2017年上海市奉贤区初三数学一模试卷

合集下载

上海市2017各区中考数学一模试卷6套(包含答案解析)

上海市2017各区中考数学一模试卷6套(包含答案解析)

2017年上海市松江区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣13.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.8.计算:(﹣3)﹣(+2)= .9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1y2.(填“>”、“=”或“<”)14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为米.(结果保留根号)17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为.三、解答题:(本大题共7题,满分78分)19.计算:.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.2017年上海市松江区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义得出cotA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∴cotA=,∵BC=2,∠A=α,∴AC=2cotα,故选D.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=,cotA=.2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣1【考点】二次函数图象上点的坐标特征.【分析】分别求出x=0时y的值,即可判断是否过原点.【解答】解:A、y=x2﹣1中,当x=0时,y=﹣1,不过原点;B、y=(x+1)2中,当x=0时,y=1,不过原点;C、y=x2+x中,当x=0时,y=0,过原点;D、y=x2﹣x﹣1中,当x=0时,y=﹣1,不过原点;故选:C.【点评】本题主要考查二次函数图象上点的坐标特点,熟练掌握抛物线上特殊点的坐标及一般点的坐标的求法是解题的关键.3.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米【考点】相似三角形的应用.【专题】应用题.【分析】在相同时刻,物高与影长组成的直角三角形相似,利用对应边成比例可得所求的高度.【解答】解:∵在相同时刻,物高与影长组成的直角三角形相似,∴1.5:2=教学大楼的高度:60,解得教学大楼的高度为45米.故选A.【点评】考查相似三角形的应用;用到的知识点为:在相同时刻,物高与影长的比相同.4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =【考点】*平面向量.【分析】根据向量的定义对各选项分析判断后利用排除法求解.【解答】解:A、∥,∥,则、都与平行,三个向量都互相平行,故本选项错误;B、表示两个向量的模的数量关系,方向不一定相同,故不一定平行,故本选项正确;C、=,说明两个向量方向相反,互相平行,故本选项错误;D、=, =,则、都与平行,三个向量都互相平行,故本选项错误;故选:B.【点评】本题考查了平面向量,主要利用了向量平行的判定,是基础题.5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴=,故A正确;∵CD∥BE,AB=CD,∴△CDF∽△EBC∴=,故B正确;∵AD∥BC,∴△AEF∽△EBC∴=,故D正确.∴C错误.故选C.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9【考点】相似三角形的判定与性质.【分析】由△AEF∽△ABC,可知△AEF与△ABC的周长比=AE:AB,根据cosA==,即可解决问题.【解答】解:∵BE、CF分别是AC、AB边上的高,∴∠AEB=∠AFC=90°,∵∠A=∠A,∴△AEB∽△AFC,∴=,∴=,∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的周长比=AE:AB,∵cosA==,∴∴△AEF与△ABC的周长比=AE:AB=1:3,故选B.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用相似三角形的性质解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.【考点】比例的性质.【分析】用a表示出b,然后代入比例式进行计算即可得解.【解答】解:∵ =,∴b=a,∴==.故答案为:.【点评】本题考查了比例的性质,用a表示出b是解题的关键.8.计算:(﹣3)﹣(+2)= .【考点】*平面向量.【分析】根据平面向量的加法计算法则和向量数乘的结合律进行计算.【解答】解::(﹣3)﹣(+2)=﹣3﹣﹣×2)=.故答案是:.【点评】本题考查了平面向量,熟记计算法则即可解题,属于基础题型.9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是k<1 .【考点】二次函数的性质.【分析】由开口向下可得到关于k的不等式,可求得k的取值范围.【解答】解:∵y=(k﹣1)x2+3x的开口向下,∴k﹣1<0,解得k<1,故答案为:k<1.【点评】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数有关是解题的关键.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为y=(x﹣4)2.【考点】二次函数图象与几何变换.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将y=x2向右平移4个单位,所得函数解析式为:y=(x ﹣4)2.故答案为:y=(x﹣4)2.【点评】本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是8 .【考点】解直角三角形.【专题】计算题;等腰三角形与直角三角形.【分析】利用锐角三角函数定义求出所求即可.【解答】解:∵在△ABC中,∠C=90°,sinA=,BC=6,∴sinA=,即=,解得:AB=8,故答案为:8【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC:CE=3:5,∴AC:AE=3:8,∵AB∥CD∥EF,∴,∴BD=,∴DF=,故答案为:.【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1>y2.(填“>”、“=”或“<”)【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为2、5时的函数值,然后比较函数值的大小即可.【解答】解:当x=2时,y1=﹣x2+1=﹣3;当x=5时,y2=﹣x2+1=﹣24;∵﹣3>﹣24,∴y1>y2.故答案为:>【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线x=2 .【考点】二次函数的性质.【分析】根据函数值相等的点到对称轴的距离相等可求得答案.【解答】解:∵抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,∴对称轴为x==2,故答案为:x=2.【点评】本题主要考查二次函数的性质,掌握二次函数值相等的点到对称轴的距离相等是解题的关键.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为 2 .【考点】三角形的重心;等腰三角形的性质;勾股定理.【分析】先根据等腰三角形的性质和勾股定理求出AD,再判断点G为△ABC的重心,然后根据三角形重心的性质来求AG的长.【解答】解:∵在△ABC中,AB=AC,AD⊥BC,∴AD==3,∵中线BE与高AD相交于点G,∴点G为△ABC的重心,∴AG=3×=2,故答案为:2【点评】本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为5+5米.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】CF⊥AB于点F,构成两个直角三角形.运用三角函数定义分别求出AF和BF,即可解答.【解答】解:作CF⊥AB于点F.根据题意可得:在△FBC中,有BF=CE=5米.在△AFC中,有AF=FC×tan30°=5米.则AB=AF+BF=5+5米故答案为:5+5.【点评】本题考查俯角、仰角的定义,要求学生能借助其关系构造直角三角形并解直角三角形.17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.【考点】线段垂直平分线的性质.【专题】探究型.【分析】设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度.【解答】解:设CE=x,连接AE,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.故答案为:.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为4.【考点】旋转的性质;解直角三角形.【分析】先解直角△ABC,得出BC=AB•cosB=9×=6,AC==3.再根据旋转的性质得出BC=DC=6,AC=EC=3,∠BCD=∠ACE,利用等边对等角以及三角形内角和定理得出∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∠BCM=∠ACN.解直角△ANC求出AN=AC•cos∠CAN=3×=2,根据等腰三角形三线合一的性质得出AE=2AN=4.【解答】解:∵在△ABC中,∠ACB=90°,AB=9,cosB=,∴BC=AB•cosB=9×=6,AC==3.∵把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,∴△ABC≌△EDC,BC=DC=6,AC=EC=3,∠BCD=∠ACE,∴∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∴∠BCM=∠ACN.∵在△ANC中,∠ANC=90°,AC=3,cos∠CAN=cosB=,∴AN=AC•cos∠CAN=3×=2,∴AE=2AN=4.故答案为4.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了解直角三角形以及等腰三角形的性质.三、解答题:(本大题共7题,满分78分)19.计算:.【考点】实数的运算;特殊角的三角函数值.【分析】直接将特殊角的三角函数值代入求出答案.【解答】解:原式====.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量.【分析】(1)在△ABD中,利用平面向量的三角形加法则进行计算;(2)根据向量加法的平行四边形法则,过向量的起点作BC的平行线,即可得出向量向量在、方向上的分向量.【解答】解:(1)∵,∴∵,∴∵,且∴;(2)解:如图,所以,向量、即为所求的分向量.【点评】本题考查平面向量,需要掌握一向量在另一向量方向上的分量的定义,以及向量加法的平行四边形法则.21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.【考点】相似三角形的判定与性质.【分析】(1)先根据S△BEF:S△EFC=2:3得出CF:BF的值,再由平行线分线段成比例定理即可得出结论;(2)先根据AC∥BD,EF∥BD得出EF∥AC,故△BEF∽△ABC,再由相似三角形的性质即可得出结论.【解答】解:(1)∵AC∥BD,∴∵AC=6,BD=4,∴∵△BEF和△CEF同高,且S△BEF:S△CEF=2:3,∴,∴.∴EF∥BD,∴,∴,∴(2)∵AC∥BD,EF∥BD,∴EF∥AC,∴△BEF∽△ABC,∴.∵,∴.∵S△BEF=4,∴,∴S△ABC=25.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)连接AB,作BG⊥AB交AC于点G,在Rt△ABG中,利用已知条件求出AB的长即可;(2)设直线EF交AD于点P,作CQ⊥EF于点Q,设AP=x,则PE=2x,PD=8﹣x,在Rt△ACD中利用已知数据可求出CD的长,进而可求出台EF的长度.【解答】解:(1)连接AB,作BG⊥AB交AC于点G,则∠ABG=90°∵AB∥CD,∴∠BAG=∠ACD=20°,在Rt△ABG中,,∵BG=2.26,tan20°≈0.36,∴,∴AB≈6.3,答:A、B之间的距离至少要6.3米.(2)设直线EF交AD于点P,作CQ⊥EF于点Q,∵AE和FC的坡度为1:2,∴,设AP=x,则PE=2x,PD=8﹣x,∵EF∥DC,∴CQ=PD=8﹣x,∴FQ=2(8﹣x)=16﹣2x,在Rt△ACD中,,∵AD=8,∠ACD=20°,∴CD≈22.22∵PE+EF+FQ=CD,∴2x+EF+16﹣2x=22.22,∴EF=6.22≈6.2答:平台EF的长度约为6.2米.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度角,关键是根据题意做出辅助线,构造直角三角形.23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.【考点】相似三角形的判定与性质.【分析】(1)先根据题意得出△ACB∽△ECA,再由直角三角形的性质得出CD=AD,由∠CAD+∠ABC=90°可得出∠ACD+∠EAC=90°,进而可得出∠AFC=90°;(2)根据AE⊥CD可得出∠EFC=90°,∠ACE=∠EFC,故可得出△ECF∽△EAC,再由点E是BC的中点可知CE=BE,故,根据∠BEF=∠AEB得出△BEF∽△AEB,进而可得出结论.【解答】证明:(1)∵AC2=CE•CB,∴.又∵∠ACB=∠ECA=90°∴△ACB∽△ECA,∴∠ABC=∠EAC.∵点D是AB的中点,∴CD=AD,∴∠ACD=∠CAD∵∠CAD+∠ABC=90°,∴∠ACD+∠EAC=90°∴∠AFC=90°,∴AE⊥CD(2)∵AE⊥CD,∴∠EFC=90°,∴∠ACE=∠EFC又∵∠AEC=∠CEF,∴△ECF∽△EAC∴∵点E是BC的中点,∴CE=BE,∴∵∠BEF=∠AEB,∴△BEF∽△AEB∴∠EBF=∠EAB.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出二次函数的解析式,根据二次函数的性质解答即可;(2)过点E作EH⊥BC于点H,根据轴对称的性质求出点E的坐标,根据三角形的面积公式求出EH、BH,根据正切的定义计算即可;(3)分和两种情况,计算即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(3,0)和点C(0,3)∴,解得,∴抛物线解析式为y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),(2)由(1)可知抛物线对称轴为直线x=1,∵点E与点C(0,3)关于直线x=1对称,∴点E(2,3),过点E作EH⊥BC于点H,∵OC=OB=3,∴BC=,∵,CE=2,∴,解得EH=,∵∠ECH=∠CBO=45°,∴CH=EH=,∴BH=2,∴在Rt△BEH中,;(3)当点M在点D的下方时设M(1,m),对称轴交x轴于点P,则P(1,0),∴BP=2,DP=4,∴,∵,∠CBE、∠BDP均为锐角,∴∠CBE=∠BDP,∵△DMB与△BEC相似,∴或,①,∵DM=4﹣m,,,∴,解得,,∴点M(1,)②,则,解得m=﹣2,∴点M(1,﹣2),当点M在点D的上方时,根据题意知点M不存在.综上所述,点M的坐标为(1,)或(1,﹣2).【点评】本题考查的是二次函数知识的综合运用、相似三角形的判定和性质,掌握待定系数法求二次函数解析式的一般步骤、熟记相似三角形的判定定理和性质定理、掌握二次函数的性质、灵活运用数形结合思想是解题的关键.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.【考点】四边形综合题.【分析】(1)由矩形的性质和三角函数定义求出AD,由勾股定理求出BD即可;(2)证明△EDF∽△BDE,得出,求出CE=|x﹣12|,由勾股定理求出DE,即可得出结果;(3)当△DEF是等腰三角形时,△BDE也是等腰三角形,分情况讨论:①当BE=BD时;②当DE=DB时;③当EB=ED时;分别求出BE即可.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=90°,在Rt△BAD中,,AB=16,∴AD=12∴;(2)∵AD∥BC,∴∠ADB=∠DBC,∵∠DEF=∠ADB,∴∠DEF=∠DBC,∵∠EDF=∠BDE,∴△EDF∽△BDE,∴,∵BC=AD=12,BE=x,∴CE=|x﹣12|,∵CD=AB=16∴在Rt△CDE中,,∵,∴,∴,定义域为0<x≤24(3)∵△EDF∽△BDE,∴当△DEF是等腰三角形时,△BDE也是等腰三角形,①当BE=BD时∵BD=20,∴BE=20②当DE=DB时,∵DC⊥BE,∴BC=CE=12,∴BE=24;③当EB=ED时,作EH⊥BD于H,则BH=,cos∠HBE=cos∠ADB,即∴,解得:BE=;综上所述,当△DEF时等腰三角形时,线段BE的长为20或24或.【点评】本题是四边形综合题目,考查了矩形的性质、三角函数定义、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.2017年上海市普陀区中考数学一模试卷一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x23.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥二、填空题(每题2分)7.如果x:y=4:3,那么=.8.计算:3﹣4(+)=.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.10.抛物线y=4x2﹣3x与y轴的交点坐标是.11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于厘米.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是.14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是.15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是.16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:(结果保留π,不要求写出定义域)17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果=,那么S△DPQ :S△CPE的值是.三、解答题19.计算:cos245°+﹣•tan30°.20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设=,=,那么试用,表示向量,(请直接写出结论)22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.2017年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形【考点】相似图形.【分析】根据相似形的定义直接进行判断即可.【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同,故选A.2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x2【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=2x+1是一次函数,故A错误;B、y=2x(x+1)是二次函数,故B正确;C、y=不是二次函数,故C错误;D、y=(x﹣2)2﹣x2是一次函数,故D错误;故选:B.3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例,可以解答本题.【解答】解:∵直线l1∥l2∥l3,∴,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴,∴,故选D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【考点】二次函数的性质.【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=【考点】相似三角形的判定.【分析】已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②=;故选:C.6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥【考点】*平面向量.【分析】由平面向量的性质来判断选项的正误.【解答】解:A、长度为1的向量叫做单位向量,故本选项错误;B、当k>0且≠时,那么k的方向与的方向相同,故本选项正确;C、如果k=0或=,那么k=,故本选项错误;D、如果=,=,其中是非零向量,那么向量a与向量b共线,即∥,故本选项错误;故选:B.二、填空题(每题2分)7.如果x:y=4:3,那么=.【考点】比例的性质.【分析】根据比例的性质用x表示y,代入计算即可.【解答】解:∵x:y=4:3,∴x=y,∴==,故答案为:.8.计算:3﹣4(+)=﹣﹣4.【考点】*平面向量.【分析】根据向量加法的运算律进行计算即可.【解答】解:3﹣4(+)=3﹣4﹣4=﹣﹣4.故答案是:﹣﹣4.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.10.抛物线y=4x2﹣3x与y轴的交点坐标是(0,0).【考点】二次函数图象上点的坐标特征.【分析】令x=0可求得y=0,可求得答案.【解答】解:在y=4x2﹣3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0).11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为12.【考点】二次函数图象上点的坐标特征.【分析】将A(3,n)代入二次函数的关系式y=x2+2x﹣3,然后解关于n的方程即可.【解答】解:∵A(3,n)在二次函数y=x2+2x﹣3的图象上,∴A(3,n)满足二次函数y=x2+2x﹣3,∴n=9+6﹣3=12,即n=12,故答案是:12.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于5﹣5厘米.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,。

上海市各市县2017届中考数学试题分类汇编-初三一模25题(学生版)

上海市各市县2017届中考数学试题分类汇编-初三一模25题(学生版)

上海市各市县2017届中考数学试题分类汇编2017年初三数学一模25题汇编25题常考题型解析:题型一、等腰三角形的分类讨论思路点拨:出现概率较高题型,重点。

解决此类问题主要通过两个方面解决:1.一方面从边方面入手,将此三角形的三边用x y或的表达式表示,根据腰相等建立方程求出线段长度(优点:方法简单,易理解;缺点:计算量偏大,易出错);2.另一方面从角方面入手,利用等腰产生的底角相等转化出其他的角度关系或边长关系进而建立方程求出线段的长度(优点:计算量偏小,易计算,缺点:此方法对于孩子的分析能力要求较高,适合一部分程度较好的学生)。

题型二、动点产生的相似综合思路点拨:1.首先寻找题目中特殊的条件和不变的量,并找出由条件引发的一些相等角、相等线段等特殊条件;(挖掘题目中的隐藏条件)2.然后注意分类讨论,先找到对应相等的角,再决定分类讨论情况:3.相似三角形的边如果能直接求出列等式最好,如果不能求出,注意转化相似(是否产生新的相似、等腰、平行四边形等更特殊的条件).题型三、动点产生的直角三角形问题思路点拨:当判断一个动三角形为直角三角形时,首先注意分类讨论。

其次就是利用这个直角来求解线段长度或角度问题,可以考虑用一下两种方法:1.直角三角形的基本性质,包括锐角互余关系,三边勾股关系,斜中定理关系,以及30°角性质等;2.利用产生的直角,利用锐角三角比或构造一线三直角利用相似关系来解题。

题型四、圆的综合思路点拨:圆的综合在一模试卷中出现的不多,二模中是重点题型。

与圆有关的问题主要分两类:1.一是圆中函数关系式的建立,主要要利用垂径定理和勾股定理,有时还会结合三角形的相似关系来建立关系式;2.二是考察圆中的位置关系,包括点与圆、直线与圆和圆与圆的位置关系,其中圆与圆的相切关系考察频率较高,需重点掌握。

解题方法主要是抓住代数上的等量关系再结合一下图形即可求出,切忌和学生强调不要纠结在一定要画出图形才能解题。

2017年上海市奉贤区高考一模数学试卷【解析版】

2017年上海市奉贤区高考一模数学试卷【解析版】

2017年上海市奉贤区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)已知集合A={﹣2,﹣1},B={﹣1,2,3},则A∩B=.2.(4分)已知复数z满足z•(1﹣i)=2,其中i为虚数单位,则z=.3.(4分)方程lg(x﹣3)+lgx=1的解x=.4.(4分)已知f(x)=log a x(a>0,a≠1),且f﹣1(﹣1)=2,则f﹣1(x)=.5.(4分)若对任意正实数a,不等式x2≤1+a恒成立,则实数x的最小值为.6.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则p=.7.(5分)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为.8.(5分)如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边成为1,那么这个几何体的表面积是.9.(5分)已知互异复数mn≠0,集合{m,n}={m2,n2},则m+n=.10.(5分)已知等比数列{a n}的公比q,前n项的和S n,对任意的n∈N*,S n>0恒成立,则公比q的取值范围是.11.(5分)参数方程,θ∈[0,2π)表示的曲线的普通方程是.12.(5分)已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(﹣ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)“mn<0”是方程“mx2+ny2=1表示双曲线”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分又不必要条件14.(5分)若方程f(x)﹣2=0在(﹣∞,0)内有解,则y=f(x)的图象是()A.B.C.D.15.(5分)已知函数(α∈[0,2π))是奇函数,则α=()A.0B.C.πD.16.(5分)若正方体A1A2A3A4﹣B1B2B3B4的棱长为1,则集合{x|x=•,i∈{1,2,3,4},j∈1,2,3,4}}中元素的个数为()A.1B.2C.3D.4三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知圆锥母线长为5,底面圆半径长为4,点M是母线P A的中点,AB是底面圆的直径,点C是弧AB的中点;(1)求三棱锥P﹣ACO的体积;(2)求异面直线MC与PO所成的角.18.(14分)已知函数(a>0),且f(1)=2;(1)求a和f(x)的单调区间;(2)f(x+1)﹣f(x)>2.19.(14分)一艘轮船在江中向正东方向航行,在点P观测到灯塔A、B在一直线上,并与航线成角α(0°<α<90°),轮船沿航线前进b米到达C处,此时观测到灯塔A在北偏西45°方向,灯塔B在北偏东β(0°<β<90°)方向,0°<α+β<90°,求CB;(结果用α,β,b表示)20.(16分)过双曲线的右支上的一点P作一直线l与两渐近线交于A、B两点,其中P是AB的中点;(1)求双曲线的渐近线方程;(2)当P坐标为(x0,2)时,求直线l的方程;(3)求证:|OA|•|OB|是一个定值.21.(18分)设数列{a n}的前n项和为S n,若(n∈N*),则称{a n}是“紧密数列”;(1)若a1=1,,a3=x,a4=4,求x的取值范围;(2)若{a n}为等差数列,首项a1,公差d,且0<d≤a1,判断{a n}是否为“紧密数列”;(3)设数列{a n}是公比为q的等比数列,若数列{a n}与{S n}都是“紧密数列”,求q的取值范围.2017年上海市奉贤区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)已知集合A={﹣2,﹣1},B={﹣1,2,3},则A∩B={﹣1}.【解答】解:∵集合A={﹣2,﹣1},B={﹣1,2,3},∴A∩B={﹣1}.故答案为:{﹣1}.2.(4分)已知复数z满足z•(1﹣i)=2,其中i为虚数单位,则z=1+i.【解答】解:由z•(1﹣i)=2,可得z•(1﹣i)(1+i)=2(1+i),所以2z=2(1+i),z=1+i.故答案为:1+i.3.(4分)方程lg(x﹣3)+lgx=1的解x=5.【解答】解:由lg(x﹣3)+lgx=1,得:,即,解得:x=5.故答案为:5.4.(4分)已知f(x)=log a x(a>0,a≠1),且f﹣1(﹣1)=2,则f﹣1(x)=.【解答】解:由题意,∵f﹣1(﹣1)=2,∴f(2)=log a2=﹣1;故a=;故f﹣1(x)=;故答案为:.5.(4分)若对任意正实数a,不等式x2≤1+a恒成立,则实数x的最小值为﹣1.【解答】解:∵对任意正实数a,不等式x2≤1+a恒成立,∴等价于a≥x2﹣1,∴a≥(x2﹣1)max0≥(x2﹣1)max﹣1≤x≤1∴实数x的最小值为﹣1.6.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则p=4.【解答】解:椭圆的右焦点(2,0),抛物线y2=2px的焦点与椭圆的右焦点重合,可得:,解得p=4.故答案为:4.7.(5分)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为5.【解答】解:设该等差数列的首项为a,由题意和等差数列的性质可得2015+a=1010×2解得a=5故答案为:58.(5分)如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边成为1,那么这个几何体的表面积是.【解答】解:由题意可知三视图复原的几何体是三棱锥,正方体的一个角,所以几何体的表面积为:3个等腰直角三角形与一个等边三角形的面积的和,即:3×=.故答案为:.9.(5分)已知互异复数mn≠0,集合{m,n}={m2,n2},则m+n=﹣1.【解答】解:互异复数mn≠0,集合{m,n}={m2,n2},∴m=m2,n=n2,或n=m2,m=n2,mn≠0,m≠n.由m=m2,n=n2,mn≠0,m≠n,无解.由n=m2,m=n2,mn≠0,m≠n.可得n﹣m=m2﹣n2,解得m+n=﹣1.故答案为:﹣1.10.(5分)已知等比数列{a n}的公比q,前n项的和S n,对任意的n∈N*,S n>0恒成立,则公比q的取值范围是(﹣1,0)∪(0,+∞).【解答】解:q≠1时,有S n=,∵S n>0,∴a1>0,则>0恒成立,①当q>1时,1﹣q n<0恒成立,即q n>1恒成立,由q>1,知q n>1成立;②当q=1时,只要a1>0,S n>0就一定成立;③当q<1时,需1﹣q n>0恒成立,当0<q<1时,1﹣q n>0恒成立,当﹣1<q<0时,1﹣q n>0也恒成立,当q<﹣1时,当n为偶数时,1﹣q n>0不成立,当q=﹣1时,1﹣q n>0也不可能恒成立,所以q的取值范围为(﹣1,0)∪(0,+∞).故答案为:(﹣1,0)∪(0,+∞).11.(5分)参数方程,θ∈[0,2π)表示的曲线的普通方程是x2=y(0≤x≤,0≤y≤2).【解答】解:∵∵θ∈[0,2π),∴|cos+sin|=|sin(+)|∈[0,]1+sinθ=(cos+sin)2∈[0,2]故答案为:x2=y(0≤x≤,0≤y≤2)12.(5分)已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(﹣ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为.【解答】解:∵f(x)=sinωx+cosωx=sin(ωx+),∵函数f(x)在区间(﹣ω,ω)内单调递增,ω>0∴2kπ﹣≤ωx+≤2kπ+,k∈Z可解得函数f(x)的单调递增区间为:[,],k∈Z,∴可得:﹣ω≥①,ω≤②,k∈Z,∴解得:0<ω2≤且0<ω2≤2k,k∈Z,解得:﹣,k∈Z,∴可解得:k=0,又∵由ωx+=kπ+,可解得函数f(x)的对称轴为:x=,k∈Z,∴由函数y=f(x)的图象关于直线x=ω对称,可得:ω2=,可解得:ω=.故答案为:.二.选择题(本大题共4题,每题5分,共20分)13.(5分)“mn<0”是方程“mx2+ny2=1表示双曲线”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分又不必要条件【解答】解:若“mn<0”,则m、n均不为0,方程mx2+ny2=1,可化为+=1,若“mn<0”,、异号,方程+=1中,两个分母异号,则其表示双曲线,故“mn<0”是方程“mx2+ny2=1表示双曲线”的充分条件;反之,若mx2+ny2=1表示双曲线,则其方程可化为+=1,此时有、异号,则必有mn<0,故“mn<0”是方程“mx2+ny2=1表示双曲线”的必要条件;综合可得:“mn<0”是方程“mx2+ny2=1表示双曲线”的充要条件;故选:C.14.(5分)若方程f(x)﹣2=0在(﹣∞,0)内有解,则y=f(x)的图象是()A.B.C.D.【解答】解:A:与直线y=2的交点是(0,2),不符合题意,故不正确;B:与直线y=2的无交点,不符合题意,故不正确;C:与直线y=2的在区间(0,+∞)上有交点,不符合题意,故不正确;D:与直线y=2在(﹣∞,0)上有交点,故正确.故选:D.15.(5分)已知函数(α∈[0,2π))是奇函数,则α=()A.0B.C.πD.【解答】解:由题意可知,函数f(x)是奇函数,即f(﹣x)+f(x)=0,不妨设x<0,则﹣x>0.则有:f(x)=﹣x2+cos(x+α),f(﹣x)=x2﹣sin x那么:﹣x2+cos(x+α)+x2﹣sin x=0解得:(k∈Z)∵α∈[0,2π)∴α=故选:D.16.(5分)若正方体A1A2A3A4﹣B1B2B3B4的棱长为1,则集合{x|x=•,i∈{1,2,3,4},j∈1,2,3,4}}中元素的个数为()A.1B.2C.3D.4【解答】解:∵正方体A1A2A3A4﹣B1B2B3B4的棱长为1,⊥,⊥,i,j∈{1,2,3,4},∴•=•(++)=•++=1.∴集合{x|x=•,i∈{1,2,3,4},j∈1,2,3,4}}中元素的个数为1.故选:A.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知圆锥母线长为5,底面圆半径长为4,点M是母线P A的中点,AB是底面圆的直径,点C是弧AB的中点;(1)求三棱锥P﹣ACO的体积;(2)求异面直线MC与PO所成的角.【解答】解:(1)∵圆锥母线长为5,底面圆半径长为4,点M是母线P A的中点,AB是底面圆的直径,点C是弧AB的中点,∴AB=8,OC=4,OC⊥AB,∴PO===3,=∴三棱锥P﹣ACO的体积V P﹣ACO==8.(2)以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,A(0,﹣4,0),P(0,0,3),M(0,﹣2,),C(4,0,0),O(0,0,0),=(4,2,﹣),=(0,0,﹣3),设异面直线MC与PO所成的角为θ,cosθ===,故异面直线MC与PO所成的角为arccos.18.(14分)已知函数(a>0),且f(1)=2;(1)求a和f(x)的单调区间;(2)f(x+1)﹣f(x)>2.【解答】解:(1)函数(a>0),且f(1)=2,∴log2(a2+a﹣2)=2=log24,∴,解得a=2,∴f(x)=log2(22x+2x﹣2),设t=22x+2x﹣2>0,解得x>0,∴f(x)的递增区间(0,+∞);(2)f(x+1)﹣f(x)>2,∴log2(22x+2+2x+1﹣2)﹣log2(22x+2x﹣2)>2=log24,∴22x+2+2x+1﹣2>4(22x+2x﹣2),∴2x<3,∴x<log23,∵x>0∴0<x<log23∴不等式的解集为(0,log23)19.(14分)一艘轮船在江中向正东方向航行,在点P观测到灯塔A、B在一直线上,并与航线成角α(0°<α<90°),轮船沿航线前进b米到达C处,此时观测到灯塔A在北偏西45°方向,灯塔B在北偏东β(0°<β<90°)方向,0°<α+β<90°,求CB;(结果用α,β,b表示)【解答】解:由题意,∠B=90°﹣(α+β),△PBC中,PC=b,由正弦定理可得.20.(16分)过双曲线的右支上的一点P作一直线l与两渐近线交于A、B两点,其中P是AB的中点;(1)求双曲线的渐近线方程;(2)当P坐标为(x0,2)时,求直线l的方程;(3)求证:|OA|•|OB|是一个定值.【解答】解:(1)双曲线的a=1,b=2,可得双曲线的渐近线方程为y=±x,即为y=±2x;(2)令y=2可得x02=1+=2,解得x0=,(负的舍去),设A(m,2m),B(n,﹣2n),由P为AB的中点,可得m+n=2,2m﹣2n=4,解得m=+1,n=﹣1,即有A(+1,2+2),可得P A的斜率为k==2,则直线l的方程为y﹣2=2(x﹣),即为y=2x﹣2;(3)证明:设P(x0,y0),即有x02﹣=1,设A(m,2m),B(n,﹣2n),由P为AB的中点,可得m+n=2x0,2m﹣2n=2y0,解得m=x0+y0,n=x0﹣y0,则|OA|•|OB|=|m|•|n|=5|mn|=5|(x0+y0)(x0﹣y0)|=5|x02﹣|=5为定值.21.(18分)设数列{a n}的前n项和为S n,若(n∈N*),则称{a n}是“紧密数列”;(1)若a1=1,,a3=x,a4=4,求x的取值范围;(2)若{a n}为等差数列,首项a1,公差d,且0<d≤a1,判断{a n}是否为“紧密数列”;(3)设数列{a n}是公比为q的等比数列,若数列{a n}与{S n}都是“紧密数列”,求q的取值范围.【解答】解:(1)由题意,且,∴2≤x≤3,∴x的取值范围是[2,3];(2)由题意,a n=a1+(n﹣1)d,∴==1+,随着n的增大而减小,所以当n=1时,取得最大值,∴≤2,∴{a n}是“紧密数列”;(3)由题意得,等比数列{a n}的公比q当q≠1时,所以a n=a1q n﹣1,S n=,=,因为数列{a n}与{S n}都是“紧密数列”,所以,≤2,解得,当q=1时,a n=a1,S n=na1,则=1,=1+∈(1,],符合题意,∴q的取值范围是.。

2017年上海市奉贤区初三数学一模试卷

2017年上海市奉贤区初三数学一模试卷

2017年上海市奉贤区初三数学一模试卷一、选择题1.下列抛物线中,顶点坐标是(﹣2,0)的是()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)22.如果在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式正确的是()A.tanB=B.cotB=C.sinB=D.cosB=3.如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值()A.扩大为原来的3被 B.缩小为原来的 C.没有变化 D.不能确定4.对于非零向量、、下列条件中,不能判定与是平行向量的是()A.∥,∥ B. +3=, =3 C. =﹣3D.||=3||5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是()A. = B. = C.∠A=∠E D.∠B=∠D6.一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=﹣t2+t+1(0≤t≤20),那么网球到达最高点时距离地面的高度是()A.1米B.1.5米C.1.6米D.1.8米二、填空题7.如果线段a、b、c、d满足==,那么= .8.计算:(2+6)﹣3= .9.已知线段a=3,b=6,那么线段a、b的比例中项等于.10.用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为(不写定义域).11.如果二次函数y=ax2(a≠0)的图象开口向下,那么a的值可能是(只需写一个).12.如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是.13.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是.14.在△ABC中,点D、E分别在边AB、AC上,如果=,AE=4,那么当EC的长是时,DE∥BC.15.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么的值是.第15题图第17题图第18题图16.边长为2的等边三角形的重心到边的距离是.17.如图,如果在坡度i=1:2.4 的斜坡上两棵树间的水平距离AC为3米,那么两树间的坡面距离AB是米.18.如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是.三、解答题19.计算:.20.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:(1)根据上表填空:①这个抛物线的对称轴是,抛物线一定会经过点(﹣2,);②抛物线在对称轴右侧部分是(填“上升”或“下降”);(2)如果将这个抛物线y=ax2+bx+c向上平移使它经过点(0,5),求平移后的抛物线表达式.21.已知:如图,在△ABC中,AB=AC,过点A作AD⊥BC,垂足为点D,延长AD至点E,使DE=AD,过点A作AF∥BC,交EC的延长线于点F.(1)设=, =,用、的线性组合表示;(2)求的值.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF 交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)23.已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:(1)△ABF∽△BED;(2)=.24.如图,在平面直角坐标系中xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D,联结AC、BC、DB、DC.(1)求这条抛物线的表达式及顶点D的坐标;(2)求证:△ACO∽△DBC;(3)如果点E在x轴上,且在点B的右侧,∠BCE=∠ACO,求点E的坐标.25.已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=,求y关于x的函数关系式,并写出它的定义域;(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.2017年上海市奉贤区中考数学一模试卷参考答案与试题解析一、选择题1.下列抛物线中,顶点坐标是(﹣2,0)的是()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)2故选C.2.如果在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式正确的是()A.tanB=B.cotB=C.sinB=D.cosB=故选:A/.3.如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值()A.扩大为原来的3被 B.缩小为原来的C.没有变化 D.不能确定故选:C.4.对于非零向量、、下列条件中,不能判定与是平行向量的是()A.∥,∥B. +3=, =3C. =﹣3D.||=3||故选D.5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是()A. =B. =C.∠A=∠E D.∠B=∠D故选B.6.一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=﹣t2+t+1(0≤t≤20),那么网球到达最高点时距离地面的高度是()A.1米B.1.5米C.1.6米D.1.8米故选:D.二、填空题7.如果线段a、b、c、d满足==,那么= .8.计算:(2+6)﹣3= ﹣2+3.9.已知线段a=3,b=6,那么线段a、b的比例中项等于3.10.用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为y=﹣x2+4x (不写定义域).11.如果二次函数y=ax2(a≠0)的图象开口向下,那么a的值可能是﹣1 (只需写一个).12.如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是﹣1 .13.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是4:9 .14.在△ABC中,点D、E分别在边AB、AC上,如果=,AE=4,那么当EC的长是 6时,DE∥BC.15.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么的值是.16.边长为2的等边三角形的重心到边的距离是.17.如图,如果在坡度i=1:2.4 的斜坡上两棵树间的水平距离AC为3米,那么两树间的坡面距离AB是米.18.如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是 1 .解:∵CG=2DG,CD=6,∴CG=4,DG=2,由勾股定理得,BG==5,∴EG=1,由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,∴△HEG∽△BCG,∴==,∴HG=,∴DH=DG﹣HG=,同理,DP=1,故答案为:1.三、解答题19.计算:.解:原式===2.20.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:(1)根据上表填空:①这个抛物线的对称轴是x=1 ,抛物线一定会经过点(﹣2,10 );②抛物线在对称轴右侧部分是上升(填“上升”或“下降”);(2)如果将这个抛物线y=ax2+bx+c向上平移使它经过点(0,5),求平移后的抛物线表达式.解:(1)①∵当x=0和x=2时,y值均为2,∴抛物线的对称轴为x=1,∴当x=﹣2和x=4时,y值相同,∴抛物线会经过点(﹣2,10).故答案为:x=1;10.②∵抛物线的对称轴为x=1,且x=2、3、4时的y的值逐渐增大,∴抛物线在对称轴右侧部分是上升.故答案为:上升.(2)将点(﹣1,5)、(0,2)、(2,2)代入y=ax2+bx+c中,,解得:,∴二次函数的表达式为y=x2﹣2x+2.∵点(0,5)在点(0,2)上方3个单位长度处,∴平移后的抛物线表达式为y=x2﹣2x+5.21.已知:如图,在△ABC中,AB=AC,过点A作AD⊥BC,垂足为点D,延长AD至点E,使DE=AD,过点A作AF∥BC,交EC的延长线于点F.(1)设=, =,用、的线性组合表示;(2)求的值.解:(1)∵如图,在△ABC中,AB=AC,AD⊥BC,∴BD=BC,∵=, =,∴=+=+.又∵DE=AD,∴==+,∴=+=+++=+;(2)∵DE=AD,AF∥BC,∴=, ==,∴==•=×=,即=.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF 交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)解:(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CDsin∠DCP=40×sin76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CDcos∠DCP=40×cos76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54cm.23.已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:(1)△ABF∽△BED;(2)=.证明:(1)∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴△ABF∽△CEF,∵BE⊥DC,∴∠FEC=∠BED,由互余的关系得:∠DBE=∠FCE,∴△BED∽△CEF,∴△ABF∽△BED;(2)∵AB∥CD,∴,∴,∵△ABF∽△BED,∴,∴=.24.如图,在平面直角坐标系中xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D,联结AC、BC、DB、DC.(1)求这条抛物线的表达式及顶点D的坐标;(2)求证:△ACO∽△DBC;(3)如果点E在x轴上,且在点B的右侧,∠BCE=∠ACO,求点E的坐标.解:(1)∵抛物线y=﹣x2+bx+c经过点A(﹣1,0),点C(0,3),∴,解得,∴抛物线的表达式为y=﹣x2+2x+3,∴顶点D的坐标为(1,4);(2)∵当y=0时,0=﹣x2+2x+3,解得x1=﹣1,x2=3,∴B(3,0),又∵A(﹣1,0),D(1,4),∴CD=,BC=3,BD=2,AO=1,CO=3,∴CD2+BC2=BD2,∴△BCD是直角三角形,且∠BCD=90°,∴∠AOC=∠DCB,又∵=, =,∴=,∴△ACO∽△DBC;(3)设CE与BD交于点M,∵△ACO∽△DBC,∴∠DBC=∠ACO,又∵∠BCE=∠ACO,∴∠DBC=∠BCE,∴MC=MB,∵△BCD是直角三角形,∴∠BCM+∠DCM=90°=∠CBM+∠MDC,∴∠DCM=∠CDM,∴MC=MD,∴DM=BM,即M是BD的中点,∵B(3,0),D(1,4),∴M(2,2),设直线CE的解析式为y=kx+b,则,解得,∴直线CE为:y=﹣x+3,当y=0时,0=﹣x+3,解得x=6,∴点E的坐标为(6,0).25.已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=,求y关于x的函数关系式,并写出它的定义域;(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.解:(1)在Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,∴AC=6,AB=10,∵∠DAE=∠BAC,∴∠FAC=∠DAB,∵∠ACF=∠B,∴△ABD∽△ACF,∴,在Rt△ABC中,点F恰好是AE的中点,∴CF=AE=AF,∴AD=BD,在Rt△ACD中,AC=6,CD=BC﹣BD=BC﹣AD=8﹣AD,根据勾股定理得,AC2+CD2=AD2,∴36+(8﹣AD)2=AD2,∴AD=,∴BD=AD=,(2)如图1,过点F作FM⊥AC于M,由(1)知,∴=,∴CF==×x=x,由(1)△ABD∽△ACF,∴∠B=∠ACF,∴tan∠ACF=tanB===,∴MC=x,∴y===(0<x<8)(3)∵△ADE是以AD为腰的等腰三角形,∴①当AD=AE时,∴∠AED=∠ADE,∵∠ACD=90°,∴∠EAC=∠DAC=∠DAB,∴AD是∠BAC的平分线,∴,∵AC=6,AB=10,CD=8﹣BD,∴,∴BD=5,当AD=DE时,∴∠DAE=∠DEA=∠BAC,∴∠ADE=2∠B,∴∠B=∠DAB,∴AD=BD=(是(1)的那种情况).即:BD=5或BD=时,△ADE是以AD为腰的等腰三角形.。

2017年奉贤区调研测试

2017年奉贤区调研测试

2017年奉贤区调研测试九年级数学 2017.04(满分150分,考试时间100分钟)考生注意: 1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 1.2的倒数是(▲)A .2;B .2-;C .22; D .22-.2.下列算式的运算结果为2m 的是(▲)A . 24-⋅m m ;B . 36m m ÷;C . 21)(-m ;D . 24m m -. 3.直线x y )3(π-=经过的象限是(▲)A .一、二象限;B .一、三象限;C .二、三象限;D .二、四象限. 4.李老师用手机软件记录了某个月(30天)每天走路的步数(单位:万步),她将记录的 结果绘制成了如图1所示的统计图.在李老师每天走路的步数这组数据中,众数与中位 数分别为(▲)A .1.2与1.3;B .1.4与1.35;C .1.4与1.3;D .1.3与1.3. 5.小明用如图2所示的方法画出了与△ABC 全等的△DEF ,他的具体画法是: ①画射线 DM ,在射线DM 上截取DE =BC ;②以点D 为圆心,BA 长为半径画弧,以点E 为圆心, CA 长为半径画弧,两弧相交于点F ; ③联结FD 、FE ;这样△DEF 就是所要画的三角 形.小明这样画图的依据是全等三角形判定方法中的(▲) A .边角边 ; B .角边角;C .角角边 ;D .边边边.6.已知两圆相交,它们的圆心距为3,一个圆的半径是2,那么另一个圆的半径长可以是(▲) A .1; B .3; C .5; D .7.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:=+4-21-02017)( ▲ ;8.函数2+=x y 的定义域是 ▲ ; 9.方程x x -=的解是 ▲ ;10.如果抛物线32-=ax y 的顶点是它的最低点,那么a 的取值范围是 ▲ ; 11.如果关于x 的方程042=+-kx x 有两个相等的实数根,那么k 的值是 ▲ ; 12.如果点P (3-m ,1)在反比例函数1y x=的图像上,那么m 的值是 ▲ ; 13.学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“诗句默写”的试题4个.小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是 ▲ ; 14.为了解某区3600名九年级学生的体育训练情况,随机抽取了区内 200名九年级学生进行了一次体育模拟测试,把测试结果分为四个等 级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格,并将测 试结果绘制成了如图3所示的统计图.由此估计全区九年级体育测试成绩可以达到优秀的人数约为 ▲ 人;15.在梯形ABCD 中,AD //BC ,BC AD 21=,设=,=,那么BC 等于 ▲ ;(结果用a 、b的线性组合表示) 16.如果正n 边形的内角是它中心角的两倍,那么边数n 的值是 ▲ ;17.在等腰三角形ABC 中,当顶角A 的大小确定时,它的对边(即底边BC )与邻边(即腰 AB 或AC )的比值也确定了,我们把这个比值记作T (A ),即ABBC A A A T =∠∠=的邻边(腰)的对边(底边))(. 例:1)60(=︒T ,那么=︒)120(T ▲ ;18.如图4,矩形ABCD ,点E 是边AD 上一点,过点E 作EF ⊥BC ,垂足为点F ,将△BEF 绕着点E 逆时针旋转,使点B 落在边BC 上的点N 处,点F 落在边DC 上的点M 处,如果点M 恰好是边DC 的中点,那么AB AD的值是 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值: 1)2211(22-÷-+--+a aa a a a ,其中5=a .图4图320.(本题满分10分)解不等式组⎪⎩⎪⎨⎧-≥++>-;,5231224)1(7x x x x 将其解集在数轴上表示出来,并写出这个不等式组的整数解. 21.(本题满分10分,每小题5分)已知:如图5,在梯形ABCD 中,AD//BC ,∠ABC =90°,AB =4,AD =8,sin ∠BCD =54,CE 平分∠BCD ,交边AD 于点E ,联结BE 并延长, 交CD 的延长线于点P . (1)求梯形ABCD 的周长; (2)求PE 的长.22.(本题满分10分,每小题5分)王阿姨销售草莓,草莓成本价为每千克10元,她发现当销售单价为每千克至少10元,但不高于每千克20元时,销售量y (千克)与销售单价x (元)的函数图像如图6所示: (1)求y 关于x 的函数解析式,并写出它的定义域; (2)当王阿姨销售草莓获得的利润为800元时,求 草莓销售的单价.23.(本题满分12分,每小题6分)已知:如图7,在Rt △ABC 中,∠ACB =90° ,点D 在边AC 上,点E 是BD 的中点, CE 的延长线交边AB 于点F ,且∠CED= ∠A . (1)求证:AC =AF ;(2)在边AB 的下方画∠GBA= ∠CED ,交CF 的 延长线于点G ,联结DG .在图7中画出图形,并 证明四边形CDGB 是矩形.CBA图5DEPAD CBEF图7-21234-1图6图824.(本题满分12分,每小题4分)如图8,在平面直角坐标系xOy 中,抛物线y 2经过点A (3,0)和点B (2,3),过点A 的直线与y 轴的负半轴相交于点C ,且(1)求这条抛物线的表达式及对称轴; (2)联结AB 、BC ,求∠ABC 的正切值;(3)若点D 在x 轴下方的对称轴上,当ABC S ∆= 求点D 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)已知:如图9,线段AB =4,以AB 为直径作半圆O ,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC ,过点C 作CD //AB ,且CD =PC ,过点D 作DE//PC ,交射线PB 于点E ,PD 与CE 相交于点Q .(1)若点P 与点A 重合,求BE 的长;(2)设PC = x ,y CEPD=,当点P 在线段AO 上时,求y 与x 的函数关系式及定义域; (3)当点Q 在半圆O 上时,求PC 的长.图9备用图奉贤区初三调研考数学卷参考答案 201704一 、选择题:(本大题共8题,满分24分)1.C ; 2.A ; 3.D ; 4.C ; 5.D ; 6.B ; 二、填空题:(本大题共12题,满分48分)7.2-; 8.一切实数; 9.0=x ; 10.0>a ; 11.4±; 12.4; 13.103; 14.360; 15.22-+; 16.6; 17.3; 18.635; 三.(本大题共7题,满分78分) 19. (本题满分10分) 先化简,再求值: 1)2211(22-÷-+--+a aa a a a ,其中5=a . 解原式=aa a a a a a a a 1)1)(2(21)1)(1(1-⋅-+--⋅-++. …………………………………3分=)2(21+-a a a . ……………………………………………………………………2分 =21)2(22+=+-+a a a a . ………………………………………………………………2分当5=a 时,2525121-=+=+a .…………………………………………3分 20.(本题满分10分)解不等式组⎪⎩⎪⎨⎧-≥++>-.52312,24)1(7x x x x 将其解集在数轴上表示出来,并写出这个不等式组的整数解. 解:由①得: 3>x .………………………………………………………………………2分由②得: 4≤x .………………………………………………………………………2分 所以原不等式的解集是43≤<x . ……………………………………………………2分 数轴上正确表示解集. …………………………………………………………………2分 所以这个不等式组的整数解是4.…………………………………………………………2分 21. (本题满分10分)(1)过点D 作DH ⊥BC ,垂足为点H , ……………………………………………………1分 ∵AD//BC ,∠ABC =90°, ∴DH =AB ,BH =AD .∵AB =4, AD =8, ∴DH =AB =4,BH =AD =8. …………………………………………1分 在Rt △DHC 中,sin ∠HCD =54即54=DC DH .∴DC=5.…………………………………1分 ∴322=-=DH DC HC .∴BC=BH +HC =11. …………………………………………………………………………1分 ∴梯形ABCD 的周长=4+8+11+5=28.………………………………………………………1分(2) ∵AD//BC , ∴ ∠DEC=∠ECB . ∵CE 平分∠BCD ,∴ ∠DCE=∠ECB . ∴ ∠DEC=∠DCE .∴DE =DC=5. ………………………………………………………………………………1分 ∴AE =AD-DE=3.∴522=+=AE AB BE . …………………………………………………………………1分 ∵AD//BC ,∴BC DEPBPE =, 1155=+PE PE 即:. ……………………………………………2分∴PE=625. …………………………………………………………………………………1分 22.(本题满分10分,每小题5分)解:(1)由题意可知,y 与x 之间的函数解析式是:)0(≠+=k b kx y , …………1分 由图像可知,它经过(10,100)、(15,90), ∴⎩⎨⎧=+=+901510010b k b k ,解得:⎩⎨⎧=-=1202b k . …………………………………………………2分∴y 关于x 的函数解析式是:1202-+=x y ,它的定义域是:2010≤≤x . ………2分 (2)由题意可得:800)1202)(10=+--x x ( . ……………………………………3分 整理得:01000702=+-x x ,解得 50,2021==x x (不合题意,舍去) . …………………………………2分 答:当王阿姨销售草莓获得的利润为800元时,草莓销售的单价是20元. 23.(本题满分12分,每小题满分各6分) 证明:(1)∵∠CED= ∠A ,∠DCE =∠FCA ,∴△DCE ∽△CF A . ……………………………………………………………2分 ∴FA ED AC EC =. ……………………………………………………………………1分∵∠ACB =90° ,点E 是BD 的中点,∴ED EC =. ……………………………………………………………………2分 ∴AF AC =. ……………………………………………………………………1分 (2)在图7中正确画出图形. ……………………………………………………………1分 ∵∠GBA= ∠CED ,∠CED= ∠A ,∴∠GBA= ∠A ,∴BG //CD . …………………………………………………………1分 ∴EGCE BE DE =. ……………………………………………………………………………1分 ∵DE =BE ,∴CE =EG . ……………………………………………………………………1分 ∴四边形CDGB 是平行四边形. ………………………………………………………1分 ∵∠ACB =90° ,∴平行四边形CDGB 是矩形. ……………………………………………………………1分24.(本题满分12分,每小题4分)(1)由抛物线c bx x y ++-=2经过点A (3,0)和点B (2,3)可得: ⎩⎨⎧=++-=++-324039c b c b ,解得:⎩⎨⎧==32c b . ………………………………………2分∴抛物线的表达式:322++-=x x y . ……………………………………………1分 ∴对称轴是:直线1=x . ……………………………………………………………1分(2)过点B 作x 轴的垂线,垂足为点H , ∵A (3,0),B (2,3),∴AH=1,BH=3. ∴ 在Rt △ABH 中,31tan ==∠BH AH ABH . ∵tan ∠CAO =31, ∴CAO ABH ∠=∠. ………………………………………1分 ∵∠ABH +∠BAH=90°, ∴∠CAO +∠BAH=90°,即∠BAC=90°. ………………………………………………1分 ∵∠AHB =∠AOC=90° , CAO ABH ∠=∠,HB =AO =3 ∴△AOD ≌△CHA . ∴∠ABC=∠ACB=45°.……………………………………………………………………1分 ∴tan ∠ABC =1. …………………………………………………………………………1分 (3) ∵ ADC ABC S S ∆∆= , ∴点D 到AC 的距离等于点B 到AC 的距离. …………1分 延长BA 到点P ,使BA =P A ,过点P 作PD //AC ,交直线1=x 于点D ,即点D 就是所要求的点,设点D (1,m ),且0<m .过点P 作x 轴的垂线,垂足为点G ,由BA =P A ,∠BHA =∠PGA=90°,∠BAH =∠P AG , 易得:△P AG ≌△BAH .∴AG=1, PG=3,∴P (4,-3). …………………………………………………………1分在Rt △AOC 中,31tan ==∠OA OC CAO ,OA =3,∴OC=1,C (0,1-).∴直线AD 的表达式是:1-31x y =. ……………………………………………………1分 ∴直线PE 的表达式是:31331-=x y .∴当1=x 时,4-=m . 即点D (1,4-).……………………………………………1分另解:由(2)可知,△ABC 是等腰直角三角形,5101021=⨯⨯=∆ABC S (1分)∴直线AD 的表达式是:1-31x y =.直线AD 与直线1=x 相交于点F (1,32-),m DF --=32(1分).5332(21=⨯--⨯=∆)m S ADC (1分), 解得4-=m . 即点D (1,4-). (1分)25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)(1)∵点C 为弧AB 的中点,∴CO ⊥AB .……………………………………………1分 ∵AB =4,∴AO=CO =2.∵点P 与点A 重合,∴2222=+==CO AO AC PC . ………………………………1分 ∴CD //AB ,DE//PC ,∴四边形PCDE 是平行四边形. …………………………………1分 ∵CD =PC ,∴平行四边形PCDE 是菱形. ………………………………………………1分 ∴PC=PE .∴BE=AB-PE=224-. …………………………………………………………………1分 (2)∵∠COE =∠PQE=90°,∠CEO =∠PEQ , ∴△COE ∽△PQE .∴QEOE PQ CO = ,∴OE COQE PQ =. … ……………………………………………………1分 ∵PC = x ,CO =2, ∴在Rt △POC 中,PO =4222-=-x CO PC . ∵x PC PE ==, ∴42--=-=x x PO PE OE .∴244222-+=--==x x x x OE CO EQ PQ . ………………………………………………1分 由(1)可知,四边形PCDE 是菱形,∴PD ⊥CE ,PQ PD 2=,EQ CE 2=.∴ EQPQ EQ PQ CE PD ==22. ……………………………………………………………………1分 ∴ 242-+=x x y )222(≤≤x .………………………………………………………2分(3)当点Q 在半圆O 上时,点P 在OB 上, 过点O 作ON ⊥CQ ,垂足为点N ,∴CQ NQ 21=. ……………………………………1分 ∵CQ=EQ ,∴2=NQQE.……………………………………………………………………1分 ∵PQ //ON ,∴2==NQ QEOP PE ,∴242=-x x . ……………………………………1分 整理得:1632=x ,解得: 334±=x (负数不合题意,舍去).……………………1分 ∴当点Q 在半圆O 上时,334=PC .。

2017年上海各区初三数学一模卷

2017年上海各区初三数学一模卷

2016学年上海市杨浦区初三一模数学试卷一. 选择题(本大题共6题,每题4分,共24分) 1. 如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C. 3:1 D. 3:22. 在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( ) A. 100tan α B. 100cot α C. 100sin α D. 100cos α 3. 将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( ) A. 22(1)5y x =-+ B. 22(1)1y x =-+ C. 22(1)3y x =++ D. 22(3)3y x =-+4. 在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 5. 下列命题不一定成立的是( )A. 斜边与一条直角边对应成比例的两个直角三角形相似B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FDAC FE=,那么B ∠的度数是( )A. 40︒B. 60︒C. 80︒D. 100︒二. 填空题(本大题共12题,每题4分,共48分) 7. 线段3cm 和4cm 的比例中项是 cm 8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是 11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm14. 如果3a b c +=r r r ,2a b c -=r r r ,那么a =r (用b r表示)15. 已知α为锐角,tan 2cos30α︒=,那么α= 度16. 如图是一斜坡的横截面,某人沿着斜坡从P 处出发,走了13米到达M 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是1:i =17. 用“描点法”画二次函数2y ax bx c =++(0)a ≠的图像时,列出了如下表格:那么该二次函数在0x =时,y =18. 如图,△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分) 19. 如图,已知△ABC 中,点F 在边AB 上,且25AF AB =,过A 作AG ∥BC 交CF 的延长线于点G ;(1)设AB a =u u u r r ,AC b =u u u r r ,试用向量a r 和b r 表示向量AG u u u r; (2)在图中求作向量AG u u u r 与AB u u u r的和向量;(不要求写作法,但要指出所作图中表示结论的向量)20. 已知抛物线2y x bx c =-++经过点(1,0)B -和点(2,3)C ;(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(2,1)--,试确定平移的方向和平移的距离.21. 已知:如图,梯形ABCD 中,AD ∥BC ,ABD C ∠=∠,4AD =,9BC =,锐角DBC ∠的正弦值为23;(1)求对角线BD 的长;(2)求梯形ABCD 的面积.22. 如图,某客轮以每小时10海里的速度向正东方向航行,到A 处时向位于南偏西30°方向且相距12海里的B 处的货轮发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C 处恰好与客轮相逢,试求货轮从出发到与客轮相逢所用的时间.23. 已知,如图,在△ABC 中,点D 、G 分别在边AB 、BC 上,ACD B ∠=∠,AG 与CD 相交于点F ; (1)求证:2AC AD AB =⋅;(2)若AD DF AC CG=,求证:2CG DF BG =⋅;24. 在直角坐标系xOy 中,抛物线2443y ax ax a =-++(0)a <的顶点为D ,它的对称轴与x 轴交点为M ; (1)求点D 、点M 的坐标;(2)如果该抛物线与y 轴的交点为A ,点P 在抛物线上,且AM ∥DP ,2AM DP =,求a 的值;25. 在Rt △ABC 中,90ACB ︒∠=,2AC BC ==,点P 为边BC 上的一动点(不与点B 、C 重合),点P 关于直线AC 、AB 的对称点分别为M 、N ,联结MN 交边AB 于点F ,交边AC 于点E ;(1)如图,当点P 为边BC 的中点时,求M ∠的正切值;(2)联结FP ,设CP x =,MPF S y ∆=,求y 关于x 的函数关系式,并写出定义域; (3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似?若是,请证明;若不是,试求出当△AEF 与△ABM 相似时CP 的长;参考答案一. 选择题1. D2. B3. D4. C5. C6. B二. 填空题7. 8. (4,0)-9. 减小10.32x=11.2312.1213. 2014. 45br15. 6016. 2.417. 318.12三. 解答题19.(1)2233AG a b=-u u u r r r;(2)略;20.(1)223y x x=-++;(2)向上平移4个单位;21.(1)6BD=;(2)26;22.2t=;23.(1)略;(2)略;24.(1)(2,3)D、(2,0)M;(2)32a=-或12a=-;25.(1)13;(2)344x xy-=(02)x<<;(3)相似;2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分) 1.如果y x 32=,那么下列各式中正确的是( )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( ) (A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( ) (A )6000米; (B )31000米; (C )32000米; (D )33000米. 6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x . 二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b _____.8.点C 是线段AB 延长线上的点,已知AB a =u u u r r,B =b ρ,那么=____.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD ____. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是_____.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:____(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是______.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ______.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ______.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是______.16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是______.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是______. 18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是______. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)图3F ABCDE 图2ABCDA B C D EF图119.计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于点B ,与y 轴交于点C ,顶点为D .求:(1)点D C B 、、坐标;(2)BCD ∆的面积.21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =u u u r r,=b ρ. 求:(1)向量DC (用向量a r 、b r表示);(2)B tan 的值.22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号); (2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).(参考数据:41.12≈,73.13≈).图4ABCDEF23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足CE AD CD AE ⋅=⋅.(1)求证:AB DE //;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.图6ABCD E25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域; (2)当PEQ ∆是等腰三角形时,求BD 的长;(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.B AC备用图图8QPDB AC E2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷 2017.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B )31000米; (C )32000米; (D )33000米. 6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =u u u r r ,B =b ρ,那么=__b a ϖϖ-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___. 17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)图3 F A B C D E图2 AB CD A B C DEF 图1解:原式123113232-+--⨯=232133-++-=332--= 20.(本题共2小题,每题5分,满分10分)解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ;∴点B 坐标是)0,5(. (2)过点D 作y DA ⊥轴,垂足为A . ∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=. 21.(本题共2小题,每题5分,满分10分)解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥;∴CF AF =;∴CE BE =. ∵BC AD //,AB DE //,∴四边形ABED 是平行四边形;∴AB DE =;∴=DE a AB ϖ=,=EC b BC ϖ2121=;∴b a DC ϖϖ21+=.(2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ;又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC ,∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B . 22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分) 解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ; ∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里); ∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里; 它从B 处到达小岛C 的航行时间约为3.7小时. 23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分) 23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =;∵B DAB ∠=∠,∴BD AD =; ∴CDBDCE AE =;∴AB DE //. (2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2;又BD AD =,∴AB DF AD ⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠;∴ADF ∆∽DBA ∆;∴1==BDADDF AF ;∴AF DF =. 24.(本题共3小题,每题4分,满分12分)解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ; ∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO ,︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ; 当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--.25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABACBD EC ; ∴x BD EC ==;y x PE --=3;QPD BAC E F∵AC DF //,∴AB BD AP DF =;即323x y y x =--,∴3239+-=x xy ;定义域为:30<<x . (2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ; ︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =, ∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB ADBC DE =;即33223x x -=; 解得 7324254-=x .2016学年上海市长宁区、金山区初三一模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线()212y x =--+的顶点坐标是( ) A. (-1,2) B. (1,2) C. (2,-1) D. (2,1)2.在ABC ∆中,90C ∠=︒,5AB =,4BC =,那么A ∠的正弦值是( )A. 34B.43C. 35D. 453.如图,下列能判断BC ED ∥的条件是( ) A.ED AD BC AB = B. ED AEBC AC=C.AD AE AB AC = D. AD ACAB AE=4.已知1O e 与2O e 的半径分别是2和6,若1O e 与2O e 相交,那么圆心距12O O 的取值范围是( )A. 2<12O O <4B.2<12O O <6C. 4<12O O <8D. 4<12O O <105.已知非零向量a r 与b r,那么下列说法正确的是( )A. 如果a b =r r ,那么a b =r r ;B. 如果a b =-r r,那么a b r r ∥ C. 如果a b r r ∥,那么a b =r r ; D. 如果a b =-r r ,那么a b =r r6.已知等腰三角形的腰长为6cm ,底边长为4cm ,以等腰三角形的顶角的顶点为圆心5cm 为半径画圆,那么该圆与底边的位置关系是( ) A. 相离 B. 相切 C. 相交 D.不能确定 二、填空题(本大题共12题,每题4分,满分48分)7. 如果()340x y x =≠,那么xy=__________. 8. 已知二次函数221y x x =-+,那么该二次函数的图像的对称轴是__________. 9. 已知抛物线23y x x c =++于y 轴的交点坐标是(0,-3),那么c =__________. 10. 已知抛物线2132y x x =--经过点(-2,m ),那么m =___________. 11. 设α是锐角,如果tan 2α=,那么cot α=___________.第3题图DEABC12. 在直角坐标平面中,将抛物线22y x =先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是__________.13. 已知A e 的半径是2,如果B 是A e 外一点,那么线段AB 长度的取值范围是__________. 14. 如图,点G 是ABC ∆的重心,联结AG 并延长交BC 于点D ,GE AB ∥交BC 与E ,若6AB =,那么GE =___________.15. 如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为1.5米,那么旗杆BC 的高度为_________米.OBA第17题图第16题图第15题图第14题图GEDC BDCAACD EB16. 如图,1O e 与2O e 相交于A B 、两点,1O e 与2O e 的半径分别是112O O =2,那么两圆公共弦AB 的长为___________.17. 如图,在梯形ABCD 中,AD BC ∥,AC 与BD 交于O 点,:1:2DO BO =,点E 在CB 的延长线上,如果:=1:3AOD ABE S S ∆∆,那么:BC BE =_________.18. 如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.BAC第18题图三、解答题(本大题共7题,满分78分)19 . (本题满分10分)计算:21tan 45sin 30tan 30cos60cot 303sin 45︒︒⋅︒-︒⋅︒+︒如图,在ABC ∆中,D 是AB 中点,联结CD . (1)若10AB =且ACD B ∠=∠,求AC 的长.(2)过D 点作BC 的平行线交AC 于点E ,设DE a =u u u r r ,DC b =u u u r r ,请用向量a r 、b r 表示AC u u u r和AB u u u r(直接写出结果)BA第20题图D21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,ABC ∆中,CD AB ⊥于点D ,D e 经过点B ,与BC 交于点E ,与AB 交与点F .已知1tan 2A =,3cot 4ABC ∠=,8AD =.求(1)D e 的半径;(2)CE 的长.第21题图B22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,拦水坝的横断面为梯形ABCD ,AB CD ∥,坝顶宽DC 为6米,坝高DG 为2米,迎水坡BC的坡角为30°,坝底宽AB 为()米. (1)求背水坡AD 的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB 的宽度.H G N MD FEBA C第22题图如图,已知正方形ABCD ,点E 在CB 的延长线上,联结AE 、DE ,DE 与边AB 交于点F ,FG BE ∥且与AE 交于点G. (1)求证:=GF BF .(2)在BC 边上取点M ,使得BM BE =,联结AM 交DE 于点O .求证:FO ED OD EF ⋅=⋅24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线22y x bx c =-++与x 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2,0) (1)当B (-4,0)时,求抛物线的解析式;(2)O 为坐标原点,抛物线的顶点为P ,当tan 3OAP ∠=时,求此抛物线的解析式; (3)O 为坐标原点,以A 为圆心OA 长为半径画A e ,以C 为圆心,12OC 长为半径画圆C e ,当A e 与C e 外切时,求此抛物线的解析式.第24题图DBGEFCA第23题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC ∆,5AB AC ==,8BC =,PDQ ∠的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合),设PDQ B ∠=∠,3BD =.(1)求证:BDE CFD ∆∆∽;(2)设BE x =,OA y =,求y 关于x 的函数关系式,并写出定义域;(3)当AOF ∆是等腰三角形时,求BE 的长.D第25题备用图OQPD FE第25题图B CA2017年崇明县初三数学一模试卷一、选择题:1.如果)均不为,(0y x 3y 5x =,那么y x :的值是( ) ;35.A ;53.B 83.C 85.D2.在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )125.A 512.B 1312.C 135.D 3.抛物线23x y =向上平移2个单位长度后所得新抛物线的顶点坐标为( ))0,2-.(A )-2,0.(B )0,2.(C )2,0.(D4.设),2(),,1(),y -2(321y C y B A ,是抛物线a )1x (y 2++=上的三点,那么321y y y ,,的大小关系为( )321y y y .>>A 231y y B.y >> 123y y y .>>C 213y y y .>>D5.如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③BCAB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( ) ①.A ②.B ③.C ④.D6.如图,圆O 过点C B 、,圆心O 在等腰直角三角形ABC 内部,,6,190∠==°=BC OA BAC ,那么圆O 的半径为( )13.A 132.B 23.C 32.D二、填空题 7.如果)b -a 2(3b a ρρρρ=+,用a ρ表示b ρ,那么b ρ=8.如果两个相似三角形的对应高之比为21:,那么他们的对应中线的比为9.已知线段AB 的长度为4,C 是线段AB 的黄金分割点,且CB CA >那么CA 的长度为 ___10.如图,,∥∥FC BE AD 他们依次交直线21l l 、于点C B A 、、和点,、、F E D 如果2,7.53AB DF BC ==,那么DE 的长为 11.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P 、Q 、S 在一条直线上,且直线PS 与河垂直,在过点S 且与直线PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60m ,ST =120m ,QR =80m ,那么PQ 为 m .12.如果两圆的半径分别为2cm 和6cm ,圆心距为3cm ,那么两圆的位置关系是 ; 13.如果一个圆的内接正六边形的周长为36,那么这个圆的半径为 ;14.如果一条抛物线的顶点坐标为(2,1)-,并过点(0,3),那么这条抛物线的解析式为 ;15.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为1:2的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离为 m.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O ∠)为60o ,A ,B ,C 都在格点上,那么tan ABC ∠的值是 ;17.如图,O e 的半径是4,ABC ∆是O e 的内接三角形,过圆心O 分别作AB ,BC ,AC 的垂线,垂足为E ,F ,G ,连接EF ,如果1OG =,那么EF 为 ;18.如图,已知 ABC ∆中,45ABC ∠=o ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD V 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算: 2sin 30cot 602sin 453tan 60⋅+-o o o o o20.(本题10分,第一小题6分,第二小题4分)如图,在ABC △中,点D 、E 分别在边AB 、AC 上,如果DE BC ∥,12AD BD =,DA a =u u u r r ,DC b =u u u r r . (1)请用a r 、b r 来表示DE u u u r ; (2)在原图中求作向量DE u u u r 在a r 、b r 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21. (本题满分10分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为︒37 旗杆底部B 的俯角为︒45,升旗时,国旗上端悬挂在距地面25.2米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒)22. (本题满分10分)如图,矩形EFGD 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,且EF DE 2=,ABC ∆中,边BC 的长度为cm 12,高AH 为cm 8 ,求矩形DEFG 的面积.23. (本题满分12分,其中每小题各6分)如图,在Rt ABC V 中,︒=∠90ACB ,AB CD ⊥,M 是CD 边上一点,BM DH ⊥于点H ,DH 的延长线交AC 的延长线于点E . 求证:(1)AED ∆∽CBM ∆;(2)CD AC CM AE ⋅=⋅.24.(本题满分12分,其中每小题各4分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点)3,0(A ,与x 轴的正半轴交于点)0,5(B ,点D 在线段OB 上,且1=OD ,联结AD 、将线段AD 绕着点D 顺时针旋转︒90.得到线段DE ,过点E 作直线x l ⊥轴,垂足为H ,交抛物线于点F . (1)求这条抛物线的解析式;(2)联结DF ,求EDF ∠cot 的值;(3)点G 在直线l 上,且︒=∠45EDG ,求点G 的坐标.25. (本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分) 在ABC ∆中,︒=∠90ACB ,23cot =A ,26=AC ,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE于点F ,联结BD .(1)求证:BCCECD PC =; (2)若x PE =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ∆为等腰三角形时,求PE 的长.参考答案1.B2.B3.D4.C5.C6..A7.53a v8.1:2 9.2 10.3 11.120 12.内含 13.6 14.()221y x =-- .15. 19.56 20(1).2133DE a b =+u u u r r r (2)略 21.0.3米/秒 22.18平方厘米23.略 24.(1)2312355y x x =-++ (2)2 (3)(4,6)或34,2⎛⎫- ⎪⎝⎭25.(1)略(2)24(04)2x xy x +=<≤ (3)4或42017年上海市宝山区初三数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.第9题图第10题图第12题图10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c 的对称轴是直线.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC 交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF 中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向故选:A.6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限故选C.二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC是AD和AB 的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c 的对称轴是直线x=2.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=1:2.4.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═6:5.解:∵DE⊥AB,tanA═,∴DE=AD,∵Rt△ABC中,AC═8,tanA═,∴BC=4,AB==4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE==5,∴CE=8﹣5=3,∴Rt△BCE中,BE==5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.故答案为:6:5.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.解:原式=﹣+1=+﹣+1=++1.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;。

2017年上海奉贤区初三一模数学试卷答案

2017年上海奉贤区初三一模数学试卷答案

B
.cos B = .sin B = .sin B =
BC AB AC
os h
,正确.
=
− − 3√13
,不正确; ,不正确; ,不正确;
C
D
故选A.
3. 如果把一个锐角△ABC 的三边的长都扩大为原来的3倍,那么锐角A 的余切值( ). A. 扩大为原来的3倍 B. 缩小为原来的
1 3
C. 没有变化
y

5
2
20
18

/1
学生版
教师版
答案版
2/
04
编辑
2
5
10

(1) 根据上表填空: 1 这个抛物线的对称轴是 ,抛物线一定会经过点(−2, );
2 抛物线在对称轴右侧部分是
jia
os
故答案为:x = 1 ;10.
hi .iz
∴抛物线会经过点(−2, 10).
答案
上升
hi
∴当x = −2 和x = 4 时,y值相同,
,那么下列各式正确的是( ). C.
sin B = 2 3
B.
D.
cos B =
2 3
答案 解析
A 如图,
A
.tan B =
AC BC
jia
= 2 3 = 3 − − √13 2 = AB AC AB − − √13 2 − − √13 = 13 − − 2√13 = 13 = 13 − − 2√13
= b
b
2
AD
os
∴AE
− − →
2 −→ −
2 −→ −
hi .iz

− 1 −→ 1 1 ⃗ DE = AD = a ⃗ + b 4

初中数学17年上海市奉贤区中考模拟数学一模考试卷含答案

初中数学17年上海市奉贤区中考模拟数学一模考试卷含答案

xx 学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)试题1:下列抛物线中,顶点坐标是(﹣2,0)的是()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2 D.y=(x﹣2)2试题2:如果在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式正确的是()A.tanB= B.cotB= C.sinB= D.cosB=试题3:如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值()A.扩大为原来的3被 B.缩小为原来的C.没有变化 D.不能确定试题4:对于非零向量、、下列条件中,不能判定与是平行向量的是()A.∥,∥ B.+3=,=3 C.=﹣3 D.||=3| |试题5:在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是()A.= B.= C.∠A=∠E D.∠B=∠D试题6:一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=﹣t2+t+1(0≤t≤20),那么网球到达最高点时距离地面的高度是()A.1米 B.1.5米 C.1.6米 D.1.8米试题7:如果线段a、b、c、d满足==,那么= .试题8:计算:(2+6)﹣3= .试题9:已知线段a=3,b=6,那么线段a、b的比例中项等于.试题10:用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为(不写定义域).试题11:如果二次函数y=ax2(a≠0)的图象开口向下,那么a的值可能是(只需写一个).试题12:如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是.试题13:如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是.试题14:在△ABC中,点D、E分别在边AB、AC上,如果=,AE=4,那么当EC的长是时,DE∥BC.试题15:如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么的值是.试题16:边长为2的等边三角形的重心到边的距离是.试题17:如图,如果在坡度i=1:2.4 的斜坡上两棵树间的水平距离AC为3米,那么两树间的坡面距离AB是米.试题18:如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是.试题19:计算:.试题20:已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:x …﹣1 0 2 3 4 …y … 5 2 2 5 10 …(1)根据上表填空:①这个抛物线的对称轴是,抛物线一定会经过点(﹣2,);②抛物线在对称轴右侧部分是(填“上升”或“下降”);(2)如果将这个抛物线y=ax2+bx+c向上平移使它经过点(0,5),求平移后的抛物线表达式.试题21:已知:如图,在△ABC中,AB=AC,过点A作AD⊥BC,垂足为点D,延长AD至点E,使DE=AD,过点A作AF∥BC,交EC的延长线于点F.(1)设=,=,用、的线性组合表示;(2)求的值.试题22:如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)试题23:已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:(1)△ABF∽△BED;(2)=.试题24:如图,在平面直角坐标系中xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D,联结AC、BC、DB、DC.(1)求这条抛物线的表达式及顶点D的坐标;(2)求证:△ACO∽△DBC;(3)如果点E在x轴上,且在点B的右侧,∠BCE=∠ACO,求点E的坐标.试题25:已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=,求y关于x的函数关系式,并写出它的定义域;(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.试题1答案:C【考点】二次函数的性质.【分析】可设其顶点式,结合选项可求得答案.【解答】解:∵抛物线顶点坐标是(﹣2,0),∴可设其解析式为y=a(x+2)2,∴只有选项C符合,故选C.试题2答案:A【考点】锐角三角函数的定义.【分析】根据勾股定理求出AB,根据锐角三角函数的定义计算即可判断.【解答】解:∵∠C=90°,AC=2,BC=3,∴AB==,∴tanB==,cotB==,sinB==,cosB==,试题3答案:C【考点】锐角三角函数的定义.【分析】根据△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,得到锐角A的大小没改变和余切的概念解答.【解答】解:因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,所以锐角A的余切值也不变.故选:C.试题4答案:D【考点】*平面向量.【分析】根据向量的性质进行逐一判定即可.【解答】解:A、由∥,∥推知非零向量、、的方向相同,则∥,故本选项错误;B、由+3=,=3推知与方向相反,与方向相同,则非零向量与的方向相反,所以∥,故本选项错误;C、由=﹣3推知非零向量与的方向相反,则∥,故本选项错误;D、由||=3||不能确定非零向量、的方向,故不能判定其位置关系,故本选项正确.故选D.试题5答案:B【考点】相似三角形的判定;等腰三角形的性质.【分析】根据三组对应边的比相等的两个三角形相似判定即可.【解答】解:在△ABC和△DEF中,∵==,∴△ABC∽△DEF,故选B.试题6答案:D【考点】二次函数的应用.【分析】利用配方法求得二次函数的最大值即可.【解答】解:h=﹣t2+t+1=﹣(t2﹣16t+64﹣64)+1=﹣(t﹣8)2++1=﹣(t﹣8)2+1.8.故选:D.试题7答案:.【考点】比例线段.【分析】根据等比性质:==⇒===,可得答案.【解答】解:∵==,∴由等比性质,得=.试题8答案:﹣2+3.【考点】*平面向量.【分析】根据平面向量的计算法则进行解答.【解答】解:原式=×2+×6﹣3,=+3﹣3,=﹣2+3,故答案是:﹣2+3.试题9答案:3.【考点】比例线段.【分析】设线段x是线段a,b的比例中项,根据比例中项的定义列出等式,利用两内项之积等于两外项之积即可得出答案.【解答】解:设线段x是线段a,b的比例中项,∵a=3,b=6,∴=,∴x2=ab=3×6=18,∴x=±3(负值舍去).故答案为:3.试题10答案:y=﹣x2+4x【考点】根据实际问题列二次函数关系式.【分析】根据矩形的周长表示出长,根据面积=长×宽即可得出y与x之间的函数关系式.【解答】解:设这个矩形窗框宽为x米,可得:y=﹣x2+4x,故答案为:y=﹣x2+4x试题11答案:﹣1【考点】二次函数的性质.【分析】由抛物线开口方向可求得a的取值范围,可求得答案.【解答】解:∵二次函数y=ax2(a≠0)的图象开口向下,∴a<0,∴可取a=﹣1,故答案为:﹣1.试题12答案:﹣1 .【考点】二次函数图象上点的坐标特征.【分析】将原点坐标(0,0)代入二次函数解析式,列方程求m即可.【解答】解:∵二次函数y=x2﹣mx+m+1的图象经过原点,∴m+1=0,解得m=﹣1,故答案为:﹣1.试题13答案:4:9 .【考点】相似三角形的性质.【分析】由两个相似三角形对应角平分线的比是4:9,根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比,周长的比等于相似比,即可求得答案.【解答】解:∵两个相似三角形对应角平分线的比是4:9,∴它们的相似比为4:9,∴它们的周长比为4:9.故答案为:4:9.试题14答案:6【考点】平行线分线段成比例.【分析】求出比例式,根据相似三角形的判定得出相似,根据相似三角形的性质得出△ADE∽△ABC,推出∠ADE=∠B,根据平行线的判定得出即可.【解答】解:当EC=6时,DE∥BC,理由是:∵=,AE=4,EC=6,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,故答案为:6.试题15答案:.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得=,再根据AB=6,BC=10,可求得答案.【解答】解:∵AD∥BE∥FC,∴=,又∵AB=6,BC=10,∴=,∴的值是.故答案为:.试题16答案:.【考点】三角形的重心.【分析】根据等边三角形的性质、勾股定理求出高AD,根据重心的性质计算即可.【解答】解:如图,△ABC为等边三角形,过A作AD⊥BC,交BC于点D,则BD=AB=1,AB=2,在Rt△ABD中,由勾股定理可得:AD==,则重心到边的距离是为:×=,故答案为:.试题17答案:【考点】解直角三角形的应用-坡度坡角问题.【分析】设BC=x,则AC=2.4x,再由勾股定理求出AB的长,根据AC=3米即可得出结论.【解答】解:∵坡度i=1:2.4,∴设BC=x,则AC=2.4x,∴AB===2.6x.∵AC=3米,∴==,解得AB=.故答案为:.试题18答案:1 .【考点】翻折变换(折叠问题);矩形的性质.【分析】根据题意求出CG、DG,根据勾股定理求出BG,根据相似三角形的判定定理得到△HEG∽△BCG,根据相似三角形的性质求出HG,得到DH的长,同理解答即可.【解答】解:∵CG=2DG,CD=6,∴CG=4,DG=2,由勾股定理得,BG==5,∴EG=1,由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,∴△HEG∽△BCG,∴==,∴HG=,∴DH=DG﹣HG=,同理,DP=1,故答案为:1.试题19答案:【考点】特殊角的三角函数值.【分析】把30°、45°、60°角的各种三角函数值代入计算即可.【解答】解:原式===2.试题20答案:【考点】待定系数法求二次函数解析式;二次函数图象与几何变换.【分析】(1)①根据抛物线过点(0,2)、(2,2),即可得出抛物线的对称轴为x=1,再根据二次函数的对称性结合当x=4时y=10,即可得出当x=﹣2时y的值;②根据抛物线的对称轴为x=1结合当x=2、3、4时的y的值逐渐增大,即可得出抛物线在对称轴右侧部分是上升;(2)根据点的坐标利用待定系数法即可求出原二次函数表达式,再根据点(0,5)在点(0,2)上方3个单位长度处即可得出抛物线往上平移3个单位长度,在原二次函数表达式常数项上+3即可得出结论.【解答】解:(1)①∵当x=0和x=2时,y值均为2,∴抛物线的对称轴为x=1,∴当x=﹣2和x=4时,y值相同,∴抛物线会经过点(﹣2,10).故答案为:x=1;10.②∵抛物线的对称轴为x=1,且x=2、3、4时的y的值逐渐增大,∴抛物线在对称轴右侧部分是上升.故答案为:上升.(2)将点(﹣1,5)、(0,2)、(2,2)代入y=ax2+bx+c中,,解得:,∴二次函数的表达式为y=x2﹣2x+2.∵点(0,5)在点(0,2)上方3个单位长度处,∴平移后的抛物线表达式为y=x2﹣2x+5.试题21答案:【考点】*平面向量;等腰三角形的性质.【分析】(1)由平面向量的三角形法则得到,然后结合已知条件DE=AD来求;(2)根据平行线截线段成比例和三角形的面积公式进行解答.【解答】解:(1)∵如图,在△ABC中,AB=AC,AD⊥BC,∴BD=BC,∵=,=,∴=+=+.又∵DE=AD,∴==+,∴=+=+++=+;(2)∵DE=AD,AF∥BC,∴=,==,∴==•=×=,即=.试题22答案:【考点】解直角三角形的应用.【分析】(1)作DP⊥MN于点P,即∠DPC=90°,由DE∥MN知∠DCP=∠ADE=76°,根据DP=CDsin∠DCP可得答案;(2)作EQ⊥MN于点Q可得四边形DEQP是矩形,知DE=PQ=20,EQ=DP=39,再分别求出BQ、CP的长可得答案.【解答】解:(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CDsin∠DCP=40×sin76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CDcos∠DCP=40×cos76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54cm.试题23答案:【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)由菱形的性质得出AC⊥BD,AB∥CD,得出△ABF∽△CEF,由互余的关系得:∠DBE=∠FCE,证出△BED∽△CEF,即可得出结论;(2)由平行线得出,由相似三角形的性质得出,即可得出结论.【解答】证明:(1)∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴△ABF∽△CEF,∵BE⊥DC,∴∠FEC=∠BED,由互余的关系得:∠DBE=∠FCE,∴△BED∽△CEF,∴△ABF∽△BED;(2)∵AB∥CD,∴,∴,∵△ABF∽△BED,∴,∴=.试题24答案:【考点】二次函数综合题;直角三角形的性质;勾股定理的逆定理;相似三角形的判定.【分析】(1)根据抛物线y=﹣x2+bx+c经过点A(﹣1,0),点C(0,3),即可求得b,c的值,进而得到抛物线的表达式及顶点D的坐标;(2)先根据B(3,0),A(﹣1,0),D(1,4),求得CD=,BC=3,BD=2,AO=1,CO=3,进而得到CD2+BC2=BD2,从而判定△BCD是直角三角形,且∠BCD=90°,最后根据∠AOC=∠DCB,=,判定△ACO∽△DBC;(3)先设CE与BD交于点M,根据MC=MB,得出M是BD的中点,再根据B(3,0),D(1,4),得到M(2,2),最后根据待定系数法求得直线CE的解析式,即可得到点E的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(﹣1,0),点C(0,3),∴,解得,∴抛物线的表达式为y=﹣x2+2x+3,∴顶点D的坐标为(1,4);(2)∵当y=0时,0=﹣x2+2x+3,解得x1=﹣1,x2=3,∴B(3,0),又∵A(﹣1,0),D(1,4),∴CD=,BC=3,BD=2,AO=1,CO=3,∴CD2+BC2=BD2,∴△BCD是直角三角形,且∠BCD=90°,∴∠AOC=∠DCB,又∵=,=,∴=,∴△ACO∽△DBC;(3)设CE与BD交于点M,∵△ACO∽△DBC,∴∠DBC=∠ACO,又∵∠BCE=∠ACO,∴∠DBC=∠BCE,∴MC=MB,∵△BCD是直角三角形,∴∠BCM+∠DCM=90°=∠CBM+∠MDC,∴∠DCM=∠CDM,∴MC=MD,∴DM=BM,即M是BD的中点,∵B(3,0),D(1,4),∴M(2,2),设直线CE的解析式为y=kx+b,则,解得,∴直线CE为:y=﹣x+3,当y=0时,0=﹣x+3,解得x=6,∴点E的坐标为(6,0).试题25答案:【考点】三角形综合题.【分析】(1)先判断出△ABD∽△ACF,进而判断出AD=BD,再用解直角三角形的方法即可得出BD;(2)先表示出CF,进而表示出MC,即可得出函数关系式;(3)分两种情况列出方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,∴AC=6,AB=10,∵∠DAE=∠BAC,∴∠FAC=∠DAB,∵∠ACF=∠B,∴△ABD∽△ACF,∴,在Rt△ABC中,点F恰好是AE的中点,∴CF=AE=AF,∴AD=BD,在Rt△ACD中,AC=6,CD=BC﹣BD=BC﹣AD=8﹣AD,根据勾股定理得,AC2+CD2=AD2,∴36+(8﹣AD)2=AD2,∴AD=,∴BD=AD=,(2)如图1,过点F作FM⊥AC于M,由(1)知,∴=,∴CF==×x=x,由(1)△ABD∽△ACF,∴∠B=∠ACF,∴tan∠ACF=tanB===,∴MC=x,∴y===(0<x<8)(3)∵△ADE是以AD为腰的等腰三角形,∴①当AD=AE时,∴∠AED=∠ADE,∵∠ACD=90°,∴∠EAC=∠DAC=∠DAB,∴AD是∠BAC的平分线,∴,∵AC=6,AB=10,CD=8﹣BD,∴,∴BD=5,当AD=DE时,∴∠DAE=∠DEA=∠BAC,∴∠ADE=2∠B,∴∠B=∠DAB,∴AD=BD=(是(1)的那种情况).即:BD=5或BD=时,△ADE是以AD为腰的等腰三角形.。

上海市各市县2017届中考数学试题分类汇编-初三一模25题

上海市各市县2017届中考数学试题分类汇编-初三一模25题

上海市各市县2017届中考数学试题分类汇编2017年初三数学一模25题汇编25题常考题型解析:题型一、等腰三角形的分类讨论思路点拨:出现概率较高题型,重点。

解决此类问题主要通过两个方面解决:1.一方面从边方面入手,将此三角形的三边用x y或的表达式表示,根据腰相等建立方程求出线段长度(优点:方法简单,易理解;缺点:计算量偏大,易出错);2.另一方面从角方面入手,利用等腰产生的底角相等转化出其他的角度关系或边长关系进而建立方程求出线段的长度(优点:计算量偏小,易计算,缺点:此方法对于孩子的分析能力要求较高,适合一部分程度较好的学生)。

题型二、动点产生的相似综合思路点拨:1.首先寻找题目中特殊的条件和不变的量,并找出由条件引发的一些相等角、相等线段等特殊条件;(挖掘题目中的隐藏条件)2.然后注意分类讨论,先找到对应相等的角,再决定分类讨论情况:3.相似三角形的边如果能直接求出列等式最好,如果不能求出,注意转化相似(是否产生新的相似、等腰、平行四边形等更特殊的条件).题型三、动点产生的直角三角形问题思路点拨:当判断一个动三角形为直角三角形时,首先注意分类讨论。

其次就是利用这个直角来求解线段长度或角度问题,可以考虑用一下两种方法:1.直角三角形的基本性质,包括锐角互余关系,三边勾股关系,斜中定理关系,以及30°角性质等;2.利用产生的直角,利用锐角三角比或构造一线三直角利用相似关系来解题。

题型四、圆的综合思路点拨:圆的综合在一模试卷中出现的不多,二模中是重点题型。

与圆有关的问题主要分两类:1.一是圆中函数关系式的建立,主要要利用垂径定理和勾股定理,有时还会结合三角形的相似关系来建立关系式;2.二是考察圆中的位置关系,包括点与圆、直线与圆和圆与圆的位置关系,其中圆与圆的相切关系考察频率较高,需重点掌握。

解题方法主要是抓住代数上的等量关系再结合一下图形即可求出,切忌和学生强调不要纠结在一定要画出图形才能解题。

2017年上海市奉贤区中考数学一模试卷含答案解析

2017年上海市奉贤区中考数学一模试卷含答案解析

2017 年上海市奉贤区中考数学一模试卷一、选择题 1.下列抛物线中,顶点坐标是(﹣2,0)的是( ) A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2 D.y=(x﹣2)2 2.如果在 Rt△ABC 中,∠C=90°,AC=2,BC=3,那么下列各式正确的是( ) A.tanB= B.cotB= C.sinB= D.cosB= 3.如果把一个锐角△ABC 的三边的长都扩大为原来的 3 倍,那么锐角 A 的余切值( ) A.扩大为原来的 3 被 B.缩小为原来的 C.没有变化 D.不能确定 4.对于非零向量 、 、 下列条件中,不能判定 与 是平行向量的是( )A. ∥ , ∥ B. +3 = , =3 C. =﹣3 D.| |=3| |5.在△ABC 和△DEF 中,AB=AC,DE=DF,根据下列条件,能判断△ABC 和△DEF 相似的是( )A. =B. =C.∠A=∠E D.∠B=∠D6.一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间 t(秒)的函数解析式为 h=﹣ t2+ t+1(0≤t≤20),那么网球到达最高点时距离地面的高度是( ) A.1 米 B.1.5 米 C.1.6 米 D.1.8 米二、填空题7.如果线段 a、b、c、d 满足 = = ,那么 = .8.计算: (2 +6 )﹣3 = . 9.已知线段 a=3,b=6,那么线段 a、b 的比例中项等于 . 10.用一根长为 8 米的木条,做一个矩形的窗框.如果这个矩形窗框宽为 x 米,那么这个窗户 的面积 y(米 2)与 x(米)之间的函数关系式为 (不写定义域). 11.如果二次函数 y=ax2(a≠0)的图象开口向下,那么 a 的值可能是 (只需写一个). 12.如果二次函数 y=x2﹣mx+m+1 的图象经过原点,那么 m 的值是 . 13.如果两个相似三角形对应角平分线的比是 4:9,那么它们的周长比是 .114.在△ABC 中,点 D、E 分别在边 AB、AC 上,如果 = ,AE=4,那么当 EC 的长是 时, DE∥BC. 15.如图,已知 AD∥BE∥CF,它们依次交直线 l1、l2 于点 A、B、C 和点 D、E、F.如果 AB=6, BC=10,那么 的值是 .16.边长为 2 的等边三角形的重心到边的距离是 . 17.如图,如果在坡度 i=1:2.4 的斜坡上两棵树间的水平距离 AC 为 3 米,那么两树间的坡面 距离 AB 是 米.18.如图,在矩形 ABCD 中,AB=6,AD=3,点 P 是边 AD 上的一点,联结 BP,将△ABP 沿着 BP 所在直线翻折得到△EBP,点 A 落在点 E 处,边 BE 与边 CD 相交于点 G,如果 CG=2DG,那么 DP 的长是 .三、解答题19.计算:.20.已知抛物线 y=ax2+bx+c(a≠0)上部分点的横坐标 x 与纵坐标 y 的对应值如下表:x…﹣10234…y…522510…(1)根据上表填空:2①这个抛物线的对称轴是 ,抛物线一定会经过点(﹣2,);②抛物线在对称轴右侧部分是 (填“上升”或“下降”);(2)如果将这个抛物线 y=ax2+bx+c 向上平移使它经过点(0,5),求平移后的抛物线表达式.21.已知:如图,在△ABC 中,AB=AC,过点 A 作 AD⊥BC,垂足为点 D,延长 AD 至点 E,使DE= AD,过点 A 作 AF∥BC,交 EC 的延长线于点 F.(1)设 = , = ,用 、 的线性组合表示 ;(2)求的值.22.如图 1 是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图 2),支架与坐 板均用线段表示,若座板 DF 平行于地面 MN,前支撑架 AB 与后支撑架 AC 分别与座板 DF 交于 点 E、D,现测得 DE=20 厘米,DC=40 厘米,∠AED=58°,∠ADE=76°. (1)求椅子的高度(即椅子的座板 DF 与地面 MN 之间的距离)(精确到 1 厘米) (2)求椅子两脚 B、C 之间的距离(精确到 1 厘米)(参考数据:sin58°≈0.85,cos58°≈0.53, tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)23.已知:如图,菱形 ABCD,对角线 AC、BD 交于点 O,BE⊥DC,垂足为点 E,交 AC 于点 F.求 证: (1)△ABF∽△BED; (2) = .324.如图,在平面直角坐标系中 xOy 中,抛物线 y=﹣x2+bx+c 与 x 轴相交于点 A(﹣1,0)和点 B,与 y 轴相交于点 C(0,3),抛物线的顶点为点 D,联结 AC、BC、DB、DC. (1)求这条抛物线的表达式及顶点 D 的坐标; (2)求证:△ACO∽△DBC; (3)如果点 E 在 x 轴上,且在点 B 的右侧,∠BCE=∠ACO,求点 E 的坐标.25.已知,如图,Rt△ABC 中,∠ACB=90°,BC=8,cot∠BAC= ,点 D 在边 BC 上(不与点 B、 C 重合),点 E 在边 BC 的延长线上,∠DAE=∠BAC,点 F 在线段 AE 上,∠ACF=∠B.设 BD=x.(1)若点 F 恰好是 AE 的中点,求线段 BD 的长; (2)若 y= ,求 y 关于 x 的函数关系式,并写出它的定义域; (3)当△ADE 是以 AD 为腰的等腰三角形时,求线段 BD 的长.42017 年上海市奉贤区中考数学一模试卷参考答案与试题解析一、选择题 1.下列抛物线中,顶点坐标是(﹣2,0)的是( ) A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2 D.y=(x﹣2)2 【考点】二次函数的性质. 【分析】可设其顶点式,结合选项可求得答案. 【解答】解: ∵抛物线顶点坐标是(﹣2,0), ∴可设其解析式为 y=a(x+2)2, ∴只有选项 C 符合, 故选 C.2.如果在 Rt△ABC 中,∠C=90°,AC=2,BC=3,那么下列各式正确的是( )A.tanB= B.cotB= C.sinB= D.cosB=【考点】锐角三角函数的定义. 【分析】根据勾股定理求出 AB,根据锐角三角函数的定义计算即可判断. 【解答】解:∵∠C=90°,AC=2,BC=3,∴AB==,∴tanB= = ,cotB= = ,sinB= =,cosB= =,故选:A/.3.如果把一个锐角△ABC 的三边的长都扩大为原来的 3 倍,那么锐角 A 的余切值( )5A.扩大为原来的 3 被 B.缩小为原来的C.没有变化 D.不能确定 【考点】锐角三角函数的定义. 【分析】根据△ABC 三边的长度都扩大为原来的 3 倍所得的三角形与原三角形相似,得到锐角 A 的大小没改变和余切的概念解答. 【解答】解:因为△ABC 三边的长度都扩大为原来的 3 倍所得的三角形与原三角形相似, 所以锐角 A 的大小没改变,所以锐角 A 的余切值也不变. 故选:C.4.对于非零向量 、 、 下列条件中,不能判定 与 是平行向量的是( ) A. ∥ , ∥ B. +3 = , =3 C. =﹣3 D.| |=3| | 【考点】*平面向量. 【分析】根据向量的性质进行逐一判定即可. 【解答】解:A、由 ∥ , ∥ 推知非零向量 、 、 的方向相同,则 ∥ ,故本选项错误; B、由 +3 = , =3 推知 与 方向相反, 与 方向相同,则非零向量 与 的方向相反,所 以 ∥ ,故本选项错误; C、由 =﹣3 推知非零向量 与 的方向相反,则 ∥ ,故本选项错误; D、由| |=3| |不能确定非零向量 、 的方向,故不能判定其位置关系,故本选项正确. 故选 D.5.在△ABC 和△DEF 中,AB=AC,DE=DF,根据下列条件,能判断△ABC 和△DEF 相似的是( )A. =B. =C.∠A=∠E D.∠B=∠D【考点】相似三角形的判定;等腰三角形的性质. 【分析】根据三组对应边的比相等的两个三角形相似判定即可. 【解答】解:在△ABC 和△DEF 中,∵==,∴△ABC∽△DEF,6故选 B.6.一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度 h(米)关于运行时间 t(秒)的函数解析式为 h=﹣ t2+ t+1(0≤t≤20),那么网球到达最高 点时距离地面的高度是( ) A.1 米 B.1.5 米 C.1.6 米 D.1.8 米 【考点】二次函数的应用. 【分析】利用配方法求得二次函数的最大值即可. 【解答】解:h=﹣ t2+ t+1=﹣ (t2﹣16t+64﹣64)+1=﹣ (t﹣8)2+ +1=﹣ (t﹣8) 2+1.8. 故选:D.二、填空题7.如果线段 a、b、c、d 满足 = = ,那么 =.【考点】比例线段.【分析】根据等比性质: = = ⇒ = = = ,可得答案.【解答】解:∵ = = ,∴由等比性质,得 = .故答案为: .8.计算: (2 +6 )﹣3 = ﹣2 +3 . 【考点】*平面向量. 【分析】根据平面向量的计算法则进行解答. 【解答】解:原式= ×2 + ×6 ﹣3 , = +3 ﹣3 , =﹣2 +3 , 故答案是:﹣2 +3 .79.已知线段 a=3,b=6,那么线段 a、b 的比例中项等于 3 . 【考点】比例线段. 【分析】设线段 x 是线段 a,b 的比例中项,根据比例中项的定义列出等式,利用两内项之积等 于两外项之积即可得出答案. 【解答】解:设线段 x 是线段 a,b 的比例中项, ∵a=3,b=6, ∴=, ∴x2=ab=3×6=18, ∴x=±3 (负值舍去). 故答案为:3 .10.用一根长为 8 米的木条,做一个矩形的窗框.如果这个矩形窗框宽为 x 米,那么这个窗户 的面积 y(米 2)与 x(米)之间的函数关系式为 y=﹣x2+4x (不写定义域). 【考点】根据实际问题列二次函数关系式. 【分析】根据矩形的周长表示出长,根据面积=长×宽即可得出 y 与 x 之间的函数关系式. 【解答】解:设这个矩形窗框宽为 x 米,可得:y=﹣x2+4x, 故答案为:y=﹣x2+4x11.如果二次函数 y=ax2(a≠0)的图象开口向下,那么 a 的值可能是 ﹣1 (只需写一个). 【考点】二次函数的性质. 【分析】由抛物线开口方向可求得 a 的取值范围,可求得答案. 【解答】解: ∵二次函数 y=ax2(a≠0)的图象开口向下, ∴a<0, ∴可取 a=﹣1, 故答案为:﹣1.12.如果二次函数 y=x2﹣mx+m+1 的图象经过原点,那么 m 的值是 ﹣1 . 【考点】二次函数图象上点的坐标特征.8【分析】将原点坐标(0,0)代入二次函数解析式,列方程求 m 即可. 【解答】解:∵二次函数 y=x2﹣mx+m+1 的图象经过原点, ∴m+1=0, 解得 m=﹣1, 故答案为:﹣1.13.如果两个相似三角形对应角平分线的比是 4:9,那么它们的周长比是 4:9 . 【考点】相似三角形的性质. 【分析】由两个相似三角形对应角平分线的比是 4:9,根据相似三角形的对应线段(对应中线、 对应角平分线、对应边上的高)的比也等于相似比,周长的比等于相似比,即可求得答案. 【解答】解:∵两个相似三角形对应角平分线的比是 4:9, ∴它们的相似比为 4:9, ∴它们的周长比为 4:9. 故答案为:4:9.14.在△ABC 中,点 D、E 分别在边 AB、AC 上,如果 = ,AE=4,那么当 EC 的长是 6 时, DE∥BC. 【考点】平行线分线段成比例. 【分析】求出比例式,根据相似三角形的判定得出相似,根据相似三角形的性质得出△ADE∽△ ABC,推出∠ADE=∠B,根据平行线的判定得出即可.【解答】解:当 EC=6 时,DE∥BC, 理由是:∵ = ,AE=4,EC=6, ∴=, ∵∠A=∠A, ∴△ADE∽△ABC, ∴∠ADE=∠B,9∴DE∥BC, 故答案为:6.15.如图,已知 AD∥BE∥CF,它们依次交直线 l1、l2 于点 A、B、C 和点 D、E、F.如果 AB=6,BC=10,那么 的值是.【考点】平行线分线段成比例. 【分析】根据平行线分线段成比例可得 = ,再根据 AB=6,BC=10,可求得答案. 【解答】解:∵AD∥BE∥FC, ∴=, 又∵AB=6,BC=10, ∴ =, ∴ 的值是 . 故答案为: .16.边长为 2 的等边三角形的重心到边的距离是.【考点】三角形的重心. 【分析】根据等边三角形的性质、勾股定理求出高 AD,根据重心的性质计算即可. 【解答】解:如图,△ABC 为等边三角形,过 A 作 AD⊥BC,交 BC 于点 D,则 BD= AB=1,AB=2,在 Rt△ABD 中,由勾股定理可得:AD==,则重心到边的距离是为: × = ,故答案为: .1017.如图,如果在坡度 i=1:2.4 的斜坡上两棵树间的水平距离 AC 为 3 米,那么两树间的坡面距离 AB 是米.【考点】解直角三角形的应用-坡度坡角问题. 【分析】设 BC=x,则 AC=2.4x,再由勾股定理求出 AB 的长,根据 AC=3 米即可得出结论. 【解答】解:∵坡度 i=1:2.4, ∴设 BC=x,则 AC=2.4x,∴AB===2.6x.∵AC=3 米,∴ = = ,解得 AB= .故答案为: .18.如图,在矩形 ABCD 中,AB=6,AD=3,点 P 是边 AD 上的一点,联结 BP,将△ABP 沿着 BP 所在直线翻折得到△EBP,点 A 落在点 E 处,边 BE 与边 CD 相交于点 G,如果 CG=2DG,那么 DP 的长是 1 .【考点】翻折变换(折叠问题);矩形的性质. 【分析】根据题意求出 CG、DG,根据勾股定理求出 BG,根据相似三角形的判定定理得到△HEG ∽△BCG,根据相似三角形的性质求出 HG,得到 DH 的长,同理解答即可. 【解答】解:∵CG=2DG,CD=6,11∴CG=4,DG=2,由勾股定理得,BG==5,∴EG=1, 由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB, ∴△HEG∽△BCG,∴ = =,∴HG= ,∴DH=DG﹣HG= , 同理,DP=1, 故答案为:1.三、解答题19.计算:.【考点】特殊角的三角函数值. 【分析】把 30°、45°、60°角的各种三角函数值代入计算即可.【解答】解:原式===2.20.已知抛物线 y=ax2+bx+c(a≠0)上部分点的横坐标 x 与纵坐标 y 的对应值如下表:x…﹣10234…y…522510…(1)根据上表填空:①这个抛物线的对称轴是 x=1 ,抛物线一定会经过点(﹣2, 10 );②抛物线在对称轴右侧部分是 上升 (填“上升”或“下降”);12(2)如果将这个抛物线 y=ax2+bx+c 向上平移使它经过点(0,5),求平移后的抛物线表达式. 【考点】待定系数法求二次函数解析式;二次函数图象与几何变换. 【分析】(1)①根据抛物线过点(0,2)、(2,2),即可得出抛物线的对称轴为 x=1,再根据二 次函数的对称性结合当 x=4 时 y=10,即可得出当 x=﹣2 时 y 的值; ②根据抛物线的对称轴为 x=1 结合当 x=2、3、4 时的 y 的值逐渐增大,即可得出抛物线在对称 轴右侧部分是上升; (2)根据点的坐标利用待定系数法即可求出原二次函数表达式,再根据点(0,5)在点(0,2) 上方 3 个单位长度处即可得出抛物线往上平移 3 个单位长度,在原二次函数表达式常数项上+3 即可得出结论. 【解答】解:(1)①∵当 x=0 和 x=2 时,y 值均为 2, ∴抛物线的对称轴为 x=1, ∴当 x=﹣2 和 x=4 时,y 值相同, ∴抛物线会经过点(﹣2,10). 故答案为:x=1;10. ②∵抛物线的对称轴为 x=1,且 x=2、3、4 时的 y 的值逐渐增大, ∴抛物线在对称轴右侧部分是上升. 故答案为:上升. (2)将点(﹣1,5)、(0,2)、(2,2)代入 y=ax2+bx+c 中,,解得:,∴二次函数的表达式为 y=x2﹣2x+2. ∵点(0,5)在点(0,2)上方 3 个单位长度处, ∴平移后的抛物线表达式为 y=x2﹣2x+5.21.已知:如图,在△ABC 中,AB=AC,过点 A 作 AD⊥BC,垂足为点 D,延长 AD 至点 E,使 DE= AD,过点 A 作 AF∥BC,交 EC 的延长线于点 F. (1)设 = , = ,用 、 的线性组合表示 ;(2)求的值.13【考点】*平面向量;等腰三角形的性质. 【分析】(1)由平面向量的三角形法则得到 ,然后结合已知条件 DE= AD 来求 ; (2)根据平行线截线段成比例和三角形的面积公式进行解答. 【解答】解:(1)∵如图,在△ABC 中,AB=AC,AD⊥BC, ∴BD= BC, ∵ =, =, ∴ = + =+ . 又∵DE= AD, ∴= = + , ∴ = + =+ + + = + ;(2)∵DE= AD,AF∥BC, ∴ =, = =,∴== • =×=,即=.1422.如图 1 是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图 2),支架与坐 板均用线段表示,若座板 DF 平行于地面 MN,前支撑架 AB 与后支撑架 AC 分别与座板 DF 交于 点 E、D,现测得 DE=20 厘米,DC=40 厘米,∠AED=58°,∠ADE=76°. (1)求椅子的高度(即椅子的座板 DF 与地面 MN 之间的距离)(精确到 1 厘米) (2)求椅子两脚 B、C 之间的距离(精确到 1 厘米)(参考数据:sin58°≈0.85,cos58°≈0.53, tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)【考点】解直角三角形的应用. 【分析】(1)作 DP⊥MN 于点 P,即∠DPC=90°,由 DE∥MN 知∠DCP=∠ADE=76°,根据 DP=CDsin ∠DCP 可得答案; (2)作 EQ⊥MN 于点 Q 可得四边形 DEQP 是矩形,知 DE=PQ=20,EQ=DP=39,再分别求出 BQ、 CP 的长可得答案. 【解答】解:(1)如图,作 DP⊥MN 于点 P,即∠DPC=90°,∵DE∥MN, ∴∠DCP=∠ADE=76°, 则在 Rt△CDP 中,DP=CDsin∠DCP=40×sin76°≈39(cm), 答:椅子的高度约为 39 厘米;(2)作 EQ⊥MN 于点 Q, ∴∠DPQ=∠EQP=90°, ∴DP∥EQ, 又∵DF∥MN,∠AED=58°,∠ADE=76°,15∴四边形 DEQP 是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°, ∴DE=PQ=20,EQ=DP=39, 又∵CP=CDcos∠DCP=40×cos76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm), 答:椅子两脚 B、C 之间的距离约为 54cm.23.已知:如图,菱形 ABCD,对角线 AC、BD 交于点 O,BE⊥DC,垂足为点 E,交 AC 于点 F.求 证: (1)△ABF∽△BED; (2) = .【考点】相似三角形的判定与性质;菱形的性质. 【分析】(1)由菱形的性质得出 AC⊥BD,AB∥CD,得出△ABF∽△CEF,由互余的关系得:∠ DBE=∠FCE,证出△BED∽△CEF,即可得出结论;(2)由平行线得出,由相似三角形的性质得出,即可得出结论.【解答】证明:(1)∵四边形 ABCD 是菱形, ∴AC⊥BD,AB∥CD, ∴△ABF∽△CEF, ∵BE⊥DC, ∴∠FEC=∠BED, 由互余的关系得:∠DBE=∠FCE, ∴△BED∽△CEF, ∴△ABF∽△BED; (2)∵AB∥CD,∴,16∴,∵△ABF∽△BED,∴,∴=.24.如图,在平面直角坐标系中 xOy 中,抛物线 y=﹣x2+bx+c 与 x 轴相交于点 A(﹣1,0)和点 B,与 y 轴相交于点 C(0,3),抛物线的顶点为点 D,联结 AC、BC、DB、DC. (1)求这条抛物线的表达式及顶点 D 的坐标; (2)求证:△ACO∽△DBC; (3)如果点 E 在 x 轴上,且在点 B 的右侧,∠BCE=∠ACO,求点 E 的坐标.【考点】二次函数综合题;直角三角形的性质;勾股定理的逆定理;相似三角形的判定. 【分析】(1)根据抛物线 y=﹣x2+bx+c 经过点 A(﹣1,0),点 C(0,3),即可求得 b,c 的值, 进而得到抛物线的表达式及顶点 D 的坐标; (2)先根据 B(3,0),A(﹣1,0),D(1,4),求得 CD= ,BC=3 ,BD=2 ,AO=1,CO=3, 进而得到 CD2+BC2=BD2,从而判定△BCD 是直角三角形,且∠BCD=90°,最后根据∠AOC=∠DCB,= ,判定△ACO∽△DBC; (3)先设 CE 与 BD 交于点 M,根据 MC=MB,得出 M 是 BD 的中点,再根据 B(3,0),D(1, 4),得到 M(2,2),最后根据待定系数法求得直线 CE 的解析式,即可得到点 E 的坐标. 【解答】解:(1)∵抛物线 y=﹣x2+bx+c 经过点 A(﹣1,0),点 C(0,3),∴,解得 ,∴抛物线的表达式为 y=﹣x2+2x+3, ∴顶点 D 的坐标为(1,4);17(2)∵当 y=0 时,0=﹣x2+2x+3, 解得 x1=﹣1,x2=3, ∴B(3,0), 又∵A(﹣1,0),D(1,4), ∴CD= ,BC=3 ,BD=2 ,AO=1,CO=3, ∴CD2+BC2=BD2, ∴△BCD 是直角三角形,且∠BCD=90°, ∴∠AOC=∠DCB, 又∵ = , = ,∴=, ∴△ACO∽△DBC;(3)设 CE 与 BD 交于点 M, ∵△ACO∽△DBC, ∴∠DBC=∠ACO, 又∵∠BCE=∠ACO, ∴∠DBC=∠BCE, ∴MC=MB, ∵△BCD 是直角三角形, ∴∠BCM+∠DCM=90°=∠CBM+∠MDC, ∴∠DCM=∠CDM, ∴MC=MD, ∴DM=BM,即 M 是 BD 的中点, ∵B(3,0),D(1,4), ∴M(2,2), 设直线 CE 的解析式为 y=kx+b,则,解得,18∴直线 CE 为:y=﹣ x+3, 当 y=0 时,0=﹣ x+3, 解得 x=6, ∴点 E 的坐标为(6,0).25.已知,如图,Rt△ABC 中,∠ACB=90°,BC=8,cot∠BAC= ,点 D 在边 BC 上(不与点 B、 C 重合),点 E 在边 BC 的延长线上,∠DAE=∠BAC,点 F 在线段 AE 上,∠ACF=∠B.设 BD=x.(1)若点 F 恰好是 AE 的中点,求线段 BD 的长; (2)若 y= ,求 y 关于 x 的函数关系式,并写出它的定义域; (3)当△ADE 是以 AD 为腰的等腰三角形时,求线段 BD 的长. 【考点】三角形综合题. 【分析】(1)先判断出△ABD∽△ACF,进而判断出 AD=BD,再用解直角三角形的方法即可得出 BD; (2)先表示出 CF,进而表示出 MC,即可得出函数关系式; (3)分两种情况列出方程求解即可得出结论. 【解答】解:(1)在 Rt△ABC 中,∠ACB=90°,BC=8,cot∠BAC= , ∴AC=6,AB=10, ∵∠DAE=∠BAC, ∴∠FAC=∠DAB, ∵∠ACF=∠B,19∴△ABD∽△ACF,∴,在 Rt△ABC 中,点 F 恰好是 AE 的中点,∴CF= AE=AF,∴AD=BD, 在 Rt△ACD 中,AC=6,CD=BC﹣BD=BC﹣AD=8﹣AD, 根据勾股定理得,AC2+CD2=AD2, ∴36+(8﹣AD)2=AD2,∴AD= ,∴BD=AD= ,(2)如图 1,过点 F 作 FM⊥AC 于 M,由(1)知,∴=,∴CF== ×x= x,由(1)△ABD∽△ACF, ∴∠B=∠ACF,∴tan∠ACF=tanB=== ,∴MC= x,∴y===(0<x<8)(3)∵△ADE 是以 AD 为腰的等腰三角形, ∴①当 AD=AE 时, ∴∠AED=∠ADE, ∵∠ACD=90°, ∴∠EAC=∠DAC=∠DAB, ∴AD 是∠BAC 的平分线,∴,∵AC=6,AB=10,CD=8﹣BD,20∴,∴BD=5,当AD=DE时,∴∠DAE=∠DEA=∠BAC,∴∠ADE=2∠B,∴∠B=∠DAB,∴AD=BD=(是(1)的那种情况).即:BD=5或BD=时,△ADE是以AD为腰的等腰三角形.2017年2月12日。

2020年上海市奉贤区初三数学一模试卷

2020年上海市奉贤区初三数学一模试卷

2017年上海市奉贤区初三数学一模试卷一、选择题1.下列抛物线中,顶点坐标是(﹣2,0)的是()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)22.如果在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式正确的是()A.tanB=B.cotB=C.sinB=D.cosB=3.如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值()A.扩大为原来的3被 B.缩小为原来的 C.没有变化 D.不能确定4.对于非零向量、、下列条件中,不能判定与是平行向量的是()A.∥,∥ B. +3=, =3 C. =﹣3D.||=3||5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是()A. = B. = C.∠A=∠E D.∠B=∠D6.一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=﹣t2+t+1(0≤t≤20),那么网球到达最高点时距离地面的高度是()A.1米B.1.5米C.1.6米D.1.8米二、填空题7.如果线段a、b、c、d满足==,那么= .8.计算:(2+6)﹣3= .9.已知线段a=3,b=6,那么线段a、b的比例中项等于.10.用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为(不写定义域).11.如果二次函数y=ax2(a≠0)的图象开口向下,那么a的值可能是(只需写一个).12.如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是.13.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是.14.在△ABC中,点D、E分别在边AB、AC上,如果=,AE=4,那么当EC的长是时,DE∥BC.15.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么的值是.第15题图第17题图第18题图16.边长为2的等边三角形的重心到边的距离是.17.如图,如果在坡度i=1:2.4 的斜坡上两棵树间的水平距离AC为3米,那么两树间的坡面距离AB是米.18.如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是.三、解答题19.计算:.20.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:x …﹣1 0 2 3 4 …y … 5 2 2 5 10 …(1)根据上表填空:①这个抛物线的对称轴是,抛物线一定会经过点(﹣2,);②抛物线在对称轴右侧部分是(填“上升”或“下降”);(2)如果将这个抛物线y=ax2+bx+c向上平移使它经过点(0,5),求平移后的抛物线表达式.21.已知:如图,在△ABC中,AB=AC,过点A作AD⊥BC,垂足为点D,延长AD至点E,使DE=AD,过点A作AF∥BC,交EC的延长线于点F.(1)设=, =,用、的线性组合表示;(2)求的值.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)23.已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:(1)△ABF∽△BED;(2)=.24.如图,在平面直角坐标系中xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D,联结AC、BC、DB、DC.(1)求这条抛物线的表达式及顶点D的坐标;(2)求证:△ACO∽△DBC;(3)如果点E在x轴上,且在点B的右侧,∠BCE=∠ACO,求点E的坐标.25.已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=,求y关于x的函数关系式,并写出它的定义域;(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.2017年上海市奉贤区中考数学一模试卷参考答案与试题解析一、选择题1.下列抛物线中,顶点坐标是(﹣2,0)的是()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)2故选C.2.如果在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式正确的是()A.tanB=B.cotB=C.sinB=D.cosB=故选:A/.3.如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值()A.扩大为原来的3被 B.缩小为原来的C.没有变化 D.不能确定故选:C.4.对于非零向量、、下列条件中,不能判定与是平行向量的是()A.∥,∥B. +3=, =3C. =﹣3D.||=3||故选D.5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是()A. =B. =C.∠A=∠E D.∠B=∠D故选B.6.一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=﹣t2+t+1(0≤t≤20),那么网球到达最高点时距离地面的高度是()A.1米B.1.5米C.1.6米D.1.8米故选:D.二、填空题7.如果线段a、b、c、d满足==,那么= .8.计算:(2+6)﹣3= ﹣2+3.9.已知线段a=3,b=6,那么线段a、b的比例中项等于3.10.用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为y=﹣x2+4x (不写定义域).11.如果二次函数y=ax2(a≠0)的图象开口向下,那么a的值可能是﹣1 (只需写一个).12.如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是﹣1 .13.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是4:9 .14.在△ABC中,点D、E分别在边AB、AC上,如果=,AE=4,那么当EC的长是 6 时,DE∥BC.15.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么的值是.16.边长为2的等边三角形的重心到边的距离是.17.如图,如果在坡度i=1:2.4 的斜坡上两棵树间的水平距离AC为3米,那么两树间的坡面距离AB是米.18.如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是 1 .解:∵CG=2DG,CD=6,∴CG=4,DG=2,由勾股定理得,BG==5,∴EG=1,由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,∴△HEG∽△BCG,∴==,∴HG=,∴DH=DG﹣HG=,同理,DP=1,故答案为:1.三、解答题19.计算:.解:原式===2.20.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:x …﹣1 0 2 3 4 …y … 5 2 2 5 10 …(1)根据上表填空:①这个抛物线的对称轴是x=1 ,抛物线一定会经过点(﹣2,10 );②抛物线在对称轴右侧部分是上升(填“上升”或“下降”);(2)如果将这个抛物线y=ax2+bx+c向上平移使它经过点(0,5),求平移后的抛物线表达式.解:(1)①∵当x=0和x=2时,y值均为2,∴抛物线的对称轴为x=1,∴当x=﹣2和x=4时,y值相同,∴抛物线会经过点(﹣2,10).故答案为:x=1;10.②∵抛物线的对称轴为x=1,且x=2、3、4时的y的值逐渐增大,∴抛物线在对称轴右侧部分是上升.故答案为:上升.(2)将点(﹣1,5)、(0,2)、(2,2)代入y=ax2+bx+c中,,解得:,∴二次函数的表达式为y=x2﹣2x+2.∵点(0,5)在点(0,2)上方3个单位长度处,∴平移后的抛物线表达式为y=x2﹣2x+5.21.已知:如图,在△ABC中,AB=AC,过点A作AD⊥BC,垂足为点D,延长AD至点E,使DE=AD,过点A作AF∥BC,交EC的延长线于点F.(1)设=, =,用、的线性组合表示;(2)求的值.解:(1)∵如图,在△ABC中,AB=AC,AD⊥BC,∴BD=BC,∵=, =,∴=+=+.又∵DE=AD,∴==+,∴=+=+++=+;(2)∵DE=AD,AF∥BC,∴=, ==,∴==•=×=,即=.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF 交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)解:(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CDsin∠DCP=40×sin76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CDcos∠DCP=40×cos76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54cm.23.已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:(1)△ABF∽△BED;(2)=.证明:(1)∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴△ABF∽△CEF,∵BE⊥DC,∴∠FEC=∠BED,由互余的关系得:∠DBE=∠FCE,∴△BED∽△CEF,∴△ABF∽△BED;(2)∵AB∥CD,∴,∴,∵△ABF∽△BED,∴,∴=.24.如图,在平面直角坐标系中xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D,联结AC、BC、DB、DC.(1)求这条抛物线的表达式及顶点D的坐标;(2)求证:△ACO∽△DBC;(3)如果点E在x轴上,且在点B的右侧,∠BCE=∠ACO,求点E的坐标.解:(1)∵抛物线y=﹣x2+bx+c经过点A(﹣1,0),点C(0,3),∴,解得,∴抛物线的表达式为y=﹣x2+2x+3,∴顶点D的坐标为(1,4);(2)∵当y=0时,0=﹣x2+2x+3,解得x1=﹣1,x2=3,∴B(3,0),又∵A(﹣1,0),D(1,4),∴CD=,BC=3,BD=2,AO=1,CO=3,∴CD2+BC2=BD2,∴△BCD是直角三角形,且∠BCD=90°,∴∠AOC=∠DCB,又∵=, =,∴=,∴△ACO∽△DBC;(3)设CE与BD交于点M,∵△ACO∽△DBC,∴∠DBC=∠ACO,又∵∠BCE=∠ACO,∴∠DBC=∠BCE,∴MC=MB,∵△BCD是直角三角形,∴∠BCM+∠DCM=90°=∠CBM+∠MDC,∴∠DCM=∠CDM,∴MC=MD,∴DM=BM,即M是BD的中点,∵B(3,0),D(1,4),∴M(2,2),设直线CE的解析式为y=kx+b,则,解得,∴直线CE为:y=﹣x+3,当y=0时,0=﹣x+3,解得x=6,∴点E的坐标为(6,0).25.已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=,求y关于x的函数关系式,并写出它的定义域;(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.解:(1)在Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,∴AC=6,AB=10,∵∠DAE=∠BAC,∴∠FAC=∠DAB,∵∠ACF=∠B,∴△ABD∽△ACF,∴,在Rt△ABC中,点F恰好是AE的中点,∴CF=AE=AF,∴AD=BD,在Rt△ACD中,AC=6,CD=BC﹣BD=BC﹣AD=8﹣AD,根据勾股定理得,AC2+CD2=AD2,∴36+(8﹣AD)2=AD2,∴AD=,∴BD=AD=,(2)如图1,过点F作FM⊥AC于M,由(1)知,∴=,∴CF==×x=x,由(1)△ABD∽△ACF,∴∠B=∠ACF,∴tan∠ACF=tanB===,∴MC=x,∴y===(0<x<8)(3)∵△ADE是以AD为腰的等腰三角形,∴①当AD=AE时,∴∠AED=∠ADE,∵∠ACD=90°,∴∠EAC=∠DAC=∠DAB,∴AD是∠BAC的平分线,∴,∵AC=6,AB=10,CD=8﹣BD,∴,∴BD=5,当AD=DE时,∴∠DAE=∠DEA=∠BAC,∴∠ADE=2∠B,∴∠B=∠DAB,∴AD=BD=(是(1)的那种情况).即:BD=5或BD=时,△ADE是以AD为腰的等腰三角形.。

上海市2017奉贤区初三数学一模试卷含参考答案

上海市2017奉贤区初三数学一模试卷含参考答案

a = 3b = 2 奉贤区 2016-2017 学年调研测试初三数学(一模)卷一、选择题 1.下列抛物线中,顶点坐标是(-2,0)的是( )A. y =x 2 +2B. y =x 2 -2C.y =(x +2)2D.y =(x -2)22.如果在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式正确的是()2 2 2 2A. tan B =B. cot B =C. sin B =D. cos B =3 3 3 33.如果把一个锐角△ABC 的三边的长都扩大为原来的3倍,那么锐角A 的余切值()A. 扩大为原来的 3被;B.缩小为原来的 1; 3 C.没有变化;D.不能确定4.对于非零向量a 、b 、c ,下列条件中,不能判定a 与b 是平行向量的是( )A. a ∥b ,c ∥bB.a +3c =0,b =3cC. a =-3bD. .5.在△ABC 和△DEF 中,AB=AC ,DE=DF ,根据下列条件,能判断△ABC 和△DEF 相似的是()AB AC A. B.DE DFAB =BC C.∠A =∠ED.∠B=∠D .DE EF6.一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度 h (米)关于运行时间 t (秒)的函数解析式为h =-1 t 2 +1t +1 (0 ≤t ≤ 20),那么80 5 网球到达最高点时距离地面的高度是( ) A.1米B.1.5米C.1.6米D.1.8米二、填空题7.如果线段a 、b 、c 、d 满足a =c =1,那么a +c=;b d 3 8. 计算:1(2a +6b )-3a = ;b +d9.已知线段a=3,b=6,那么线段a、b的比例中项等于;10.用一根长为8米的木条,做一个矩形的窗框。

如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为(不写定义域);11.如果二次函数y=ax2(a≠0)的图像开口向下,那么a的值可能是(只需写一个);12.如果二次函数y=x2-mx+m+1的图像经过原点,那么m的值是;13.如果两个相似三角形对应角平分线的比是4:9,那么这两个三角形的周长比是;14.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,AE=4,那么当EC的长是AB 3时,DE∥BC;15.如图1,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果AB=6,BC=10,那么DE的值是;DF16.边长为2的等边三角形的重心到边的距离是;17.如图2,如果在坡度i=1: 2.4 的斜坡上两棵树间的水平距离AC 为3 米,那么两树间的坡面距离AB是米;18.如图3,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP 沿着BP所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是.三、解答题4 cos2 30︒- cot 45︒19.计算:.tan 60︒+ 2sin 45︒20.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:x …-1 0 2 3 4 …(1) 根据上表填空: ①这个抛物线的对称轴是 ,抛物线一定会经过点(-2, );②抛物线在对称轴右侧部分是(填“上升”或“下降”);(2) 如果将这个抛物线 y =ax 2+bx +c 向上平移使它经过点(0,5),求平移后的抛物线表达式。

奉贤区中考数学一模

奉贤区中考数学一模

2017-2018学年奉贤区调研测试(一模)九年级数学(满分 150 分,测验时光 100 分钟)一.选择题(本大题共6题,每题4分,满分24分)1.下列函数中是二次函数的是( )(A )2(1)y x =-;(B )22(1)y x x =--;(C )2(1)y a x =-;(D )221y x =-.2.在Rt △ABC 中,∠C =90°,假如AC =2,cos A =23,那么AB 的长是( ) (A )3;(B )43;(C )5;(D )13. 3.在△ABC 中,点D .E 分离在AB .AC 上,假如AD :BD =1:3,那么下列前提中可以或许断定DE ∥BC 的是( )(A )14DE BC =;(B )14AD AB =;(C )14AE AC =;(D )14AE EC =. 4.设n 为正整数,a 为非零向量,那么下列说法不准确的是( )(A )na 暗示n 个a 相乘;(B )na -暗示n 个a -相加;(C )na 与a 是平行向量;(D )na -与na 互为相反向量.5.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A .D .B 在统一条直线上),设∠CAB =α,那么拉线BC 的长度为( )(A )sin h α;(B )cos h α; (C )tan h α;(D )cot h α. 第5题图6.已知二次函数2y ax bx c =++的图像上部分点的横坐标x 与纵坐标y 的对应值如下表:那么关于它的图像,下列断定准确的是( )(A )启齿向上 ;(B )与x 轴的另一个交点是(3,0);(C )与y 轴交于负半轴;(D )在直线x =1的左侧部分是降低的.二.填空题(本大题共12题,每题4分,满分48分)7.已知5a =4b ,那么a b b +=. 8.盘算:tan60°-cos30°=.9.假如抛物线25y ax =+的极点是它的最低点,那么a 的取值规模是.10.假如抛物线22y x =与抛物线2y ax =关于x 轴对称,那么a 的值是.11.假如向量、、a b x 知足关系式4()0a b x --=,那么x =.(用向量、a b 暗示) 12.某快递公司十月份快递件数是10万件,假如该公司第四时度每个月快递件数的增加率都为x (x >0),十二月份的快递件数为y 万件,那么y 关于x 的函数解析式是.13.如图,已知123∥∥l l l ,两条直线与这三条平行线分离交于点A .B .C 和点D .E .F ,假如32AB BC =,那么DE DF 的值是. 14.假如两个类似三角形的面积比是4:9,那么它们的对应角等分线之比是.15.如图,已知梯形ABCD 中,AB ∥CD ,对角线AC .BD 订交于点O ,假如2△△AOB AOD S S =,AB =10,那么CD 的长是.16.已知AD .BE 是△ABC 的中线,AD .BE 订交于点F ,假如AD =6,那么AF 的长是.17.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,假如AH=BC,那么sin∠BAC的值是.18.已知△ABC,AB=AC,BC=8,点D.E分离在边BC.AB上,将△ABC沿着直线DE翻折,点B落在边AC上的点M处,且AC=4AM,设BD=m,那么∠ACB的正切值是.(用含m的代数式暗示)三.解答题(本大题共7题,满分78分)19.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知抛物线2241y x x=--+.(1)求这个抛物线的对称轴和极点坐标;(2)将这个抛物线平移,使极点移到点P(2,0)的地位,写出所得新抛物线的表达式和平移的进程.20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在平行四边形ABCD中,AD=2,点E是边BC的中点,AE.BD想交于点F,过点F作FG∥BC,交边DC于点G.(1)求FG的长;(2)设AD a=,DC b=,用、a b的线性组合暗示AF.21.(本题满分10分,每小题满分各5分)已知:如图,在Rt△ABC中,∠ACB=90°,3BC=,2cot2=ABC∠,点D是AC的中点.(1)求线段BD的长;(2)点E在边AB上,且CE=CB,求△ACE的面积.第20题图22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,为了将货色装入大型的集装箱卡车,须要应用传送带AB 将货色从地面传送到高1.8米(即BD =米)的操纵平台BCAB 与地面所成斜坡的坡角∠BAD =37°.(1)求传送带AB 的长度;(2)因现实须要,如今操纵平台和传送带进行改革,如图中虚线所示,操纵平台加高0.2米(即BF =米),传送带与地面所成斜坡的坡度i =1:2.求改革后传送带EF 的长度.(准确到0.1米)(参考数值:sin 37°≈,cos 37°≈,tan 37°≈,2 1.41≈,5 2.24≈) 23.(本题满分12分,每题满分各6分)已知:如图,四边形ABCD ,∠DCB =90°,对角线BD ⊥AD ,点E 是边AB 的中点,CE 与BD 订交于点F ,2BD AB BC =⋅(1)求证:BD 等分∠ABC ;(2)求证:BE CF BC EF ⋅=⋅.24.(本题满分12分,每小题满分各4分)如图,在平面直角坐标系xOy 中,已知抛物线238y x bx c =++与x 轴交于点A (-2,0)和点B ,与y 轴交于点C (0,-3),经由点A 的射线AM 与y 轴订交于点E ,与抛物线的另一个交点为F ,且13AE EF =. (1)求这条抛物线的表达式,并写出它的对称轴;(2)求∠FAB 的余切值;(3)点D 是点C 关于抛物线对称轴的对称点,点P 是y 轴上一点,且∠A BCE 第21题图 D C E A BD F 第23题图AFP =∠DAB ,求点P 的坐标.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A .D 重合),∠CEB =45°,EB 与对角线AC 订交于点F ,设DE =x .(1)用含x 的代数式暗示线段CF 的长;(2)假如把△CAE 的周长记作△CAE C ,△BAF 的周长记作△BAF C ,设△△CAE BAF C y C ,求y 关于x 的函数关系式,并写出它的界说域;(3)当∠ABE 的正切值是35时,求AB 的长. x F EyB O D AC 第24题图。

学奉贤区初三数学一模历年考试

学奉贤区初三数学一模历年考试

奉贤初三一模班级: 姓名: 学号: 一、选择题1、下列抛物线中,顶点坐标是(-2, 0)地是()(A ) 22y x =+(B ) 22y x =-(C ) 2(2)y x =+ (D ) 2(2)y x =-2、在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列式子中正确地是()(A ) 2tan 3B =(B ) 2cos 3B =(C ) 2sin 3B = (D ) 2cot 3B =3、如果把一个锐角△ABC 地三边长都扩大为原来地3倍,那么锐角A 地余切值()(A ) 扩大为原来地3倍(B )缩小为原来地13(C ) 没有变化 (D ) 无法确定 4、对于非零向量,,a b c r r r ,下列条件中,不能判定,a b r r是平行向量地是( )(A ) //,//a c b c r r r r (B ) 30,3a c b c +==r r r r r(C ) 3a b =-r r(D ) ||3||a b =r r5、△ABC 和△DEF 中,AB =AC , DE =DF ,能判断△ABC 和△DEF 相似地条件是()(A )AB AC DE DF = (B ) AB BCDE EF=(C ) A E ∠=∠ (D ) B D ∠=∠6、一个网球发射器向空中发射网球,网球飞行地路线是一条抛物线,如果网球距离地面地高度h (米)关于运行时间t (秒)地函数解析式为21(020)805t th t =-++≤≤,那么网球到达最高点时距离地面地高度为()(A ) 1米 (B ) 1.5米 (C ) 1.6米(D ) 1.8米二、填空题7、如果线段a 、b 、c 、d 满足13a c b d ==,那么a c b d+=+. 8、计算:1(26)32a b a +-=rr r .9、已知线段a =3,b =6,那么线段a ,b 地比例中项是.用一根长度为8米地木条,做一个矩形地窗框,如果把这个矩形地窗框地宽记为x 米,那么这个窗户地面积y (米2)和x (米)之间地函数关系式为.(不写定义域)11、如果二次函数2y ax =开口向下,那么a 地值可以是.(只需写一个)12、如果二次函数21y x mx m =-++地图像经过原点,则m =.13、若两个相似三角形地对应角平分线比为4:9,则这两个三角形周长之比为. 14、△ABC 中,点D 、E 分别在AB 、AC 上,如果2,43AD AE AB ==,那么点CE =时,DE //BC . 如图,已知AD //BE //CF ,它们依次和直线l 1、l 2交于点A 、B 、C 和D 、E 、F ,如果AB =6,BC =10,那么DEDF地值为.16、边长为2地等边三角形地重心到边地距离为.17、如图,在坡度为1:2.4地斜坡上,两棵树地水平距离AC 为3米,那么两棵树间地破面距离AB 为米.如图,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上地一点,联结BP ,将△ABP 沿着BP 所在地直线翻折得到△EBP ,点A 落在点E 处,边BE 和边CD 相交于点G ,如果CG =2DG ,那么DP =.第15题第17题第18题三、解答题19、计算:24cos 30cot 45tan 602sin 45︒-︒︒+︒.20. 已知抛物线2(0)y ax bx c a =++≠上部分点地横坐标x 和纵坐标y 地对应值如下:(1)根据上表填空:①这个抛物线地对称轴是,抛物线一定过点(﹣2,);②抛物线在对称轴地右侧部分是(填“上升”、“下降”)(2)如果将这个抛物线2(0)y ax bx c a =++≠向上平移,使得它经过点(0,5),试求平移后地抛物线表达式.如图,在△ABC 中,AB =AC ,经过点A 作AD ⊥BC ,垂足记为D ,延长AD 到点E ,使得12DE AD =,过点A 作AF //BC ,和EC 地延长线交于点F .(1)设AB a =uu u r r ,BC b =uu u r r ,试用,a b r r地线性组合表示AE uu u r ;(2)试求:CDEAFCS S ∆∆地值.如图是一种折叠椅地简化图,支架和坐板都用线段表示,如果坐板DF 平行于底面MN ,前支撑架AB和后支撑架AC分别和坐板DF 交于点E 、D 、现测得DE =20cm ,CD =40cm ,而∠AED =58°,∠ADE =76°(1)求椅子地高度(即椅子地坐板DF 和地面MN 之间地距离),并精确到1cm ;(2)试求椅子两脚B 、C 之间地距离(精确到1cm ). (参考数据:sin580.85,cos580.53,tan58 1.60︒=︒=︒=sin 760.97,cos760.24,tan 76 4.00︒=︒=︒=)23、已知:如图,菱形ABCD ,对角线AC 、BD 相交于点O ,BE ⊥CD ,垂足为点E ,交AC 于点F .求证:(1)~ABF BED ∆∆;(2)AC BDBE DE=.在平面直角坐标系xOy 中,抛物线2y x bx c =-++和x 轴相交于点A (﹣1, 0)和点B ,抛物线和y 轴相交于点C (0, 3),抛物线地顶点为点D ,连接AC 、BC 、DB 、CD (1)求这条抛物线地表达式和顶点D 地坐标; (2)求证:△ACO ∽△DBC ;(3)如果点E 在x 轴上,且E 在点B 地右侧,∠BCE =∠ACO ,试求点E 地坐标.如图,Rt △ABC 中,∠ACB =90°,BC =8,3cot 4BAC ∠=,点D 在边BC 上(不与点B 、C 重合),点E 在边BC 地延长线上,∠DAE =∠BAC ,点F 在线段AE 上,∠ACF =∠B ,设BD =x .(1)如果点F 恰好是AE 地中点,试求线段BD 地长; (2)如果AFy EF=,试求y 关于x 地函数关系式,并写出它地定义域; (3)点△ADE 是以AD 为腰地等腰三角形时,试求线段BD 地长.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.Zzz6Z。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年上海市奉贤区初三数学一模试卷一、选择题1.下列抛物线中,顶点坐标是(﹣2,0)的是()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)22.如果在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式正确的是()A.tanB=B.cotB=C.sinB=D.cosB=3.如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值()A.扩大为原来的3被 B.缩小为原来的 C.没有变化 D.不能确定4.对于非零向量、、下列条件中,不能判定与是平行向量的是()A.∥,∥ B. +3=, =3 C. =﹣3D.||=3||5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是()A. = B. = C.∠A=∠E D.∠B=∠D6.一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=﹣t2+t+1(0≤t≤20),那么网球到达最高点时距离地面的高度是()A.1米B.1.5米C.1.6米D.1.8米二、填空题7.如果线段a、b、c、d满足==,那么= .8.计算:(2+6)﹣3= .9.已知线段a=3,b=6,那么线段a、b的比例中项等于.10.用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为(不写定义域).11.如果二次函数y=ax2(a≠0)的图象开口向下,那么a的值可能是(只需写一个).12.如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是.13.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是.14.在△ABC中,点D、E分别在边AB、AC上,如果=,AE=4,那么当EC的长是时,DE∥BC.15.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么的值是.第15题图第17题图第18题图16.边长为2的等边三角形的重心到边的距离是.17.如图,如果在坡度i=1:2.4 的斜坡上两棵树间的水平距离AC为3米,那么两树间的坡面距离AB是米.18.如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是.三、解答题19.计算:.20.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:x …﹣1 0 2 3 4 …y … 5 2 2 5 10 …(1)根据上表填空:①这个抛物线的对称轴是,抛物线一定会经过点(﹣2,);②抛物线在对称轴右侧部分是(填“上升”或“下降”);(2)如果将这个抛物线y=ax2+bx+c向上平移使它经过点(0,5),求平移后的抛物线表达式.21.已知:如图,在△ABC中,AB=AC,过点A作AD⊥BC,垂足为点D,延长AD至点E,使DE=AD,过点A作AF∥BC,交EC的延长线于点F.(1)设=, =,用、的线性组合表示;(2)求的值.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF 交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)23.已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:(1)△ABF∽△BED;(2)=.24.如图,在平面直角坐标系中xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D,联结AC、BC、DB、DC.(1)求这条抛物线的表达式及顶点D的坐标;(2)求证:△ACO∽△DBC;(3)如果点E在x轴上,且在点B的右侧,∠BCE=∠ACO,求点E的坐标.25.已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=,求y关于x的函数关系式,并写出它的定义域;(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.2017年上海市奉贤区中考数学一模试卷参考答案与试题解析一、选择题1.下列抛物线中,顶点坐标是(﹣2,0)的是()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)2故选C.2.如果在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式正确的是()A.tanB=B.cotB=C.sinB=D.cosB=故选:A/.3.如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值()A.扩大为原来的3被 B.缩小为原来的C.没有变化 D.不能确定故选:C.4.对于非零向量、、下列条件中,不能判定与是平行向量的是()A.∥,∥B. +3=, =3C. =﹣3D.||=3||故选D.5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是()A. =B. =C.∠A=∠E D.∠B=∠D故选B.6.一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=﹣t2+t+1(0≤t≤20),那么网球到达最高点时距离地面的高度是()A.1米B.1.5米C.1.6米D.1.8米故选:D.二、填空题7.如果线段a、b、c、d满足==,那么= .8.计算:(2+6)﹣3= ﹣2+3.9.已知线段a=3,b=6,那么线段a、b的比例中项等于3.10.用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为y=﹣x2+4x (不写定义域).11.如果二次函数y=ax2(a≠0)的图象开口向下,那么a的值可能是﹣1 (只需写一个).12.如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是﹣1 .13.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是4:9 .14.在△ABC中,点D、E分别在边AB、AC上,如果=,AE=4,那么当EC的长是 6 时,DE∥BC.15.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么的值是.16.边长为2的等边三角形的重心到边的距离是.17.如图,如果在坡度i=1:2.4 的斜坡上两棵树间的水平距离AC为3米,那么两树间的坡面距离AB是米.18.如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是 1 .解:∵CG=2DG,CD=6,∴CG=4,DG=2,由勾股定理得,BG==5,∴EG=1,由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,∴△HEG∽△BCG,∴==,∴HG=,∴DH=DG﹣HG=,同理,DP=1,故答案为:1.三、解答题19.计算:.解:原式===2.20.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:x …﹣1 0 2 3 4 …y … 5 2 2 5 10 …(1)根据上表填空:①这个抛物线的对称轴是x=1 ,抛物线一定会经过点(﹣2,10 );②抛物线在对称轴右侧部分是上升(填“上升”或“下降”);(2)如果将这个抛物线y=ax2+bx+c向上平移使它经过点(0,5),求平移后的抛物线表达式.解:(1)①∵当x=0和x=2时,y值均为2,∴抛物线的对称轴为x=1,∴当x=﹣2和x=4时,y值相同,∴抛物线会经过点(﹣2,10).故答案为:x=1;10.②∵抛物线的对称轴为x=1,且x=2、3、4时的y的值逐渐增大,∴抛物线在对称轴右侧部分是上升.故答案为:上升.(2)将点(﹣1,5)、(0,2)、(2,2)代入y=ax2+bx+c中,,解得:,∴二次函数的表达式为y=x2﹣2x+2.∵点(0,5)在点(0,2)上方3个单位长度处,∴平移后的抛物线表达式为y=x2﹣2x+5.21.已知:如图,在△ABC中,AB=AC,过点A作AD⊥BC,垂足为点D,延长AD至点E,使DE=AD,过点A作AF∥BC,交EC的延长线于点F.(1)设=, =,用、的线性组合表示;(2)求的值.解:(1)∵如图,在△ABC中,AB=AC,AD⊥BC,∴BD=BC,∵=, =,∴=+=+.又∵DE=AD,∴==+,∴=+=+++=+;(2)∵DE=AD,AF∥BC,∴=, ==,∴==•=×=,即=.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF 交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)解:(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CDsin∠DCP=40×sin76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CDcos∠DCP=40×cos76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54cm.23.已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:(1)△ABF∽△BED;(2)=.证明:(1)∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴△ABF∽△CEF,∵BE⊥DC,∴∠FEC=∠BED,由互余的关系得:∠DBE=∠FCE,∴△BED∽△CEF,∴△ABF∽△BED;(2)∵AB∥CD,∴,∴,∵△ABF∽△BED,∴,∴=.24.如图,在平面直角坐标系中xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D,联结AC、BC、DB、DC.(1)求这条抛物线的表达式及顶点D的坐标;(2)求证:△ACO∽△DBC;(3)如果点E在x轴上,且在点B的右侧,∠BCE=∠ACO,求点E的坐标.解:(1)∵抛物线y=﹣x2+bx+c经过点A(﹣1,0),点C(0,3),∴,解得,∴抛物线的表达式为y=﹣x2+2x+3,∴顶点D的坐标为(1,4);(2)∵当y=0时,0=﹣x2+2x+3,解得x1=﹣1,x2=3,∴B(3,0),又∵A(﹣1,0),D(1,4),∴CD=,BC=3,BD=2,AO=1,CO=3,∴CD2+BC2=BD2,∴△BCD是直角三角形,且∠BCD=90°,∴∠AOC=∠DCB,又∵=, =,∴=,∴△ACO∽△DBC;(3)设CE与BD交于点M,∵△ACO∽△DBC,∴∠DBC=∠ACO,又∵∠BCE=∠ACO,∴∠DBC=∠BCE,∴MC=MB,∵△BCD是直角三角形,∴∠BCM+∠DCM=90°=∠CBM+∠MDC,∴∠DCM=∠CDM,∴MC=MD,∴DM=BM,即M是BD的中点,∵B(3,0),D(1,4),∴M(2,2),设直线CE的解析式为y=kx+b,则,解得,∴直线CE为:y=﹣x+3,当y=0时,0=﹣x+3,解得x=6,∴点E的坐标为(6,0).25.已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=,求y关于x的函数关系式,并写出它的定义域;(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.解:(1)在Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,∴AC=6,AB=10,∵∠DAE=∠BAC,∴∠FAC=∠DAB,∵∠ACF=∠B,∴△ABD∽△ACF,∴,在Rt△ABC中,点F恰好是AE的中点,∴CF=AE=AF,∴AD=BD,在Rt△ACD中,AC=6,CD=BC﹣BD=BC﹣AD=8﹣AD,根据勾股定理得,AC2+CD2=AD2,∴36+(8﹣AD)2=AD2,∴AD=,∴BD=AD=,(2)如图1,过点F作FM⊥AC于M,由(1)知,∴=,∴CF==×x=x,由(1)△ABD∽△ACF,∴∠B=∠ACF,∴tan∠ACF=tanB===,∴MC=x,∴y===(0<x<8)(3)∵△ADE是以AD为腰的等腰三角形,∴①当AD=AE时,∴∠AED=∠ADE,∵∠ACD=90°,∴∠EAC=∠DAC=∠DAB,∴AD是∠BAC的平分线,∴,∵AC=6,AB=10,CD=8﹣BD,∴,∴BD=5,当AD=DE时,∴∠DAE=∠DEA=∠BAC,∴∠ADE=2∠B,∴∠B=∠DAB,∴AD=BD=(是(1)的那种情况).即:BD=5或BD=时,△ADE是以AD为腰的等腰三角形.。

相关文档
最新文档