八年级上册数学 全等三角形(篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学 全等三角形(篇)(Word 版 含解析) 一、八年级数学轴对称三角形填空题(难)
1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.
【答案】5(0,5),(0,4),0,
4⎛⎫ ⎪⎝⎭
【解析】
【分析】
有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.
【详解】
有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;
∴D (0,5);
②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,
∴P (0,4);
③作OA 的垂直平分线交y 轴于C ,则AC =OC ,
由勾股定理得:OC =AC =()2212OC +-,
∴OC =54
, ∴C (0,54
); 故答案为:5(0,5),(0,4),0,
4⎛
⎫ ⎪⎝⎭.
【点睛】
本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.
2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形
(1)如图,在ABC
∆中,25,105
A ABC
∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC
∆分割成两个等腰三角形,则BDA
∠的度数是______.
(2)已知在ABC
∆中,AB AC
=,过顶点和顶点对边上一点的直线,把ABC
∆分割成两个等腰三角形,则A
∠的最小度数为________.
【答案】130︒
180
7
︒
⎛⎫
⎪
⎝⎭
【解析】
【分析】
(1)由题意得:DA=DB,结合25
A
∠=︒,即可得到答案;
(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,
③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A
∠的度数,即可得到答案.
【详解】
(1)由题意得:当DA=BA,BD=BA时,不符合题意,
当DA=DB时,则∠ABD=∠A=25°,
∴∠BDA=180°-25°×2=130°.
故答案为:130°;
(2)①如图1,∵AB=AC,当BD=AD,CD=AD,
∴∠B=∠C=∠BAD=∠CAD,
∵∠BAC+∠B+∠C=180°,
∴4∠B=180°,
∴∠BAC=90°.
②如图2,∵AB=AC,当AD=BD,AC=CD,
∴∠B=∠C=∠BAD,∠CAD=∠CDA,
∵∠CDA=∠B+∠BAD=2∠B,
∴∠BAC=3∠B,
∵∠BAC+∠B+∠C=180°,
∴5∠B=180°,
∴∠B=36°,
∴∠BAC=108°.
③如图3,∵AB=AC,当AD=BD=BC,
∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,
∵∠BDC=∠A+∠ABD=2∠BAC,
∴∠ABC=∠C=2∠BAC,
∵∠BAC+∠ABC+∠C=180°,
∴5∠BAC=180°,
∴∠BAC=36°.
④如图4,∵AB=AC,当AD=BD,CD=BC,
∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,
∴∠ABC=∠C=3∠BAC,
∵∠BAC+∠ABC+∠C=180°,
∴7∠BAC=180°,
∴∠BAC=
180 ()
7
︒.
综上所述,∠A的最小度数为:
180 ()
7
︒.
故答案是:
180 ()
7
︒.
【点睛】
本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.
3.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.
【答案】(-4,2)或(-4,3)
【解析】
【分析】
【详解】
把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.
故答案为(-4,2)或(-4,3).
4.如图,已知△ABC 和△ADE 都是正三角形,连接CE 、BD 、AF ,BF=4,CF=7,求AF 的长_________ .
【答案】3
【解析】
【分析】
过点A 作AF ⊥CE 交于I ,AG ⊥BD 交于J,证明CAE ≅BAD ,再证明
CAI ≅BAJ ,求出°7830∠=∠=,然后求出12
IF FJ AF ==
,,通过设FJ x =求出x ,即可求出AF 的长.
【详解】
解:过点A 作AF ⊥CE 交于I ,AG ⊥BD 交于J