1.1集合及其表示方法 教案

合集下载

1.1集合及其表示方法(教师版)

1.1集合及其表示方法(教师版)

(2){}2230,x x x x --=∈R 答:{}3,1- (3){}2230,x x x x -+=∈R 答:∅ 例6、用符号∈或∉填空:(1){}23____11x x < (2){}2*3____1,x x n n =+∈N (3)(){}21,1____y y x -= (4)()(){}21,1____,x y y x -= [说明]例4-例6都涉及到了集合的描述法表示,这也是本节课的最大的难点,题目不宜过多,可以从中选取一些;在例题中渗透有限集和无限集的概念.三、巩固练习:课本P7练习1.1四、课堂小结:集合的概念、表示方法五、作业布置:家庭作业六、教学设计说明1.通过许多实际的例子来让学生感知概念,然后在通过文字的归纳叙述让学生形成概念,再通过具体的例子来让学生理解文字描述的概念,由此层层深化概念。

2.由于本节课文字信息量较大,因此用制作课件,以简化板书工作,增加课堂教学的信息容量,保证学生的活动空间和思维空间,努力提高单位教学效益。

类型一 对集合概念的理解例1:判断下列各组对象能否组成一个集合:(1)9以内的正偶数;(2)篮球打得好的人;(3)2012年伦敦奥运会的所有参赛运动员;(4)高一(1)班所有高个子同学.练习1:有下列4组对象:(1)某校2015级新生;(2)小于0的自然数;(3)所有数学难题;(4)接近1的数.其中能构成集合的是________.练习2:(2014~2015学年度四川德阳五中高一上学期月考)下列各组对象中,不能组成集合的是( )A .所有的正数B .所有的老人C .不等于零的数D .我国古代四大发明类型二 集合中元素的特性例2:集合A 是含有两个不同实数a -3,2a -1的集合,求实数a 的取值范围.练习1:能够组成集合的是( )A .与2非常接近的全体实数;B .很著名的科学家的全体;C .某教室内的全体桌子;D .与无理数π相差很小的数练习2:若一个集合中的三个元素a ,b ,c 是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .等腰三角形C .钝角三角形D .直角三角形类型三:集合的表示方法例4:用列举法表示下列集合(1){}2A x Z x =∈≤; (2)(){},4,,M x y x y x N y N **=+=∈∈练习1:(2014~2015学年度上海复旦大学附属中学高一上学期期中测试)用列举法表示集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪65-a ∈N *,a ∈Z =__________.练习2:用列举法表示下列集合方程220x -=的所有实数根组成的集合为:__________________1.下列说法:①地球周围的行星能确定一个集合;②实数中不是有理数的所有数能确定一个集合;③我们班视力较差的同学能确定一个集合.其中正确的个数是( )A .0B .1C .2D .32.集合{y |y =x ,-1≤x ≤1,x ∈Z }用列举法表示是( )A .{-1,0,1}B .{0,1}C .{-1,0}D .{-1,1}3.满足不等式11219x <+<的合数组成的集合为 。

高中数学必修一:1.1集合及其表示 教案

高中数学必修一:1.1集合及其表示 教案
其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等。大家能不能再举一些生活中的实际例子呢?
集合的概念:
一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).
思考:
(1)世界上(3)由实数1、2、3、1组成的集合有几个元素?
引出集合与元素的关系,并通过实例的呈现来讲解,加深学生的理解
通过整理,让学生对数集有一个有一个更深的认识,并能区分各个数集之间的关系。另外,通过自学与讲解让学生掌握集合的两种表示方法。
当堂检测
有效练习

现有:①不大于3的正有理数.②我校高一年级所有高个子的同学.③全部长方形.④全体无实根的一元二次方程.四个条件中所指对象不能组成集合的___.
江南中学数学学科教学设计
课题
§1.1集合及其表示
授课人
课时安排
1
课型
新授
授课时间
第1周
课标依据
1、通过实例了解集合的含义,理解元素与集合的属于关系;
2、针对具体问题能在自然语言和图形语言的基础上,用符号语言刻画集合;
3、在具体情境中,了解全集与空集的含义。
教材分析
在高中数学课程中,集合是刻画一类事物的语言和工具。本单元的学习,可以帮助学生使用集合的语言简洁、准确的表述数学的研究对象,学会用数学的语言表达和交流,积累数学的抽象经验。
备注
实数集R
列举法:把集合中的元素一一列举出来,并用大括号{}括起来表示.
描述法:把集合中元素的公共属性用文字,符号或式子描述出来并用大括号{}括起来表示.
教学反思
本节是集合一章的第一节课,教学中,首先列举了学生在实际生活中所熟悉的、生动的、鲜活的实例,让学生初步感受集合的概念,并理解集合中元素的三大特征,然后,通过复习,引导学生对数集进行归纳整理,最后通过练习与小组讨论,让学生掌握集合的两个表示方法。本节课,没有纠缠在概念上,时间把握也刚刚好,只是课堂气氛不够活跃,在以后的教学中也要注意。

1.1.1 集合的含义及其表示教案

1.1.1 集合的含义及其表示教案

§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。

(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。

○3无序性:集合中的元素间是无次序关系的。

(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。

练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。

(2)我国的小河流。

2.说出集合A={a,b,c}和集合B={b, a,c}的关系。

(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。

1[1].1.1-1集合的含义及其表示

1[1].1.1-1集合的含义及其表示

1.1.1 集合的含义及其表示方法(1)教案【教学目标】1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【教学重难点】教学重点:集合的基本概念与表示方法.教学难点:选择恰当的方法表示一些简单的集合.【教学过程】一、导入新课军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.二、提出问题①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A 分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:①能.②能.③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.⑤能,是珠穆朗玛峰.⑥不能.⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.⑧3个.⑨互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.⑩集合M和N相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.结论:1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…2、元素与集合的关系a是集合A的元素,就说a属于集合A ,记作a∈A ,a不是集合A的元素,就说a不属于集合A,记作a A3、集合的中元素的三个特性:(1).元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

中职数学1.1集合及其表示方法(教案)

中职数学1.1集合及其表示方法(教案)
(3)绝对值为10的数组成的集合
(4)5x-1>10的解组成的集合
3.复习指导A
1.教师引导学生思考集合之间的几种运算
1.在老师的引导下回忆集合之间的集中运算关系和具体的内容
2.通过相关练习巩固对集合之间运算的理解
25——分钟
1.集合的定义
2.集合的特性
3.元素与集合之间的关系
4.集合的表示方法
教材第8页,第2题
1.列举法:在花括号内,一一列举集合的元
素;
例3:1—5这5个整数组成的集合
解:{1,2,3,4,5}
中国四大发明组成的集合
解:{指南针、造纸术、印刷术、火药}
练习:(1)四大文明古国组成的集合
(2)大于0小于10的偶数组成的集合
2.描述法:{代表元素|元素所具有的特性
质}。
例4:不等式x-1<5的所有解组成的集合
3.集合的特征
确定性:必须是确定的语言,不能模糊。
互异性:不能有重复的。
无序性:只要是所有的元素,顺序无所谓。
例2:判断是否属于集合
(1)所有漂亮的人
(2)中国著名的科学家
(3)比1小的数
(4)比你年长的人
4.常用的几种集合:
自然数集:0、1、2、3……N
正整数:1、2、3……N+
整数集:……-2、-1、0、1、2、3……Z
解:用性质描述法为{x|x<6}
偶数组成的集合为:
解:{x|x=2n,n Z}
练习:(1)所有奇数组成的集合
(2)不等式4x-5<3的解的全体组成的集合。
(3)课本第五页所有题
1.教师引导学生理解集合的两种表示方法。并用立体进行讲解。
2.老师根据学生的做题,进行提问,考察学生的掌握情况。

§1.1 集合及其表示法(1课时)教案

§1.1 集合及其表示法(1课时)教案

§1.1 集合及其表示法一、概念1、集合的概念在现实生活和数学中,我们常常把一些对象放在一起,作为一个整体来研究,例如:(1)崇明中学高中一年级全体学生;(2)NBA联赛参球队的全体;(3)所有的锐角三角形;(4)2,4,6,8,10;(5)不等式2x-3>1的解的全体我们常常把能够确切指定的一些对象看作一个整体,这个整体就叫做集合,简称集,通常用大写字母A、B、C……表示;集合中的各个对象叫做集合的元素,通常用小写字母a、b、c……表示。

如果a是集合A的元素,就记作a∈A,读作:“a属于A”;如果a不是集合A的元素,就记作a∉A,读作:“a不属于A”。

2、集合的本质属性1°确定性对于一个给定的集合,集合中的元素是确定的。

也就是说,任何一个对象要么是给定集合的元素,要么不是这个集合的元素,二者必居其一。

例:下列各组对象的全体不能组成集合的是(D)(A)满足| x |<3的整数;(B)方程x 2 +1=0的解;(C)本校高一年级身高在1.80米以上的同学;(D)很接近0的数。

[反思]:元素的确定性是判断一组对象的全体能否组成集合的决定性条件,出现“较快”、“很小”、“很高”等不确定的条件时,一组对象就不能组成集合;2°互异性对于一个给定的集合,集合中的元素是互不相同的。

也就是说,一个给定的集合中的任何两个元素都是不同的对象,集合中的元素不重复出现。

3°无序性对于一个给定的集合,集合中的元素是没有先后顺序的。

也就是说,集合中的元素地位是平等的、无序的,我们可以根据需要对它们进行任何一种排列。

3、集合的分类1°按照集合中元素的多少可以将集合分为有限集和无限集含有有限个元素的集合叫做有限集;含有无限个元素的集合叫做无限集。

特例:不含有任何元素的集合叫做空集,记作:Φ。

(空集是有限集)2°从集合元素的属性来看,集合有数集(元素为数),点集(元素为点),…等常见的类型。

精品教案 1.1.1 集合的含义与表示

精品教案 1.1.1 集合的含义与表示

1.1 集合1.1.1 集合的含义与表示整体设计教学分析集合语言是现代数学的基本语言,同时也是一种抽象的数学语言.教材将集合的初步知识作为初、高中数学课程的衔接,既体现出集合在高中数学课程中举足轻重的作用,又体现出集合在数学中的奠基性地位.课本除了从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义、性质、表示方法之外,还特别注意渗透了“概括”与“类比”这两种常用的逻辑思考方法.因此,建议教学时,应引导学生从大量的实例中概括出集合的含义;多创设让学生运用集合语言进行表达和交流的情境和机会,以便学生在实际应用中逐渐熟悉自然语言、集合语言和图形语言各自的特点和表示方法,能进行相互转换并且灵活应用,充分掌握集合语言.与此同时,本小节作为高一数学教学的第一节新授课,知识体系中的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流、讨论,让学生在阅读与交流中理解概念并熟悉新符号的使用.这样,既能够培养学生自我阅读、共同探究的能力,又能提高学生主动学习、合作交流的精神.三维目标1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.能选择不同的形式表示具体问题中的集合.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择适当的方法表示具体问题中的集合.课时安排1课时教学过程导入新课思路1.集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.思路2.你经常会谈论你的家庭,你的班级.其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟……的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合.那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?这就是本节课我们所要学习的内容.思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评.)“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题.”推进新课新知探究提出问题①中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?②全体自然数能否构成一个集合?如果能,这个集合由什么组成?③方程x2-3x+2=0的所有实数根能否构成一个集合?如果能,这个集合由什么组成?④你能否根据上述几个问题总结出集合的含义?讨论结果:①能.这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集.②能.这个集合由0,1,2,3,……等无限个元素组成,称为无限集.③能.这个集合由1,2两个数组成.④我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”.提出问题通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题.①近视超过300度的同学能否构成一个集合?②“眼神很差”的同学能否构成一个集合?③比较问题①②,说明集合中的元素具有什么性质?④我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?⑤组成英文单词every的字母构成的集合含有几个元素?分别是什么?⑥问题④⑤说明集合中的元素具有什么性质?⑦在玩斗地主的时候,我们都知道3,4,5,6,7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?讨论结果:①能.②不能.③确定性.问题②对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知.因此通过问题①②我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性.④一次.⑤4个元素.e,v,r,y这四个字母.⑥互异性.一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现.⑦是.元素相同.集合相同.体现集合中元素的无序性,即集合中的元素的排列是没有顺序的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.提出问题①如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素a和集合A,B分别有着怎样的关系?②大家能否从问题①中总结出元素与集合的关系?③A表示“1~20内的所有质数”组成的集合,那么3__________A,4__________A.讨论结果:①a是集合B中的元素,a不是集合A中的元素.②a是集合B中的元素,就说a属于集合B,记作a∈B;a不是集合A中的元素,就说a不属于集合A,记作a∉A.因此元素与集合的关系有两种,即属于和不属于.③3∈A,4∉A.提出问题①从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?②字母表示法中有哪些专用符号?③除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?④列举法的含义是什么?你能否运用列举法表示一些集合?请举例!⑤能用列举法把下列集合表示出来吗?小于10的质数;不等式x-2>5的解集.⑥描述法的含义是什么?你能否运用描述法表示一些集合?请举例!⑦集合的表示方法共有几种?讨论结果:①两种,自然语言法和字母表示法.②非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.③两种,列举法与描述法.④把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.例如“地球上的四大洋”组成的集合可以用列举法表示为{太平洋,大西洋,印度洋,北冰洋},方程x2-3x+2=0的所有实数根组成的集合可以用列举法表示为{1,2}.⑤“小于10的质数”可以用列举法表示出来;“不等式x-2>5的解集”不能够用列举法表示出来,因为这个集合是一个无限集.因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了.⑥用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例如,不等式x-2>5的解集可以表示为{x∈R|x>7};所有的正方形的集合可以表示为{x|x是正方形},也可写成{正方形}.⑦自然语言法、字母表示法、列举法、描述法.应用示例例1 下列所给对象不能构成集合的是__________.(1)高一数学课本中所有的难题;(2)某一班级16岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80米的学生.活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点——集合中元素的确定性;然后指导学生对4个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性.解析:(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.(2)能构成集合,其中的元素是某班级16岁以下的学生.(3)因为未规定大个子的标准,所以(3)不能组成集合.(4)由于(4)中的对象具备确定性,因此,能构成集合.)(3)个元素,则实数(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动探究:讲解例2的过程中,可以设计如下问题引导学生:针对例2(1):①自然数中是否含有0?②小于10的自然数有哪些?③如何用列举法表示小于10的所有自然数组成的集合?针对例2(2):①解一元二次方程的方法有哪些?分别是什么?②方程x2=x的解是什么?③如何用列举法表示方程x2=x的所有实数根组成的集合?针对例2(3):①如何判断一个数是否为质数(即质数的定义是什么)?②1~20以内的质数有哪些?③如何用列举法表示由1~20以内的所有质数组成的集合?在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“{}”内,并用逗号隔开.解:(1)小于10的自然数有0,1,2,3,4,5,6,7,8,9,设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9};(2)方程x2=x的两个实根为x1=0,x2=1,设方程x2=x的所有实数根组成的集合为B,那么B={0,1};(3)1~20以内的质数有2,3,5,7,11,13,17,19,设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查了集合表示法中的列举法,通过本题的教学可以体会利用集合表示(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动探究:讲解例3的过程中,可以设计如下问题引导学生:针对例3(1)——列举法①方程x2-2=0的解是什么?②如何用列举法表示方程x2-2=0的所有实数根组成的集合?针对例3(1)——描述法①描述法的定义是什么?②所求集合中元素有几个共同特征?分别是什么?③如何用描述法表示所求集合?针对例3(2)——列举法①大于10小于20的所有整数有哪些?②由大于10小于20的所有整数组成的集合用列举法如何表示?针对例3(2)——描述法①所求集合中元素有几个共同特征?分别是什么?②如何用描述法表示所求集合?解:(1)设方程x2-2=0的实数根为x,并且满足x2-2=0,因此,用描述法表示为A ={x∈R|x2-2=0};方程x2-2=0的两个实根为x1=-2,x2=2,因此,用列举法表示为A={-2,2}.(2)设大于10小于20的整数为x,它满足条件x∈Z且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20};大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为{11,12,13,14,15,16,17,18,19}.点评:例2和例3是通过“问题引导”的方式,使学生逐步逼近答案的过程.在此过程中,既帮助学生理清了解答问题的基本思路,又使得列举法和描述法在实例中得到进一步的巩固.课后练习1,2.【补充练习】1.考查下列对象能否构成集合:(1)著名的数学家;(2)某校2013年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.答案:(1)(2)(5)(6)不能组成集合,(3)(4)能组成集合.2.用适当的符号填空:(1)0__________N,5__________N,16__________N;(2)-12__________Q,π__________Q,e__________∁R Q(e是个无理数);(3)2-3+2+3=__________{x|x=a+6b,a∈Q,b∈Q}.答案:(1)∈∉∈(2)∈∉∈(3)∈3.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,求实数m的值.解:∵2∈A,∴m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,不符合集合中元素的互异性,舍去.若m2-3m+2=2,求得m=0或3.m=0不合题意,舍去.∴m只能取3.4.用适当方法表示下列集合:(1)函数y=ax2+bx+c(a≠0)的图象上所有点的集合;(2)一次函数y=x+3与y=-2x+6的图象的交点组成的集合;(3)不等式x -3>2的解集;(4)自然数中不大于10的质数集.答案:(1)描述法:{(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}.(2)描述法:⎩⎨⎧ (x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x +3y =-2x +6=⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =1y =4. 列举法:{(1,4)}.(3)描述法:{x |x >5}(4)列举法:{2,3,5,7}.拓展提升问题1:设集合P ={x -y ,x +y ,xy },Q ={x 2+y 2,x 2-y 2,0},若P =Q ,求x ,y 的值及集合P ,Q .活动探究:首先,应让学生思考两个数集相等的条件——集合中的元素分别对应相等;然后,再引导学生讨论:本题中集合P ,Q 对应相等时,其元素可能出现的几种情况,并根据讨论的结果进行计算;最后,应当指导学生自主探究,应用集合中元素的性质检验所求结果是否符合要求.解:∵P =Q 且0∈Q ,∴0∈P .若x +y =0或x -y =0,则x 2-y 2=0,从而Q ={x 2+y 2,0,0},与集合中元素的互异性矛盾,∴x +y ≠0且x -y ≠0;若xy =0,则x =0或y =0.当y =0时,P ={x ,x,0},与集合中元素的互异性矛盾,∴y ≠0;当x =0时,P ={-y ,y,0},Q ={y 2,-y 2,0},由P =Q 得⎩⎪⎨⎪⎧ -y =y 2,y =-y 2,y ≠0, ① 或⎩⎪⎨⎪⎧ -y =-y 2,y =y 2,y ≠0.②由①得y =-1,由②得y =1,∴⎩⎪⎨⎪⎧ x =0,y =-1或⎩⎪⎨⎪⎧x =0,y =1, 此时P =Q ={1,-1,0}.点评:本题综合性地考查了两数集相等的条件、集合中元素的性质以及学生的运算能力和分类讨论能力.问题2:已知集合A ={x |ax 2-3x +2=0},若A 中的元素至多只有一个,求a 的取值范围.活动探究:讨论关于x 的方程ax 2-3x +2=0实数根的情况,从中确定a 的取值范围,依题意,方程有一个实数根或两个相等的实数根或无实数根.解:(1)a =0时,原方程为-3x +2=0,x =23,符合题意. (2)a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98. ∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根. 综合(1)(2),知a =0或a ≥98. 点评:“a =0”这种情况最容易被忽视,只有在“a ≠0”的条件下,方程ax 2-3x +2=0才是一元二次方程,才能用判别式Δ解决问题.问题3:设S ={x |x =m +2n ,m ,n ∈Z }.(1)若a ∈Z ,则a 是否是集合S 中的元素?(2)对S中的任意两个x1,x2,则x1+x2,x1·x2是否属于S?活动探究:针对问题(1)——首先引导学生仔细观察集合S中元素的共同特征与构成方式;然后,再引导学生思考题中所给的元素a能否表示成m+2n的形式;如果能,m和n 分别是多少,如果不能,请说明理由;最后小结,判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.针对问题(2)——首先引导学生将x1,x2分别表示出来,再引导大家根据正确的表示结果,推断x1+x2,x1·x2是否是集合S中的元素.解:(1)a是集合S中的元素,a=a+2×0∈S.(2)不妨设x1=m+2n,x2=p+2q,m,n,p,q∈Z.则x1+x2=(m+2n)+(p+2q)=(m+p)+2(n+q),m,n,p,q∈Z.∴x1+x2∈S;x1·x2=(m+2n)·(p+2q)=(mp+2nq)+2(mq+np),m,n,p,q∈Z.∴x1·x2∈S.综上,x1+x2,x1·x2都属于S.点评:本题考查集合的描述法以及元素与集合间的关系.课堂小结本节学习了:(1)集合的含义;(2)集合中元素的性质;(3)元素与集合的关系;(4)集合的表示方法.课后作业习题1.1A组3,4.设计感想本节教学设计是以数学课程标准的要求为指导,结合生活中的一些实例,重视引导学生积极思考,主动参与到教学中,体现了学生的主体地位.同时结合高考的要求适当拓展了教材,使学生的发散性思维得到拓展,最大限度地挖掘了学生的学习潜力,真正做到了对教材的“活学活用”.备课资料集合论的诞生集合论是德国著名数学家康托尔于19世纪末创立的.17世纪,数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.19世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔把无穷集这一词汇引入数学.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合的所有人应该对这句话不会感到陌生.但在接受这句话时我们根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在的.这种关于无穷的观念在数学上被称为潜无限.18世纪数学王子高斯就持这种观点.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是不足为怪的.然而康托尔并未就此止步,他以前所未有的方式,继续正面探讨无穷.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应关系——也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了实数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.然而集合论前后经历二十余年,最终获得了世界公认.在1900年第二次国际数学家大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.“它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献.”。

人教A版必修一 第一章 1.1.1集合的含义与表示方法 教案

人教A版必修一 第一章  1.1.1集合的含义与表示方法 教案
小于10的所有自然数组成的集合;
方程x=x2
③由1到20以内的所有整数组成的集合。
所有正数
所有奇数
x-7<3的解集
y=x中y的取值组成的集合
y=1/x中x的取值组成的集合
一次函数y=x+3与y=-2x+6的图像的交点组成的集合
直角坐标系中,第一象限内所有的点组成的集合(不包括x轴y轴上的点)
对于③可以一一列举,但是20个数都写出来还是有点麻烦的;对于 如果用列举法,会出现省略号,要求读者找规律,才能知道这个集合表示的是正数集,奇数集。而至于 ,用列举法显然不适合。那有没有更好的办法呢?
4.集合的三种表示方法:自然语言,列举法,描述法
我们班所有的学生
我们班所有男生
③我们班所有高个子男生
我们班所有身高超过1米6的超级爱好DOTA游戏的男生。
我们班幸福的人
以上③ 都不是集合,因为它们所研究的对象都是不确定的,高个子?多高算高呢?每个人心中都有不一样的标准。超级爱好,幸福都是模棱两可的。
(三)集合元素的互异性,一个给定的集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的。(四)通常用大写的英文字母A,B,C……表示集合,用小写的啊,a,b,c……表示集合中的元素。如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作aA。
(六)集合的表示方法:列举法,描述法,Venn图
从上面例子,我们已经看到,可以用自然语言描述一个集合。除此之外Байду номын сангаас有什么方法呢?
列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。(强调花括号,元素之间用逗号隔开,无序性,互异性)说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序;集合中同一元素不能重复出现。

1.1.1集合及其表示方法(新教材教师用书)

1.1.1集合及其表示方法(新教材教师用书)

1.1.1集合及其表示方法(教师独具内容)课程标准:1.通过实例,了解集合的含义,理解元素与集合的属于关系.2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.3.在具体情境中,了解空集的含义.4.能正确使用区间表示一些数集.教学重点:1.集合概念的正确理解.2.元素的三性(确定性、互异性、无序性).3.元素与集合关系的判定.4.集合常用的两种表示方法(列举法、描述法).5.区间的概念.教学难点:1.对元素的确定性的理解.2.描述法表示集合.【情境导学】(教师独具内容)一位渔民非常喜欢数学,但他怎么也想不明白集合的意义.于是他请教一位数学家:“先生,您能告诉我,集合是什么吗?”由于集合是不定义的概念,数学家很难向那位渔民讲清楚.直到有一天,数学家来到渔民的船上,看到渔民撒下渔网,然后轻轻一拉,许多鱼虾在网中跳动.数学家非常激动,高兴地对渔民说:“这就是集合!”你能理解这位数学家的话吗?【知识导学】知识点一集合与元素的定义(1)集合:把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合(有时简称为集).(2)元素:组成集合的每个对象都是这个集合的元素.(3)表示:通常用英文大写字母A,B,C,…表示集合,用英文小写字母a,b,c,…表示集合中的元素.知识点二元素与集合的关系(1)“属于”:如果a是集合A的元素,就记作□01a∈A,读作“a属于A”.(2)“不属于”:如果a不是集合A的元素,就记作□02a∉A,读作“a不属于A”.知识点三空集□01空集(empty set),记作□02∅.知识点四集合中元素的三个特性(1)确定性;(2)互异性;(3)无序性.知识点五集合的分类(1)有限集;(2)无限集.知识点六几个常用数集的固定字母表示知识点七集合的表示方法集合常见的表示方法有:□01自然语言、□02列举法、□03描述法、□04“区间”(以及后面将要学习的维恩图法和数轴表示法等直观表示方法).(1)列举法:把集合中的元素□05一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法称为列举法.(2)描述法:如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个□06特征性质.此时,集合A可以用它的特征性质p(x)表示为{x|p(x)}.这种表示集合的方法,称为特征性质描述法,简称为描述法.知识点八区间实数集R可以用区间表示为□01(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.我们可以把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为□02[a,+∞),(a,+∞),(-∞,b],(-∞,b).可以看出,区间实质上是一类特殊数集(即由数轴某一段上所有点对应的实数组成的集合)的符号表示;例如,大于1且小于10的所有自然数组成的集合就不能用区间(1,10)表示.【新知拓展】1.元素和集合关系的判断(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否出现即可.此时应先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.此时应先明确已知集合的元素具有什么特征,即该集合中元素要满足哪些条件.2.集合的三个特性(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”“线”“面”等概念一样都只是描述性的说明.(2)整体性:集合是一个整体,暗含“所有”“全部”“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物,甚至一个集合也可以是某集合的一个元素.3.使用列举法表示集合时需注意的几点(1)元素之间用“,”隔开;(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.1.判一判(正确的打“√”,错误的打“×”)(1)某校高一年级16岁以下的学生能构成集合.()(2)已知A是一个确定的集合,a是任一元素,要么a∈A,要么a∉A,二者必居其一且只居其一.()(3)对于数集A={1,2,x2},若x∈A,则x=0.()(4)对于区间[2a,a+1],必有a<0.()(5)集合{y|y=x2,x∈R}与{s|s=t2,t∈R}的元素完全相同.()答案(1)√(2)√(3)×(4)×(5)√2.做一做(1)下列所给的对象能组成集合的是()A.“金砖国家”成员国B.接近1的数C.著名的科学家D.漂亮的鲜花(2)用适当的符号(∈,∉)填空.0________∅,0________{0},0________N,-2________N*,13________Z,2________Q,π________R.(3)不等式2x-1≥3的解集可以用区间表示为________.答案(1)A(2)∉∈∈∉∉∉∈(3)[2,+∞)题型一集合概念的理解例1下列所给的对象能构成集合的是________.①所有的正三角形;②高一数学必修第一册课本上的所有难题;③比较接近1的正数全体;④某校高一年级的全体女生;⑤平面直角坐标系内到原点的距离等于1的点的集合;⑥参加2019年世乒赛的年轻运动员;⑦a,b,a,c.[解析]①能构成集合.其中的元素需满足三条边相等.②不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合.③不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合.④能构成集合.其中的元素是“高一年级的全体女生”.⑤能构成集合.其中的元素是“到坐标原点的距离等于1的点”.⑥不能构成集合.因为“年轻”的标准是模糊的,不确定的,故不能构成集合.⑦不能构成集合.因为两个a是重复的,不符合集合元素的互异性.[答案]①④⑤金版点睛判断一组对象能否构成集合的方法(1)关键:看是否给出一个明确的标准,使得对于任何一个对象能按此标准确定它是不是给定集合的元素.(2)切入点:解答此类问题的切入点是集合元素的特性,即确定性、互异性和无序性.[跟踪训练1]判断下列说法是否正确?并说明理由.(1)大于3的所有自然数组成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)出席2019年全国两会的所有参会代表组成一个集合.解(1)中的对象是确定的,互异的,所以可构成一个集合,故正确.(2)中的“高科技”标准是不确定的,所以不能构成集合,故错误.(3)中由于0.5=12,不符合集合中元素的互异性,故错误.(4)中的对象是确定的,所以可以构成一个集合,故正确.题型二元素与集合关系的判断与应用例2(1)下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2 C.3 D.4(2)集合A中的元素x满足66-x∈N,x∈N,则集合A中的元素为________.[解析](1)∵π是实数,3是无理数,∴①②正确;∵N*表示正整数集,而0不是正整数,故③不正确;又|-4|=4是正整数,故④不正确,∴正确的共有2个.(2)∵66-x∈N,x∈N,∴⎩⎪⎨⎪⎧66-x≥0,x≥0,即⎩⎨⎧6-x>0,x≥0,∴0≤x<6,∴x=0,1,2,3,4,5.当x分别为0,3,4,5时,66-x相应的值分别为1,2,3,6,也是自然数,故填0,3,4,5.[答案](1)B(2)0,3,4,5金版点睛1.常用数集之间的关系2.确定集合中元素的三个注意点(1)判断集合中元素的个数时,注意集合中的元素必须满足互异性.(2)集合中的元素各不相同,也就是说集合中的元素一定要满足互异性.(3)若集合中的元素含有参数,要抓住集合中元素的互异性,采用分类讨论的方法进行研究.[跟踪训练2](1)用符号“∈”或“∉”填空.①0________N*;②1________N;③1.5________Z;④22________Q;⑤4+5________R;⑥若x2+1=0,则x________R.(2)设x∈R,集合A中含有三个元素3,x,x2-2x.①求实数x应满足的条件;②若-2∈A,求实数x的值.答案 (1)①∉ ②∈ ③∉ ④∉ ⑤∈ ⑥∉ (2)见解析 解析 (1)①∵0不是正整数,∴0∉N *. ②∵1是自然数,∴1∈N .③∵1.5是小数,不是整数,∴1.5∉Z . ④∵22是无理数,∴22∉Q .⑤∵4+5是无理数,无理数是实数,∴4+5∈R . ⑥∵满足x 2+1=0的实数不存在, ∴x 为非实数,∴x ∉R .(2)①根据集合元素的互异性,可知⎩⎨⎧x ≠3,x ≠x 2-2x ,x 2-2x ≠3,即x ≠0,且x ≠3且x ≠-1.②∵x 2-2x =(x -1)2-1≥-1,且-2∈A ,∴x =-2. 题型三 集合中元素的特性例3 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x . (1)若-3∈A ,求a 的值; (2)若x 2∈B ,求实数x 的值.[解] (1)由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. 得a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. 金版点睛利用集合元素互异性求参数问题(1)根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对集合中元素进行检验.(也是本讲易错问题)(2)利用集合中元素的特性解题时,要注意分类讨论思想的应用.[跟踪训练3] 已知集合A 包含三个元素:a -2,2a 2+5a,12,且-3∈A ,求a 的值. 解 因为A 包含三个元素a -2,2a 2+5a,12,且-3∈A ,所以a -2=-3或2a 2+5a =-3, 解得a =-1或a =-32.当a =-1时,A 中三个元素为:-3,-3,12,不符合集合中元素的互异性,舍去. 当a =-32时,A 中三个元素为:-72,-3,12,满足题意.故a =-32. 题型四 集合的分类例4 下列各组对象能否构成集合?若能,请指出它们是有限集、无限集,还是空集. (1)非负奇数;(2)小于18的既是正奇数又是质数的数; (3)在平面直角坐标系中所有第三象限的点; (4)在实数范围内方程(x 2-1)(x 2+2x +1)=0的解集; (5)在实数范围内方程组⎩⎨⎧x 2-x +1=0,x +y =1的解构成的集合.[解] (1)能构成集合,是无限集.(2)小于18的质数是2,3,5,7,11,13,17.只有2是偶数,其余的都是正奇数,所以能构成集合,是有限集.(3)第三象限的点的横坐标和纵坐标都小于0,能构成集合,是无限集.(4)能构成集合,注意集合中元素的互异性,集合中的元素是-1,1,是有限集. (5)由x 2-x +1=0的判别式Δ=-3<0,方程无实根,由此可知方程组⎩⎨⎧x 2-x +1=0,x +y =1无解,能构成集合,是空集.金版点睛集合的分类方法判断集合是有限集,还是无限集,关键在于弄清集合中元素的构成,从而确定集合中元素的个数.[跟踪训练4] 指出下列各组对象是否能组成集合,若能组成集合,则指出集合是有限集、无限集,还是空集.(1)平方等于1的数;(2)所有的矩形;(3)平面直角坐标系中第二象限的点;(4)被3除余数是1的正数;(5)平方后等于-3的实数;(6)15的正约数.解 (1)中对象能组成集合,它是一个有限集;(2)中对象能组成集合,它是一个无限集;(3)中对象能组成集合,它是一个无限集;(4)中对象能组成集合,它是一个无限集;(5)中对象能组成集合,它是一个空集;(6)中对象能组成集合,它是一个有限集.题型五 用列举法表示集合例5 用列举法表示下列集合:(1)方程x 2-4x +2=0的所有实数根组成的集合; (2)不大于10的质数集;(3)一次函数y =x 与y =2x -1图像的交点组成的集合.[解] (1)方程x 2-4x +2=0的实数根为2, 故其实数根组成的集合为{2}.(2)不大于10的质数有2,3,5,7,故不大于10的质数集为{2,3,5,7}.(3)由⎩⎨⎧ y =x ,y =2x -1,解得⎩⎨⎧ x =1,y =1.故一次函数y =x 与y =2x -1图像的交点组成的集合为{(1,1)}.金版点睛用列举法表示集合应注意的三点(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素.(2)集合中的元素一定要写全,但不能重复.(3)若集合中的元素是点,则应将有序实数对用小括号括起来表示一个元素.[跟踪训练5] 用列举法表示下列集合:(1)不等式组⎩⎨⎧ 2x -6>0,1+2x ≥3x -5的整数解组成的集合; (2)式子|a |a +|b |b (a ≠0,b ≠0)的所有值组成的集合.解 (1)由⎩⎨⎧2x -6>0,1+2x ≥3x -5得3<x ≤6, 又x 为整数,故x 的取值为4,5,6,组成的集合为{4,5,6}.(2)∵a≠0,b≠0,∴a与b可能同号也可能异号,则:①当a>0,b>0时,|a|a+|b|b=2;②当a<0,b<0时,|a|a+|b|b=-2;③当a>0,b<0或a<0,b>0时,|a|a+|b|b=0.故所有值组成的集合为{-2,0,2}.题型六用描述法表示集合例6用描述法表示下列集合:(1)坐标平面内,不在第一、三象限的点的集合;(2)所有被3除余1的整数的集合;(3)使y=1x2+x-6有意义的实数x的集合.[解](1)因为不在第一、三象限的点分布在第二、四象限或坐标轴上,所以坐标平面内,不在第一、三象限的点的集合为{(x,y)|xy≤0,x∈R,y∈R}.(2)因为被3除余1的整数可表示为3n+1,n∈Z,所以所有被3除余1的整数的集合为{x|x=3n+1,n∈Z}.(3)要使y=1x2+x-6有意义,则x2+x-6≠0.由x2+x-6=0,得x1=2,x2=-3.所以使y=1x2+x-6有意义的实数x的集合为{x|x≠2且x≠-3,x∈R}.金版点睛用描述法表示集合的注意点(1)用描述法表示集合,首先应弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.[跟踪训练6] 试用描述法表示下列集合:(1)方程x 2-x -2=0的解集;(2)大于-1且小于7的所有整数组成的集合.解 (1)方程x 2-x -2=0的解可以用x 表示,它满足的条件是x 2-x -2=0,因此,方程的解集用描述法表示为{x ∈R |x 2-x -2=0}.(2)大于-1且小于7的整数可以用x 表示,它满足的条件是x ∈Z ,且-1<x <7,因此,该集合用描述法表示为{x ∈Z |-1<x <7}.题型七 列举法和描述法的综合运用例7 集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .[解] ①当k =0时,原方程为16-8x =0,∴x =2,此时A ={2},符合题意.②当k ≠0时,由集合A 中只有一个元素,∴方程kx 2-8x +16=0有两个相等实根.即Δ=64-64k =0,即k =1,从而x 1=x 2=4,∴集合A ={4}.综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}.[条件探究] 把本例条件“只有一个元素”改为“有两个元素”,求实数k 取值范围的集合.解 由题意可知方程kx 2-8x +16=0有两个不等的实根.∴⎩⎨⎧k ≠0,Δ=64-64k >0,解得k <1且k ≠0.∴k 的取值范围的集合为{k |k <1且k ≠0}.金版点睛分类讨论思想在集合中的应用(1)①本题在求解过程中,常因忽略讨论k 是否为0而漏解.②由kx 2-8x +16=0是否为一元二次方程而分k =0和k ≠0两种情况,注意做到不重不漏.(2)解答与集合描述法有关的问题时,明确集合中的代表元素及其共同特征是解题的切入点.[跟踪训练7] (1)设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪ 62+x ∈N . ①试判断元素1,2与集合B 的关系;②用列举法表示集合B .(2)已知集合A ={x |x 2-ax +b =0},若A ={2,3},求a ,b 的值.解 (1)①当x =1时,62+1=2∈N . 当x =2时,62+2=32∉N .所以1∈B,2∉B . ②∵62+x∈N ,x ∈N ,∴2+x 只能取2,3,6, ∴x 只能取0,1,4.∴B ={0,1,4}.(2)由A ={2,3}知,方程x 2-ax +b =0的两根为2,3,由根与系数的关系,得⎩⎨⎧2+3=a ,2×3=b ,因此a =5,b =6.题型八 集合中的新定义问题例8 已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( )A .3B .6C .8D .9[解析] 根据已知条件,列表如下:由上表可知,B 中的元素有9个,故选D.[答案]D金版点睛本例借助表格语言,运用列举法求解.表格语言是常用的数学语言,表达问题清晰,明了;列举法是分析问题的重要的数学方法,通过“列举”直接解决问题或发现问题的规律,此方法通常配合图表(含树形图)使用.[跟踪训练8]定义A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 中的所有元素之和为()A.0 B.2 C.3 D.6答案D解析根据已知条件,列表如下:根据集合中元素的互异性,由上表可知A*B={0,2,4},故集合A*B中所有元素之和为0+2+4=6,故选D.1.下列所给的对象不能组成集合的是()A.我国古代的四大发明B.二元一次方程x+y=1的解C.我班年龄较小的同学D.平面内到定点距离等于定长的点答案C解析C项中“年龄较小的同学”的标准不明确,不符合确定性.故选C.2.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a为()A.2 B.2或4 C.4 D.0答案B解析集合A中含有三个元素2,4,6,且当a∈A时,有6-a∈A.当a=2∈A时,6-a=4∈A,∴a=2符合题意;当a=4∈A时,6-a=2∈A,∴a=4符合题意;当a=6∈A时,6-a=0∉A,综上所述,a=2或4.故选B.3.由实数-a,a,|a|,a2所组成的集合最多含有的元素个数是()A.1 B.2 C.3 D.4答案B解析对a进行分类讨论:①当a=0时,四个数都为0,只含有一个元素;②当a≠0时,含有两个元素a,-a,所以集合中最多含有2个元素.故选B.4.用适当符号(∈,∉)填空.(1)(1,3)________{(x,y)|y=2x+1};(2)2________{m|m=2(n-1),n∈Z}.答案(1)∈(2)∈解析(1)当x=1时,y=2×1+1=3,故(1,3)∈{(x,y)|y=2x+1}.(2)当n=2∈Z时,m=2×(2-1)=2,故2∈{m|m=2(n-1),n∈Z}.5.设a∈R,关于x的方程(x-1)(x-a)=0的解集为A,试分别用描述法和列举法表示集合A.解A={x|(x-1)(x-a)=0},当a=1时,A={1};当a≠1时,A={1,a}.A级:“四基”巩固训练一、选择题1.已知集合S={a,b,c}中的三个元素是△ABC的三边长,那么△ABC一定不是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案D解析因为集合S={a,b,c}中的元素是△ABC的三边长,由集合元素的互异性可知a,b,c互不相等,所以△ABC一定不是等腰三角形.故选D.2.下列集合的表示方法正确的是()A.第二、四象限内的点集可表示为{(x,y)|xy≤0,x∈R,y∈R}B.不等式x-1<4的解集为{x<5}C.{全体整数}D.实数集可表示为R答案D解析A中应是xy<0;B中的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x,应为{x|x<5};C中的“{}”与“全体”意思重复.故选D.3.下列集合恰有两个元素的是()A.{x2-x=0} B.{x|y=x2-x}C.{y|y2-y=0} D.{y|y=x2-x}答案C解析A为一个方程集,只有一个元素;B为方程y=x2-x的定义域,有无数个元素;C为方程y2-y=0的解,有0,1两个元素;D为函数y=x2-x的值域,有无数个元素.故选C.4.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1 B.3 C.5 D.9答案C解析根据已知条件,列表如下:根据集合中元素的互异性,由上表可知B={0,-1,-2,1,2},因此集合B中共含有5个元素.故选C.5.若2∉{x|x-a>0},则实数a的取值范围是()A.a≠2 B.a>2 C.a≥2 D.a=2答案C解析因为2∉{x|x-a>0},所以2不满足不等式x-a>0,即满足不等式x-a≤0,所以2-a≤0,即a≥2,故选C.二、填空题6.若A={-2,2,3,4},B={x|x=t2,t∈A},则用列举法表示B=________.答案{4,9,16}解析由题意,A={-2,2,3,4},B={x|x=t2,t∈A},依次计算出B中元素,用列举法表示可得B={4,9,16},故答案为{4,9,16}.7.已知集合A={x|ax2-3x-4=0,x∈R},若A中至多有一个元素,则实数a的取值范围是________.答案a=0或a≤-9 16解析当a=0时,A={x|x=-43};当a≠0时,关于x的方程ax2-3x-4=0应有两个相等的实数根或无实数根,所以Δ=9+16a ≤0,即a ≤-916.故所求的a 的取值范围是a =0或a ≤-916.8.已知集合A 中的元素均为整数,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么称k 是A 的一个“孤立元”.给定集合S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案 6解析 根据“孤立元”的定义,由S 的3个元素构成的所有集合中,不含“孤立元”的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共有6个.故答案为6.三、解答题9.用适当的方法表示下列集合:(1)绝对值不大于3的偶数的集合;(2)被3除余1的正整数的集合;(3)一次函数y =2x -3图像上所有点的集合;(4)方程组⎩⎨⎧x +y =1,x -y =-1的解集. 解 (1){-2,0,2}.(2){m |m =3n +1,n ∈N }.(3){(x ,y )|y =2x -3}.(4){(0,1)}.10.已知集合A ={a +3,(a +1)2,a 2+2a +2},若1∈A ,求实数a 的值.解 ①若a +3=1,则a =-2,此时A ={1,1,2},不符合集合中元素的互异性,舍去.②若(a +1)2=1,则a =0或a =-2.当a =0时,A ={3,1,2},满足题意;当a =-2时,由①知不符合条件,故舍去.③若a 2+2a +2=1,则a =-1,此时A ={2,0,1},满足题意.综上所述,实数a 的值为-1或0.B 级:“四能”提升训练1.已知集合A ={x |x =3n +1,n ∈Z },B ={x |x =3n +2,n ∈Z },M ={x |x =6n +3,n ∈Z}.(1)若m∈M,则是否存在a∈A,b∈B,使m=a+b成立?(2)对于任意a∈A,b∈B,是否一定存在m∈M,使a+b=m?证明你的结论.解(1)设m=6k+3=3k+1+3k+2(k∈Z),令a=3k+1,b=3k+2,则m=a+b.故若m∈M,则存在a∈A,b∈B,使m=a+b成立.(2)不一定.证明如下:设a=3k+1,b=3l+2,k,l∈Z,则a+b=3(k+l)+3.当k+l=2p(p∈Z)时,a+b=6p+3∈M,此时存在m∈M,使a+b=m成立;当k+l=2p+1(p∈Z)时,a+b=6p+6∉M,此时不存在m∈M,使a+b=m成立.故对于任意a∈A,b∈B,不一定存在m∈M,使a+b=m.2.设实数集S是满足下面两个条件的集合:①1∉S;②若a∈S,则11-a∈S.(1)求证:若a∈S,则1-1a∈S;(2)若2∈S,则S中必含有其他的两个数,试求出这两个数;(3)求证:集合S中至少有三个不同的元素.解(1)证明:∵1∉S,∴0∉S,即a≠0.由a∈S,则11-a∈S可得11-11-a∈S,即1 1-11-a =1-a1-a-1=1-1a∈S.故若a∈S,则1-1a∈S.(2)由2∈S,知11-2=-1∈S;由-1∈S,知11-(-1)=12∈S,当12∈S时,11-12=2∈S,因此当2∈S时,S中必含有-1和1 2.(3)证明:由(1),知a∈S,11-a∈S,1-1a∈S.下证:a,11-a,1-1a三者两两互不相等.①若a=11-a,则a2-a+1=0,无实数解,∴a≠11-a;②若a=1-1a,则a2-a+1=0,无实数解,∴a≠1-1 a;③若11-a=1-1a,则a2-a+1=0,无实数解,∴11-a≠1-1a.综上所述,集合S中至少有三个不同的元素.。

苏教版高一 1.1.1集合的含义及其表示 教案

苏教版高一 1.1.1集合的含义及其表示 教案

1.1.1集合的含义及其表示教学目标:(1)初步理解集合的含义,知道常用数集及其记法;(2)初步了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;(3)初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. 教学重点:集合的含义及表示方法.教学过程:一、问题情境:1.情境:介绍自己;2.问题:像“家庭”、“学校”、“男生”、“班级”、“女生”,等概念,有什么共同的特征?二、学生活动1.介绍自己:仿照所给例子,让学生作自我介绍;2.列举生活中的集合实例;3.分析,概括各种集合实例的共同特征.在一定范围内,按一定标准对所讨论的事物进行分类,分类后,我们会用一些术语来描述它们.如“群体”、“全体”“集合”等.三、建构数学1.引导学生归纳总结并给出集合的含义(描述性概念);一定范围内某些确定的,不同的对象的全体构成一个集合(set ).集合中的每一个对象称为该集合的元素(element ),简称元“中国的直辖市”构成一个集合,该集合的元素就是北京、天津、上海和重庆. “young 中的字母”构成一个集合,该集合的元素就是y,o,u,n,g.“book 中的字母”也构成一个集合,该集合的元素就是b,o,k.2.常用数集的记法(N ,*N N +,Z ,Q ,R 以及符号∈,∉)3.介绍集合的表示方法(列举法、描述法以及Venn 图);4.有关集合知识的历史简介.四、数学应用1.例题例1:(1)求方程2230x x --=的解集(2)求不等式235x ->的解集解完后介绍有限集、无限集、空集的概念.例2:求方程210x x ++=所有实数解构成的集合.2.练习(1)请学生各举一例有限集、无限集、空集.(2)第7页练习3填空(口答)(3)用列举法表示下列集合: ①{,}x x x N ∈是15的约数; ②{(,){1,2},{1,2}}x y x y ∈∈; ③{(,)2,24}x y x y x y +=-=; ④{,}x x n N ∈n =(-1); ⑤{(,)3216,,}x y x y x N y N +=∈∈.(4)用描述法表示下列集合:①{}1,4,7,10,13②{}2,4,6,8,10-----五、回顾小结本节课学习了以下内容:1.集合的有关概念——集合、元素、属于、不属于、有限集、无限集、空集;2.集合的表示方法——列举法描述法以及Venn 图3.常用数集的定义及记法.4. 集合中元素的特性:确定性、互异性、无序性.六、课外作业第7页第2题,第4题.注: (1)应区分∅,{}∅,}0{,0等符号的含义;(2)自然数集包括0.(3)非负整数集内排除0的集.记作*N ,Q 、Z 、R 等其它数集内排除0的集,也这 样表示,例如,整数集内排除0的集,表示成*Z附录:集合论的诞生韩雪涛集合论是德国著名数学家康托尔于19世纪末创立的.十七世纪数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔的不朽功绩前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”.因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来.数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱.因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念.但试图把握无限的康托尔却勇敢地踏上了这条充满陷阱的不归路.他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.下面就让我们来看一下盒子打开后他释放出的是什么.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合那一章后,同学们应该对这句话不会感到陌生.但同学们在接受这句话时根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在.这种关于无穷的观念在数学上被称为潜无限.十八世纪数学王子高斯就持这种观点.用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的.所谓无穷,只是一种说话的方式……”而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为实无限思想.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的.然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷.他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论.这一理论使人们真正进入了一个难以捉摸的奇特的无限世界.最能显示出他独创性的是他对无穷集元素个数问题的研究.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应――例如同学们很容易发现自然数集与正偶数集之间存在着一一对应关系――也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了代数数[注]集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.这不但意味着无理数远远多于有理数,而且显然庞大的代数数与超越数相比而言也只成了沧海一粟,如同有人描述的那样:“点缀在平面上的代数数犹如夜空中的繁星;而沉沉的夜空则由超越数构成.”而当他得出这一结论时,人们所能找到的超越数尚仅有一两个而已.这是何等令人震惊的结果!然而,事情并未终结.魔盒一经打开就无法再合上,盒中所释放出的也不再限于可数集这一个无穷数的怪物.从上述结论中康托尔意识到无穷集之间存在着差别,有着不同的数量级,可分为不同的层次.他所要做的下一步工作是证明在所有的无穷集之间还存在着无穷多个层次.他取得了成功,并且根据无穷性有无穷种的学说,对各种不同的无穷大建立了一个完整的序列,他称为“超限数”.他用希伯莱字母表中第一个字母“阿列夫”来表示超限数的精灵,最终他建立了关于无限的所谓阿列夫谱系它可以无限延长下去.就这样他创造了一种新的超限数理论,描绘出一幅无限王国的完整图景.可以想见这种至今让我们还感到有些异想天开的结论在当时会如何震动数学家们的心灵了.毫不夸张地讲,康托尔的关于无穷的这些理论,引起了反对派的不绝于耳的喧嚣.他们大叫大喊地反对他的理论.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.作为对传统观念的一次大革新,由于他开创了一片全新的领域,提出又回答了前人不曾想到的问题,他的理论受到激烈地批驳是正常的.当回头看这段历史时,或许我们可以把对他的反对看作是对他真正具有独创性成果的一种褒扬吧.公理化集合论的建立集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界.这就是1902年罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R.现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R.这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中.这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现.这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论.公理化集合论是对朴素集合论的严格处理.它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.超限算术是数学思想的最惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一.这个成就可能是这个时代所能夸耀的最伟大的工作.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一.注:整系数一元n次方程的根,叫代数数.如一切有理数是代数数.大量无理数也是代数数.如根号2.因为它是方程x2-2=0的根.实数中不是代数数的数称为超越数.相比之下,超越数很难得到.第一个超越数是刘维尔于1844年给出的.关于π是超越数的证明在康托尔的研究后十年才问世.。

中职数学教案:集合及其表示(全2课时)

中职数学教案:集合及其表示(全2课时)

中等专业学校2023-2024-1教案新知探索如果a 是集合A 的元素,就说a 属于A, 记作a ∈A, 读作“a 属于A”。

如果a 不是集合A 的元素,就说a 不属于A,记作a A,读作“a 不属于A”。

温馨提示组成集合的对象必须是确定的;同一个集合的元素必须是互补相同的.例题辨析例2:方程x2 =4的所有实数解组成的集合为A,则-2_____A,5_____A(用符号“∈”或“→”填空)解:因为(-2)²=4,所以-2是方程x2=4 的解,故-2∈A.因为 5²≠4,所以 5 不是方程x2 =4 的解,故5→A.新知探索含有有限个元素的集合称为有限集.不含任何元素的集合称为空集,记作∞ ,空集∞也是有限集.含有无限个元素的集合称为无限集.由数组成的集合称为数集.巩固练习:1.下列各语句中的对象能否组成集合?如果能组成集合,写出它的元素.如果不能组成集合, 请说明理由.(1)某校汉字录入速度快的学生;(2)某校汉字录入速度为 90 字符/min 及以上的所有学生;(3)方程(2x-3)(x+1)=0的所有实数解;(4)大于-5且小于5的整数;(5)大于3且小于1的所有实数;(6)非常接近0的数.【课堂小结】【作业布置】1.书面作业:完成课后习题和《学习指导与练习》;2.查漏补缺:根据个人情况对课堂学习复习与回顾;3.拓展作业:阅读教材扩展延伸内容。

板书设计教后札记中等专业学校2023-2024-1教案(1)大于-1 且小于 3 的所有实数组成的集合;(2)平方等于 9 的所有实数组成的集合.【课堂小结】【作业布置】1.书面作业:完成课后习题和《学习指导与练习》;2.查漏补缺:根据个人情况对课堂学习复习与回顾;3.拓展作业:阅读教材扩展延伸内容。

板书设计教后札记。

高一必修一集合教案完整版(精心整理)

高一必修一集合教案完整版(精心整理)

必修一第一章预习教案(第1次)1.1集合 1.1.1 集合的含义及其表示教学目标:(1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义;教学重点:集合的含义与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。

教学过程:一、问题引入:我家有爸爸、妈妈和我; 我来泉州市第九中学; 五中高一(1)班; 我国的直辖市。

分析、归纳上述各个实例的共同特征,归纳出集合的含义。

二、建构数学:1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。

集合常用大写的拉丁字母来表示,如集合A 、集合B ……集合中的每一个对象称为该集合的元素(element ),简称元。

集合的元素常用小写的拉丁字母来表示。

如a 、b 、c 、p 、q ……指出下列对象是否构成集合,如果是,指出该集合的元素。

(1)我国的直辖市; (2)五中高一(1)班全体学生;(3)较大的数 (4)young 中的字母; (5)大于100的数; (6)小于0的正数。

2.关于集合的元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。

3.集合元素与集合的关系用“属于”和“不属于”表示; (1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A (“∈”的开口方向,不能把a ∈A 颠倒过来写)4.有限集、无限集和空集的概念:5.常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合Q ,{}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集N *或N +。

1_示范教案(1_1集合的含义与表示)

1_示范教案(1_1集合的含义与表示)

“1_示范教案(1_1集合的含义与表示)”一、教学目标:1. 理解集合的含义,掌握集合的表示方法。

2. 能够运用集合的概念解决实际问题。

二、教学内容:1. 集合的含义2. 集合的表示方法:列举法、描述法三、教学重点与难点:1. 教学重点:集合的含义,集合的表示方法。

2. 教学难点:集合的表示方法的应用。

四、教学方法:1. 采用问题导入法,引导学生思考集合的概念。

2. 通过实例讲解,让学生掌握集合的表示方法。

3. 运用小组讨论法,培养学生合作解决问题的能力。

五、教学步骤:1. 导入新课:通过提问,引导学生回顾已学的数学概念,为新课的学习做好铺垫。

2. 讲解集合的含义:讲解集合的定义,让学生理解集合是一种数学概念,用于表示一些确定的对象的全体。

3. 讲解集合的表示方法:3.1 列举法:通过列举集合中的所有元素,表示该集合。

3.2 描述法:通过描述集合中元素的属性,表示该集合。

4. 实例分析:运用集合的表示方法解决实际问题,巩固所学知识。

5. 课堂练习:布置一些有关集合表示的练习题,让学生独立完成,检验学习效果。

7. 课后作业:布置一些有关集合表示的作业题,让学生巩固所学知识。

8. 课后反思:教师对本节课的教学效果进行反思,为下一步的教学做好准备。

六、教学评价:1. 评价学生对集合概念的理解程度。

2. 评价学生对集合表示方法的掌握情况。

3. 评价学生在解决实际问题中运用集合概念的能力。

七、教学资源:1. 教学PPT:包含集合的概念、表示方法及实例分析。

2. 练习题:包括选择题、填空题和应用题。

3. 小组讨论工具:如白板、便签纸等。

八、教学进度安排:1. 第1-2周:讲解集合的概念和表示方法。

2. 第3-4周:通过实例分析,让学生运用集合表示方法解决实际问题。

3. 第5-6周:进行课堂练习和课后作业,巩固所学知识。

九、教学反思:1. 教师在课后应对本节课的教学效果进行反思,了解学生的学习情况。

2. 对教学方法和教学内容进行调整,以提高教学效果。

《集合与集合的表示方法》参考教案

《集合与集合的表示方法》参考教案

1.1 集合与集合的表示方法(一)教学目标1.知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义.理解集合相等的含义.(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2.过程与方法(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法.3.情感、态度与价值观(1)了解集合的含义,体会元素与集合的“属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合.通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识.例1(1)利用列举法表法下列集合:①{15的正约数};②不大于10的非负偶数集.(2)用描述法表示下列集合:①正偶数集;②{1,–3,5,–7,…,–39,41}.【分析】考查集合的两种表示方法的概念及其应用.【解析】(1)①{1,3,5,15}②{0,2,4,6,8,10}(2)①{x | x = 2n,n∈N*}②{x | x = (–1) n–1·(2n–1),n∈N*且n≤21}.【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集.例2 用列举法把下列集合表示出来:∈N};(1)A = {x∈N |9-9x∈N | x∈N };(2)B = {99x-(3)C = { y = y = –x2 + 6,x∈N,y∈N };(4)D = {(x,y) | y = –x2 +6,x∈N };(5)E = {x |pq= x ,p + q = 5,p ∈N ,q ∈N *}. 【分析】先看五个集合各自的特点:集合A 的元素是自然数x ,它必须满足条件99x -也是自然数;集合B 中的元素是自然数99x-,它必须满足条件x 也是自然数;集合C 中的元素是自然数y ,它实际上是二次函数y = – x 2 + 6 (x ∈N )的函数值;集合D 中的元素是点,这些点必须在二次函数y = – x 2 + 6 (x ∈N )的图象上;集合E 中的元素是x ,它必须满足的条件是x =pq,其中p + q = 5,且p ∈N ,q ∈N *.【解析】(1)当x = 0,6,8这三个自然数时,99x-=1,3,9也是自然数. ∴ A = {0,6,9}(2)由(1)知,B = {1,3,9}. (3)由y = – x 2 + 6,x ∈N ,y ∈N 知y ≤6. ∴ x = 0,1,2时,y = 6,5,2 符合题意. ∴ C = {2,5,6}.(4)点 {x ,y }满足条件y = – x 2 + 6,x ∈N ,y ∈N ,则有:0,1,2,6,5,2.x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩∴ D = {(0,6) (1,5) (2,2) }(5)依题意知p + q = 5,p ∈N ,q ∈N *,则0,1,2,3,4,5,4,3,2, 1.p p p p p q q q q q =====⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨=====⎩⎩⎩⎩⎩ x 要满足条件x =P q, ∴E = {0,14,23,32,4}.【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例3 已知–3∈A = {a –3,2a – 1,a 2 + 1},求a 的值及对应的集合A . –3∈A ,可知–3是集合的一个元素,则可能a –3 = –3,或2a – 1 = –3,求出a ,再代入A ,求出集合A .【解析】由–3∈A,可知,a –3 = –3或2a–1 = –3,当a–3 = –3,即a = 0时,A = {–3,–1,1}当2a– 1 = –3,即a = –1时,A = {– 4,–3,2}.【评析】元素与集合的关系是确定的,–3∈A,则必有一个式子的值为–3,以此展开讨论,便可求得a.11/ 11。

1_1集合的含义与表示教案

1_1集合的含义与表示教案

1.1.1集合的含义及其表示一、知识与技能(1)理解集合的含义,掌握元素与集合的属于关系。

(2)理解常用数集及其专用记号。

(3)理解集合元中元素的确定性、互异性、无序性。

(4)观察集合的几组实例,并能举出一些集合的例子。

(5)通过实例,体会元素与集合的“属于”关系,准确的理解集合。

三、情感态度与价值观在学生使用集合语言的过程中,增强学生理解事物的水平,初步培养学生实事求是、扎实严谨的科学态度。

四、重点集合的概念,元素与集合的关系。

难点集合概念的理解五、教学过程:(一)导入新课1、问:我们初中学习都有哪些数集啊?生:有自然数集,有理数集等(老师讲解一下圆的概念,让同学温故知新产生兴趣)(二) 教学过程1、问:同学们对于课本上的8个例子,你们能发现出他们有什么共同特点吗?通过教材的例子等,给出集合概念的描绘性说明:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。

(质数:也称素数,指除1和自身外不能被其他自然数整除的数)只要是构成两个集合的元素是一样的,我们称这两个集合是相等的。

2、问:结合教材“思考”,通过举例观察例题(1)里面我们列举出的1~20的素数,这些元素之间有什么关系呢?(引导学生明确集合元素的性质—确定性、互异性、无序性)3、阐述元素与集合的关系。

“属于”记为“∈”;“不属于”记为“∉”。

一般地,元素用小写字母表示;集合用大写字母.4、常用数集及其记法记法:①全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集使称为正整数集,记作或N*或N+;②全体整数组成的集合称为整数集,记作Z;③全体有理数组成的集合称为有理数集,记作Q;④全体实数组成的集合称为实数集,记作R。

5、问:你能用列举法表例如1中的集合吗?思考一以下举法的特点,完成习题1.1A组第3 题。

师和学生一起讨论例2,教师讲解引导,让同学们探讨第4页的“思考”。

讨论理应如何根据问题选择适当的集合表示法。

集合的含义与表示教案

集合的含义与表示教案

1.1.1 集合的含义与表示一、教材分析:集合概念及其基本理论,称为集合论,是近现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在数学理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用。

二、教学目标:①通过实例,了解集合的含义,体会元素与集合的属于关系;②知道常用数集及其记法;③了解集合中元素的确定性、互异性、无序性;④会用集合语言表示有关数学对象;三、教学重点:掌握集合中元素的三个特性.四、教学难点:通过实例了解集合的含义.五、课时安排:2课时六、教学过程(一)、自主导学(预习)1、设计问题,创设情境在初中代数不等式的解法一节中提到:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.不等式解集的定义中涉及了“集合”,那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.问题1:下面这5个实例的共同特征是什么?(1)1~ 20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)北京大学2014年9月入学的全体学生.2、自主探索,尝试解决分小组讨论,讨论后每个小组选出一位同学代表本组宣布讨论结果,在此基础上,共同概括出5个实例的特征:都是有某些对象组成的全体.3、信息交流,揭示规律根据讨论的结果得出集合的含义:1.集合的含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).问题2:集合应当如何表示呢?元素与集合是什么样的关系?2.集合的表示方法一:(字母表示法):大写的英文(拉丁)字母表示集合,集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d,…表示.国际标准化组织(ISO)制定了常用数集的记法:自然数集(包含零):N,正整数集:N*(N+),整数集:Z,有理数集:Q,实数集:R.方法二:(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等.3.元素与集合的关系:元素与集合的关系:“属于”和“不属于”分别用“∈”和“ ”表示.问题3:一组对象满足什么条件才能组成集合?4.集合元素的性质(1)确定性:即任给一个元素和一个集合,那么这个元素和这个集合的关系只有两种:这个元素要么属于这个集合,要么不属于这个集合;元素确定性的符号语言表述为:对任意元素a和集合A,要么a∈A,要么a∉A.(2)互异性:一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的;(3)无序性:集合中的元素是没有顺序的.(4)集合相等:如果两个集合中的元素完全相同,那么这两个集合是相等的.问题4:(1)请列举出“小于5的所有自然数组成的集合A”.(2)你能写出不等式2-x>3的所有解吗?怎样表示这个不等式的解集?5.集合的表示:字母表示法、自然语言、列举法、描述法.列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法;描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}.(二)、合作学习【例1】下列各组对象不能组成集合的是( B )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x图象上所有的点【例2】用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.解:(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.(3)设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.【例3】试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合(2)由大于10小于20的所有整数组成的集合.解:(1)设所要表示的集合为A,方程x2-2=0的实根为x,它满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.(2)设所要表示的集合为B,大于10小于20的整数为x,它满足条件x∈Z,且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20}.大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.点评:描述法表示集合的步骤:(1)用字母分别表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.(三)、当堂检测1.用另一种形式表示下列集合:(1){绝对值不大于3的整数};(2){所有被3整除的数};(3){x|x=|x|,x∈Z且x<5};(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z};(5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.1.思路分析:用列举法与描述法表示集合时,一要分清元素是什么,二要明确元素满足的条件是什么.答案:(1){绝对值不大于3的整数}还可以表示为{x||x|≤3,x∈Z},也可表示为{-3,-2,-1,0,1,2,3}.(2){x|x=3n,n∈Z}.(3)∵x=|x|,∴x≥0.∵x∈Z且x<5,∴{x|x=|x|,x∈Z且x<5}还可以表示为{0,1,2,3,4}.(4){-2}.(5){(1,5),(2,4),(3,3),(4,2),(5,1)}.2.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的取值范围.2.思路分析:对于方程ax2-3x+2=0,a∈R的解,要看这个方程左边的x2的系数,a=0和a≠0方程的根的情况是不一样的,则集合A的元素也不相同,所以首先要分类讨论.解:当a=0时,原方程为-3x+2=0⇒x=,符合题意;当a≠0时,方程ax2-3x+2=0为一元二次方程,则解得a≠0且a≤.综上所得a的取值范围是{a|a≤}.3.用适当的方法表示下列集合:(1)1 000以内被3除余2的正整数所组成的集合;(2)直角坐标平面上在第二象限内的点所组成的集合;(3)所有正方形;(4)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.3、思路分析:本题考查集合的表示方法.所谓适当的表示方法,就是较简单、较明了的表示方法.由于方程组的解为x=4,y=-2,故(1)宜用列举法;(2)中尽管是有限集,但由于它的元素个数较多,所以用列举法表示是不妥当的,故用描述法;(3)和(5)也宜用描述法;而(4)则宜用列举法.解:(1){(4,-2)};(2){x|x=3k+2,k∈N且x<1000};(3){(x,y)|x<0,且y>0};(4){正方形};(5){(x,y)|x<-1或x>1,y∈R}.(四)、课堂小结请同学们回忆一下(想一想):(1)本节课我们学习了哪些知识内容?(2)你认为学习集合有什么意义?(3)选择集合的表示法时应注意些什么?七、课外作业1.课本P12习题1.1 A组第4题.2.元素、集合间有何种关系?如何用符号表示?类似地集合与集合间的关系又如何呢?如何表示?通过预习课本来解答.八、教学反思:。

《集合及其表示方法》示范课教学设计(2)【人教B版必修第一册】

《集合及其表示方法》示范课教学设计(2)【人教B版必修第一册】

第一章集合与常用逻辑用语1.1.1集合及其表示方法第2课时1.掌握用列举法和描述法表示集合;2.能够用区间表示集合.3.在理解集合表示方法的过程中,列举法的理解,以及区间可以用数轴形象地表示,提高学生分析问题和解决问题的能力,提升学生的直观想象素养;对描述法的理解,提升学生的数学抽象素养.对给出的集合进行化简运算后用区间表示,提升学生的数学运算素养.教学重点:集合的表示、区间.教学难点:对集合的特征性质的理解及运用特征性质描述法来表示集合.【新课导入】前面提到的集合都是用自然语言描述的,但在数学中,我们经常要使用符号来表示集合.设计意图:承上启下,自然过渡到本节课的内容.【探究新知】知识点1列举法问题1:(1)由两个元素0,1组成的集合如何用符号语言表示?(2)24的所有正因数1,2,3,4,6,8,12,24组成的集合如何用符号语言表示?(3)中国古典长篇小说四大名著组成的集合如何用符号语言表示?师生活动:阅读教科书第5页,给出列举法的定义:把集合中的元素一一列举出来(相邻元素之间用逗号要隔),并写在大括号内,以此来表示集合的方法称为列举法.根据列举法的定义,学生回答,教师分析指导.本图片为微课截图,本视频资源主要讲解列举法的定义,加深学生对于知识的理解和掌握.若需使用,请插入微课【知识点解析】列举法的定义.预设的答案:(1){0,1};(2){1,2,3,4,6,8,12,24};(3){《红楼梦》,《三国演义》,《水浒传》,《西游记》}.设计意图:从学生熟悉的具体实例出发,说明可用列举法表示一类集合.追问1:用列举法表示集合时,要考虑元素的顺序吗?(一般不考虑元素的顺序)追问2:如何用列举法表示:“不大于100的自然数组成的集合”?({0,1,2,3,...,100})教师点评:{1,2}与{2,1}表示同一个集合.但是,如果一个集合的元素较多,且能够按照一定的规律排列,那么在不致于发生误解的情况下,可按照规律列出几个元素作为代表,其他元素用省略号表示.例如,不大于100的自然数组成的集合,可表示为{0,1,2,3,...,100}.追问3:是不是只有有限集才可以用列举法表示呢?(不是)教师点评:无限集有时也可用列举法表示.例如,自然数集N可表示为{0,1,2,3,...,n,...} . 追问4:{a}与a相同吗?(不同)教师点评:{a}是只含一个元素的集合,这一个元素是a,要将{a}与它的元素a加以区别,事实上,a∈{a}.知识点2 描述法问题2:以下集合用列举法表示方便吗?如果不万便,你觉得可以怎样表示? (1)满足x >3的所有数组成的集合A ; (2)所有有理数组成的集合Q .本图片为微课截图,本微课资源主要讲解描述法的概念及用描述法表示集合的方法,加深学生对于知识的理解和掌握..若需使用,请插入微课【知识点解析】认识描述法.师生活动:与学生一起探讨:显然,用列举法表示上述集合并不方便,但因为集合A 中的元素x 都具有性质“x 是大于3的数”,而不属于集合A 的元素都不具有这个性质,因此可以把集合A 表示为{x |x 是大于3的数}或{x |x >3),即A ={x |x 是大于3的数}或A ={x |x >3}.类似地,Q 中的每一个元素都具有性质“是两个整数的商”,而不属于Q 的元素都不具有这个性质,因此可以把Q 表示为Q ={x |x 是两个整数的商}或{|,,,0}mQ x x n Z m Z n n==∈∈≠. 教师总结:上述表示集合的方法中,大括号内竖线的左边是元素的形式,竖线的右边是只有这个集合中的元素才满足的性质.一般地,如果属于集合A 的任意一个元素x 都具有性质p (x ),而不属于集合A 的元素都不具有这个性质,则性质p (x )称为集合A 的一个特征性质.此时,集合A 可以用它的特征性质p (x )表示为{x |p (x )}.这种表示集合的方法,称为特征性质描述法,简称为描述法.设计意图:以问题为切入口,通过解决问题来引入新知,有助于培养学生的学习兴趣,提高分析问题解决问题的能力.追问1:集合{ x> 3} 与{x|x>3}是相同的集合吗?(不是)教师点评:根据集合的表示方法,集合{ x> 3} 与{x|x>3} 是有区别的:前者表示的是由不等式x> 3组成的集合,其只包含一个元素,它是有限集;后者是满足不等式x> 3的所有数组成的集合,包含无穷多个元素,它是无限集.【做一做】试用描述法表示下列集合:(1)所有平行四边形组成的集合({x|x是一组对边平行且相等的四边形})(2)所有能被3整除的整数组成的集合({x|x=3n,n∈Z})(3)所有被3除余1的自然数组成的集合({x|x=3n+1,n∈N})【想一想】集合{x∈N|x=3n+1,n∈Z)是不是表示“所有被3除余1的自然数组成的集合”?教师点评:集合{x|p(x)}中所有在另一个集合I中的元素组成的集合,可以表示为{x∈I|p(x)}. 知识点3区间及其表示阅读教科书第7、8页:区间及其表示师生活动:学生阅读后总结用区间表示集合:如果a<b,则集合{x|a≤x≤b}可简写为[a,b],并称为闭区间;集合{x|a<x<b}可简写为(a,b),并称为开区间;集合{x|a≤x<b}可简写为[a,b),集合{x|a<x≤b}可简写为(a,b],并都称为半开半闭区间.【想一想】我们知道,实数与数轴上的点是一一对应的,那么区间可以用数轴形象地表示吗?师生活动:学生探讨,教师总结:区间中,a,b分别称为区间的左、右端点,b-a称为区间的长度.区间可以用数轴形象地表示.例如,区间[-2,1)可用下图表示,注意图中一2处的点是实心点,而1处的点是空心点.在用数轴表示区间时,实心点代表取得到,空心点代表取不到.【做一做】如果用“+∞”表示“正无穷大”,用“-∞”表示“负无穷大”,则:实数集R可表示为区间__________;集合{x|x≥a}可表示为区间__________;集合{x|x>a}可表示为区间__________;集合{ x |x≤a}可表示为区间__________;集合{x |x<a}可表示为区间__________;将区间[7,+∞)用数轴表示为__________.预设的答案:(-∞,+∞)[a,+∞)(a,+∞)(-∞,a] (-∞,a)【巩固练习】例1用适当的方法表示下列集合,并指出它是有限集还是无限集.(1)方程x(x一1)=0的所有解组成的集合A;(2)平面直角坐标系中,第一象限内所有点组成的集合B.(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.(4)不等式3x+4≥x的解集.师生活动:学生完成,教师点评,并思考选用哪种表示方法合适.预设的答案:(1)因为0和1是方程x(x-1)=0的解,而且这个方程只有两个解,所以A={0,1).(2)因为集合B的特征性质是横坐标与纵坐标都大于零,因此B={(x,y)|x>0,y>0}.(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N},或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.有限集.(4)由3x+4≥x得2x≥-4,所以x≥-2,所以不等式3x+4≥x的解集是[-2,+∞).无限集.设计意图:锻炼学生分析问题、解决问题的能力.在这里可以引导学生总结和归纳集合的两种不同的表示方法的优缺点。

1.1集合的概念教案高一上学期数学人教A版

1.1集合的概念教案高一上学期数学人教A版

1.1集合的概念教案一、教学目标1.了解集合的含义,体会理解元素与集合的关系;2.掌握集合中元素的三大特性:确定性、互异性、无序性;3.熟识常用数集的符号表示,并能够选择适当的表示方法来表示一些简单集合.二、教学重难点1.教学重点:集合的含义与表示方法.2.教学难点:集合表示方法的恰当选择及应用三、教学过程1.情景导入体育课上,经常听到在操场集合,这里“集合”是一个动词.“初中数学我们也接触过 集合”一词,例如自然数的集合,有理数的集合,这时是名词.那么进入高中后,我们继续深入了解什么是集合?2.新知讲授请同学们仔细阅读课本,观察第2页的例子,并完成课本上的思考题.(思考:上面的例“(3)到例“(6)也都能组成集合吗?他们的元素分别是什么?)(1)定义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合“(简称为集).我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.注:①组成集合的元素可以是数、点、图形、人、物等②根据集合中元素的个数可以将集合分为有限集和无限集.集合的定义中 一些元素” 总体”要注意.“总体很好理解,是整体的意思,关键是前面的“ 一些元素”是什么意思呢?它是说构成集合的元素是有一些要求的,不是随便的,它们有它们的特点,都有哪些特点呢?思考:信高北湖校区高一8班较开朗的学生是否可以构成一个集合?不可以给定的集合,它的元素必须是确定的(确定性).思考:由2,1,0,6,7,1这些数组成的一个集合中有6个元素,这个说法正确吗?““““““不正确,集合中只有5个元素“2,1,0,6,7一个给定集合中的元素是互不相同的(互异性).思考:0,1,2与2,1,0组成的集合有没有变化?““““““没有变化.构成集合的元素间无先后顺序之分(无序性).““““由无序性,我们可以给出一个集合相等的定义.(3)集合相等只要构成两个集合的元素是一样的,就称这两个集合是相等的.回到课本第2页的例(2),我们用A表示立德中学今年入学的全体高一学生,用a表示立德中学今年入学的一名高一学生,b表示立德中学的一名高三学生.“问:a,b与集合A分别有什么关系?a是集合A中的元素,b不是集合A中的元素.(4)元素与集合的关系““““如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.(5)常用数集及其记法助记:星星在天上.a.自然语言用文字叙述的形式描述集合的方法.我们可以用自然语言描述一个集合,除此之外,还可以用什么方式来表示集合呢?地球上的四大洋组成的集合如何表示?方程x 2−3x +2=0的所有实数根组成的集合又如何表示呢?b.列举法把集合的所有元素一一列举出来,并用花括号 {“}”括起来表示集合的方法叫做列举法.使用列举法表示集合时的注意事项:i.元素间用逗号 ,”隔开 ii.元素不能重复(互异性) iii.元素之间不用考虑先后顺序(无序性) iv. 有些集合的元素较多,但呈现一定的规律性时,在不发生误解的条件下,也可以列举出几个元素作为代表,其他元素用省略号表示.思考:你能用列举法表示不等式x −7<3的解集吗?不能,但是该集合的元素都满足以下性质:x 是实数,且x <10.“我们可以通过描述其元素性质的方法来表示,即{x ∈R |x <10}.奇数集又如何表示呢?“{x ∈Z |x =2k +1,k ∈Z }偶数集?“{x ∈Z |x =2k,k ∈Z }c.描述法一般地,设A 是一个集合,我们把集合A 中所有具有共同特征P(x)的元素x 所组成的集合表示为 {x ∈A | P (x )},这种表示集合的方法称为描述法.↑ 代表元素x↓ 代表元素的性质 (x 满足的条件) x “的值范围 ↘注:①写清该集合中元素的代表符号;②不能出现未被说明的字母;③如果从上下文的关系看,x∈R,x∈Z是明确的,那么可以简写为x;④多层描述时,应当准确使用 或” 且”.(7)典型例题已知元素与集合的关系求参数的 或值 范围1.若2∉{x|x−a>0},则实数a的值 范围是“{a|a≥2}.【解析】2不在给定集合中→2不满足不等式x−a>0→即2−a>0不成立→因此2−a≤0,得a≥2.2.若3∈{m−1,3m,m2−1},则实数m的可能值 为(“ABD““).A.4B. 2C. 1D. 2【解析】三个元素中有且只有一个是3,要分三类讨论:当m−1=3时,m=4,此时3m=12,m2−1=15,故m=4符合题意;当3m=3“时,m=1,“此时m−1=m2−1=0“,不满足集合中元素的互异性,故舍去;当m2−1=3时,m=±2,经检验m=±2符合题意.综上所述,m=4或 m=±2.【归纳总结】(1)a∈A时,a一定等于集合A中的一个元素;a∉A时,a不等于集合A中的任一元素.(2)利用方程组求解参数时,一定要检验 互异性”.已知集合相等求参数,b},则a2023+b2023=___0___.3.设a,b∈R,若集合{1,a+b,a}={0,ba=−1,则 a=−1,b=1,故原式=0.【解析】若a+b=0时,ba若a=0,则b无意义,舍去.a【归纳总结】两个集合相等,其元素完全相同,顺序可以不同.集合表示方法的应用4.(1)所有小于13的既是奇数又是素数的自然数组成的集合;(2)平面直角坐标系内所有第一象限的点组成的集合;(3)二次函数y=x2+2x−10的图象上所有点组成的集合;(4)二次函数y=x2+2x−10的图象上所有点的纵坐标组成的集合.【解析】(1) {3,5,7,11};(2){(x,y)|x>0且 y>0};(3){(x,y)|y=x2+2x−10};(4){y|y=x2+2x−10}.【归纳总结】列举法特点是清楚地展现集合中的元素,通常用于表示元素较少的集合;描述法特点是形式简单、应用方便,通常用于表示元素具有明显共同特征的集合.集合与方程的综合问题5.若集合中A={x∈R|ax2−3x+2=0}中只有一个元素,则a=““(““““).A. 92B. 98C. 0D. 0或98四、课堂小结五、作业布置六、板书七、教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:集合与命题第一节:集合的概念【知识讲解】1、集合的概念1)集合:我们把能够____________的一些对象组成的整体叫做集合(简称_____)2)元素:集合中各个______叫做这个集合的元素观察以下实例:①NBA 联盟所有的球员;②我国从1991年到2008年的13年内所发射的所有卫星;③所有的正方形;④到直线l 的距离等于定长d 的所有的点;⑤高一(3)所有学生;⑥2,4,6,8,10;⑦不等式032<+x 的解得全体;3).性质确定性:A a A a ∉∈或必居其一,互异性:不写{1,1,2,3}而是{1,2,3},集合中元素互不相同,无序性:{1,2,3}={3,2,1}随堂练习:1. 设{}22,,12A x x =-,若3A -∈,则x 的值为________________;4)集合与元素的表示方法①集合通常用大写的拉丁字母表示,如A 、B 、C 、……; 元素通常用小写的拉丁字母表示,如a 、b 、c……②如果a 是集合A 的元素,就说a 属于A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉.如,设由1,3,5,7,9组成的集合为A ,则A A ∉∈2,3。

注:“∈”的开口方向,不能把a A ∈颠倒过来写 5)常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *6)分类:有限集、无限集、空集。

2、集合的表示方法:(列举法和描述法)1)用列举法表示下列集合:(1){|x x 是15的正约数} (2){(,)|{1,2},{1,2}}x y x y ∈∈2)用描述法表示下列集合:(1){1,4,7,10,13} (2){2,4,6,8,10}-----3)文氏图法:【基本题型】1、集合的有关概念例1.已知x 2∈{1,0,x},求实数x 的值。

点拨:这是应用元素的确定性与互异性来解题的。

这类题目先利用元素的确定性求出参数值,然后利用元素的互异性检验解的正确与否。

在解题中易忽略元素的互异性,这是易错点。

2、元素与集合的关系例2.设集合},2|{Z k k x x A ∈==,},12|{Z k k x x B ∈+==.若a ∈A,b ∈B,试判断a+b 与A,B 的关系。

点拨:判断一个元素是不是某个集合的元素,就是判断它是不是具有这个集合的元素具有的属性特征。

反之,如果一个元素是某个集合中的元素,那么它一定具有这个集合的元素具有的属性特征。

3.集合的表示方法例3.用两种方法表示:满足x=|x|,x ∈Z 的所有x 的值构成的集合A 。

点拨:对于元素个数较少的有限集常用列举法来表示,对于无限集多采用描述法来表示;而在研究集合属性的运算中,一般要用列方程(或不等式)组的数学思想。

4.与集合有关的参数综合问题例4.已知集合A={x ∈R|ax 2-3x+1=0,a ∈R},若A 中的元素最多只有一个,求a 的取值范围。

点拨:集合中的元素就是方程的解,因此将求字母的范围转化为研究方程的解的问题。

这里要注意方程不一定是二次方程,要讨论二次项系数是否为0。

【误区警示】1.在确定元素中所含字母的值时,一定要将字母的取值代回检验,看是否满足元素的互异性和题意;2.用描述法表示集合时,一定要注意代表元素是什么。

如:集合{x|y=x2}, {y|y=x2}, {(x,y)|y=x2}是意义完全不同的三个集合;3.集合中的元素可以是集合,即集合也可以作为一个集合中的元素。

如:A={1,{2,3},4,5},其中1∈A,2∉A, 3∉A,{2,3}∈A,4∈A,5∈A。

【思维总结】一、一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)【课堂巩固】1、下列元素的全体不能组成集合的是 ( )A .大于2小于10的奇数 B. 不等式510x +<的解集C. 方程240x -=的解D. 很小的数2、用∉∈,填空:21)1(________N; (2) 1______Z; (3) -2_________R; (4)2_________N; (5)2______Q; (6) 0_________φ;3、将集合{x │-3≤x ≤3,x ∈N},用列举法表示出来的是( )A 、{-3,-2,-1,0,1,2,3}B 、{-2,-1,0,1,2}C 、{0,1,2,3}D 、{1,2,3}4、下面对集合{1,5,9,13,17}用描述法表示,其中正确的是( )A 、{x │x 是小于18的正奇数}B 、{x │x =4k +1,k ∈z 且k <5}C 、{x │x =4t -3,t ∈N 且t ≤5}D 、{x │x =4s -3,s ∈N+且s <6}【课堂练习】1.下列各组对象能确定一个集合吗?(1)所有很大的实数 ( )(2)好心的人 ( )(3)1,2,2,3,4,5.( )2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是 .3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4、下列各式中错误的是( )A 、{奇数}={|21,}x x k k Z =-∈B 、{|*,||5}{1,2,3,4}x x N x ∈<=C 、1{(,)|}2x y x y xy +=⎧⎨=-⎩ {(2,1),(1,2)}=-- D 、33N --∈ 5、(1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来;6、已知集合A ={a +2,(a +1)2,a 2+3a +3},且1∈A ,求实数a 的值。

7、下列四个集合中,表示空集的是( )A .{0}B .{(x ,y)|y 2=-x 2,x ∈R ,y ∈R}C {x||x|5x Z x N}.=,∈,∉D .{x|2x 2+3x -2=0,x ∈N}8、集合(){}R y x y x xy y M ∈<+>=、且,0,0,x 是指第 象限内的点集.【课后练习】1、判断下面说法是否正确、正确的填“√”,错误的填“×”(1)所有在N 中的元素都在N +中( )(2)所有在N 中的元素都在Z 中( )(3)所有不在N +中的数都不在Z 中( )(4)所有不在Q 中的实数都在R 中( )(5)由既在R 中又在N +中的数组成的集合中一定包含数0( )(6)不在N 中的数不能使方程48x =成立( )2、下列各组对象能确定一个集合吗?(1)所有很大的实数。

(2)好心的人。

(3)1,2,2,3,4,5。

3、设,a b 是非零实数,那么b b a a +可能取的值组成集合的元素是 。

4、由实数,,x x x - )个元素A 、2个B 、3个C 、4个D 、5个5、下列结论中,不正确的是( )A 、0N ∈B QC 、0Q ∉D 、1Z -∈6、下列结论中,不正确的是( )A 、若a N ∈,则a N -∉B 、若a Z ∈,则2a Z ∈C 、若a Q ∈,则a Q ∈D 、若a R ∈,则R a ∈37、求数集{}21,,x x x -中的元素x 应满足的条件。

8、观察集合2{|1,}A y y x x R ==+∈、2{|1,}B x x t t R ==+∈、2{(,)|1,}C x y y x x R ==+∈有什么区别?。

相关文档
最新文档