学数学的教材中,也在各类数学竞赛中频繁出现。

这个问题看似简单,但却蕴含着丰富的数学思维和解题技巧。

下面我们就来汇总一下解决鸡兔同笼问题的各种技巧。

一、假设法假设法是解决鸡兔同笼问题最常用的方法之一。

我们可以先假设笼子里全是鸡或者全是兔,然后根据实际的头和脚的数量差异来进行调整。

假设全是鸡,那么脚的总数就应该是头的数量乘以 2。

但实际的脚数比这个假设的脚数要多,这是因为把兔当成鸡来算,每只兔少算了 2 只脚。

用实际脚数与假设脚数的差除以 2,就可以得到兔的数量,再用总头数减去兔的数量就是鸡的数量。

假设全是兔,同理可得,脚的总数应该是头的数量乘以 4。

实际脚数比假设脚数少,是因为把鸡当成兔来算,每只鸡多算了 2 只脚。

用假设脚数与实际脚数的差除以 2,就得到鸡的数量,总头数减去鸡的数量就是兔的数量。

例如,笼子里有 35 个头,94 只脚。

假设全是鸡,脚的数量就是35×2 = 70 只,实际有 94 只脚,多了 94 70 = 24 只脚。

每只兔比鸡多2 只脚,所以兔的数量就是 24÷2 = 12 只,鸡的数量就是 35 12 = 23 只。

二、方程法方程法是一种比较直接和通用的方法。

我们可以设鸡的数量为x 只,兔的数量为 y 只。

根据头的总数,我们可以得到方程 x + y =总头数。

再根据脚的总数,又可以得到方程 2x + 4y =总脚数。

然后通过联立这两个方程,就可以解出 x 和 y 的值。

比如还是上面的例子,设鸡有 x 只,兔有 y 只,可列出方程组:x + y = 352x + 4y = 94通过第一个方程变形为 x = 35 y,代入第二个方程,得到 2×(35 y) + 4y = 94,解得 y = 12,x = 23。

三、抬腿法抬腿法是一种比较有趣和直观的方法。

假设让鸡和兔都抬起两只脚,那么此时笼子里站立的脚的数量就是总脚数减去头的数量乘以 2。

小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)

小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)

小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)1.有一只笼子装着鸡和兔,从上数头有20个,从下数脚64只,问笼中鸡、兔各有多少只?解:①假设笼中全是兔子,共有多少只脚?4×20=80(只)②比原来的总数多多少只脚?80-64=16(只)③一只兔子比一只鸡多多几只脚?4-2=2④(把看多的兔子换成鸡)有几只鸡?16÷2=8⑤兔子有多少只?20-8=12只答:有鸡8只,兔12只。

2.一个商场有两轮摩托车和三轮摩托车共26辆,其中共有轮子67个,问两轮摩托车和三轮摩托车各有多少辆?解:①假设商场全是三轮摩托车,共有多少个轮子?3×26=78(个)②比原来的总数多多少个轮子?78-67=11(个)③一个三轮摩托车比一辆二轮摩托车多几各轮子?3-2=1④(把看多的三轮摩托车换成两轮摩托车)有几辆两轮摩托车?11÷1=11⑤有多少辆三轮摩托车?26-11=15只答:有两轮摩托车11辆,三轮摩托车15辆。

3. 小明家有200千克油,分别装在48个油瓶中,其中大油瓶每瓶装5千克,小油瓶每瓶装3千可,问大、小油瓶各有多少个?解:①假设全部是大油瓶,共装多少千克油?5×48=240(千克)②比原来的总数多多少千克?240-200=40(千克)③一个大油瓶比一个小油瓶多装多少千克油?5-3=2④(把看多的大油瓶换成小油瓶)有几小油瓶?40÷2=20⑤有多少个大油瓶?48-20=28(个)答:有大油瓶28个,小油瓶20个。

4.小亮存钱罐里有42枚硬币,共有32元,分别是硬币1元和5角的,问1元和5角的各有多少枚?解:①假设全部1元的,即10角,共有多少角?10×42=420(角)②比原来的总数多多少角?420-320=100(角)③1元比5角多多少角?10-5=5(角)④(把看多的1元换成5角)有几5角?100÷5=20(枚)⑤有多少个1元?42-20=22(枚)答:有1元的22枚,5角的20枚。

四年级奥数举一反三-用假设法解题鸡兔同笼

四年级奥数举一反三-用假设法解题鸡兔同笼
用假设法解题
你知道吗?
大约一千五百年前,我国古代数学 名著《孙子算经》中记载了一道数 学题,这就是著名的“鸡兔同笼” 问题。
中国古代《孙子算经》中有云:
问 鸡 兔 各 几 何
下 有 九 十 四 足
上 有 三 十 五 头
腿?
例 1:
今有鸡、兔共居一笼,已知鸡头 和兔头共35个,鸡脚与兔脚共 94只。问鸡、兔各有多少只?
同步奥数
P89:1、
P90:4、5
假设全是鸡
脚:35x2=70(只)
相差:94-70=24(只)
兔:24÷( 4-2)=12(只) 鸡:35-12=23(只)
假设全是兔
举一反三
1,鸡与兔共有30只,共有脚70只。 鸡与兔各有多少只?
举一反三
2、面值是2元、5元的人民币共27张,
全计99元。面值是2元、5元的人民 币各有多少张?

四年级下册数学 鸡兔同笼问题(假设法)

四年级下册数学 鸡兔同笼问题(假设法)
假设鸡和兔子的只数相等
那么鸡就要减少20只
腿数就必须减少20×2=40条
还剩256-40=216条
那么这时鸡和兔子的只数都是:216÷(4+2)=36只
鸡原来的只数是:36+20=56只
答:鸡有56只,兔子有36只.
3、北街小学进行英语竞赛,答对一题得10分,答错一题倒扣2分,共15题.小红得了102分,小红答对了几题?
5、班级购买活页簿与日记本合计32本,花钱74元.活页簿每本1.9元,日记本每本3.1元.问:买活页簿、日记本各几本?
解:假设全是日记本,
活页薄:(3.1×32-74)÷(3.1-1.9)
=25.2÷1.2
=21(本)
日记本:32-21=11(本)
答:活页薄有21本,日记本11本.
1、小梅数她家的鸡与兔,数头有16个,数脚有44只.问:小梅家的鸡与兔各有多少只?
假设全是鸡,
则有脚2×16=32(只)
比实际少了44-32=12(只)
而每只兔有4只脚,少算了4-2=2只脚
所以兔有:12÷2=6(只)
那么鸡有16-6=10(只)
答:鸡有10只,兔有6只.
2、鸡兔同笼,鸡比兔多20只,共ห้องสมุดไป่ตู้256条腿,问鸡多少只?兔多少只?
解:假设小红全部做对,则小红做错了:
(15×10﹣102)÷(10+2)=4(题)
答对:15﹣4=11(题)
答:小红答对了11题.
4、鸡兔共100只,共有脚284只,鸡兔各有多少只?
解:假设全是鸡,那么兔有:
(284-100×2)÷(4-2),=42(只)
则鸡有:100-42=58(只)
答:鸡有58只,兔有42只

鸡兔同笼问题——假设法

鸡兔同笼问题——假设法

鸡兔同笼问题——假设法例1、今有鸡兔同笼,上有三十五头,下有九十四足,问,鸡兔各有几只?解析:假设35只全部是鸡,那么共有足:35×2=70(只)假设比实际少的足数:4-70=24(只)每把一只鸡换成兔子,足增加:4-2=2(只)兔子数:24÷2=12(只)鸡数:35-12=23(只)练习1:今有鸡兔同笼,上有24头,下有76足,问,鸡兔各有几只?(答案:兔子有14只,鸡有10只)例2、某次数学竞赛,共有10道题,每做对一道题得8分,每做错一道题倒扣5分,小丽得了41分,他做对了几道题?解析:假设小丽全做对,那么应得分8×10=80(分)假设比实际多:80-41=39(分)每把一道对换成错,分数少:8+5=13(分)错题数:39÷13=3(道)对题数:10-3=7(道)练习2 某次数学竞赛,共有25道题,每做多一道题得4分,每做错一道或不做倒扣1分,小丽得了60分,她做对了几道题?(答案:他做对了17道题)例3、有2分和5分的硬币共有30枚,总价值9角9分两种硬币各有多少枚?解析:假设30枚全部是2分,那么共有钱:30×2=60(分)假设比实际少:99-60=39(分)每把一枚2分换成5分,钱增加:5-2=3(分)5分数:39÷3=13(枚)2分数:30-13=17(枚)练习3有2角和5角的铅笔共有18支,总价值6元,两支铅笔各有多少只?(答案:5角有8支,2角有10支。

)例4、师徒二人轮流加工一批零件,师傅每小时加工60个,徒弟每小时加工40个,他们一共加工260个零件,平均每小时加工52个,求师徒各加工多少小时?解析:师徒一共加工时间:260÷52=5(时)假设5小时全是师傅做,那么应加工:60×5=300(个)假设比实际多:300-260=40(个)每把一个1小时师傅做换成徒弟,零件减少:60-40=20(个)徒弟工作时间:40÷20=2(时)师傅工作时间:5-2=3(时)练习4 松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,问这几天当中有几天晴天?(答案:答:晴天有2天。

小学奥数假设性问题鸡兔同笼问题

小学奥数假设性问题鸡兔同笼问题

第一部分:典型例题:例题1:甲每小时走12千米,乙每小时走8千米。

某日甲从A 地到B 地,乙同时从B 地到A 地。

已知乙到达A 地时,甲已先到B 地5小时。

求AB 两地的距离。

思路点拨:假设甲到达B 地后,继续前行走。

那么当乙到达A 地时,甲乙又走了60512=⨯。

就是在这相同时间内,甲比乙多走的路程,由于甲每小时比乙多走12-8=4,因此看60千米里面有几个4千米,就得出乙走完全程的时间。

再用乙的速度×时间就可以求出AB 两地的距离。

()[]1208-125128=÷⨯⨯例题2:小王骑车到甲地到乙地往返一次。

去时的速度是每小时20千米,回来时的速度是每小时12千米,求他往返的平均速度。

思路点拨:要求往返的平均速度,应该用总路程÷往返的总时间,而这道题的具体路程是个未知量。

我们可以假设路程是60千米,那么总路程就是120260=⨯(千米)。

往返的总时间是812602060=÷+÷(小时),用158120=÷(千米)就是往返的平均速度,当然假设的路程也可以是别的数据,但最好既是12的倍数,又是20的倍数。

()()155312012602060260=+=÷+÷÷⨯例题3:学校举行乒乓球比赛。

已知参加单打的小组比双打多13组,参加单打的人数比双打多16人。

参加单打和双打的各有多少人?思路点拨:单打每组2人,双打每组4人。

我们可以假设每组也只有2人,既然单打比双打多13组,那么单打的人数应比双打多26132=⨯(人),但实际上只多16人。

为什么会相差1016-26=(人)、这是因为每组双打的人数少算4-2=2(人)。

所以参加双打的有5210=÷(组) 双打的人数:单打的人数:孰能生巧:1.一列快车从甲地开往乙地,每小时行200千米,以此同时一列慢车从乙地开往甲地,每小时行160千米。

途中快车因故停留4小时,所以比慢车迟1小时到达目的地。

鸡兔同笼(假设法)

鸡兔同笼(假设法)

篮球比赛中,3分线外投中一球记3 分,3分线内投中一球记2分。在一场比 赛中张鹏总共得21分。他投了15个球, 进了9个球。张鹏在这场比赛中投进了 几个3分球?(张鹏没有罚球。)
假设全是2分球:
3分球 (21-2×9)÷(3-2)=3(个)
答:张鹏投进了3个3分球。 Nhomakorabea三个猎人九条狗。
假设全部是猎人 (42-12×2)÷(4-2)=9(只)
12-9=3 答:三个猎人九条狗。
小明的储蓄罐里有1角和5角硬
币共7枚,价值1.9元,1角
和5角的硬币各有多少枚?
假设全是1角硬币:
生活中的数学
(1.9-0.7)÷(0.5-0.1)=3(枚)
7-3=4
答:5角的硬币3枚,1角硬币的4枚。
今有雉兔同笼,上有 三十五头,下有九十四 足。问雉、兔各几何?
题目中的“雉”(读“zhì”), 就是野鸡。
假设法: 假设全部是鸡。 兔:(94-35×2)÷(4-2)=12(只)
(足数-头数×鸡腿)÷(兔腿-鸡腿)=兔
鸡: 35-12=23(只) 答:兔有12只,鸡有23只。
民谣: 一队猎人一队狗, 两队并成一队走。 数头一共是十二, 数脚一共四十二。
王师傅购进大瓶和小瓶的牛奶共50瓶, 共用了84元,其中大瓶的每瓶1.8元,小瓶 的每瓶1.5元,王师傅买了大瓶和小瓶的牛
奶各多少瓶? 假设都买的是小瓶
(84-50×1.5)÷(1.8-1.5)=30(瓶)
50-30= 20 (瓶)
答:买了30大瓶牛奶,20小瓶牛奶。
练习: 全班有38人,共租了8条船,大船 限坐6人,小船限坐4人,每条船都坐满了。 大小船各租了几条?
假设全部租小船:
大船(38-4×8)÷(6-4)=3(条)

小学奥数假设法解题鸡兔同笼

小学奥数假设法解题鸡兔同笼

设法解题专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。

所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。

我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。

解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数X鸡兔总数)十(每只兔子脚数-每只鸡脚数) 用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。

假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

例题1 .1 鸡、兔共30只,共有脚84只。

鸡、兔各有多少只?思路导航:假设全是鸡,共有脚:30X 2=60 只;比实际少:84-60=24 只;这是因为把4 只脚的兔子都按2 只脚的鸡计算了。

每把一只兔子算作一只鸡,少算:4-2=2只脚,现在共少算了24 只脚,说明把:24- 2=12只兔子按鸡算了。

所以,共有兔子12只,有鸡30-12=18只。

例:面值是2元、5元的人民币共27张,全计99元。

面值是2元、5元的人民币各有多少张?分析与解答:这道题类似于“鸡兔同笼”问题。

假设全是面值2 元的人民币,那么27 张人民币是2X 27=54元,与实际相比减少了99-54=45 元,减少的原因是每把一张面值2 元的人民币当作一张面5 元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45- 3=15张,面值2元的人民币有27—15=12张。

练习一1 ,鸡、兔共100 只,共有脚280只。

鸡、兔各多少只?2,鸡、兔共50只,共有脚160只。

利用假设法解鸡兔同笼问题

利用假设法解鸡兔同笼问题

利用假设法解鸡兔同笼问题例1小梅数她家的鸡与兔,数头有16个,数脚有44只。

问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。

如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。

因此只要算出12里面有几个2,就可以求出兔的只数。

解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。

答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。

我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。

因此只要算出20里面有几个2,就可以求出鸡的只数。

有鸡(4×16-44)÷(4-2)=10(只),有兔16——10=6(只)。

例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。

问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。

如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。

现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。

同样,也可以假设100人都是小和尚,同学们不妨自己试试。

例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。

问:两种文化用品各买了多少套?分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。

奥数鸡兔同笼问题五种解题思路

奥数鸡兔同笼问题五种解题思路

鸡兔同笼问题经典形式的解题思路1已知总头数和总脚数,求鸡、兔各多少:思路:假设全部都是鸡,总脚数减去鸡脚数后剩下的事兔子比鸡多的脚,ok 再除以脚的差,算出兔子数;总脚数-每只鸡的脚数×总头数÷每只兔的脚数-每只鸡的脚数=兔数;总头数-兔数=鸡数;或者是每只兔脚数×总头数-总脚数÷每只兔脚数-每只鸡脚数=鸡数;总头数-鸡数=兔数;例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一100-2×36÷4-2=14只………兔;36-14=22只……………………………鸡;解二4×36-100÷4-2=22只………鸡;36-22=14只…………………………兔;答略2已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多,求鸡和兔的数量思路:根据鸡兔脚数的差数,折算成鸡的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数;总头数-脚数之差/一只鸡的脚数÷2+1=兔数;例:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只兔:40-32/2÷2+1=8 只;鸡:40-8=3只3已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多思路:和上题目一样,根据鸡兔脚数的差数,折算成兔的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数;4 已知鸡和兔的头数差以及脚数和例:鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只思路:总脚数减去多的动物的脚数后,除以两种动物的单个脚数为兔子的个数;274-26×2÷2+4=37只兔5鸡兔互换问题已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题,思路:根据互换前后的脚数相加除以鸡的脚数加兔的脚数之和为头数,再根据1求解;例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只;鸡兔各是多少只”解〔52+44÷4+2=16只合计44-16×2÷4-2=6只兔16-6=10 面。

四年级奥数鸡兔同笼问题

四年级奥数鸡兔同笼问题

鸡兔同笼问题学会鸡兔同笼问题的解决方法,并尝试用不同方法解决鸡兔同笼问题。

这句话表达什么意思,你能帮帮图中的小朋友回答老师给出的问题吗?鸡兔同笼”问题的解题方法1、假设法总结:鸡兔同笼问题的基本公式:(1)如果假设全是兔,那么则有鸡数=(每只兔的腿数×鸡兔总数—实际腿数)÷(每只兔子腿数—每只鸡的腿数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么则有兔数=(实际腿数—每只鸡的腿数×鸡兔总数)÷(每只兔子腿数—每只鸡的腿数)鸡数=鸡兔总数-兔数2、方程法设鸡的只数为X,则另一只的只数为(总数-X),再分别乘以它们的腿数,就是总的腿数。

一、鸡兔同笼应用题例题1、已知总头数和总脚数,求鸡兔各多少只;笼子里有若干只鸡和兔.从上面数,有8个头,从下面数,有26只脚.鸡和兔各有几只?牛刀小试1:清华小学有30间宿舍,其中大宿舍每间住6人,小宿舍每间住4人。

如果这些宿舍一共可以住168人,那么有几间大宿舍?牛刀小试2:有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?牛刀小试3:鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?例题2.鸡兔互换问题;有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。

鸡兔各是多少只?牛刀小试小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?3.拓展题型鸡兔同笼,兔子比鸡多10只,兔子和鸡的腿数总和为100,鸡和兔子各有几只?牛刀小试1:灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?牛刀小试2:货运公司运送50箱玻璃仪器,合同规定每箱运费20元,但如果有损坏,被损坏的那一箱不仅不给运费,还要赔偿60元,货运公司最后只得到了760元,请求出损坏了多少箱?1.三轮车和小汽车共5辆,18个轮子.小汽车有()辆.A.3B.4C.52.有5元和10元的人民币共20张,一共是175元,5元的人民币有()张.A.5B.10C.153.36人去划船,一共租了8只船,每只大船坐5人,每只小船坐3人,那么一共租了()只小船.A.6B.2C.34.有面值为5角和8角的邮票共35张,总价值是25元,两种邮票各有多少张?5.盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克.盒中大钢珠、小钢珠各有多少个?6.实验小学“环保卫士”小分队12人参加植树活动.男同学每人栽了3棵,女同学每人栽了2棵,一共栽了32棵.男、女同学各有多少人?7.鸡和兔放在一只笼子里,上有12个头,下有40只脚.笼中有鸡兔各多少只?8.10人参加智力竞赛,每人必须回答24个问题,答对一题得5分,答错一题扣3分,结果得分最低的人得8分,且每个人的得分都不相同,那么第一名至少得______分.9.12张乒乓球桌上一共有34个同学在比赛,你知道正在单打和双打的乒乓球各有几张?10.笼中共有鸡兔10只,鸡和兔的腿共有32条.求笼中鸡和兔各有几只?方法1:按照顺序列表计算.方法2:假设10只全是鸡,就有腿______条,比32条少______条;要使腿达到32条,就要给其中______只各添上2条腿.这说明兔有______只,鸡有______只.方法3:假设10只全是兔,就有腿______条,比32条多______条;要使腿减少到32条,就要将其中______只各减去2条腿.这说明鸡有______只,兔有______只.两种方法解题:假设法和方程法1、李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。

四年级奥数:鸡兔同笼问题与假设法

四年级奥数:鸡兔同笼问题与假设法

四年级奥数:鸡兔同笼问题与假设法鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题.许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算.例1 小梅数她家的鸡与兔,数头有16个,数脚有44只.问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了.如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只.因此只要算出12里面有几个2,就可以求出兔的只数.解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只).答:有6只兔,10只鸡.当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了.我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只).因此只要算出20里面有几个2,就可以求出鸡的只数.有鸡(4×16-44)÷(4-2)=10(只),有兔16——10=6(只).由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔.因此这类问题也叫置换问题.例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解.假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个).现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人).同样,也可以假设100人都是小和尚,同学们不妨自己试试.在下面的例题中,我们只给出一种假设方法.例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元.问:两种文化用品各买了多少套?分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚.这样,就将买文化用品问题转换成鸡兔同笼问题了.假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以买普通文化用品24÷8=3(套),买彩色文化用品16-3=13(套).例4 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零.这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只).现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只). 解:有兔(2×100——20)÷(2+4)=30(只),有鸡100——30=70(只).答:有鸡70只,兔30只.例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克.问:大、小瓶各有多少个?分析:本题与例4非常类似,仿照例4的解法即可.解:小瓶有(4×50-20)÷(4+2)=30(个),大瓶有50-30=20(个).答:有大瓶20个,小瓶30个.例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆.已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨.利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨).根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车.这样每辆小卡车能装144÷9=16(吨).由此可求出这批钢材有多少吨.解:4×36÷(45-36)×45=720(吨).答:这批钢材有720吨.例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿 1.26元,结果搬运站共得运费115.5元.问:搬运过程中共打破了几只花瓶?分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元).实际上只得到115.5元,少得120-115.5=4.5(元).搬运站每打破一只花瓶要损失0.24+1.26=1.5(元).因此共打破花瓶4.5÷1.5=3(只). 解:(0.24×500-115.5)÷(0.24+1.26)=3(只).答:共打破3只花瓶.例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下.已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×(2+3)=60(下).可求出小乐每分钟跳(780——60)÷(2+3+3)=90(下),小乐一共跳了90×3=270(下),因此小喜比小乐共多跳780——270×2=240(下).练习131.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动.问:象棋与跳棋各有多少副?3.班级购买活页簿与日记本合计32本,花钱74元.活页簿每本1.9元,日记本每本3.1元.问:买活页簿、日记本各几本?4.龟、鹤共有100个头,鹤腿比龟腿多20只.问:龟、鹤各几只?5.小蕾花40元钱买了14张贺年卡与明信片.贺年卡每张3元5角,明信片每张2元5角.问:贺年卡、明信片各买了几张?6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵.问:这几天中共有几个雨天?7.振兴小学六年级举行数学竞赛,共有20道试题.做对一题得5分,没做或做错一题都要扣3分.小建得了60分,那么他做对了几道题?8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完.已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现有三种小虫共18只,有118条腿和20对翅膀.问:每种小虫各有几只?10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只.问:鸡、兔各几只?答案练习131.兔75只,鸡25只.2.象棋9副,跳棋17副.3.活页簿21本,日记本11本.4.30只龟,70只鹤.5.贺年卡5张,明信片9张.6.6天.7.15道.8.4800千克.解:[(80×20)÷(120-80)]×120=4800(千克).9.5只蜘蛛,7只蜻蜓,6只蝉.提示:把小虫分成8条腿与6条腿两种,先求出蜘蛛的数.10.兔18只,鸡14只.解:由于鸡换成兔,兔换成鸡,脚的只数少了8只,故原来的兔比鸡多4只.减去这4只兔,则鸡、兔一样多,并且共有脚100-4×4=84(只),所以,鸡有84÷(4+2)=14(只),兔有14+4=18(只).。

鸡兔同笼解题总结

鸡兔同笼解题总结

鸡兔同笼解题总结“鸡兔同笼”是我国古代著名的数学趣题之一,也是小学数学中经常会遇到的一类问题。

它虽然看似简单,但却能很好地锻炼我们的逻辑思维和数学运算能力。

接下来,咱们就一起来详细探讨一下鸡兔同笼问题的各种解题方法。

咱们先来看一个经典的鸡兔同笼问题:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,问鸡和兔各有多少只?方法一:假设法这是解决鸡兔同笼问题最常用的方法之一。

假设笼子里全是鸡,那么每只鸡有 2 只脚,35 只鸡就应该有 35×2= 70 只脚。

但实际上有 94 只脚,多出来的脚就是因为把兔子当成鸡来算了。

每只兔子有 4 只脚,我们当成鸡算了就少算了 4 2 = 2 只脚。

总共多出来 94 70 = 24 只脚,所以兔子的数量就是 24÷2 = 12 只。

鸡的数量就是 35 12 = 23 只。

反过来,咱们也可以假设笼子里全是兔子。

这样每只兔子 4 只脚,35 只兔子就应该有 35×4 = 140 只脚。

实际只有 94 只脚,少了 140 94 = 46 只脚。

这是因为把鸡当成兔子算了,每只鸡多算了 4 2 = 2 只脚,所以鸡的数量就是 46÷2 = 23 只,兔子就是 35 23 = 12 只。

方法二:方程法设鸡的数量为 x 只,兔的数量为 y 只。

因为头的总数是 35 个,所以 x + y = 35。

又因为鸡有 2 只脚,兔有 4 只脚,脚的总数是 94 只,所以 2x + 4y = 94。

然后联立这两个方程,通过解方程组来求解 x 和 y 的值。

首先由 x + y = 35 可得 x = 35 y ,将其代入 2x + 4y = 94 中,得到 2×(35 y) + 4y = 94 ,化简得到 70 2y + 4y = 94 ,2y = 24 ,y = 12 。

再把 y = 12 代入 x = 35 y ,得到 x = 23 。

鸡兔同笼问题4种解题方法

鸡兔同笼问题4种解题方法

鸡兔同笼问题4种解题方法鸡兔同笼解题方法:1,假设法设全是鸡,则兔的只数为:(总头数×2--总脚数)÷2设全是兔,则鸡的只数为:(总头数x4--总脚数)÷2总只数--鸡只数=兔只数基本原理:总头数x2如果=总脚数,说明全是鸡,如果<总脚数,说明其中有兔,每少2只脚就有1只兔。

总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。

2,公式法:总脚数÷2--总头数=兔只数总只数--兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。

用脚总数÷2是按全是鸡来计算的,如果商=总头数,说明全是鸡,如果商>总头数,说明其中有兔。

每多1个头就是1只兔。

因为1只兔有4只脚,前面÷的是2,1只兔就变成2个头,也就多了1个头,所以总脚数÷2--总头数的差是多少就有多少只兔。

3,排除法:(脚总量--总头数x2)÷2=兔只数:总只数--兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。

前面抬起2只脚,现在每只兔还剩下2只脚。

所以用总脚数--总头数×2的差再÷2就是兔的只数。

4,分组法(1)鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?20÷2=10只100--10=90只兔:90÷(1+2)=30只100--30=70只验算:70×2--30×4=20(2)鸡兔共有90只,鸡的脚比兔的脚少60只,问有鸡兔各几只?60÷4=15只90--15=75只免:75÷(1+2)=25只鸡:75--25=50只验算:50×2=100(25+15)x4=160160--100=60只5,方程法可用一元一次和二元一次方程直接解题。

鸡兔同笼问题公式解法

鸡兔同笼问题公式解法

鸡兔同笼问题公式解法一、鸡兔同笼问题公式。

1. 假设法公式。

- 假设全是鸡:兔的只数=(总脚数 - 2×总头数)÷(4 - 2);鸡的只数 = 总头数- 兔的只数。

- 假设全是兔:鸡的只数=(4×总头数 - 总脚数)÷(4 - 2);兔的只数 = 总头数- 鸡的只数。

2. 方程法公式(设鸡有x只,兔有y只)- 对于一般的鸡兔同笼问题,头数关系:x + y=总头数;脚数关系:2x+4y=总脚数。

二、题目及解析。

1. 题目1。

- 鸡兔同笼,共有头30个,脚88只,求鸡和兔各有多少只?- 解析:- 假设法:假设全是鸡,那么兔的只数(88 - 2×30)÷(4 - 2)=(88 - 60)÷2 = 14(只),鸡的只数=30 - 14 = 16(只)。

- 方程法:设鸡有x只,兔有y只。

则x + y=30 2x + 4y=88,由第一个方程得x = 30 - y,代入第二个方程2(30 - y)+4y = 88,60-2y + 4y=88,2y=28,y = 14,x=30 - 14 = 16。

2. 题目2。

- 鸡兔同笼,头共46,足共128,鸡兔各几只?- 解析:- 假设法:假设全是鸡,兔的只数(128 - 2×46)÷(4 - 2)=(128 - 92)÷2 = 18(只),鸡的只数=46 - 18 = 28(只)。

- 方程法:设鸡有x只,兔有y只。

x + y = 46 2x+4y = 128,由x = 46 - y代入2x + 4y=128得2(46 - y)+4y = 128,92-2y+4y = 128,2y = 36,y = 18,x = 28。

3. 题目3。

- 笼子里有鸡和兔共10只,共有脚28只,鸡和兔各有多少只?- 解析:- 假设法:假设全是鸡,兔的只数(28 - 2×10)÷(4 - 2)=(28 - 20)÷2 = 4(只),鸡的只数=10 - 4 = 6(只)。

鸡兔同笼的例题假设法

鸡兔同笼的例题假设法

鸡兔同笼的例题假设法
鸡兔同笼问题是一个经典的数学问题,可以用假设法来解决。

假设笼子里有 x 只鸡和 y 只兔,根据题目条件可得:
1. 鸡和兔的总只数为 n,即:x + y = n;
2. 鸡和兔的腿的总数为 m,即:2x + 4y = m。

根据这两个方程式,我们就可以利用二元一次方程组求解的方法解出 x 和 y 的值,从而得到笼子里鸡和兔的数量。

首先将第一个方程式乘以 2,然后将其与第二个方程式相减,可得:
2x + 2y - (2x + 4y) = 2n - m
化简可得:
-2y = 2n - m
移项可得:
y = (m - 2n) / 2
将 y 的值带入第一个方程式中,可得:
x = n - y
将 x 和 y 的值代入原方程中,即可求出鸡和兔的数量。

需要注意的是,当 m 和 n 不符合题目条件时,即使使用假设法也无法得出正确的答案。

此时需要排除这种情况,或者在结果中加入判断条件,以保证答案的正确性。

鸡兔同笼题目分析及解答

鸡兔同笼题目分析及解答

鸡兔同笼题目分析及解答鸡兔同笼问题,是我国古代著名的趣味数学问题之一,也是小学数学中常见的一类应用题。

它看似简单,却能很好地锻炼我们的逻辑思维和解题能力。

先来看一个经典的鸡兔同笼题目:笼子里有若干只鸡和兔,从上面数,有 35 个头,从下面数,有 94 只脚。

问鸡和兔各有多少只?要解决这个问题,我们可以用多种方法。

方法一:假设法假设笼子里全部都是鸡,因为每只鸡有 2 只脚,那么 35 只鸡应该有 35×2 = 70 只脚。

但实际上有 94 只脚,多出来的脚就是因为把兔当成鸡来算而少算的。

每只兔有 4 只脚,每只鸡有 2 只脚,所以每把一只兔当成鸡就会少算 4 2 = 2 只脚。

总共少算了 94 70 = 24 只脚,所以兔的数量就是 24÷2 = 12 只。

鸡的数量就是 35 12 = 23 只。

我们再假设笼子里全部都是兔,那么 35 只兔应该有 35×4 = 140 只脚,比实际的 94 只脚多了 140 94 = 46 只脚。

这是因为把鸡当成兔来算多算的,每把一只鸡当成兔就会多算 4 2 = 2 只脚,所以鸡的数量就是 46÷2 = 23 只,兔的数量就是 35 23 = 12 只。

方法二:方程法我们设鸡的数量为 x 只,兔的数量为 y 只。

因为鸡和兔一共有 35个头,所以 x + y = 35。

又因为鸡有 2 只脚,兔有 4 只脚,总共 94 只脚,所以 2x + 4y = 94。

由第一个方程 x + y = 35 可以得到 x = 35 y,将其代入第二个方程 2x + 4y = 94 中,得到 2×(35 y) + 4y = 94,化简得到 70 2y +4y = 94,2y = 24,y = 12。

再将 y = 12 代入 x = 35 y 中,得到 x= 23。

所以鸡有 23 只,兔有 12 只。

方法三:抬腿法这个方法比较有趣。

让笼子里的鸡和兔都抬起两只脚,此时从下面数,一共少了 35×2 = 70 只脚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题
《代换法》
一、列举法
二、古人算法:兔数=总脚数÷2-总头数
三、代换法
1.假设全是鸡:兔数=(总脚数-2×总头数)÷(4-2)
2.假设全是兔:鸡数=(4×总头数-总脚数)÷(4-2)
四、列方程的解法。

1、鸡兔同笼,共有50个头,170只脚,问笼中有鸡多少只?兔有多少只?
2、48名学生去划船,一共乘坐10只船,其中大船坐6人,小船4人,则大船有多少只?小船有多少?
3、李老师和40名同学一起去植树,李老师植树5棵,男同学每人栽3棵,女同学每人栽2棵,他们一共栽树103棵,男同学多少人?女同学有多少人?
4、兔子妈妈拔萝卜,晴天每天可拔20个,雨天每天拔12个,它一连几天拔了112个萝卜,平衡每天拔14个,这几天当中有多少天是雨天?
5、一共有30枚硬币,由2角和5角组成,共值8元7角,2角硬币有多少个?5角硬币有多少个?
10、学校买回5个篮球和7个排球,一共用了290元,一个篮球比一个排球贵10元,篮球的单价是多少元?排球的单价是多少元?
11、100个和尚吃100个馒头,每个大和尚吃3个馒头,三个小和尚吃1
个馒头,问大小和尚各有多少个人?
有一群鸡和兔,脚的总数比头的总数的2倍还多22,兔有多少只?
推广题:已知鸡比兔多(或少)多少只及总脚数,求鸡兔各多少只?
如果鸡多,则兔数=(总脚数-2×多的鸡数)÷(4+2)
如果兔多,则鸡数=(总脚数-4×多出总数)÷(4+2)
13、鸡兔同笼,共有脚700只,兔比鸡少50只,那么兔有多少只?鸡有多少只?14、鸡兔同笼,一共有280只脚,兔比鸡少20只,那么兔有多少只?鸡有多少只?15、买了一些4角和8角的邮票,一共用去40元,已知8角邮票比4角邮票多20张,那么8角邮票买了多少张?
16、鸡兔同笼,鸡比兔多30只,共有脚300只,问鸡有多少只?兔有多少只?
得失问题:不合格数=(产品总数×合格品得分数-实得总分数)÷(合格得分数+扣分数)20、某小学举行数学竞赛,共20道题,若做对一题得5分,做错或没有做一题扣2分,李明得了72分,他做对了多少道?
21、某次数学竞赛,共25道题,若做对一题得4分,做错或没有做一题扣1分,小刚得了80分,他做对了多少道?。

相关文档
最新文档