高考经典物理模型:绳子受力突变问题精选.
高考经典物理模型:绳子突变

涉及绳子能发生突变的几个量与绳子相连接的物体,它的基本物理量如弹力、速度、能量等,能发生突变,这种突变比较隐蔽,不容易发现,容易产生错解,这就要求我们要认真理解和把握这类情况,这样我们在分析和处理类似问题时就会站得更高,看得更远,考虑问题也就会更周全一些,这对我们解决问题大有益处。
一. 绳子的弹力可发生突变由于绳子的特点,它的弹力可发生突变,它与弹簧不同,弹簧的弹力不能发生突变,同学们一定要注意区别,不能混淆。
例1. 如图1所示,一条轻弹簧OB和一根细绳OA共同拉住一个质量为m的小球,平衡时细绳OA是水平的,弹簧与竖直方向的夹角是,若突然剪断细绳OA,则在刚剪断的瞬间,弹簧拉力的大小是_________,小球加速度的方向与竖直方向的夹角等于_________,若将弹簧改为一根细绳,则在OA线剪断瞬间,绳OB的弹力大小是________,小球加速度方向与竖直方向夹角等于__________。
图1分析与解答:这是一道典型的要区分细绳与弹簧有什么不同的题,只要我们认清细绳可发生突变,而弹簧不能发生突变的情况,则这就不是一道难题。
细绳未剪断前,小球所受重力,弹簧的拉力和细绳的拉力是平衡的,即重力与弹簧的拉力的合力是沿水平方向向右,大小,细绳剪断后,弹簧的形变不能马上改变,弹力仍保持原值,因重力、弹簧弹力不变,所以此时小球加速度方向是沿水平向右,即与竖直方向夹角是,若弹簧改用细绳,则OA线剪断瞬间,细绳OB的形变发生突变,小球有沿圆弧切线方向的加速度,故重力与绳OB的拉力的合力必沿切线方向,由此求得,夹角为。
二. 与绳子相连接的物体,速度发生突变与绳子相连接的物体,由于某些时候绳子的形变发生突变,它的速度会随着发生突变,对这类问题若不加仔细分析,引起注意,接下来其他量的求解就会随着出错,因此必须引起高度重视。
例2. 如图2所示,质量为m的小球用长为L的细绳系于O点,把小球拿到O点正上方且使细绳拉直的位置A后,以的速度水平向右弹出(空气阻力不计)(1)小球从弹出至下落到与O点等高的位置这一过程中,小球做什么运动,请说明理由;(2)求小球到达最低点时细绳上的拉力大小。
高考物理复习受力分析之动态平衡--晾衣绳模型

高考复习微专题---动态平衡之晾衣绳模型在高考中,有一类动态平衡问题,称之为晾衣绳模型。
模型特点:非弹性绳绳长s 不变,绳子两端间水平距离L 不变,绳子上通过光滑挂钩悬挂重物G ,由几何知识可知:L =+ααsin s sin s 21,所以L =αssin ,如果只有绳子端点高度变化而距离L 不变时,则绳子形成的夹角2α不变,与绳子端点高度无关。
例1、如图所示,在竖直放置的穹形光滑支架上,一根不可伸长的轻绳通过光滑的轻质滑轮悬挂一重物 G 。
现将轻绳的一端固定于支架上的 A 点,另一端从B 点沿支架缓慢地向C 点靠近。
则绳中拉力大小变化的情况是( )A 、先变小后变大B 、先变小后不变C 、先变大后不变D 、先变大后变小例2、(2017﹒天津高考)如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆 M 、N 上的 a 、b 两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态。
如果只人为改变一个条件,当衣架静止时,下列说法正确的是( )A 、绳的右端上移到b',绳子拉力不变B 、将杆N 向右移一些,绳子拉力变大C 、绳的两端高度差越小,绳子拉力越小D 、若换挂质量更大的衣服,则衣架悬挂点右移变式题:如图所示为一竖直放置的大圆环,在其水平直径上的A 、B 两端系着一根不可伸长的柔软轻绳,绳上套有一光滑小铁环.现将大圆环在竖直平面内绕O 点顺时针缓慢转过一个微小角度,则关于轻绳对A 、B 两点的拉力F A 、F B 的变化情况,下列说法正确的是 ( )A 、F A 变小,FB 变小B 、F A 变大,F B 变大C 、F A 变大,F B 变小D 、F A 变小,F B 变大例1:C例2:AB变式题:A。
高考物理建模之轻绳模型

高考物理建模之轻绳模型轻质绳是高考物理常见的一种建模,很多题型涉及到轻绳模型,考查方式多样化,可以以选择、计算题出现,可以是简单的受力,也可以是复杂的讨论形式。
可以说,轻绳模型是高中物理最常见也最重要的建模之一。
轻绳模型特点首先,它的质量可忽略不计,不考虑其重力。
其次,它只能产生拉力(弹力),不能产生压力或支持力,因此拉力方向一定沿着绳子指向绳子收缩的方向。
轻绳模型规律▪同一条绳子拉力处处相等;▪轻绳松弛时不产生拉力,轻绳不能像弹簧一样伸长;▪用轻绳连接的物体发生碰撞时,会引起机械能损失,即非弹性碰撞;▪轻绳的拉力会发生突变,具有瞬时突变;轻绳模型处理方法根据物体运动状态,选择相对应的定理或定律。
具体表现为:静止或动态平衡时涉及共点平衡原理,加速或减速涉及牛顿第二定律,圆周运动涉及向心力,绳子关联问题涉及运动的合成与分解等等。
轻绳模型常见题型▪轻绳涉及的平衡问题这类题型特点在于物体处于静止状态或动态平衡(缓慢移动、匀速运动),结合受力分析利用合成法或正交分解法解决。
特别提醒,轻绳会与定滑轮挂钩形成"活结",至于"活结类"的轻绳模型,可以参考这篇文章《高考物理建模型之活结和死结模型》加以理解。
经典例题如图所示,将一根不能伸长、柔软的轻绳两端分别系于A、B两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为θ1,绳子张力为F1;将绳子B端移至C点,待整个系统达到平衡时,两段绳子间的夹角为θ2,绳子张力为F2;将绳子B端移至D点,待整个系统达到平衡时,两段绳子间的夹角为θ3,绳子张力为F3,不计摩擦,则( )A. θ1=θ2=θ3B. θ1=θ2<θ3C. F1> F2> F3D. F1= F2< F3 答案:BD解析:先要证明θ跟什么因素有关。
根据轻绳模型可知,不管悬挂点在B、C、D点哪个位置,两段绳子的拉力是一样的,并且拉力的合力刚好在两段绳子夹角的角平分线上。
高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习

高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习,吊着重为180N的物体,不计摩向上移动些,二绳张力大例2:如图所示,三根长度均为l 的轻绳分别连接于C 、D 两点,A 、B 两端被悬挂在水平天花板上,相距2l .现在C 点上悬挂一个质量为m 的重物,为使CD 绳保持水平,在D 点上可施加力的最小值为()A.mgB.33mg C.21mg D.41mg 变式训练1.段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳() A .必定是OAB.必定是OBC .必定是OCD.可能是OB ,也可能是OC变式训练2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围.变式训练3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大变式训练4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1=4Kg 和m 2=2Kg 的物体,如图所示。
在滑轮之间的一段绳上悬挂物体m ,为使三个物体不可能保持平衡,求m 的取值范围。
(绳的“死结”问题,也就是相当于几根绳子,每根绳的拉力一般来说是不相同的。
) 左运动时,则对于:如图所示,轻杆的一端铰链连接于墙壁上,另一端装有一光滑的小滑轮,细绳绕过小悬挂在天花板上,下面还拴着劲度系数为k1的轻弹簧上移的高度是多少?的劲度系数分别为k1和k2,若在m1上随时间t变化的图像如图(乙)所示,则(在某一瞬间,物体由一种状态变化到另一种状态,从而引起运动和受力在短时间内发生急剧的变化,,的细绳,细绳上有一小的清滑轮,吊着重为180N的物体,不计向上移动些,二绳张力两端被悬挂在水平点A.mgB.33mg C.21mg D.41mg 2-1.一段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳(A )A .必定是OAB.必定是OBC .必定是OCD.可能是OB ,也可能是OC2-2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围.F 的取值范围为:≤F≤2-3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时(D )A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大2-4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1=4Kg 和m 2=2Kg 的物体,如图所示。
涉及绳 子能发生突变的几个量

涉及绳子能发生突变的几个量与绳子相连接的物体,它的基本物理量如弹力、速度、能量等,能发生突变,这种突变比较隐蔽,不容易发现,容易产生错解,这就要求我们要认真理解和把握这类情况,这样我们在分析和处理类似问题时就会站得更高,看得更远,考虑问题也就会更周全一些,这对我们解决问题大有益处。
一. 绳子的弹力可发生突变由于绳子的特点,它的弹力可发生突变,它与弹簧不同,弹簧的弹力不能发生突变,同学们一定要注意区别,不能混淆。
例1. 如图1所示,一条轻弹簧OB和一根细绳OA共同拉住一个质量为m的小球,平衡时细绳OA是水平的,弹簧与竖直方向的夹角是,若突然剪断细绳OA,则在刚剪断的瞬间,弹簧拉力的大小是_________,小球加速度的方向与竖直方向的夹角等于_________,若将弹簧改为一根细绳,则在OA线剪断瞬间,绳OB的弹力大小是________,小球加速度方向与竖直方向夹角等于__________。
图1分析与解答:这是一道典型的要区分细绳与弹簧有什么不同的题,只要我们认清细绳可发生突变,而弹簧不能发生突变的情况,则这就不是一道难题。
细绳未剪断前,小球所受重力,弹簧的拉力和细绳的拉力是平衡的,即重力与弹簧的拉力的合力是沿水平方向向右,大小,细绳剪断后,弹簧的形变不能马上改变,弹力仍保持原值,因重力、弹簧弹力不变,所以此时小球加速度方向是沿水平向右,即与竖直方向夹角是,若弹簧改用细绳,则OA线剪断瞬间,细绳OB的形变发生突变,小球有沿圆弧切线方向的加速度,故重力与绳OB的拉力的合力必沿切线方向,由此求得,夹角为。
二. 与绳子相连接的物体,速度发生突变与绳子相连接的物体,由于某些时候绳子的形变发生突变,它的速度会随着发生突变,对这类问题若不加仔细分析,引起注意,接下来其他量的求解就会随着出错,因此必须引起高度重视。
例2. 如图2所示,质量为m的小球用长为L的细绳系于O点,把小球拿到O点正上方且使细绳拉直的位置A后,以的速度水平向右弹出(空气阻力不计)(1)小球从弹出至下落到与O点等高的位置这一过程中,小球做什么运动,请说明理由;(2)求小球到达最低点时细绳上的拉力大小。
2022年高考物理模型专题突破-绳杆模型

真题模型(二)——竖直平面的圆周运动“绳、杆”模型来源图例考向模型核心归纳2014·新课标全国卷Ⅱ第17题受力分析、圆周运动、动能定理1.常考的模型(1)物体运动满足“绳”模型特征,竖直圆轨道光滑(2)物体运动满足“绳”模型特征,竖直圆轨道粗糙(3)物体运动满足“杆”模型特征,竖直圆轨道光滑(4)物体运动满足“杆”模型特征,竖直圆轨道粗糙(5)两个物体沿竖直圆轨道做圆周运动(6)同一物体在不同的竖直圆轨道做圆周运动(7)物体受弹簧弹力、电场力或洛伦兹力共同作用下的圆周运动2.模型解法2015·新课标全国卷Ⅰ第22题圆周运动、超重、失重2016·新课标全国卷Ⅱ第16题受力分析、牛顿第二定律、圆周运动、动能定理2016·课新标全国卷Ⅱ第25题受力分析、机械能守恒定律、圆周运动、牛顿第二定律2016·新课标全国卷Ⅲ第24题受力分析、圆周运动、机械能守恒定律、牛顿第二定律2017·全国卷Ⅱ第17题平抛运动、功能关系及极值的求解方法【预测1】 (多选)如图1所示,半径为R 的内壁光滑的圆轨道竖直固定在桌面上,一个可视为质点的质量为m 的小球静止在轨道底部A 点。
现用小锤沿水平方向快速击打小球,使小球在极短的时间内获得一个水平速度后沿轨道在竖直面内运动。
当小球回到A 点时,再次用小锤沿运动方向击打小球,通过两次击打,小球才能运动到圆轨道的最高点。
已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功W 1,第二次击打过程中小锤对小球做功W 2。
设先后两次击打过程中小锤对小球做功全部用来增加小球的动能,则W 1W 2的值可能是( )图1A.34B.13C.23D.1解析 第一次击打后球最多到达与球心O 等高位置,根据功能关系,有W 1≤mgR ,两次击打后球可以运动到轨道最高点,根据功能关系,有W 1+W 2-2mgR =12mv 2,在最高点有mg +N =m v 2R ≥mg ,由以上各式可解得W 1≤mgR ,W 2≥32mgR ,因此W 1W 2≤23,B 、C 正确。
力学中的突变问题(完美版)

突变问题常见的突变模型轻绳:只产生拉力,方向沿绳子。
绳子的弹力可以突变——瞬时产生,瞬时改变,瞬时消失。
轻弹簧:可产生拉力、支持力,方向弹簧。
弹簧的弹力不能突变,在极短的时间内可认为弹力不变。
轻杆:可产生拉力、支持力,方向不一定沿杆。
杆的弹力可以突变。
※典型例题※例题1、原来做匀速运动的升降机内有一被伸长的轻质弹簧拉住、具有一定质量的物体A静止放在地板上,如图所示,现发现A突然被弹簧拉向右方,由此可判断,此时升降机的运动可能是A.加速上升B.减速上升C.加速下降D.减速下降例题2、如图所示,两小球悬挂在天花板上,a、b两小球用细线连接,上面是一轻质弹簧,a、b两球的质量分别为m,2m,在细线烧断瞬间,两球的加速度分别是A.0;gB.-g;gC.-2g;gD.2g;0例题3、 如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、固定于杆上,小球处于静止状态。
设拔去销钉M 瞬间。
小球加速度的大小为12m/s 2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(取g=10m/s 2)A .22m/s 2,竖直向上B .22m/s 2,竖直向下C .2m/s 2,竖直向上D .2m/s 2,竖直向下 例题4、如图所示,质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态。
当木板AB 突然向下撤离的瞬间,小球的加速度为A .0B .大小为g,方向竖直向下C .大小为3,方向垂直于木板向下D .大小为g 3,方向水平向右例题5、 如图所示,质量为m 的物体A 系于两根轻弹簧L 1、L 2上,L 1的一端悬挂在天花板上C 点,与竖直方向的夹角为θ,L 2处于水平位置,左端固定于墙上B 点,物体处于静止状态,下列说法正确的是A .若将L 2剪断,则剪断瞬间物体加 速度a=gtan θ,方向沿B 到AB .若将L 2剪断,则剪断瞬间物体加 速度a=gsec θ,方向沿A 到CC .若将L 1剪断,则剪断瞬间物体加速度a=gsec θ,方向沿C 到AD .若将L 1剪断,则剪断瞬间物体加速度a=g ,方向竖直向下例题6、 如图所示,竖直放置在水平面上的轻质弹簧上放着质量为2kg 的物体A ,处于静止状态。
高三物理涉及绳子能发生突变的几个量

涉及绳子能发生突变的几个量与绳子相连接的物体,它的基本物理量如弹力、速度、能量等,能发生突变,这种突变比较隐蔽,不容易发现,容易产生错解,这就要求我们要认真理解和把握这类情况,这样我们在分析和处理类似问题时就会站得更高,看得更远,考虑问题也就会更周全一些,这对我们解决问题大有益处。
一. 绳子的弹力可发生突变由于绳子的特点,它的弹力可发生突变,它与弹簧不同,弹簧的弹力不能发生突变,同学们一定要注意区别,不能混淆。
例1. 如图1所示,一条轻弹簧OB和一根细绳OA共同拉住一个质量为m的小球,平衡时细绳OA是水平的,弹簧与竖直方向的夹角是,若突然剪断细绳OA,则在刚剪断的瞬间,弹簧拉力的大小是_________,小球加速度的方向与竖直方向的夹角等于_________,若将弹簧改为一根细绳,则在OA线剪断瞬间,绳OB的弹力大小是________,小球加速度方向与竖直方向夹角等于__________。
图1分析与解答:这是一道典型的要区分细绳与弹簧有什么不同的题,只要我们认清细绳可发生突变,而弹簧不能发生突变的情况,则这就不是一道难题。
细绳未剪断前,小球所受重力,弹簧的拉力和细绳的拉力是平衡的,即重力与弹簧的拉力的合力是沿水平方向向右,大小,细绳剪断后,弹簧的形变不能马上改变,弹力仍保持原值,因重力、弹簧弹力不变,所以此时小球加速度方向是沿水平向右,即与竖直方向夹角是,若弹簧改用细绳,则OA线剪断瞬间,细绳OB的形变发生突变,小球有沿圆弧切线方向的加速度,故重力与绳OB的拉力的合力必沿切线方向,由此求得,夹角为。
二. 与绳子相连接的物体,速度发生突变与绳子相连接的物体,由于某些时候绳子的形变发生突变,它的速度会随着发生突变,对这类问题若不加仔细分析,引起注意,接下来其他量的求解就会随着出错,因此必须引起高度重视。
例2. 如图2所示,质量为m的小球用长为L的细绳系于O点,把小球拿到O点正上方且使细绳拉直的位置A后,以的速度水平向右弹出(空气阻力不计)(1)小球从弹出至下落到与O点等高的位置这一过程中,小球做什么运动,请说明理由;(2)求小球到达最低点时细绳上的拉力大小。
受力分析中的“突变”问题

受力分析中的“突变”问题例析在受力分析中常常遇到物体受力情况突然发生变化的情况,如绳子(或弹簧)突然断开或支持物突然撤去等,这在物理解题时常称之为“突变问题”。
遇到这类问题关键是分析清楚物体受力条件改变前后的差异,以及条件发生“突变”瞬间,哪些量能突然发生变化,哪些量不能瞬间完成改变,从而确定物体在受力情况发生突变瞬间各力的变化情况。
例1、如图1-1所示,图中细线均不可伸长,物体均处于平衡状态,如果突然把两水平细线剪断,求剪断瞬间小球A 、B 加速度看样?解析:本例的(a )(b )两图中A 、B 两球的运动状态、受力形式均相同,不同之处在于(a )图中OA 段为一细线,而(b )图中OB 段为一弹簧。
①在剪断细线前小球受力情况如图1-2所示,此时有B A B A T T F F ==,②在剪断水平细线瞬间,B A T T ,突变为零,两球所受力的情况会发生相应的变化:对(a )图而言,小球所受的重力不会发生变化,OA 段细线上的拉力A F 在A T 突变为零的瞬间也会发生相应的变化,大小与重力沿细线方向上的分力相平衡θcos 1'G G F A ==,小球所受到的合力为小球所受重力沿与细线方向垂直方向上的分力θsin 2G G F ==合(如图1-3-a 所示);对(b )来说,弹簧的形变在剪断细线瞬间来不及发生改变,所以弹簧上的弹力在水平细线断开瞬间不发生变化,因此小球在细线断开瞬间所受力G F B ,都未发生变化,故小球所受的合力大小与细线断开前的B T 大小相等,方向沿B T 的反方向(如图1-3-b 所示)。
从以上分析可以看出,(a )(b )两图中由于连接小球的线与弹簧物理性质上的差异,在水平线剪断瞬间,A 球所受的拉力能瞬间发生突变,而B 球所受弹簧的拉力在突变瞬间不能发生变化,从面使两球在剪断细线的瞬间受力情况出现差异。
例2、如图2-1所示,物体A 、B 以轻质弹簧相连,静止于木板上,试求撤去木板的瞬间,A 、B 的瞬时速度(已知A 、B 的质量分别为B a m m ,) 解析:撤去木板前,A 、B 及弹簧构成的系统处于平衡状态,对整体而言,有:N B A F g m m =+)((N F 为木板对系统向上的弹力)对A 物体有:A A F g m =(A F 是弹簧对物体A 的向上的支持力)对B 物体有:B B N F g m F +=(B F 为弹簧对物体B 向下的压力)其中B A F F =当撤去木板瞬间,弹簧的弹力不能发生突变(弹簧形变不能在瞬间发生改变),所以它对A 的支持力和对B 的向下的压力不变。
理想模型中绳与弹簧连接体弹力突变问题的讨论

簧 2,剪 断 的 瞬 间 弹 簧 2和 轻 绳 2的 一 端 均 变
为 自 由 端 ,轻 绳 2 对 物 体 A 的 拉 力 突 变 为 零 ;由 于 没 有 惯 性 ,弹 簧 2 的 形 变 瞬 间 恢 复 ,
对 物 体 A 的 拉 力 也 突 变 为 零 。
2.不 同 点 :当 绳 子 没 有 自 由 端 (两 端 都 与
m Ag 十 2 一 m ng 十 m Bg o 田 午
顿 第 二 定 律 得 Ag + H1 Hg 一
Ⅲ A。n A,’ n A一一 — — g ,,方力 向l口j 竖l兰
‘ l,1
一 图 。
2所 示 ),由 牛 顿 第 二 定 律 可 得 剪
断 瞬 间 物 体 A 受 到 的 合 外 力 为
时 间 的 累 积 ,则 弹 簧 的 弹 力 不 会 发 生 突 变 。 如 当 剪 掉 图 1甲 中 的 轻 质 绳 2,绳 1 的 拉
力 大 小 由 剪 断 前 F 一 m g + m g 突 变 为
F三3 F 一 mng。 对 物 体 A 进 行 受 力 分 析 ,由 牛 顿
第 二 定 律 可 得 物 体 A 的 加 速 度 为 a 一
F 一 F 1一 m Ag — m AgA, ^g +
Bg 一
M H
Ag 一 Ⅲ A“ A ,n A 一 — — g ,
m A
图 2
30
示 ),其 所 受 合 外 力 为
=:= 摹 豳
苎一o
。
A
乙 中 剪 断 弹 簧 2 的 瞬 间 ,弹 簧 l对 物 体
A 的 拉 力 大 小 、方 向 不 变 ,都 为 F。一 —g +
专题10 活结与死结绳模型、动杆和定杆模型和受力分析(原卷版)-2024年高考物理一轮综合复习

2024年高考物理一轮大单元综合复习导学练专题10活结与死结绳模型、动杆和定杆模型和受力分析导练目标导练内容目标1活结与死结绳模型目标2动杆和定杆模型目标3受力分析【知识导学与典例导练】一、活结与死结绳模型1.“活结”模型【例1】如图所示,一根不可伸长的光滑轻质细绳通过轻滑轮挂一重物,细绳一端系在竖直墙壁的A点,另一端系在倾斜墙壁的B点,现将细绳右端从B点沿倾斜墙壁缓慢向下移动到与A点等高的B′点。
在移动过程中,关于细绳拉力大小变化情况正确的是()A.先变小后变大B.变大C.变小D.不变【例2】在如图所示装置中,两物体质量分别为1m和2m,滑轮直径大小可忽略。
设动滑轮P两侧的绳与竖直方向夹角分别为α和β。
整个装置能保持静止。
不计动滑轮P的质量和一切摩擦。
则下列法正确的有()A.α一定等于βB.1m一定大于2m C.1m一定小于2m D.1m可能大于22m2.“死结”模型【例3】如图所示,将三段轻绳相结于O点,其中OA绳的一端拴在墙上,OB绳的下方悬挂甲物体,OC绳跨过光滑定滑轮悬挂乙物体。
OC绳与竖方向的夹角为α=70°。
OA绳与竖直方向的夹角为β(未知)。
若甲、乙两物体的质量均为m=2kg,重力加速度g取10m/s2,sin55°≈0.82。
根据所学的知识,不需计算,推理出OA绳的拉力约为()A .16NB .23NC .31ND .41N二、动杆和定杆模型1.动杆模型模型结构模型解读模型特点轻杆用光滑的转轴或铰链连接,轻杆可围绕转轴或铰链自由转动当杆处于平衡时,杆所受的弹力方向一定沿杆【例4】如图所示,A 、B 为竖直墙面上等高的两固定点,AO BO 、为长度相等的两根轻绳,CO 为一根轻杆,铰链C 在AB 中点D 的正下方,AOB 在同一水平面内,120AOB ∠=︒,60COD ∠=︒,若在O 点处悬挂一个质量为m 的物体,则平衡后绳AO 所受的拉力和杆OC 所受的压力分别为()A .3mg ,2mg B .mg ,2mg C.3mg,3mg D .3mg ,3mg 2.定杆模型模型结构模型解读模型特点轻杆被固定在接触面上,不发生转动杆所受的弹力方向不一定沿杆,可沿任意方向【例5】水平横梁一端A 插在墙壁内,另一端装有一小滑轮B ,轻绳的一端C 固定于墙壁上,另一端跨过滑轮后悬挂一重力为100N G =的重物,30CBA ∠=︒,如图所示,则滑轮受到轻绳的作用力的大小为()A.50N B.C.100N D.三、受力分析1.受力分析的一般顺序:先分析场力(重力、电场力、磁场力),再分析接触力(弹力、摩擦力),最后分析其他力.2.研究对象选取方法:整体法和隔离法.(1)当分析相互作用的两个或两个以上物体整体的受力情况及分析外力对系统的作用时,宜用整体法.(2)在分析系统内各物体(或一个物体各部分)间的相互作用时常用隔离法.(3)整体法和隔离法不是独立的,对一些较复杂问题,通常需要多次选取研究对象,交替使用整体法和隔离法.3.受力分析的六个注意点(1)不要把研究对象所受的力与研究对象对其他物体的作用力混淆。
2024年高考物理一轮复习热点重点难点:绳的活结与死结模型、动杆和定杆模型(解析版)

绳的活结与死结模型、动杆和定杆模型特训目标特训内容目标1绳子类的“死结”问题(1T -4T )目标2绳子类的“活结”问题(5T -8T )目标3有关滑轮组的“活结”问题(9T -12T )目标4定杆和动杆问题(13T -16T )【特训典例】一、绳子类的“死结”问题1如图所示,质量为m =2.4kg 的物体用细线悬挂处于静止状态。
细线AO 与天花板之间的夹角为53°,细线BO 水平,若三根细线能承受最大拉力均为100N ,重力加速度g 取10m/s 2,不计所有细线的重力,sin37°=0.6,cos37°=0.8。
下列说法正确的是()A.细线BO 上的拉力大小30NB.细线AO 上的拉力大小18NC.要使三根细线均不断裂,则细线下端所能悬挂重物的最大质量为8kgD.若保持O 点位置不动,沿顺时针方向缓慢转动B 端,则OB 绳上拉力的最小值为19.2N 【答案】C【详解】AB .以结点O 为研究对象,受到重力、OB 细线的拉力和OA 细线的拉力,如图所示根据平衡条件结合图中几何关系可得细线BO 上的拉力大小为F BO =mg tan37°=18N 同理,可解得细线AO 上的拉力大小F AO =mgcos37°=30N 故AB 错误;C .若三根细线能承受的最大拉力均为100N ,根据图中力的大小关系可得,只要OA 不拉断,其它两根细线都不会拉断,故有m max g =F max cos37°解得m max =F max cos37°g =100×0.810kg =8kg ,故C 正确;D .当OB 与OA 垂直时,OB 细线的拉力最小,根据几何关系结合平衡条件可得F min =mg sin37°=2.4×10×0.6N =14.4N 故D 错误。
故选C 。
2如图所示,两个质量均为m 的小球a 和b 套在竖直固定的光滑圆环上,圆环半径为R ,一不可伸长的细线两端各系在一个小球上,细线长为23R 。
经典高三物理模型绳子、弹簧和杆产生的弹力特点 知识点分析

绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
专题05+无弹性绳绷直模型-高考物理模型系列之实物模型+Word版含解析

高中物理系列模型之实物模型4.无弹性绳绷直模型模型界定本模型中物体与绳之间的作用在瞬时完成,绳的形变不明显,物体的动量、能量发生了突变。
模型破解1.物体沿绳方向上的速度发生变化,作用结束时绳连接的两物体在沿绳方向上的速度分量相同。
2.绳绷直的过程当于两物体沿绷直绳所在的方向发生了完全非弹性碰撞,有一部分机械能转化为内能。
例1.光滑水平面上两小球a、b用不可伸长的松弛细绳相连。
开始时a球静止,b球以一定速度运动直至绳被拉紧,然后两球一起运动,在此过程中两球的总动量 (填“守恒”或“不守恒”);机械能(填“守恒”或“不守恒”)。
【答案】守恒;不守恒【解析】两小球在光滑水平面上运动,水平方向上系统不受外力作用,满足动量守恒的条件.但绳突然绷直时有一部分动能转化为内能,机械能不守恒 .例2.如图所示,质量为m的小球与一个不可伸长的、长为L的轻绳连接,绳的另一端固定于O点,现将小球拉到与水平方向成300角的上方。
(绳恰伸直),然后将小球自由释放,求小球到最低点时受到绳的拉力大小。
例2题图3.5mg【答案】例2答图202''21)30sin 1('21mv mgL mv =-+ 在最低点由牛顿第二定律有Lv m mg T 2''=-联立以上各式可得T =3.5mg 。
例3.如图所示,质量相等的两个小球A 、B 由不可伸长的细绳相连放在光滑的水平面上,绳处于松弛状态,现给B 一个垂直于AB 连线的水平速度v 0,小球B 开始运动,当绳绷直的瞬间A.AB 组成的系统动量守恒B.AB 组成的系统在沿绳的方向动量守恒C.AB 组成的系统机械能守恒D.AB 组成的系统机械能不守恒 【答案】ABD例4.在光滑水平面上有一质量为m1=20kg 的小车,通过一根不可伸长的轻绳与另一质量m2=25kg 的拖车相连接,质量为m3=15kg 的物体放在拖车的平板上,物体与平板间的动摩擦因数为μ=0.2。
高中物理复习模型案例1绳子、弹簧(或橡皮绳)、杆产生的弹力特点

案例1 绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m的物体系于长度分别为L1、L2的两根细绳OA、OB上,0B一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA甲乙分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
绳-杆-弹簧模型在临界与突变问题及归类解析

绳、杆、弹簧模型在临界和突变问题的归类解析【内容摘要】:三种模型弹力产生的机理不同,不同物理场景下力和运动情况的分析,尤其是由一种状态突变到另一种物理状态时,数学上称为"拐点"突变点的分析;以及临界状态对应的临界条件。
【关键词】:临界、突变绳、杆和弹簧作为中学物理常见的理想模型,在解决力和运动,尤其在曲线运动问题中经常出现,由于较多涉及带电粒子在复合场中的运动,关于临界和突变问题成为失分较大的考点,因此历年成为频繁出现的热点。
而问题的症结是:不太清楚这三种模型弹力产生的机理;不清晰物理过程的分析,尤其是由一种状态突变到另一种物理状态时,数学上称为"拐点"突变点的分析;以及临界状态对应的临界条件,故而成为学习中的一个障碍。
结合复习实际,总结如下:一、产生的机理:1、形变的分类和弹力产生的机理:物体在外力作用下的形变可分为:拉伸、压缩形变、剪切形变、扭转和弯曲形变,但从根本上讲,形变分为:拉伸压缩和剪切形变.拉伸压缩形变的程度用线应变描述;剪切形变是指用平行截面间相对滑动的位移与截面垂直距离之比来描述称为剪切形变;弯曲形变:以中性层为界,越近上缘发生压缩形变的程度增加,靠近下沿拉伸越甚,即上下边沿贡献最大,中性层无贡献,实际应用中典型的就是钢筋混凝土梁,下部钢筋多利用其抗拉能力,上部利用混凝土抗压能力,工业中的工字钢.空心钢管等构件既安全又节省材料;扭转形变实质上是由剪切形变组成,内外层剪切应变不同,因此应力也不同。
靠外层应力较大,抵抗扭转形变的作用主要由外层承担,靠近中心轴线的材料几乎不大起作用,工业中的空心柱体就是典型的应用。
2、区别:细绳只能发生拉伸形变,即只能提供因收缩而沿轴向里的弹力,但弹力的产生依赖于细绳受到的外力和自身的运动状态。
由一种状态突变到另一种状态时,受力和运动状态将发生突变,将此点称为“拐点”;弹簧能发生拉伸和压缩形变,能提供向里和向外的弹力,弹力的产生是由于外力作用下而引起的形变,形变不发生变化,弹力不变;轻杆:拉伸、压缩、剪切形变、弯曲、扭转形变均能发生,既能产生沿轴向方向上的弹力,又能产生沿截面方向上的弹力,取决于外力作用的情况。
【2024寒假分层作业】专题10 活结与死结绳模型、动杆和定杆模型和受力分析(解析版)

2024年高考物理一轮大单元综合复习导学练专题10活结与死结绳模型、动杆和定杆模型和受力分析导练目标导练内容目标1活结与死结绳模型目标2动杆和定杆模型目标3受力分析【知识导学与典例导练】一、活结与死结绳模型1.“活结”模型【例1】如图所示,一根不可伸长的光滑轻质细绳通过轻滑轮挂一重物,细绳一端系在竖直墙壁的A点,另一端系在倾斜墙壁的B点,现将细绳右端从B点沿倾斜墙壁缓慢向下移动到与A点等高的B′点。
在移动过程中,关于细绳拉力大小变化情况正确的是()A.先变小后变大B.变大C.变小D.不变【答案】B【详解】如下图,设绳子总长度为L,BD垂直于AB′,最开始时AO与竖直方向的夹角为θ,根据对称性有AO sinθ+BO sinθ=L sinθ=AD绳子右端从B点移动到B′O点移动到O′点,B′O′与竖直方向夹角为α,根据对称性有AO′sinα+BO′sinα=L sinα=AB′因为AB′>AD所以α>θ则绳子移动后,绳子之间的夹角变大,而两段绳子的拉力大小相同,合力大小始终等于重物的重力大小,根据力的平行四边形定则,两段绳子的拉力大小变大。
故选B。
【例2】在如图所示装置中,两物体质量分别为1m和2m,滑轮直径大小可忽略。
设动滑轮P两侧的绳与竖直方向夹角分别为α和β。
整个装置能保持静止。
不计动滑轮P的质量和一切摩擦。
则下列法正确的有()2m A.α一定等于βB.1m一定大于2m C.1m一定小于2m D.1m可能大于2【答案】A【详解】绳子连续通过定滑轮和动滑轮,绳子上的拉力相同,整个装置能保持静止,则绳子上的拉力大小与2m 的重力大小相同,即2T m g =对滑轮P 进行受力分析可得1sin cos cos cos T T T T m gαβαβ=+=解得122cos m m αβα==故1m 一定小于22m ,当60αβ==︒时,有12T m g m g ==故选A 。
2.“死结”模型模型结构模型解读模型特点“死结”把绳子分为两段,且不可沿绳子移动,“死结”两侧的绳因结而变成两根独立的绳死结两侧的绳子张力不一定相等【例3】如图所示,将三段轻绳相结于O 点,其中OA 绳的一端拴在墙上,OB 绳的下方悬挂甲物体,OC 绳跨过光滑定滑轮悬挂乙物体。
2023年浙江省高三物理高考复习专题知识点模型精讲精练 第5讲 摩擦力的突变问题(含详解)

第5讲摩擦力的突变问题1.(2021·全国)如图,一根细绳跨过光滑定滑轮,绳的一端系有一重物,另一端与粗糙水平地面上的一个物块相连。
开始时物块静止于M处,当物块被向左移至N处后仍可保持静止。
分别用T M、T N表示物块在M和N处时绳内张力的大小,f M、f N表示物块在M和N处时物块与地面间摩擦力的大小,则()A.T M=T N,f M>f N B.T M=T N,f M<f NC.T M<T N,f M>f N D.T M<T N,f M=f N2.(2020·北京)某同学利用图甲所示装置研究摩擦力的变化情况。
实验台上固定一个力传感器,传感器用棉线拉住物块,物块放置在粗糙的长木板上。
水平向左拉木板,传感器记录的F﹣t图象如图乙所示。
下列说法正确的是()A.实验中必须让木板保持匀速运动B.图乙中曲线就是摩擦力随时间的变化曲线C.最大静摩擦力与滑动摩擦力之比约为10:7D.只用图乙中数据可得出物块与木板间的动摩擦因数一.知识总结1.静摩擦力的有无及方向的判断方法静摩擦力的方向总是与相对运动趋势的方向相反,这时的相对不是相对地面,而是该静摩擦力的施力物体与受力物体间的“相对”。
(1)假设法(2)状态法:根据平衡条件、牛顿第二定律,判断静摩擦力的有无及方向。
(3)牛顿第三定律法:先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力方向。
2.静摩擦力大小的计算方法(1)最大静摩擦力F max的计算:最大静摩擦力F max只在刚好要发生相对滑动这一特定状态下才表现出来。
比滑动摩擦力稍大些,通常认为二者相等,即F max=μF N。
(2)一般静摩擦力的计算:一般静摩擦力F的大小和方向都与产生相对运动趋势的力密切相关,跟接触面间相互挤压的弹力F N无直接关系,因此F具有大小、方向的可变性。
对具体问题要结合研究对象的运动状态(静止、匀速运动或加速运动),利用平衡条件或牛顿运动定律列方程求解。
高考经典物理模型:绳子受力突变问题

涉及绳子能发生突变的几个量与绳子相连接的物体,它的基本物理量如弹力、速度、能量等,能发生突变,这种突变比较隐蔽,不容易发现,容易产生错解,这就要求我们要认真理解和把握这类情况,这样我们在分析和处理类似问题时就会站得更高,看得更远,考虑问题也就会更周全一些,这对我们解决问题大有益处。
一.绳子的弹力可发生突变由于绳子的特点,它的弹力可发生突变,它与弹簧不同,弹簧的弹力不能发生突变,同学们一定要注意区别,不能混淆。
例1. 如图1所示,一条轻弹簧OB和一根细绳OA共同拉住一个质量为m的小球,平衡时细绳OA是水平的,弹簧与竖直方向的夹角是,若突然剪断细绳OA,则在刚剪断的瞬间,弹簧拉力的大小是_________,小球加速度的方向与竖直方向的夹角等于_________,若将弹簧改为一根细绳,则在OA线剪断瞬间,绳OB的弹力大小是________,小球加速度方向与竖直方向夹角等于__________。
图1分析与解答:这是一道典型的要区分细绳与弹簧有什么不同的题,只要我们认清细绳可发生突变,而弹簧不能发生突变的情况,则这就不是一道难题。
细绳未剪断前,小球所受重力,弹簧的拉力和细绳的拉力是平衡的,即重力与弹簧的拉力的合力是沿水平方向向右,大小,细绳剪断后,弹簧的形变不能马上改变,弹力仍保持原值,因重力、弹簧弹力不变,所以此时小球加速度方向是沿水平向右,即与竖直方向夹角是,若弹簧改用细绳,则OA线剪断瞬间,细绳OB 的形变发生突变,小球有沿圆弧切线方向的加速度,故重力与绳OB的拉力的合力必沿切线方向,由此求得,夹角为。
二. 与绳子相连接的物体,速度发生突变与绳子相连接的物体,由于某些时候绳子的形变发生突变,它的速度会随着发生突变,对这类问题若不加仔细分析,引起注意,接下来其他量的求解就会随着出错,因此必须引起高度重视。
例2. 如图2所示,质量为m的小球用长为L的细绳系于O点,把小球拿到O点正上方且使细绳拉直的位置A后,以的速度水平向右弹出(空气阻力不计)(1)小球从弹出至下落到与O点等高的位置这一过程中,小球做什么运动,请说明理由;(2)求小球到达最低点时细绳上的拉力大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涉及绳子能发生突变的几个量
与绳子相连接的物体,它的基本物理量如弹力、速度、能量等,能发生突变,这种突变比较隐蔽,不容易发现,容易产生错解,这就要求我们要认真理解和把握这类情况,这样我们在分析和处理类似问题时就会站得更高,看得更远,考虑问题也就会更周全一些,这对我们解决问题大有益处。
一. 绳子的弹力可发生突变
由于绳子的特点,它的弹力可发生突变,它与弹簧不同,弹簧的弹力不能发生突变,同学们一定要注意区别,不能混淆。
例1. 如图1所示,一条轻弹簧OB和一根细绳OA共同拉住一个质量为m的小球,
平衡时细绳OA是水平的,弹簧与竖直方向的夹角是,若突然剪断细绳OA,则在刚剪断的瞬间,弹簧拉力的大小是_________,小球加速度的方向与竖直方向的夹角等于
_________,若将弹簧改为一根细绳,则在OA线剪断瞬间,绳OB的弹力大小是________,小球加速度方向与竖直方向夹角等于__________。
图1
分析与解答:这是一道典型的要区分细绳与弹簧有什么不同的题,只要我们认清细绳可发生突变,而弹簧不能发生突变的情况,则这就不是一道难题。
细绳未剪断前,小球所受重力,弹簧的拉力和细绳的拉力是平衡的,即重力与弹簧的拉力的合力是沿水平方向向右,大小,细绳剪断后,弹簧的形变不能
马上改变,弹力仍保持原值,因重力、弹簧弹力不变,所以此时小球加速
度方向是沿水平向右,即与竖直方向夹角是,若弹簧改用细绳,则OA线剪断瞬间,细绳OB的形变发生突变,小球有沿圆弧切线方向的加速度,故重力与绳OB的拉力的
合力必沿切线方向,由此求得,夹角为。
二. 与绳子相连接的物体,速度发生突变
与绳子相连接的物体,由于某些时候绳子的形变发生突变,它的速度会随着发生突变,对这类问题若不加仔细分析,引起注意,接下来其他量的求解就会随着出错,因此必须引起高度重视。
例2. 如图2所示,质量为m的小球用长为L的细绳系于O点,把小球拿到O点正上方且使细绳拉直的位置A后,以的速度水平向右弹出(空气阻力不计)
(1)小球从弹出至下落到与O点等高的位置这一过程中,小球做什么运动,请说明理由;
(2)求小球到达最低点时细绳上的拉力大小。
图2
分析与解答:(1)设球在最高点只受重力且做圆周运动,则有:
因为,所以小球做平抛运动。
(2)设小球下落到与O点等高的位置时,在水平方向的位移为x,有,,得:
水平方向速度:
竖直方向的速度:
在此,小球在水平方向的速度突变为0,消失了,只剩下竖直向下的速度,此后,小球以为初速向下做圆周运动(同学们往往在此发生错误)。
设小球下落到最低点时速度为,绳子拉力为,由机械能守恒:
又由牛顿第二定律有:
解得:
三. 与绳子相连接的物体,机械能发生突变
与松弛的绳子相连接的物体,在突然被绳子紧拉一下时,其机械能会发生突变,转变为其他形式的能,解这类题目要特别注意,否则将发生一系列连锁错误。
例3. 在光滑水平面上,有一质量的小车,通过一根几乎不可伸长的轻绳与另一质量的拖车连接,一质量的物体放在拖车的平板上,物体与平板间的动摩擦因数,开始时,拖车静止,绳未拉紧,如图3所示,小车以的速度前进,求:
(1)以同一速度前进时,其速度的大小;
(2)物体在拖车平板上移动的距离。
图3
分析与解答:整个运动过程可分成两个阶段:①绳子被拉紧时,m1与m2获得共同速度,m1、m2系统的动量守恒,由于绳子由未绷紧到绷紧,会有机械能的损失(在这个问题上很容易被忽视),此时m3的速度还为零;②绳子拉紧后,在摩擦力作用下m3加速,m1与m2减速,m3与m2间有相对滑动,直至三者速度相等,一起运动。
此阶段系统动量守恒,机械能不守恒,但可由动能定理求解。
绳刚被拉紧时,设m1与m2的共同速度为v1,m1与m2系统动量守恒,有:
解得:
再对m1、m2、m3系统,由动量守恒得:
解得:
绳拉紧后,物体在拖车上相对滑动,设拖车位移为s1,物体位移为s2,分别对两车、物体用动能定理有:
小车和拖车:
物块:
可解得物体在拖车上移动的距离:
最新文件仅供参考已改成word文本。
方便更改。