实验四Fenton试剂氧化法处理废水(1)之欧阳光明创编

合集下载

Fenton试剂氧化法处理棉针织染整废水试验研究

Fenton试剂氧化法处理棉针织染整废水试验研究

Fenton试剂氧化法处理棉针织染整废水试验研究摘要采用Fenton试剂氧化法对棉针织染整废水进行处理试验。

考察了反应时间、pH 值、H2O2试剂投加量、FeSO4· 7H2O试剂投加量等因素对COD的去除率的影响。

关键词染整废水;Fenton试剂;COD去除率染整废水是印染废水的重要组成部分,废水中主要含有染料、盐、助剂和表面活性剂等,一般呈碱性,色度高,可生化性差,属于难降解的有机废水。

目前常用的处理方法主要有:吸附法、混凝法、生物化学法、减量废水处理法等,这些方法因投资大,成本高,处理效率低等原因,还有待进一步改进。

Fenton 试剂高级氧化法通过H2O2和Fe2+作用产生的OH(OH自由基的氧化电位2.18V)几乎可以氧化所有的物质。

因此,Fenton法处理废水具有巨大的应用和研究价值。

本实验通过采用该方法处理棉针织染整废水,寻找最佳的处理条件,以期为成分复杂多变的印染废水的处理技术提供依据。

1试验部分1.1主要仪器及药品DRB-200型COD消解仪(HACH),CJJ-931六联磁力加热搅拌器,PHS-25型数显酸度计,752型紫外可见分光光度计;双氧水、七水硫酸亚铁(分析纯)、浓硫酸(分析纯)和氢氧化钠(分析纯)等。

1.2废水水质试验水样为江苏某棉针织染整企业的调节池废水,主要含有活性染料、直接染料、元明粉、表面活性剂和醋酸等,呈暗红色,pH为7.8,色度1500倍,COD 为640 mg/L。

1.3试验方法在室温条件下(31-32℃),取水样200mL置于500mL的烧杯中。

用H2SO4调节pH值,pH值用PHS-25型数显酸度计测定。

再向溶液中依次加入一定量的FeSO4·7H2O(浓度为100g/L)和H2O2(30%),迅速混合,用磁力搅拌器搅拌反应一定时间后静置沉降一段时间,取上清液测COD,COD采用美国HACH公司的COD快速消解仪和专用测定管测定。

2试验结果与讨论2.1反应时间对COD去除率的影响用H2SO4将废水的pH调节至3,分别量取200mL水样,FeSO4·7H2O投加量为1mL,H2O2投加量为0.4mL,用搅拌器搅拌,使其分别反应10min、30min、60min、90min、120min,然后静置30min取上清液测COD,计算不同的反应时间条件下COD去除率。

Fenton试剂氧化法对染料中间体废水的深度处理

Fenton试剂氧化法对染料中间体废水的深度处理

Fenton试剂氧化法对染料中间体废水的深度处理Vol.30,No.6,2011净水技术2011,30(6):28-30,52Water Purification Technology染料中间体废水主要为带有硝基、氨基和磺酸基等取代基团的芳香族化合物,具有成分复杂、难降解有机物含量高、色度高、毒性大等特点,常规生化处理出水难以达到排放标准要求。

近年来,对常规生化处理后的工业废水进行深度处理并回用的要求日益迫切。

Fenton 试剂氧化法因其反应速度快、操作简单、处理效果好而受到重视,但将其应用于染料中间体废水深度处理的研究报道很少。

目前仅知张英等[1]做了铁催化内电解法预处理高浓度、高盐度和高色度的染料中间体废水的效果的研究。

本文着重研究废水经铁催化内电解、水解酸化、好氧组合工艺处理后,再经Fenton试剂氧化法深度处理的效果及影响因素。

1材料与方法1.1试验用水试验用水为某化工厂染料中间体废水经铁催化内电解、水解酸化、好氧组合处理后的出水,CODCr 为187.5mg/L,色度为1085倍。

1.2试验方法向500mL碘量瓶内加入200mL原水,用硫酸溶液调节pH后,加入适量浓度为2.8g/L的Fe2+和浓度为27.2g/L的H2O2。

将碘量瓶置于107r/min 的摇床中摇动,反应适当时间后取出碘量瓶,加入适量的氢氧化钠溶液调节pH值至10终止反应,再将其置于107r/min的摇床上摇动30min后,向溶液中滴加0.1g/L的聚丙烯酰胺(PAM)溶液2mL,搅拌2min,静置10min,取上清液进行分析。

1.3分析项目及方法COD:快速测定仪5B-3F型;pH:pHS-2F型精密pH计;色度:SD-2型色度仪。

2结果与讨论2.1Fenton试剂氧化法深度处理染料中间体废水Fenton试剂氧化法对染料中间体废水的深度处理任国栋1,魏宏斌1,唐秀华2,张英1,陈良才2(1.同济大学环境科学与工程学院,上海200092;2.上海中耀环保实业有限公司,上海200092)摘要以实际染料中间体废水经铁催化内电解、水解酸化、好氧生化组合工艺处理后的出水为研究对象,考察了Fenton试剂氧化法深度处理染料中间体废水的效果和影响因素。

Fenton化学氧化法深度处理精细化工废水

Fenton化学氧化法深度处理精细化工废水

Fenton化学氧化法深度处理精细化工废水摘要:根据某精细化工厂的废水经过长时间的厌氧-好氧生化处理,难以进一步生物降解的特点,采用Fenton试剂进行高级氧化处理。

通过实验探讨了不同的H2O2和Fe2+浓度、反应时间、pH等因素对二级生化出水COD去除率的影响。

在H2O2投加量为18mmol/L,FeSO4·7H2O投加量为12mmol/L,反应时间1.5h,废水的pH=4的条件下,二级生化出水的COD去除率达到82.61%,降到100mg/L以内,达到国家一级排放标准。

关键词:精细化工废水;Fenton试剂;深度处理;难生物降解精细化工废水成分复杂,除了含有表面活性剂和其乳化所携带的胶体污染物外,还含有助剂、漂白剂和油类物质等。

该类废水经过常规的厌氧-好氧生物处理以后,出水仍然无法达标排放,而且二级生化出水所含的污染物大都为难以生物降解的有机物,因此采用Fenton试剂对其进行高级氧化处理。

Fenton试剂法具有处理效果好、反应物易得、无需复杂设备、对后续的处理无毒害作用且对环境友好等优点,特别适用于提高难降解有机物的可生化性[1]。

目前Fenton试剂法已经逐渐应用于染料、制浆造纸、日化、农药等废水处理工程中,具有很好的应用前景[2-5]。

Fenton试剂催化分解产生·OH具有极强的氧化能力,进攻有机分子并使其矿化为CO2、H2O和无机分子[6],特别适用于难生物降解有机物的深度处理。

本试验对Fenton试剂深度处理该日化废水进行初步研究,取得了较好的效果,使难降解有机物得到了进一步氧化处理,废水最终达标排放。

本研究为开发一种精细化工废水深度处理技术提供了实验和应用基础,对其他含有难生物降解有机物的废水深度处理具有一定的借鉴意义。

1试验部分1.1试剂和废水双氧水(30%)、绿矾(七水硫酸亚铁)、氢氧化钠、浓硫酸均为分析纯;废水水样为广州某精细化工厂二级生化出水:COD约为230mg/L,pH值为7.6。

Fenton试剂在有机废水处理中的研究工学论文

Fenton试剂在有机废水处理中的研究工学论文

Fenton试剂在有机废水处理中的研究工学论文Fenton试剂在有机废水处理中的研究工学论文【摘要】:文章阐述了用Fenton试剂处理难降解污染物的现状和进展,简单介绍了其应用及原理。

利用Fenton试剂去除水体中难降解、稳定性强且毒性大的有机污染物。

【关键词】:难降解有机物;Fenton;羟基自由基1894年,化学家Fenton首次发现有机物在(H2O2)与Fe2+组成的混合溶液中能被迅速氧化,并把这种体系称为标准Fenton试剂,可以将当时很多已知的有机化合物如羧酸、醇、酯类氧化为无机态,氧化效果十分明显[1]。

Fenton试剂是由H2O2和Fe2+混合得到的一种强氧化剂,特别适用于某些难治理的或对生物有毒性的工业废水的处理。

1.Fenton试剂降解有机物的机理Fenton试剂之所以具有非常高的氧化能力,是因为在Fe2+离子的催化作用下H2O2的分解活化能低(34.9kJ/mol),能够分解产生羟基自基OH·。

同其它一些氧化剂相比,羟基自由基具有更高的氧化电极电位,因而具有很强的氧化性能[2]。

2.Fenton试剂的影响因素Fenton试剂处理难降解有机废水的影响因素根据上述Fenton试剂反应的机理可知,OH·是氧化有机物的有效因子,而[Fe2+]、[H2O2]、[OH]决定了OH·的产量,因而决定了与有机物反应的程度。

影响Fenton试剂处理难降解难氧化有机废水的因素包括pH值、H2O2投加量、催化剂投加量和反应温度[3]等。

2.1pH值Fenton试剂是在pH是酸性条件下发生作用的,在中性和碱性环境中,Fe2+不能催化H2O2产生OH·。

按照经典的Fenton试剂反应理论,pH值升高不仅抑制了OH·的产生,而且使溶液中的Fe2+以氢氧化物的形式沉淀而失去催化能力。

当pH值过低时,溶液中的H+浓度过高,Fe3+不能顺利地被还原为Fe2+,催化反应受阻。

Fenton试剂处理染料废水的实验研究

Fenton试剂处理染料废水的实验研究
的去 除 与 脱 色 有 相 关 性 , 脱 色 问 题 困难 更 大 。染 料 的 颜 色 取 决 但 于 其 分 子 结 构 。化 合 物 分 子 吸 收 了 一 定 波 长 的 光 量 子 的 能 量 后 , 的颜色 。
图 1 去 除 率 随 p 的∽∞《 趋 势 H 变化
发生极化并产生偶极矩 , 使价 电子 在不 同能 级间跃迁 而形成 不 同
装置 、 O 一7 C D 5 1型化学需氧量分析 仪 、H计 。 p 2 实 验 药 品。过 氧化 氢 ( 量 浓 度 3 % ) 硫 酸 ( 析 纯 ) 质 0 ; 分
0 0 o ) 氢 氧 化钠 ; . 1m WL ; 甲基 橙 ; 甲基 蓝 ; 酸 亚 铁 。 亚 硫
3 实验方 法。使 用甲基橙和亚 甲基 蓝配 制混合液 , ) 模拟 染料 废水 , 使用 Fno 剂对其 氧化 , et n试 根据实验 选取最佳 的 p H范 围 , 再分别选取最 佳的过氧化氢溶液 浓度和二 价铁离 子浓度 , 而得 从 出 Fno et n试剂处理染料废水 的最佳 工艺条件 。
2 结果 与讨论
2 1 最佳 p 范 围 . H
在每种样 品中( 0m ) 2 L 加入同样量的过氧 化氢溶液 1mL 质 (
量 浓 度 3 % ) 二 价 铁 离 子 溶 液 2mL 0 0 o L 。 0 , ( .0 5m l ) 4 /
时 间/ i a rn
图 2 吸光度随时间变化趋势
・1 7 ・ 6
F no e tn试 剂 处 理 染料 废 水 的实 验 研 究
张 旭
摘 要 : 取 F n n试 剂 高 级 氧 化 工 艺 , 甲基 橙 染 料 为模 型 污 染 物 , 过 实 验 确 定 其 最 佳 工 艺参 数 ( H 范 围 、 氧 化 氢 选 et o 以 通 p 过

实验四Fenton试剂氧化法处理废水(1)之欧阳文创编

实验四Fenton试剂氧化法处理废水(1)之欧阳文创编

实验七 Fenton试剂氧化法处理废水一、实验目的1、理解Fenton试剂催化氧化的机理及运行因素2、掌握运用正交方法进行多因素多水平实验的设计3、对实验结果进行直观分析,确定因素的主次关系及各因素的最佳水平。

二、实验原理过氧化氢与催化剂Fe2+构成的氧化体系通常称为fenton 试剂。

Fenton试剂法是一种均相催化氧化法。

在含有亚铁离子的酸性溶液中投加过氧化氢时,在Fe2+催化剂作用下,H2O2能产生活泼的羟基自由基,从而引发和传播自由基链反应,加快有机物和还原性物质的氧化。

其一般历程为:所以羟基自由基可与废水中的有机物发生反应,使其分解或改变其电子云密度和结构,有利于凝聚和吸附过程的进行。

Fenton试剂的影响因素有:pH值、H2O2投加量、Fe2+投加量和反应温度。

pH值:Fenton试剂是在酸性条件下发生作用的,在中性和碱性的环境中Fe2+不能催化H2O2产生羟基自由基,pH值在3-5附近时去除率最大。

H2O2投加量:H2O2的浓度较低时,H2O2的浓度增加产生羟基自由基量的增加;H2O2的浓度过高时,过量的H2O2不但不能通过分解产生更多的羟基自由基,反而在反应一开始就把Fe2+迅速氧化成Fe3+,使氧化在Fe3+的催化下进行,这样既消耗了H2O2又抑制羟基自由基的产生。

Fe2+投加量:Fe2+浓度过低,反应速度极慢;Fe2+过量,它还原H2O2且自身氧化为Fe3+,消耗药剂的同时增加出水色度。

反应温度也会对其氧化效果有影响。

根据反应动力学原理,随着温度的增加,反应速度加快。

但是对于Fenton试剂这样复杂的反映体系,温度升高,不仅加速正反应的进行,也加速副反应。

因此,温度对于Fenton试剂处理废水的影响复杂,适当的温度可以击活羟基自由基,温度过高会使双氧水分解成水和氧气,但在工业废水处理中,提高温度耗能较大,一般采用室温下操作,故本实验不考虑该因素的影响。

三、实验用品及装置1.实验仪器:搅拌器或振荡器分析天平烧杯、移液管、量筒等有关玻璃器皿COD测定回流装置2.实验试剂:30%过氧化氢。

Fenton法处理实验室有机废水的试验研究

Fenton法处理实验室有机废水的试验研究

Fenton法处理实验室有机废水的试验研究1.引言- 实验室有机废水的处理现状- Fenton法及其优势- 研究目的和意义2.材料与方法- 废水采样与分类- Fenton试剂的制备- 实验室有机废水处理流程- 实验室参数监测3.结果与分析- 物化性质的测定- 有机物的去除率分析- 重金属离子的去除- 对比其他处理方法的效果4.讨论- Fenton法的工艺条件优化- Fenton法与传统处理方法缺点的对比- 对未来优化提出建议5.结论- Fenton法处理实验室有机废水具有一定的优势- 经过优化的Fenton法在实际应用中可行- 对未来的研究提出展望引言随着工业化进程的不断发展,环境问题已经成为全球普遍关注的焦点之一。

随之而来的污染问题也逐渐增多,其中有机污染物的治理难度较大。

在实验室中,有机废水作为重要的废弃物之一,对环境造成的污染也不可忽视。

因此,实验室有机废水处理是环境保护领域的重要课题。

目前,实验室有机废水处理技术较为成熟,石油化工行业广泛应用的反渗透技术、化学法和生物法等治理技术已经被引入实验室领域。

然而,这些技术一般需要大量的耗费,比较复杂,而且难以适用于有机废水处理量较小的实验室。

针对以上问题,目前有一种新兴的处理技术备受关注:Fenton法。

Fenton法指的是将过氧化氢与Fe2+作为催化剂,对有机废水进行氧化降解处理。

这种技术具有清洁环保、反应效率高、反应速度快、适用范围广等优点,逐渐被人们关注和应用。

本研究旨在探索Fenton法在实验室有机废水处理中的应用,验证Fenton法在处理实验室有机废水中的高效性和可行性,为实验室的环境保护贡献一份力量。

本文将从以下几个方面进行阐述:1. 实验室有机废水的处理现状:主要介绍实验室有机废水的来源、组成、排放标准,以及现有的处理技术。

2. Fenton法及其优势:介绍Fenton法的原理、机理以及其在废水处理中的优势。

3. 研究目的和意义:阐述本研究的目的和意义。

芬顿氧化处理废水工艺流程

芬顿氧化处理废水工艺流程

芬顿氧化处理废水工艺流程芬顿氧化处理废水工艺流程引言:废水处理是现代工业与生活中的重要环节,有效处理废水不仅是保护环境的必要举措,也是可持续发展的关键因素之一。

芬顿氧化工艺是一种常用的废水处理技术,通过氧化剂将有机废水中的污染物转化为可降解的物质,从而减少环境污染。

本文将深入探讨芬顿氧化处理废水的工艺流程及其优点。

第一部分:芬顿氧化废水处理的基本原理1.1 氧化剂的选择与作用芬顿氧化废水处理常用的氧化剂有过氧化氢(H2O2)和过硫酸铵(NH4HSO4)。

这些氧化剂能与废水中的有机物发生反应,并通过产生自由基,将有机物氧化为低分子量物质。

1.2 缓冲剂的重要性为了保持适宜的反应环境,通常需要在废水中添加缓冲剂,以调节溶液的酸碱度。

常用的缓冲剂有硫酸、碳酸和磷酸盐等。

1.3 过程中自由基的生成通过混合氧化剂与缓冲剂,并调节废水的pH值,可以产生具有较强氧化能力的自由基,例如羟基自由基(•OH)。

这些自由基能与废水中的有机污染物反应,并将其氧化为无害的物质,如CO2和H2O。

第二部分:芬顿氧化废水处理的工艺流程2.1 前处理阶段在芬顿氧化废水处理之前,通常需要进行一些前处理步骤,以去除废水中的悬浮物、固体颗粒和油脂等杂质。

这可通过沉淀、过滤和吸附等方法实现。

2.2 芬顿氧化反应阶段废水与氧化剂和缓冲剂混合后,进入芬顿氧化反应阶段。

在这个阶段,废水中的有机污染物将与自由基反应,发生氧化过程,并逐渐转化为可降解的物质。

反应通常在中性或微酸性环境下进行。

第三部分:芬顿氧化废水处理的优点3.1 高效性芬顿氧化废水处理技术能够有效地降解有机废水中的污染物,具有较高的处理效率。

该技术对废水中的多种有机物具有广谱性。

3.2 无需添加昂贵的辅助物质与其他一些废水处理技术相比,芬顿氧化工艺不需要大量的添加剂,仅需氧化剂和缓冲剂。

这降低了处理成本,并减少了环境风险。

3.3 可控性强芬顿氧化废水处理可以通过改变废水的pH值和氧化剂与缓冲剂的投加量来调节反应过程。

标准Fenton氧化处理化工厂实验室有机废水的研究

标准Fenton氧化处理化工厂实验室有机废水的研究

标准Fenton氧化处理化工厂实验室有机废水的研究标准Fenton氧化处理化工厂实验室有机废水的研究导言:随着化工工业的发展,化工厂实验室产生的有机废水成为环境污染的一大问题。

有机废水中含有各种有毒有害物质,对水体和生态环境造成严重危害。

因此,有效处理实验室有机废水具有重要的实践意义。

Fenton氧化法作为一种高效的废水处理技术,已被广泛应用于工业实践中。

本文旨在使用标准Fenton氧化法对化工厂实验室有机废水进行处理,并对处理效果进行研究与探讨。

第一章理论知识介绍1.1 Fenton氧化法Fenton氧化法是一种强氧化剂过氧化氢和过量的Fe(Ⅱ)作用于废水中有机物的氧化反应。

Fenton反应中,过氧化氢在酸性条件下和Fe(Ⅱ)催化剂反应生成氢氧自由基,氢氧自由基进一步与废水中的有机物发生反应,从而将有机废水中的有机物氧化分解为无害的物质。

1.2 Fenton氧化剂配方标准的Fenton氧化剂配方中包括50mL的30%过氧化氢溶液和5mL的0.1 M FeSO4溶液。

该配方是经过实践验证的,可以有效地将有机物氧化分解为无害物质。

第二章实验设计与方法2.1 实验目标本实验的目标是使用标准的Fenton氧化法处理化工厂实验室有机废水,并评估处理效果。

2.2 实验装置实验装置包括玻璃反应釜、搅拌器、温度控制仪和气体排放系统。

2.3 实验步骤1) 收集化工厂实验室有机废水样品,并记录样品的基本信息,如pH值、COD浓度等。

2) 根据实验需求调整Fenton氧化剂配方,并将其加入到反应釜中。

3) 将化工厂实验室有机废水样品注入到反应釜中,并通过搅拌器混合均匀。

4) 开启温度控制仪,将反应温度控制在40°C。

5) 根据实验时间要求,将Fenton氧化反应维持一定时间。

6) 实验结束后,取样进行COD测定,评估Fenton氧化处理的效果。

第三章实验结果与讨论3.1 实验结果呈现根据实验数据,通过Fenton氧化法处理化工厂实验室有机废水,COD浓度明显降低,并达到环境排放标准。

化学沉淀—Fenton氧化法处理含氰废水的试验研究

化学沉淀—Fenton氧化法处理含氰废水的试验研究
利用 Fenton 试剂氧化废水中的氰化物和 COD,通过正交试验,考察 pH 值、H2O2、 FeSO4·7H2O 浓度、反应时间这些因素对总氰和 COD 去除率的影响程度;对化学沉淀出 水进行 Fenton 氧化,通过单因素试验分析各影响因素对总氰和 COD 去除效果的影响, 并确定最佳技术参数;比较总氰和 COD 在不同初始浓度时其去除效果的区别;探究铁 离子、铜离子及氢氧化钙对 COD 去除率的影响。结果表明:Fenton 氧化阶段的最佳工 艺参数为:pH=3,[H2O2]投加量为 32.5ml/L,FeSO4·7H2O 投加量为 2.5mg/L,搅拌时间 为 100min。利用 Fenton 氧化法处理化学沉淀出水的含氰废水,其总氰的去除率可达 99% 以上,COD 的去除率可达 86%以上。另外投加 Fe3+和利用 Ca(OH)2 调节废水最终 pH 值, 能进一步降低 COD 含量,而铜离子对其氧化系统具有一定的抑制作用。
Using chemical precipitation as the preliminary treatment of wastewater bearing cyanide, though the single factor experiment, the removal rate effect that the effect factors on the easy release of cyanide, total cyanide and COD were investigated., the orthogonal tests were carried out according to the single factor experiment results, and the important degree of influence factors were fixed. Then the optimal operation parameters were determined as: FeSO4·7H2O dosage 1.8 times of the theoretical value, pH value was 6, the response time was 90min. The wastewater was treated by complex precipitation, then the total cyanide in the out water after precipitation can be decreased to about 10mg/L, the removal rate can reach 94% above, meanwhile, the removal rate of COD can reach to 78.85%, then the COD concentration was decreased to 4522mg/L.

Fenton试剂处理染料废水的研究

Fenton试剂处理染料废水的研究

Fenton试剂处理染料废水的研究【摘要】本实验采用Fenton高级氧化法处理染料废水的深度处理研究,研究了Fenton试剂对此废水的处理效果及影响因素.结果表明Fenton试剂可以有效的去除此废水中的COD。

通过各因素试验确定最优反应条件为:H2O2 /Fe2+为0.9(物质的量之比),Fe2+投加量为0.8g/L,pH为3。

在此条件下CODcr去除率为85%。

【关键词】Fenton试剂;深度处理;染料废水染料废水具有水质水量变化大、有机物含量高、成分复杂、色度大、毒性强、可生化性差等特点,单纯靠生物处理方法其各项污染指标(尤其是有机物)难以达到排放标准,必须进行深度处理[1]。

据ETAD(染料工业生态及毒理协会)调查统计在染料的生产和使用过程中约有10%的染料以废水的形式流失到水体中[2]据此估算我国每年大约有20000t的成品染料以废水形式流失到水体中。

染料废水一直是国内外难处理的工业废水之一,我国已将染料废水的治理列为环境保护工作的重点。

Fenton试剂是Fe2+和H2O2 的复合,Fe2+ 可催化H2O2 产生强氧化性羟基自由基和其它自由基中产物,自由基能够氧化染料中的共轭发色体,使之变成无色的有机分子从而脱色[3]尤其是对大分子有机物有很高的去除率,它可将大分子有机物氧化成为小分子有机物,而Fe 则主要起催化剂的作用[4]。

1.实验材料与方法1.1实验用水实验用水为某印染废水处理厂的二沉池出水。

其水呈淡黄色,pH值为8.65,色度为46倍,COD、TN、NH3-N和TP分别为87.6、18.95、0.49和1.23mg/L。

1.2实验方法取二沉池出水水样6份,按比例投加H2O2溶液(0.98 mol/L)和FeSO4·7H2O,放置在六联搅拌器中反应一段时间后,取上清液进行分析。

考察H2 O2:/Fe2+值(物质的量之比,下同)、Fenton试剂投量、反应时间、pH和曝气对COD去除效果的影响,并确定其最佳运行参数。

油田含油污水Fenton氧化处理实验报告

油田含油污水Fenton氧化处理实验报告

油田含油污水Fenton氧化处理实验报告Lab report on oily sewage treatment by Fenton oxidation潘娟(2010级环境一班;学号:1004030102)摘要油田含油污水处理问题是一项难度极大的技术课题,本实验采用Fenton试剂对油田含油污水进行氧化处理,实验过程中考察pH值、Fe2+/H2O2(摩尔比)、试剂投入量等因素对COD去除率的影响。

关键词含油废水Fenton 氧化处理COD去除率Abstract Oily Sewage is hard to treat, in this experiment oily sewage was treated by Fenton oxidizer. The effect factors of pH value, Fe2+/ H2O2(mole ratio), the quantity of the oxidation agent on removal rate of COD were studied.Key words Oily Sewage Fenton Oxidation Treatment COD Removal Rate目前,我国大部分油田已进入石油开采的中期和后期,采出原油的含水率已达70%~80%,有的油田甚至高达90%,油水分离后产生大量的含油污水〔1,2〕。

油田含油污水处理问题是一项难度极大的技术课题,也是一项关系地下和地面的复杂系统工程。

从目前国内含油污水处理技术的研究及应用现状来看,由于油田废水中成分复杂含有大量不可生化和其他方法不易处理的污染物,是一项关系油田生产和环保的一大难题。

因此,开发出新的油田含油污水综合处理及回用技术,必将给油田含油污水处理领域带来希望和生机〔3〕。

本文采用Fenton试剂对油田含油污水进行氧化处理〔4〕Fenton试剂具有非常高的氧化能力,在Fe2+离子的催化作用下, H2O2的分解活化能低(34.9kJ/mol),能够分解产生羟基自由基·OH,它具有非常高的氧化电极电位,具有很强的氧化性能[3]。

Fenton氧化法及在废水处理中的应用

Fenton氧化法及在废水处理中的应用

Fenton氧化法及在废水处理中的应用摘要:本文介绍了Fenton法及类Fenton法的作用机理,以及使用Fenton试剂处理废水时的影响因素。

以及Fenton法和其他技术(生物法、混凝法、吸附法)的联用.并且介绍了这些技术的应用情况。

关键词:Fenton法;类Fenton法;联用技术;废水处理Abstract:This paper describes the mechanism by Fenton and Fenton—law, as well as factors affecting the use of treated wastewater when Fenton’s reagent。

And Fenton method and other techniques (biological, coagulation, adsorption method) combined。

And it describes the application of these technologies.Key words:Fenton reagent;Fenton—like system;combined treatment technique;wastewater treatment1.引言高级氧化技术(AOPs)是指能够利用光、声、电、磁等物理和化学过程产生的高活性中间体·OH,快速矿化污染物或提高其可生化性的一项技术,其具有适用范围广、反应速率快、氧化能力强的特点,在处理印染、农药、制药废水和垃圾渗滤液等高毒性、难降解废水方面具有很大的优势。

高级氧化技术主要分为Fenton氧化法、光催化氧化法、臭氧氧化法、超声氧化法、湿式氧化法和超临界水氧化法等几类[1]。

Fenton氧化法相对于其他几种高级氧化法具有反应条件温和、设备及操作简单、处理费用相对较低、适用范围广等优点,并且其技术比较成熟,已成功运用于多种工业废水的处理。

Fenton试剂氧化处理油墨废水的条件优化

Fenton试剂氧化处理油墨废水的条件优化

Fenton试剂氧化处理油墨废水的条件优化摘要:采用fenton试剂氧化对油墨废水进行处理,研究了feso4浓度、h2o2浓度、初始ph和反应时间及废水初始cod浓度等因素对废水剩余cod的影响。

结果表明,fenton试剂氧化的最佳条件为feso4浓度800mg/l、初始ph2.5、h2o2浓度800mg/l、处理时间180min。

此条件下,当油墨废水在初始cod小于876mg/l时,经fenton氧化处理后油墨废水的剩余cod在98mg/l以下,出水能够满足排放标准。

关键词:高级氧化;fenton试剂;油墨废水;cod中图分类号:x703.1文献标识码:a文章编号:0439-8114(2012)18-3999-03optimization of treatment condition of printing-ink wastewater by fenton’s reagentgaoai-fang1,2,wucai-song1,gaopeng1,zhengxin-yuan1,fangya-qi1(1.collegeofengineering,shijiazhuanguniversityofeconomics,shijiazhuang050031,china;2.hebeiprovincekeylaboratoryofsustainedutilizationanddevelopmentofwaterresources,shijiazhuang050031,china)abstract:fentonprocesswasemployedtotreattheprinting-inkwastewater.theeffectsoffeso4concentration,h2o2concentration,initialph,reactiontimeandinitialcodofwastewateronresidualcodofthewastewaterwereinvestigated,andtheoptimizedoperationconditionwasdetermined.theexperimentalresultsshowedthattheoptimumfeso4concentrationandinitialphwere800mg/land2.5respectively.undertheconditionswithh2o2concentrationof800mg/landthereactiontimeof180min,thelowestresidualcodofthewastewaterwasobtained.afterfenton'sreagenttreatment,thewastewaterwith876mg/lofinitialcodcouldmeeteffluentstandard.keywords:advancedoxidation;fentonreagent;printing-inkwastewater;cod作为一种印染废水,油墨废水的化学成分相当复杂,具有高cod、高色度、难生物降解的特点,有些还具有致突变、致畸及致癌作用[1]。

焦化废水之芬顿试剂氧化法处理煤焦油加工废水

焦化废水之芬顿试剂氧化法处理煤焦油加工废水

焦化废水之芬顿试剂氧化法处理煤焦油加工废水以焦粉吸附-微波催化-芬顿试剂氧化法深度处理生物系统处理之后的煤焦油加工废水,研究了废水pH值、焦粉用量、FeSO4 加入量、H2O2 加入量、微波功率、微波辐射时间对废水处理效果的影响。

实验结果表明:在废水pH值为5、焦粉加入量为20 g、FeSO4加入量为300 mg/L、H2O2加入量为1 500 mg/L、微波功率为600 W、微波辐射时间为40 min的工艺条件下,废水色度去除率为93.45% ,COD 去除率为86.74% 。

净化出水色度为19.65倍,COD为42.43 mg/L,满足GB16171-2021 炼焦化学工业污染物排放标准中的要求。

并实现了焦粉的合理利用。

煤焦油是炼焦工业的一个重要产品,它是组成极其复杂的混合物,其经物理、化学方法处理后可以得到多种化工产品。

但煤焦油在加工过程中会产生并排放大量浓度高、毒性大工业废水[1]。

其所含有毒有害物质包括氨氮、硫化物、氰化物、酚及酚的同系物、单环或多环芳香族化合物、含氮、硫、氧的杂环化合物,如萘、苯胺、吡啶、喹啉、吲哚、苯并芘、二氮杂苯、氮杂苊、氮杂菲等[2]。

酚类化合物对所有的生物都有毒,多环、杂环芳烃可使人致癌,一般很难生物降解[3],其中,COD浓度为15~20 g/L,氨氮浓度为2~7 g/L,酚浓度为3~120 g/L,其进入水体后将消耗水体中的溶解氧,破坏水体的生态平衡。

目前,国内外对于煤焦油污水的处理主要采用气浮、吸附除油预处理结合A/O或A2/O等生物处理工艺,处理后水的酚、氰含量基本达标。

但生物处理后的废水色度高,含有大量难降解有机物质[4,5],其COD不能达到国家规定的排放标准(COD≤80 mg /L)[6]。

在不改变主体生物法工艺的情况下,还需要对生物系统的外排水进行深度处理。

本项目以焦粉吸附-微波催化-芬顿试剂氧化法深度处理生物系统处理之后的煤焦油加工废水,焦粉被充分利用,处理后出水可以达到(GB16171-2021)炼焦化学工业污染物排放标准要求,以期为煤焦油加工企业废水的深度处理提供工艺依据。

Fenton法处理印染废水

Fenton法处理印染废水

Fenton试剂处理印染废水的工艺参数研究分析摘要:采用Fenton试剂对活性艳红印染废水进行了处理。

通过正交实验考察了反应时间、反应温度、双氧水/硫酸亚铁摩尔比以及pH对印染废水的色度及COD去除率的影响,确定了Fenton试剂处理废水的最佳条件。

结果表明,随着反应时间的延长,色度及COD去除率增大,最佳反应时间为20 min;色度及COD的去除率随着反应温度的升高而增大,最佳反应温度为50℃。

色度及COD的去除率在双氧水(30%)的用量与硫酸亚铁用量之比为1:3.1时,去除效果最好;最佳pH值为4.5。

出水达到排放标准。

此法具有去除率高,设备简单,占地面小,操作方便,不产生二次污染等优点。

艳红印染废水具有水质、水量和水温变化幅度大,色度和COD值高的特点。

混凝沉降处理对疏水性染料、分子量较大的染料具有较好的处理效果,但对分子量小、亲水性好的酸性染料、直接染料和活性染料的处理往往不佳。

大多数染料又是生物难降解或生物有毒的,染料的可生化性与其结构关系密切[1]。

研究表明,活性艳红染料生物降解性较低,降解率仅为40%左右[2],聚铝混凝效果也较差[3]。

Fenton试剂是由H2O2和Fe2+复合而成的一种氧化能力很强的氧化剂。

C.Walling[4]的研究表明:Fenton试剂氧化有机物的反应是通过H2O2和Fe2+,产生羟自由基·OH而进行的自由基反应;由于其具有极强的氧化能力,特别适用于生物难降解的或一般化学氧化难以奏效的有机废水的处理。

本文利用Fenton试剂对活性艳红印染废水进行了氧化处理。

通过正交实验考察了反应时间、反应温度,双氧水与硫酸亚铁用量摩尔比以及pH对印染废水的色度及COD去除率的影响。

探索了最佳处理条件,为该工艺处理实际印染废水提供了科学依据。

1·实验部分通过正交实验结果表明:温度为50℃,pH为5,时间为20 min,加药比(FeSO4:H2O2)为1:3.3,艳红印染废水经处理后色度去除率约为96.3%,COD去除率为86.2%,出水COD值为22.4mg/L,色度为37倍,废水达到排放标准(标准限值:COD值为100mg/L,色度为50倍)。

高级氧化技术之欧阳理创编

高级氧化技术之欧阳理创编

1.高级氧化技术的定义:利用强氧化性的自由基来降解有机污染物的技术,泛指反应过程有大量羟基自由基参与的化学氧化技术。

其基础在于运用催化剂、辐射,有时还与氧化剂结合,在反应中产生活性极强的自由基(一般为羟基自由基,·OH),再通过自由基与污染物之间的加合、取代、电子转移等使污染物全部或接近全部矿质化。

·OH反应是高级氧化反应的根本特点2.3.高级氧化方法及其作用机理是通过不同途径产生·OH自由基的过程。

·OH自由基一旦形成,会诱发一系列的自由基链反应,攻击水体中的各种有机污染物,直至降解为二氧化碳、水和其它矿物盐。

可以说高级氧化技术是以产生·OH自由基为标志4.高级氧化技术有什么特点?1)反应过程中产生大量氢氧自由基·OH2)反应速度快3)适用范围广,·OH几乎可将所有有机物氧化直至矿化,不会产生二次污染4)可诱发链反应5)可作为生物处理过程的预处理手段,使难以通过生物降解的有机物可生化性提高,从而有利于生物法的进一步降解;6)操作简单,易于控制和管理4.·OH自由基的优点1)选择性小,反应速度快;2)氧化能力强;3)处理效率高;5)氧化彻底5.高级氧化技术分为哪几类?1)化学氧化法:臭氧氧化/Fenton氧化/高铁氧化2)电化学氧化法3)湿式氧化法:湿式空气氧化法/湿式空气催化氧化法4)超临界水氧化法5)光催化氧化法6)超声波氧化法7)过硫酸盐氧化法6.自由基与污染物反应的四种主要方式:氢抽提反应、加成反应、电子转移、(氧化分解)。

自由基反应的三个阶段:链的引发、链的传递、链的终止自由基反应具有无选择性,反应迅速的特点。

7.产生羟基自由基的途径:Fe2+/H2O2、UV/H2O2、H2O2/O3、UV/O3、UV/H2O2/O3、光催化氧化(TiO2光催化氧化反应机理:产生空穴和电子对),对有机物降解速率由快到慢依次为UV-Fenton、Fenton、O3/US、O3、O3/UV、UV/H2O2、UV。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七 Fenton试剂氧化法处理废水
欧阳光明(2021.03.07)
一、实验目的
1、理解Fenton试剂催化氧化的机理及运行因素
2、掌握运用正交方法进行多因素多水平实验的设计
3、对实验结果进行直观分析,确定因素的主次关系及各因素的最佳水平。

二、实验原理
过氧化氢与催化剂Fe2+构成的氧化体系通常称为fenton试剂。

Fenton试剂法是一种均相催化氧化法。

在含有亚铁离子的酸性溶液中投加过氧化氢时,在Fe2+催化剂作用下,H2O2能产生活泼的羟基自由基,从而引发和传播自由基链反应,加快有机物和还原性物质的氧化。

其一般历程为:
所以羟基自由基可与废水中的有机物发生反应,使其分解或改变其电子云密度和结构,有利于凝聚和吸附过程的进行。

Fenton试剂的影响因素有:pH值、H2O2投加量、Fe2+投加量和反应温度。

pH值:Fenton试剂是在酸性条件下发生作用的,在中性和碱性的环境中Fe2+不能催化H2O2产生羟基自由基,pH值在3-5附近时去除率最大。

H2O2投加量:H2O2的浓度较低时,H2O2的浓度增加产生羟
基自由基量的增加;H2O2的浓度过高时,过量的H2O2不但不能通过分解产生更多的羟基自由基,反而在反应一开始就把Fe2+迅速氧化成Fe3+,使氧化在Fe3+的催化下进行,这样既消耗了H2O 2又抑制羟基自由基的产生。

Fe2+投加量:Fe2+浓度过低,反应速度极慢;Fe2+过量,它还原H2O2且自身氧化为Fe3+,消耗药剂的同时增加出水色度。

反应温度也会对其氧化效果有影响。

根据反应动力学原理,随着温度的增加,反应速度加快。

但是对于Fenton试剂这样复杂的反映体系,温度升高,不仅加速正反应的进行,也加速副反应。

因此,温度对于Fenton试剂处理废水的影响复杂,适当的温度可以击活羟基自由基,温度过高会使双氧水分解成水和氧气,但在工业废水处理中,提高温度耗能较大,一般采用室温下操作,故本实验不考虑该因素的影响。

三、实验用品及装置
1.实验仪器:
搅拌器或振荡器
分析天平
烧杯、移液管、量筒等有关玻璃器皿
COD测定回流装置
2.实验试剂:
30%过氧化氢。

1 mol/L硫酸亚铁溶液:临用前配制,称取2.78g硫酸亚铁溶于
10mL水中。

0.1 mol/L高锰酸钾溶液:称取1.58g高锰酸钾溶于100mL水中,存放于棕色瓶内。

0.5 mol/L硫酸。

1 mol/L氢氧化钠。

0.2500 mol/L重铬酸钾标准溶液。

试亚铁灵指示剂。

0.1 mol/L硫酸亚铁铵溶液。

硫酸-硫酸银溶液。

重铬酸钾使用液:在1000mL烧杯中加约600mL蒸馏水,慢慢加入100mL浓硫酸和26.7g硫酸汞,搅拌,待硫酸汞溶解后,再加80mL浓硫酸和9.5g重铬酸钾,最后加蒸馏水使总体积为1000 mL。

对甲氧基苯胺水样:称取0.36 g对甲氧基苯胺于3000mL烧杯中,加入约3000mL水,搅拌溶解。

四、实验步骤
1、COD快速测定(10 min)
测定对甲氧基苯胺水样的COD:取水样20 mL,加重铬酸钾使用液15 mL和硫酸-硫酸银溶液40 mL,再加2粒玻璃珠,摇匀,回流10 min,再加120 mL左右的蒸馏水稀释,冷却至室温,加3-4滴试亚铁灵指示剂,以0.1 mol/L硫酸亚铁铵溶液滴定,颜色由黄色经蓝绿色至红褐色即为终点,记录硫酸亚铁铵标准溶液的用量。

同时测定空白水样COD。

2、对甲氧基苯胺水样的Fenton氧化处理
以pH值、H2O2投加量、Fe2+投加量为影响因素,每个因素考虑三个水平,选择合适的正交表。

取180 mL的水样于250mL烧杯中,按下列正交实验表进行设置反应条件:以0.5 mol/L硫酸和1 mol/L氢氧化钠溶液调节pH值(用精密pH试纸),调至相应的pH后,置烧杯于电磁搅拌器上,在约25℃下搅拌,加入相应的硫酸亚铁溶液(使用前配置)和过氧化氢,搅拌 1 h,边搅拌边滴加高锰酸钾溶液,至浅棕红色不褪为止,放置20min后,再调节pH至7,过滤,取20mL滤液测定COD,计算各反应条件下的COD去除率
表1 实验因素与水平
因素水平
A B C
pH Fe2+投加量H2O2投加量
1 2 0.2 mL 1.4 mL
2 4 0.5 mL 1.7 mL
3 6 0.8 mL 2 mL
表2 正交实验表
对实验结果进行直观分析,及极差分析,判断因素主次关系,找出最佳反应条件。

五、实验成果整理
1.用下式计算水样的COD
COD (mg/L) = (V0-V1)×c×8×1000/V2
V0—滴定空白消耗的硫酸亚铁铵的体积(mL);
V1—滴定水样消耗的硫酸亚铁铵的体积(mL);
V2—水样体积(mL);
c—硫酸亚铁案浓度(mol/L)。

2.数据处理
(1) 寻找最好的实验条件
在A1水平下进行了三次实验,#1,#2,#3,三次实验中因素B的三个水平各进行了一次实验,因素C的三个水平同样各进行了一次实验。

在A2水平下进行了三次实验,#4,#5,#6,三次实验中因素B的三个水平各进行了一次实验,因素C的三个水平同样各进行了一次实验。

在A3水平下进行了三次实验,#7,#8,#9,三次实验中因素B和C的三个水平同样各进行了一次实验。

将全部实验分成三个组,那么这三组数据的差异就反应了因素A的三个水平的差异,计算各组数据的和与平均:
T1=Y1+Y2+Y3;T2=Y4+Y5+Y6;T3=Y7+Y8+Y9;
t1= T1/3;t2= T3/3;t3= T3/3;
同理,对于因素B和C,将数据分成三组分别比较。

3. 实验结果
原水COD:
(2)各因素对去除率的影响程度大小分析。

极差的大小反应了各因素水平改变时对实验结果的影响大小。

这里因素的极差是指各水平平均值的最大值与最小值的差值。

(3)绘制各因素不同水平对去除率的影响图。

4.说明Fenton氧化法处理对甲氧基苯胺水样的最佳反应条件,即pH、Fe2+投加量、H2O2投加量三种因素在哪种组合条件下去除率达到最高。

相关文档
最新文档