机泵找正方法

合集下载

机泵找正个人分享0.1

机泵找正个人分享0.1

机泵找正个人分享一、目的为了让泵的中心线跟电机中心线在一条直线上,保证泵跟电机的同轴度,降低离心泵运行过程中振值。

二、找正所需工器具梅花扳手、活口扳手、剪刀、千分尺、撬杠、铜皮、百分表两副。

三、找正步骤1、粗找先用百分表调整好泵与电机左右径向数据,一般打表数据在15(0.15mm)道内。

2、精找1)先用扳手拧紧地脚螺栓,分别在泵的轴向跟径向架两块表(泵找电机,径向表在上,轴向表在下,反之亦然),记初始值为0,泵旋转180°读出下一组数据,记录数据。

(可以重复旋转2-3次,与前一组数据对比,看看第一次数据对不对,以准确数据为准)2)数据计算(1)轴向找平公式推倒(以上张口为例)三角形Oab~三角形ODE~三角形OAB(相似)所以,ab/DE=Ob/OE,即DE=(ab*OE)/Obab/AB=Ob/OB,即AB=(ab*OB)/ObDE为前地脚螺栓所加垫片,AB为前后脚螺栓所加垫片,Ob为靠背轮直径,OE为靠背轮到前地脚螺栓距离,OB为靠背轮到后地脚螺栓距离(用卷尺量)。

(2)上下轴向、径向找平常见的4种情况1)上张口,中心偏高2)上张口,中心偏低3)下张口,中心偏高4)下张口,中心偏低(3)上下轴向、径向找平数据计算(以上张口,中心偏低为例)则前地脚螺栓所加垫片厚度DE为:(0-(-0.18))*OE/Ob+(0.3-0)/2后地脚螺栓所加垫片厚度AB为:(0-(-0.18))*OB/Ob+(0.3-0)/2若计算结果为正,则加垫片,为负,则减垫片。

假设靠背轮直径Ob=195mm,靠背轮到前地脚轮上距离OE的距离为500mm,靠背轮到后地脚轮上距离OB的距离为1200mm则DE=(0-(-0.18))*500/195+(0.3-0)/2=0.46+0.15=0.61mm AB=(0-(-0.18))*1200/195+(0.3-0)/2=1.11+0.15=1.26mm所以前地脚螺栓加0.61mm,后地脚螺栓1.26mm。

化工泵的找正方法介绍

化工泵的找正方法介绍

化工泵的找正方法介绍
化工泵采用分体结构较多,分体简单点就是泵体和电机是分开,靠联轴器连接的,这样可以在换泵的情况下电机可以留用,大家都知道,电机和泵体在运转中如果不对中或偏斜,就会造成泵偏心,运转故障,重则损毁泵体,所以泵机找正是关键。

一、泵对中的重要性
泵和电机的联轴器所连接的两根轴的旋转中心应严格的同心,联轴器在安装时地找正、对中,否则将会在联轴器上引起很大的应力,并将严重地影响轴、轴承和轴上其他零件的正常工作,甚至引起整台机器和基础的振动或损坏等。

因此,泵和电机联轴器的找正是安装和检修过程中很重要的工作环节。

二、找正时测量调节方法
下面主要介绍在检修过程中常用的两种测量调整方法,根据测量工具不同可分为:
1、利用刀形尺和塞尺测量联轴器的不同心和利用楔形间隙轨或塞尺测量联轴器端面的不平行度,这种方法适用于弹性联接的低转速、精度要求不高的设备。

2、利用百分表及表架或专用找正工具(如激光对中校正仪)测量两联轴器的不同心及不平行情况,这种方法适用于转速较高、刚性联接和精度要求高的转动设备。

卧式机泵精找平找正及无应力配管和最终验收工序

卧式机泵精找平找正及无应力配管和最终验收工序

卧式机泵精找平找正及无应力配管和最终验收工序沙特SES G20-C01标准对机泵的找平找正没有任何说明,完全遵照设备厂家和美国石油协会API686-1996标准来执行。

我主要根据在沙特PET项目中设备精找平找正的工作经验,总结如下内容:1、设备基础完成凿毛清理,采用座浆墩法就位,粗找平找正(质量允许公差为±3mm)工作结束,完成一次地脚螺栓灌浆(采用无收缩水泥基灌浆料),在水平调整螺栓下放置平垫铁;2、通过水平调节螺栓来调整泵底座的水平,具体检测泵底座的方法如API686-1996第72-77页和机泵厂家操作手册所示。

厂家操作手册的调整要求较高,具体调整水平步骤如下所示:整个设备底座泵侧和电机侧都要检测。

若现场到货有体积重量较大的卧式离心泵,由于在运输过程中,设备底座会发生较大的变形,导致采用该检测方法行不通,可以与质检人员协商通过检测泵出口法兰来验收。

1)泵出口法兰的水平纵向和横向都要检测,质量要求不大于0.02mm,测量工具为条式或框式水平仪。

2)电机下两块机械加工面板也都要检测纵向和横向,质量要求都不大于0.05mm,检测前要清除掉机械加工面的油漆;若横向上两块底板机械加工面出现变形,且用条式水平仪检测误差较大的情况,则质量检测要求可以不大于0.1mm。

水平仪气泡偏移太多不易读取时,可以采用塞尺垫水平仪的低端来读取偏移道数。

若质量严格要求不大于0.05mm,且允许两块儿机械加工面横向上“V”字变形,可以将电机卸下,用水平尺跨两板然后其上用水平仪来测量,对于不易将较大电机卸下来检测时,可以采用塞尺加水平仪的方法,在保证一块儿底板横向水平后,对另一块儿底板上用同一个水平仪和同大小的塞尺,然后读取水平仪的读数,不大于0.05mm即为合格。

工具为水平仪和塞尺。

3、卧式离心泵的轴对中调整。

松动泵体和电机下的紧固螺栓后,通过电机下底板上的调整螺栓来在水平平面上移动电机,电机软脚下选择合适的不锈钢垫片(不锈钢垫片平整无卷边,不得使用厚度小于0.05mm垫片,总数不得超过5片)来上下移动,必要的时候可以松动泵体的紧固螺栓在平面上移动以达到轴对中的目的。

机泵对中找正

机泵对中找正

机泵对中找正一、泵对中的重要性泵和电机的联轴器所连接的两根轴的旋转中心应严格的同心,联轴器在安装时必须精确地找正、对中,否则将会在联轴器上引起很大的应力,并将严重地影响轴、轴承和轴上其他零件的正常工作,甚至引起整台机器和基础的振动或损坏等。

因此,泵和电机联轴器的找正是安装和检修过程中很重要的工作环节之一。

二、联轴器找正是偏移情况的分析在安装新泵时,对于联轴器端面与轴线之间的垂直度可以不作检查,但安装旧泵时,一定要仔细地检查,发现不垂直时要调整垂直后再进行找正。

一般情况下,可能遇到的有以下四种情形。

1)、S1=S2,a1=a2 两半靠背轮端面是处于既平行又同心的正确位置,这时两轴线必须位于一条直线上。

2)、S1=S2,a1≠a2 两半靠背轮端面平行但轴线不同心,这时两轴线之间有平行的径向位移e=(a2-a1)/2。

3)、S1≠S2,a1=a2 两半靠背轮端面虽然同心但不平行,两轴线之间有角向位移α。

4)、S1≠S2,a1≠a2 两半靠背轮端面既不同心又不平行,两轴线之间既有径向位移e又有角向位移α。

联轴器处于第一种情况是我们在找正中需要努力达到的理想状态,而其他三种状态都不正确,需要我们进行调整,使其达到第一种情况。

在安装设备时,首先把从动机(即常说的泵头)安装好,使其轴线处于水平位置,然后再安装主动机(即常说的电机),所以找正时只需要调整电机,即在电机的支脚下面加调整垫片的方法来调节。

三、找正时测量调节方法下面主要介绍在检修过程中常用的两种测量调整方法,根据测量工具不同可分为:1)、利用刀形尺和塞尺测量联轴器的不同心和利用楔形间隙轨或塞尺测量联轴器端面的不平行度,这种方法适用于弹性联接的低转速、精度要求不高的设备。

2)、利用百分表及表架或专用找正工具(如激光对中校正仪)测量两联轴器的不同心及不平行情况,这种方法适用于转速较高、刚性联接和精度要求高的转动设备。

注意:1)、在用塞尺和刀形尺找正时,联轴器径向端面的表面上都应该平整、光滑、无锈、无毛刺。

机泵找正技术详解

机泵找正技术详解

机泵找正技术详解一、泵对中的重要性泵和电机的联轴器所连接的两根轴的旋转中心应严格的同心,联轴器在安装时必须精确地找正、对中,否则将会在联轴器上引起很大的应力,并将严重地影响轴、轴承和轴上其他零件的正常工作,甚至引起整台机器和基础的振动或损坏等。

因此,泵和电机联轴器的找正是安装和检修过程中很重要的工作环节之一。

二、联轴器找正是偏移情况的分析在安装新泵时,对于联轴器端面与轴线之间的垂直度可以不作检查,但安装旧泵时,一定要仔细地检查,发现不垂直时要调整垂直后再进行找正。

一般情况下,可能遇到的有以下四种情形。

1)、S1=S2,a1=a2 两半靠背轮端面是处于既平行又同心的正确位置,这时两轴线必须位于一条直线上。

2)、S1=S2,a1≠a2 两半靠背轮端面平行但轴线不同心,这时两轴线之间有平行的径向位移e=(a2-a1)/2。

3)、S1≠S2,a1=a2 两半靠背轮端面虽然同心但不平行,两轴线之间有角向位移α。

4)、S1≠S2,a1≠a2 两半靠背轮端面既不同心又不平行,两轴线之间既有径向位移e又有角向位移α。

联轴器处于第一种情况是我们在找正中需要努力达到的理想状态,而其他三种状态都不正确,需要我们进行调整,使其达到第一种情况。

在安装设备时,首先把从动机(即常说的泵头)安装好,使其轴线处于水平位置,然后再安装主动机(即常说的电机),所以找正时只需要调整电机,即在电机的支脚下面加调整垫片的方法来调节。

三、找正时测量调节方法下面主要介绍在检修过程中常用的两种测量调整方法,根据测量工具不同可分为:1)、利用刀形尺和塞尺测量联轴器的不同心和利用楔形间隙轨或塞尺测量联轴器端面的不平行度,这种方法适用于弹性联接的低转速、精度要求不高的设备。

2)、利用百分表及表架或专用找正工具(如激光对中校正仪)测量两联轴器的不同心及不平行情况,这种方法适用于转速较高、刚性联接和精度要求高的转动设备。

注意:1)、在用塞尺和刀形尺找正时,联轴器径向端面的表面上都应该平整、光滑、无锈、无毛刺。

(完整word版)机泵找正方法(word文档良心出品)

(完整word版)机泵找正方法(word文档良心出品)

泵找正方法联轴器的找正是机器安装的重要工作之一.找正的目的是在机器在工作时使主动轴和从动轴两轴中心线在同一直线上.找正的精度关系到机器是否能正常运转,对高速运转的机器尤其重要.两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准确的对中就更困难.各零部件的不均匀热膨胀,轴的挠曲,轴承的不均匀磨损,机器产生的位移及基础的不均匀下沉等,都是造成不易保持轴对中的原因.因此,在设计机器时规定两轴中心有一个允许偏差值,这也是安装联轴器时所需要的.从装配角度讲,只要能保证联轴器安全可靠地传递扭矩,两轴中心允许的偏差值愈大,安装时愈容易达到要求。

但是从安装质量角度讲,两轴中心线偏差愈小,对中愈精确,机器的运转情况愈好,使用寿命愈长。

所以,不能把联轴器安装时两轴对中的允许偏差看成是安装者草率施工所留的余量.联轴器找正时两轴偏移情况的分析机器安装时,联轴器在轴向和径向会出现偏差或倾斜,可能出现四种情况,如图1所示。

根据图1所示对主动轴和从动轴相对位置的分析见表1。

图1联轴器找正时可能遇到的四种情况表1联轴器偏移的分析单表法它是近年来国外应用日益广泛的一种联轴器找正方法。

这种方法只测定联轴器轮毂外圆的径向读数,不测量端面的轴向读数,测量操作时仅用一个百分表,故称单表法。

其安装,测量示意图如图8此种方法用一块百分表就能判断两轴的相对位置并可计算出轴向和径向的偏差值。

也可以根据百分表上的读数用图解法求得调整量。

用此方法测量时,需要特制一个找正用表架,其尺寸,结构由两半联轴器间的轴向距离及轮毂尺寸大小而定。

表架自身质量要小,并有足够的刚度。

表架及百分表均要求固紧,不允许有松动现象。

图8便是两轴端距离较大时找正用表架的结构示意图。

单表测量的操作方法是,在两个半联轴器的轮毂外圆面上各作相隔90°的四等分标志点1a,2a,3a,4a与1b,2b,3b,4b。

先在“B”联轴器上架设百分表,使百分表的触头接触在“A”联轴器的外圆面上的1a点处,然后将表盘对到“0”位,按轴运转方向盘动“B”联轴器,分别测得“A”联轴器上的1a,2a,3a,4a的读数(其中1a=0),为准确可靠可复测几次。

图文解说,机泵双表找正!

图文解说,机泵双表找正!

图文解说,机泵双表找正!来源:石化一线联轴器找正又叫找同心。

泵、电机都安装完之后,最后一项工作就是泵与电机找同心,也就是使泵与原动机的轴心在同一直线上,使之在运转中不致使振动。

新安装的泵进行找正时,联轴器的径向和轴向误差可能出现以下四种情况:方法一:一般的泵(水泵、小油泵)可以用平尺或塞尺进行粗测,但是对大多数设备都需要精测,用百分表进行测量。

一般机泵的水平度已找好,以机泵的对轮为基准,测定与调整电机对轮,来保证电机与机泵两轴对中。

注:a1、a2、a3、a4 表示径向间隙,S1、S2、S3、S4 表示轴向间隙测量时先测出百分表在0o时的径向间隙a1 和轴向间隙S1,然后分别测出90o、180o、270o的径向与轴向间隙,并分别记录于上图所示的圆内与圆外。

测量回到0o时,必须与原始读数一致,否则要查找原因,一般由轴窜动或地脚螺栓松动所致。

最后测量数据还须符合以下条件,才表示计算正确。

a1+a3=a2+a4 S1+S3=S2+S4方法二:泵两表找正:把百分表架到泵端,将百分表对零,将对轮旋转一圈,每90度得到一个数值,最后百分表转回其始位时必须回零,左右读数相加应该等于上下数值相加之和。

然后根据读数分析出两轴的相对空间位置状况,根据偏差值作出适当调整。

首先调整联轴器的左右偏差到允许值,然后调整高低至标准之内。

找正公式:S1= ±(对轮轴向差值(张口绝对值)×支脚1到测点距离)÷测点直径±圆周径向插(差)值/2S2= ±(对轮轴向差值×支脚2到测点距离)÷测点直径±圆周径向插(差)值/2第一个±:如果对轮是上张口,取“+”号;如果是下张口,则取“-”号可理解为从上往下盘第二个±:电机低时取“+”;电机高时取“-” 可理解为从上往下盘表是正写正是负写负S1是正的话(上张口且电机偏低),说明应该垫垫片,S1数即是要垫的垫片厚度.另:测点直径为测表点旋转直径,而不是联轴器直径。

机泵找正步骤及计算公式

机泵找正步骤及计算公式

机泵找正步骤及计算公式一、机泵找正步骤。

机泵找正就像是给机泵和电机这对小伙伴调整位置,让它们能完美配合呢。

1. 准备工作。

咱得先把机泵和电机都固定好,就像把两个小朋友先放在各自的位置上。

然后找好测量的工具,像百分表这些可不能少哦。

把百分表装在合适的地方,就像给它找个好座位,这样它才能准确地看机泵和电机的位置关系。

2. 粗找正。

这一步就像是先大概看看两个小伙伴是不是在一个方向上。

可以用眼睛看,也能用简单的工具大概量一量。

比如说看看机泵和电机的轴是不是看起来大致平行,这时候不用太精确,就是先有个初步的感觉。

3. 精找正。

这可是关键的一步啦。

把百分表的触头轻轻靠在电机或者机泵的轴上,然后慢慢转动轴。

这个时候百分表就像一个很细心的小侦探,它会告诉你轴在转动过程中的高低变化。

如果百分表的指针一会儿高一会儿低,那就说明位置不太对呢。

我们要根据百分表的读数来调整电机的位置,让机泵和电机的轴尽可能在同一条直线上。

这个调整的过程就像给小朋友挪位置,要一点一点来,可不能太着急。

二、计算公式。

机泵找正的时候,有个很重要的公式是用来计算轴向和径向偏差的。

轴向偏差的计算公式是:轴向偏差 =(a1 - a3)+(a2 - a4)/2。

这里的a1、a2、a3、a4呢,就是百分表在不同位置测量到的数值。

径向偏差的计算公式是:径向偏差 =(b1 - b3)+(b2 - b4)/2。

这些数值都是百分表在机泵和电机轴的不同测量点得到的。

不过要记住哦,这些公式看起来有点复杂,但是只要按照步骤认真测量,把数值准确代入,就能算出偏差啦。

就像做一道有点难度的数学题,只要细心就没问题。

机泵找正虽然有点小麻烦,但只要按照这些步骤和公式来,就能让机泵和电机好好合作,欢快地运转起来呢。

机泵不同心的种类及找正方法

机泵不同心的种类及找正方法

① 、1¥ A = 3 ( S>3 IA 表针指 向泵端 ) 将 S 位置百分 表读 数设 l
为 “ ” S 读 数 为 “ 数 ”说 明 主 机 与从 动机 同心 , 有 “ 张 口” 零 ,3表 负 , 但 下 。
E f A ) =A1 3/ - 2 计算 :
1Y= Dx . B/ Il
个基本常识。 设 为“ ”此 时 S 零 , 3位
置的百分表 读数 为“ 正 数” ,说 明主机与从 动

机 同心 ,但 “ 上张 -一
口” 。 I 计算 : 联轴器的找正又称联 轴器的对 中。 中又可分为冷态对中和热态 对 lY= DxLI _ B/ 对 中 我 们 主 要 介 绍 冷 态 对 中 : 联 轴 器 找 正 时 . 般 可 遇 到 以下 四种 情 况 : 一 2 X = I L 或 . BD x 2 圈5 ( )同 心 , 行 : S = 3 1、 平 即 l S AI A =3 (+ = / L Y X)BDx 结果 : . 1 l 加 : . 应 脚 Y 2脚 2应 加 : + . YX D为 轴 向百分 表计 算 直径 ( 、 #A S1 3 说 明两轴既不 同心又不平行 。两轴 的中 4)A1 3 ≠S 圈 1 心线之间既有径 向位移 , 又有角位移 。 并有如下几种现象 :
结果 :
1 l 减 : . 应 脚 Y
2脚 2应 减 : + . YX
D为 轴 向 酉分 表 计 算 直径 。
圈4
② 、1¥ A = 3 ( S<3 IA 表针指 向泵端 ) 将 s 的位置百 分表读数 l
③ 、 < S > 3( AIA3 1¥ 表针指 向泵端 ) 将 AlS 、l位置的 百分表的读数设为 “ ” 零 。 此时 A 3位 置 的 百 分 表 的 读数 为 “ 数 ” 负 S 3位置的百分表的读 数为“ 负数 ” 说 明 主 机 与从 动 既 不 同 , I又不 平 行 . 主 机 低 于 从 动 机 . 有 i 且 并 下

泵基础调平找正的方法

泵基础调平找正的方法

泵基础调平找正的方法
1.使用水平仪:首先,将水平仪放在泵基础上面,检查水平
仪的气泡是否在中央位置。

如果不在中央位置,则需要对泵基
础进行调整,直到气泡在中央位置。

2.使用水平垫片:如果泵基础不够水平,可以使用水平垫片
来进行调平。

首先,将泵基础的凹凸不平的地方找出来。

然后,根据凹凸不平的情况,选择合适尺寸的垫片,将其放置在凹凸
不平的位置。

逐渐添加和调整垫片,直到泵基础水平为止。

3.使用调平螺栓:某些泵基础具有调平螺栓,可以通过调整
螺栓来实现泵基础的调平。

首先,找到调平螺栓的位置,通常
位于泵基础的角落或边缘。

然后,逐步松开或拧紧螺栓,直到
泵基础达到水平状态。

4.基础修补:如果泵基础的不平度较大,上述方法无法解决,可以考虑进行基础的修补。

修补方法可以根据具体情况而定,
一般有添加混凝土或填充材料的方法。

在修补前,需要彻底清
理泵基础,确保修补材料能够牢固粘结。

5.请专业人员操作:泵基础的调平需要很高的技术要求和经验,如果您不熟悉操作或者调平效果不理想,建议请专业人员
进行操作。

他们会有更多的经验和合适的工具来确保泵基础的
调平效果。

需要注意的是,泵基础调平找正是一个比较复杂的过程,需
要仔细操作,确保调平的准确性和稳定性。

另外,在进行泵基
础调平之前,需要对泵基础的结构和承载能力进行评估,以确保其能够承受泵的工作负荷。

机泵找正实操及评分标准

机泵找正实操及评分标准

实操题及评分标准
机泵找正
1、(15分)
将膜片、弹性柱塞销、刚性联接的联轴节螺栓松开(2分),将电机底座清干净(3分),检查有无虚脚,并将虚脚垫实(5分);正确测量与打表计算相关尺寸(5分)。

2、(15分)
在架表前应将膜片、弹性柱塞销、刚性联接的联轴节穿上一至两个连接螺栓、以便保证电机与泵同步旋转(2分);架表前应检查表是否能够灵活伸缩自于(3分),并能回到0位(4分),并注意表的量程,目测对偏差较大,超出量程的,应先进行粗找正到表的量程以内再架表(6分)。

3、(20分)
能够正确的根据表的读数进行正确计算加减垫片厚度的结果,可分两步,一是消除张口(10分)径向偏差(10分)。

4、(40分)
找正结果径向轴向左右上下在±0.05mm、用时3小时以内为(30分)超时每30分钟扣2分总用时不得超过6小时径向轴向左右上下每个尺寸精度超±0.01扣
0.5分
5、(10分)
文明检修工具摆放整齐(3分)工完料尽场地清(3分)百分表、表架没有碰、摔等损坏现象(4分)。

泵轴对中找正(单表双打法) 三表打法

泵轴对中找正(单表双打法) 三表打法

泵轴对中找正(单表双打法) 三表打法单表对中找正方法1、单表对中找正的装架示意图(图示为单表双打)2、使用单表双打对中法的前提条件:S—两转子轴头之间的距离D—联轴节的外径前提条件:S≥D/2轴端距离越大,联轴节的直径越小,计算就越准确,当S≥D/2 时,单表双打对中法对张口的敏感性强,对中的精度可以达到更高的水平。

联轴节直径比较大,端面跳动显著,建议用三表法(或双表法)联轴节直径比较小,端面跳动较小,建议用单表法,单表法适用于长联轴节(指中间接筒较长)设备对中。

3、单表双打对中法的数据记录规定当把表架固定在 A 转子的轴头上,表杆头触到 B 转子的联轴节的外圆上时,如(E)所示,叫 A 打B,记 A →B 。

当把表架固定在 B 转子的轴头上,表杆头触到 A转子的联轴节的外园上时,如(F)所示,叫 B 打A,记 B →A 。

记录如下:在两次打表的过程中,盘车时的旋转方向必须相同,在记录时四个方向的数据要一一对应,便于下一步进行计算和张口方向的判断。

4、数据有效性判则:(1)数据要“园”。

当我们取在0°\u26102X表的读数为零,盘表一周回到0°\u20301X置时,表的读数要回零。

否则,我们称数据不“园”,为无效数据,要查找原因。

造成数据不园的原因:A、百分表不准(先检查表是否回零)B、表架没有拧紧(用手指轻敲表架,看表针是否转动)C、磁力表座的磁力不够,未吸牢(同上)D、联轴节的外圆不园,盘车时两联轴节没有转动相同的角度。

(确保转动相同的角度)(2)遵守数据有效性判则:a1﹢a3=a2﹢a4 b1﹢b3=b2﹢b45、关于径向偏差的测量:为什么两转子径向的实际偏差值等于表值的一半?(即为什么实际偏差值是表值的一半?)如图所示:以垂直方向为例,假设A、B 两转子的高低差为h,联轴节的外圆半径为R。

当我们以A 转子的轴心为基准,可测得 B 转子联轴节的最高点的实际高度为:L1=R-h (1)当我们以A 转子的轴心为基准,可测得 B 转子联轴节的最低点与 A 转子轴心的高度差为:L2=R﹢h (2)由(2)-(1)得:L2-L1=2h h=(L2-L1) /2当在顶点位置时把表调为零,即L1=0,得:h=L2/2所以:两转子径向的实际偏差值等于表值的一半?(说明:该判则在水平方向也适用)6、单表对中张口方向的判断(一)、张口值的计算公式(1)、垂直方向的张口值的计算公式:⊥A=(a3+b3) d/2s(2)、水平方向的张口值的计算公式:∥A= 〔(a4-a2) +(b4-b2) 〕d/2s 式中:⊥A—垂直方向(上下)的张口值∥A—水平方向(左右)的张口值S—两联轴节端面之间的距离d—联轴节的外圆直径(打表处)(3)、关于张口值计算公式的推导由于张口值计算公式的推导较为复杂,涉及到相似三角形等数学方面的知识,加之不影响我们的实际找正工作,在此不再叙述。

泵轴对中找正(单表双打法) 三表打法(调)

泵轴对中找正(单表双打法) 三表打法(调)

泵轴对中找正(单表双打法) 三表打法单表对中找正方法1、单表对中找正的装架示意图(图示为单表双打)2、使用单表双打对中法的前提条件:S—两转子轴头之间的距离D—联轴节的外径前提条件:S≥D/2轴端距离越大,联轴节的直径越小,计算就越准确,当S≥D/2 时,单表双打对中法对张口的敏感性强,对中的精度可以达到更高的水平。

联轴节直径比较大,端面跳动显著,建议用三表法(或双表法)联轴节直径比较小,端面跳动较小,建议用单表法,单表法适用于长联轴节(指中间接筒较长)设备对中。

3、单表双打对中法的数据记录规定当把表架固定在 A 转子的轴头上,表杆头触到 B 转子的联轴节的外圆上时,如(E)所示,叫 A 打B,记 A →B 。

当把表架固定在 B 转子的轴头上,表杆头触到A转子的联轴节的外园上时,如(F)所示,叫 B 打A,记 B →A 。

记录如下:在两次打表的过程中,盘车时的旋转方向必须相同,在记录时四个方向的数据要一一对应,便于下一步进行计算和张口方向的判断。

4、数据有效性判则:(1)数据要“园”。

当我们取在0°\u26102X表的读数为零,盘表一周回到0°\u20301X置时,表的读数要回零。

否则,我们称数据不“园”,为无效数据,要查找原因。

造成数据不园的原因:A、百分表不准(先检查表是否回零)B、表架没有拧紧(用手指轻敲表架,看表针是否转动)C、磁力表座的磁力不够,未吸牢(同上)D、联轴节的外圆不园,盘车时两联轴节没有转动相同的角度。

(确保转动相同的角度)(2)遵守数据有效性判则:a1﹢a3=a2﹢a4 b1﹢b3=b2﹢b45、关于径向偏差的测量:为什么两转子径向的实际偏差值等于表值的一半?(即为什么实际偏差值是表值的一半?)如图所示:以垂直方向为例,假设A、B 两转子的高低差为h,联轴节的外圆半径为R。

当我们以 A 转子的轴心为基准,可测得 B 转子联轴节的最高点的实际高度为:L1=R-h (1)当我们以 A 转子的轴心为基准,可测得 B 转子联轴节的最低点与 A 转子轴心的高度差为:L2=R﹢h (2)由(2)-(1)得:L2-L1=2h h=(L2-L1) /2当在顶点位置时把表调为零,即L1=0,得:h=L2/2所以:两转子径向的实际偏差值等于表值的一半?(说明:该判则在水平方向也适用)6、单表对中张口方向的判断(1)张口值的计算公式a垂直方向的张口值的计算公式:⊥A=(a3+b3) d/2sb水平方向的张口值的计算公式:∥A= 〔(a4-a2) +(b4-b2) 〕d/2s式中:⊥A—垂直方向(上下)的张口值∥A—水平方向(左右)的张口值S—两联轴节端面之间的距离d—联轴节的外圆直径(打表处)c关于张口值计算公式的推导由于张口值计算公式的推导较为复杂,涉及到相似三角形等数学方面的知识,加之不影响我们的实际找正工作,在此不再叙述。

机泵找正方法。

机泵找正方法。

泵找正方法联轴器的找正是机器安装的重要工作之一.找正的目的是在机器在工作时使主动轴和从动轴两轴中心线在同一直线上.找正的精度关系到机器是否能正常运转,对高速运转的机器尤其重要.两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准确的对中就更困难.各零部件的不均匀热膨胀,轴的挠曲,轴承的不均匀磨损,机器产生的位移及基础的不均匀下沉等,都是造成不易保持轴对中的原因.因此,在设计机器时规定两轴中心有一个允许偏差值,这也是安装联轴器时所需要的.从装配角度讲,只要能保证联轴器安全可靠地传递扭矩,两轴中心允许的偏差值愈大,安装时愈容易达到要求。

但是从安装质量角度讲,两轴中心线偏差愈小,对中愈精确,机器的运转情况愈好,使用寿命愈长。

所以,不能把联轴器安装时两轴对中的允许偏差看成是安装者草率施工所留的余量.联轴器找正时两轴偏移情况的分析机器安装时,联轴器在轴向和径向会出现偏差或倾斜,可能出现四种情况,如图1所示。

根据图1所示对主动轴和从动轴相对位置的分析见表1。

图1联轴器找正时可能遇到的四种情况表1联轴器偏移的分析单表法它是近年来国外应用日益广泛的一种联轴器找正方法。

这种方法只测定联轴器轮毂外圆的径向读数,不测量端面的轴向读数,测量操作时仅用一个百分表,故称单表法。

其安装,测量示意图如图8此种方法用一块百分表就能判断两轴的相对位置并可计算出轴向和径向的偏差值。

也可以根据百分表上的读数用图解法求得调整量。

用此方法测量时,需要特制一个找正用表架,其尺寸,结构由两半联轴器间的轴向距离及轮毂尺寸大小而定。

表架自身质量要小,并有足够的刚度。

表架及百分表均要求固紧,不允许有松动现象。

图8便是两轴端距离较大时找正用表架的结构示意图。

单表测量的操作方法是,在两个半联轴器的轮毂外圆面上各作相隔90°的四等分标志点1a,2a,3a,4a与1b,2b,3b,4b。

先在“B”联轴器上架设百分表,使百分表的触头接触在“A”联轴器的外圆面上的1a点处,然后将表盘对到“0”位,按轴运转方向盘动“B”联轴器,分别测得“A”联轴器上的1a,2a,3a,4a的读数(其中1a=0),为准确可靠可复测几次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泵找正方法联轴器的找正是机器安装的重要工作之一.找正的目的是在机器在工作时使主动轴和从动轴两轴中心线在同一直线上.找正的精度关系到机器是否能正常运转,对高速运转的机器尤其重要.两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准确的对中就更困难.各零部件的不均匀热膨胀,轴的挠曲,轴承的不均匀磨损,机器产生的位移及基础的不均匀下沉等,都是造成不易保持轴对中的原因.因此,在设计机器时规定两轴中心有一个允许偏差值,这也是安装联轴器时所需要的.从装配角度讲,只要能保证联轴器安全可靠地传递扭矩,两轴中心允许的偏差值愈大,安装时愈容易达到要求。

但是从安装质量角度讲,两轴中心线偏差愈小,对中愈精确,机器的运转情况愈好,使用寿命愈长。

所以,不能把联轴器安装时两轴对中的允许偏差看成是安装者草率施工所留的余量.联轴器找正时两轴偏移情况的分析机器安装时,联轴器在轴向和径向会出现偏差或倾斜,可能出现四种情况,如图1所示。

根据图1所示对主动轴和从动轴相对位置的分析见表1。

图1联轴器找正时可能遇到的四种情况表1联轴器偏移的分析单表法它是近年来国外应用日益广泛的一种联轴器找正方法。

这种方法只测定联轴器轮毂外圆的径向读数,不测量端面的轴向读数,测量操作时仅用一个百分表,故称单表法。

其安装,测量示意图如图8此种方法用一块百分表就能判断两轴的相对位置并可计算出轴向和径向的偏差值。

也可以根据百分表上的读数用图解法求得调整量。

用此方法测量时,需要特制一个找正用表架,其尺寸,结构由两半联轴器间的轴向距离及轮毂尺寸大小而定。

表架自身质量要小,并有足够的刚度。

表架及百分表均要求固紧,不允许有松动现象。

图8便是两轴端距离较大时找正用表架的结构示意图。

单表测量的操作方法是,在两个半联轴器的轮毂外圆面上各作相隔90°的四等分标志点1a,2a,3a,4a与1b,2b,3b,4b。

先在“B”联轴器上架设百分表,使百分表的触头接触在“A”联轴器的外圆面上的1a点处,然后将表盘对到“0”位,按轴运转方向盘动“B”联轴器,分别测得“A”联轴器上的1a,2a,3a,4a的读数(其中1a=0),为准确可靠可复测几次。

为了避免“A”联轴器外圆面与轴不同心给测量带来误差,可同时盘动“B”与“A”联轴器。

然后再将百分表架设在“A”联轴器上,以同样方法测得“B”联轴器上1b,2b,3b,4b的读数(其中1b=0)。

测出偏差值后,利用上图所示的偏差分析示意图分析方法,可得出“A”与“B”两半联轴器在垂直方向和水平方向两轴空间相对位置的各种情况,如表2,表3所示。

表2垂直方向两轴相对位置分析表3水平方向两轴相对位置分析图中假设“B”轴向上平移,使Ob’与Oa’相重合,此时3b=0,而3a的读数则变为3ac,由于3ac=3a+3b(代数和),这时Oa’与Oa’’的垂直距离也就是两轴在垂直方向的偏差值3ac/2 。

因此,只要测得3a与3b的数值,可以求得3ac的数值(要注意读数的正负号)。

水平方向的偏差分析与垂直方向相同。

单表测量时计算调整量的方法计算前,后两支点的调整量如下图所示。

以“B”轴作基准轴,调整“A”轴时应先测定X,Y,Z之值(图(a)),若以δy与δz分别表示前后支点的调整量,从图(b)可推导出:⊿Oa’Oa”G ∽⊿EO”F由于GO”=XFO”=YGO’=3ac/2(忽略Oa”Ob’)所以EF=Y/X×3ac/2δy=EF+3b/2=Y/X×3ac/2+3b/2--------(1-11)同理可得HI=Z/X×3ac/2δz=HI+3b/2=Z/X×3ac/2+3b/2---------(1-12)几点说明:①δy及δz为正值,则要求增加垫片厚度;若为负值,则减少垫片厚度.②上式为垂直方向调整的计算.若水平方向计算调整量可用同样原理,只是调整量为支点的左右移动量,而不需增减垫片厚.③上述方法是将两轴中心线调成一条直线(冷态联轴器对中),然后根据各转轴支点处的热膨胀量大小撤去相应厚度的垫片,以达到冷态找正的要求.为此,首先根据3a,3b及3ac的数值判断两轴之间的空间位置,再进行计算.调整工作必须分成两步走:先将两转轴中心线调成一条直线,再按热膨胀量大小在支点处撤去相应厚度的垫片。

单表测量法在实际操作中可以在两个半联轴器上同时装上百分表架和百分表,一个百分表指在“A”联轴器上,另一个百表指在“B”联轴器上,互相错开180°,两轴同步盘动360°,两个百分表同时记录读数。

可以免去装拆卸百分表架的麻烦,减少发生误差的可能性,加快调整速度。

当水平面内两側读数都不是零时,为方便起见,可在两側读数中分别加上一个相等到的数(包括正或负),使其中一側变为零。

这种数学变换对实际偏差没有影响。

应该注意的是支脚螺栓孔和螺栓之间的空隙要满足在水平方向上的调整量,否则应调整基准轴,使其它轴的位置作相称应的调整一、水泵不出水原因分析进水管和泵体内有空气(1)水泵启动前未灌满足够水,看上去灌水已从放气孔溢出,但未转动泵轴交空气完全排出,致使少许空气残留进水管或泵体中。

(2)与水泵接触进水管水平段逆水流方向应用0.5%以上下降坡度,连接水泵进口一端为最高,不要完全水平。

向上翘起,进水管内会存留空气,降低了水管和水泵中真空度,影响吸水。

(3)水泵填料因长期使用已经磨损或填料压过松,造成大量水从填料与泵轴轴套间隙中喷出,其结果是外部空气就从这些间隙进入水泵内部,影响了提水。

(4)进水管因长期潜水下,管壁腐蚀出现孔洞,水泵工作后水面不断下降,当这些孔洞露出水面后,空气就从孔洞进入民进水管。

(5)进水管弯管处出现裂痕,进水管与水泵连接处出现微小间隙,都有可能使空气进入进水管。

二、水泵转速低(1)人为因素。

有部分用户因原配电机损坏,就随意配上另一台电动机带动,结果造成了流量小、扬程低不上水后果。

(2)水泵本身机械故障。

叶轮与泵轴紧固螺母松脱或泵轴变形弯曲,造成叶轮多移,直接与泵体磨擦,或轴承损坏,都有可能降低水泵转速。

(3)动力机维修不灵。

电动机因绕组烧毁,而失磁,维修中绕组匝数、线径、接线方法改变,或维修中故障未彻底排除因素也会使水泵转速改变。

三、水泵吸程太大有些水源较深,有些水源外围势较平坦处,而忽略了水泵容许吸程,产生了吸水少或根本吸不上水结果。

要知道水泵吸水口处能建立真空度是有限度,绝对真空吸程约为10米水柱高,而水泵不可能建立绝对真空。

真空度过大,易使泵内水气化,对水泵工作不利。

各离心泵都有其最大容许吸程,一般3-8.5米之间。

安装水泵时切不可只图方便简单。

四、水流进出水管中阻力损失过大有些用户测量,蓄水池或水塔到水源水面垂直距离还略小于水泵扬程,但提水量小或提不上水。

其原因常是管道太长、水管弯道多,水流管道中阻力损失过大。

其原因常是管道太长、水管弯道多,水流管道中阻力损失过大。

一般情况下90度弯管比120度弯管阻力大,每一90度弯管扬程损失约0.5-1米,每20米管道阻力可使扬程损失约1 米。

此外,有部分用户还随意水泵进、出管管径,这些对扬程也有一定影响。

五、其它因素影响(1)底阀打不开。

通常是水泵搁置时间太长,底阀垫圈被粘死,无垫圈底阀可能会锈死。

(2)底阀滤器网被堵塞;或底阀潜水中污泥层中造成滤网堵塞。

(3)叶轮磨损严重。

叶轮叶片经长期使用而磨损,影响了水泵性能。

(4)闸阀可止回阀有故障或堵塞会造成流量减小抽不上水。

(5)出口管道泄漏也会影响提水量。

六、常用简易设备故障诊断方法常用简易状态监测方法主要有听诊法、触测法和观察法等。

1、听诊法设备正常运转时,伴随发生声响总是具有一定音律和节奏。

熟悉和掌握这些正常音律和节奏,人听觉功能就能对比出设备是否出现了重、杂、怪、乱异常噪声,判断设备内部出现松动、撞击、不平衡等隐患。

用手锤敲打零件,听其是否发生破裂杂声,可判断有无裂纹产生。

电子听诊器是一种振动加速度传感器。

它将设备振动状况转换成电信号并进行放大,工人用耳机监听运行设备振动声响,以实现对声音定性测量。

测量同一测点、不同时期、相同转速、相同工况下信号,并进行对比,来判断设备是否存故障。

当耳机出现清脆尖细噪声时,说明振动频率较高,一般是尺寸相对较小、强度相对较高零件发生局部缺陷或微小裂纹。

当耳机传出混浊低沉噪声时,说明振动频率较低,一般是尺寸相对较大、强度相对较低零件发生较大裂纹或缺陷。

当耳机传出噪声比平时增强时,说明故障正发展,声音越大,故障越严重。

当耳机传出噪声是杂乱无规律间歇出现时,说明有零件或部件发生了松动。

2、触测法用人手触觉可以监测设备温度、振动及间隙变化情况。

人手上神经纤维对温度比较敏感,可以比较准确分辨出80℃以内温度。

当机件温度0℃左右时,手感冰凉,若触摸时间较长会产生刺骨痛感。

10℃左右时,手感较凉,但一般能忍受。

20℃左右时,手感稍凉,接触时间延长,手感渐温。

30℃左右时,手感微温,有舒适感。

40℃左右时,手感较热,有微烫感觉。

50℃左右时,手感较烫,若用掌心按时间较长,会有汗感。

60℃左右时,手感很烫,但一般可忍受10s 长时间。

70℃左右时,手感烫灼痛,一般只能忍受3s长时间,手触摸处会很快变红。

触摸时,应试触后再细触,以估计机件温升情况。

用手晃动机件可以感觉出0.1mm-0.3mm间隙大小。

用手触摸机件可以感觉振动强弱变化和是否产生冲击,以及溜板爬行情况。

用配有表面热电偶探头温度计测量滚动轴承、滑动轴承、主轴箱、电动机等机件表面温度,则具有判断热异常位置迅速、数据准确、触测过程方便特点。

3、观察法人视觉可以观察设备上机件有无松动、裂纹及其他损伤等;可以检查润滑是否正常,有无干摩擦和跑、冒、滴、漏现象;可以查看油箱沉积物中金属磨粒多少、大小及特点,以判断相关零件磨损情况;可以监测设备运动是否正常,有无异常现象发生;可以观看设备上安装各种反映设备工作状态仪表,了解数据变化情况,可以测量工具和直接观察表面状况,检测产品质量,判断设备工作状况。

把观察各种信息进行综合分析,就能对设备是否存故障、故障部位、故障程度及故障原因作出判断。

仪器,观察从设备润滑油中收集到磨损颗粒,实现磨损状态监测简易方法是磁塞法。

它原理是将带有磁性塞头插入润滑油中,收集磨损产生出来铁质磨粒,借助读数显微镜直接用人眼观察磨粒大小、数量和形状特点,判断机械零件表面磨损程度。

用磁塞法可以观察出机械零件磨损后期出现磨粒尺寸较大情况。

观察时,若发现小颗磨粒且数量较少,说明设备运转正常;若发现大颗磨粒,就要引起重视,严密注意设备运转状态;若多次连续发现大颗粒,便是即将出现故障前兆,应立即停机检查,查找故障,进行排除。

讲很详细了,这些诊断方法需要较长时期经验累积才能判断准确。

相关文档
最新文档