安徽省合肥市四十二中学2020年中考数学一模试卷
2020年安徽省中考数学一模试卷(含答案解析)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。
2020年安徽省合肥四十二中中考数学模拟试卷
中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共40.0分) 1.-2的倒数为()A. B. C.-2 D.22.下列计算正确的是()A.a4•a2=a8B.a4+a2=a8C.(a2)4=a8D.a4÷a2=2a3.如图所示的正六棱柱的主视图是()A. B.4.C. D.在百度搜索引擎中输入“合肥”二字,能搜索到与之相关的结果个数约为4110000,数41100000用科学记数法表示正确的为()A.41.1×107B.4.11×108C.4.11×107D.0.411×1085.整数m满足m-1<<m,则m的值为()A.1B.2C.3D.46.下列一元二次方程中,有两个相等的实数根的是()A.x2-4x-4=0B.x2-36x+36=0C.4x2+4x+1=0D.x2-2x-1=07.某市的商品房原价为12000元/m2,经过连续两次降价后,现价为9200元/m2,设平均每次降价的百分率为x,则根据题意可列方程为()A. C.12000(1-2x)=92009200(1+2x)=12000B.D.12000(1-x)2=92009200(1+x)2=120008.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A. B. C. D.99°109°119°129°9.ABCD中,E、F分别在边AB和CD上,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.AE=CFB.AF=ECC.∠DAF=∠BCED.∠AFD=∠CEB10. 已知边长为4的等△边ABC,D、E、F分别为边AB、BC、AC的中点,P为线段DE上一动点,则PF+PC的最小值为()A. B. C. D.4 3 2 2+二、填空题(本大题共4小题,共20.0分)11. 因式分解:ab2-2ab+a=______.12.不等式<x的解集是______.13.如图,直线y=x与双曲线y=交于点A,将直线y=-x向右平移使之经过点A,且与x轴交于点B,则点B的坐标为______.14. 如图,在△R t ABC中,∠C=90°,AC=8,BC=6,点D是AB的中点,点P是直线AC上一点,△将ADP沿DP所在的直线翻折后,点A落在A处,若A D⊥AC,则点P与点A之间的距离为______.三、解答题(本大题共9小题,共90.0分)15. 计算:3tan30°+|-2|+(-)-21116. 在端午节来临之际,某商店订购了 A 型和 B 型两种粽子,A 型粽子 28 元/千克,B 型粽子 24 元/千克,若 B 型粽子的数量比 A 型粽子的 2 倍少 20 千克,购进两种粽 子共用了 2560 元,求两种型号粽子各多少千克.17. 如图,在平面直角坐标系中,已 △知ABC 的三个顶点坐标分别是 A (1,1),B (4,1),C (3,3).(1) △将ABC 向下平移 5 个单位后得 △到A B C ,请画 △出A B C ; (2) △将ABC 绕原点 O 逆时针旋转 90”后得 △到A B C ,请画 △出A B C ; (3)在(2)的条件下,求点 B 绕原点 O 逆时针旋转 90°的路径长.18. 如图,每个图形都由同样大小的小正方形按照一定的规律组成,每个小正方形的面 积是 1,图①的面积 6,图②的面积是 12,图③的面积是 20,以此类推.1 1 1 1 1 12 2 2 2 2 2(1)观察以上图形与等式的关系,横线上应填______;(2)图的面积为______(用含n的代数式表示).19. 如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB 向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)20. 已知:过⊙O外一点C作⊙O的切线BC,B为切点,AB是直径,AC与⊙O交于D.(1)若∠AOD=120°,求∠C的度数;(2)若AD=8,sin C=,求AB的长.21. 为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为______人,参加球类活动的人数的百分比为______;(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为______;(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.22. 商场里某产品每月销售量y(只)与销售单价x(元)满足一次函数关系,经调查部分数据如表:(已知每只进价为10元,每只利润=销售单价-进价)销售单价x(元)21月销售额y(只)2923272525……(1)求出y与x之间的函数表达式;(2)这产品每月的总利润为w元,求w关于x的函数表达式,并指出销售单价为多少元时利润最大,最大利润是多少元?(3)由于该产品市场需求量较大,进价在原有基础上提高了a元(a<10),但每月销售量与销售价仍满足上述一次函数关系,此时,随着销售量的增大,所得的最大利润比(2)中的最大利润减少了144元,求a的值.23.如图,在△R t ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为M,连接CF,若CG=GM.①求证:CF=CM;②求的值.答案和解析1.【答案】B【解析】解:-2的倒数是-.故选:B.乘积是1的两数互为倒数.本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.【答案】C【解析】【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.此题主要考查了直接利用同底数幂的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.【解答】解:A、a4•a2=a6,故此选项错误;B、a4+a2,无法计算,故此选项错误;C、(a2)4=a8,正确;D、a4÷a2=a2,故此选项错误;故选:C.3.【答案】A【解析】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.根据主视图是从正面看到的图象判定则可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【答案】C【解析】解:将41100000用科学记数法表示为:4.11×107.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】C【解析】解:由题意22<5<m<9,∴,∴则m的值为3.故选:C.本题从的整数大小范围出发,然后确定m的大小.本题考查了无理数的大小问题,本题从的大小出发,很容易求出m的值.6.【答案】C【解析】解:A、∵△=△(-4)2-4×1×(-4)=32>0,∴该方程有两个不相等的实数根,A不符合题意;-4×1×36=1152>0,B、∵△=△(-36)2∴该方程有两个不相等的实数根,B不符合题意;-4×4×1=0,C、∵△=4△2∴该方程有两个相等的实数根,C符合题意;D、∵△=△(-2)2-4×1×(-1)=8>0,∴该方程有两个不相等的实数根,D不符合题意.故选:C.根据方程的系数结合根的判别式,分别求出四个选项中方程的根的判别式,利用“当△=0时,方程有两个相等的实数根”即可找出结论.本题考查了根的判别式,牢记“△当=0时,方程有两个相等的实数根”是解题的关键.7.【答案】B【解析】解:设平均每次降价的百分率为x,依题意,得:12000(1-x)2=9200.故选:B.设平均每次降价的百分率为x,根据该市商品房的原价及经过两次降价后的价格,可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.【答案】B【解析】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选:B.方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.本题考查了方位角,熟练掌握平行线的性质是解题的关键.9.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD=BC,AD∥BC,∠B=∠D;第8 页,共16 页是平行四边形;B.AF=EC时,不能得出四边形AECF一定为平行四边形;C.∠DAF=∠BCE时,可以得△出ADF≌△CBE,得出AF=CE,DF=BE,因此AE=CF,可以证出四边形AECF是平行四边形;D.∠AFD=∠CEB时,可以得△出ADF≌△CBE,得出AF=CE,DF=BE,因此AE=CF,可以证出四边形AECF是平行四边形;故选:B.根据平行四边形的判定方法对各个选项进行分析判断即可.本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.10.【答案】A【解析】解:如图,连接BP,BF.∵△ABC是等边三角形,D、E、F分别为边AB、BC、AC的中点,∴DE∥AC,BF⊥DE,易知DE是线段BF的垂直平分线,∴PB=PF,∴PF+PC=PB+PC,∵PB+PC≥BC,∴PF+PC≥4,∴PF+PC的最小值为4.故选:A.如图,连接BP,BF.首先说明DE是线段BF的垂直平分线,可证PF+PC=PB+PB≥BC,延长即可解决问题.本题考查轴对称最短问题,等边三角形的性质,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.【答案】a(b-1)2【解析】解:原式=a(b2-2b+1)=a(b-1)2;故答案为:a(b-1)2.原式提取a,再运用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】x<-2【解析】解:<x,去分母得:3x+2<2x,移项得:x<-2,故答案为:x<-2.去分母得到3x+2<2x,移项合并同类项得出x<-2,即可求出答案.第9 页,共16 页本题主要考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能熟练地根 据不等式的性质正确解不等式是解此题的关键. 13.【答案】(2,0)【解析】解:由得或 ,∴A (1,1),设直线 y =-x 向右平移 b 个单位长度经过点 A ,则平移后的解析式为 y =-(x -b )=-x +b , 代入 A (1,1)得,1=-1+b ,解得 b =2,∴平移后的解析式为 y =-x +2,令 y =0,则求得 x =2,∴B (2,0),故答案为(2,0).联立求得 A 的坐标,设出平移后的解析式,得到A 点,求得平移后的解析式,即可求得 B 点的坐标.本题考查了反比例函数和一次函数的交点,一次函数的图象与几何变换,求得 A 点的坐 标以及平移的规律是解题的关键.14.【答案】 或 10【解析】解:分两种情况:①若点A 在 AC 左侧,如图1 所示:∵∠C =90°,AC =8,BC =6,∴AB = = =10,∵点 D 是 AB 的中点,∴AD = AB =5, ∵A1D ⊥AC ,∠C =90° ∴A 1 D ∥BC ∴ = = = ,∴AE =EC = AC =4,DE = BC =3, ∵将△ADP 沿 DP 所在的直线翻折 △得ADP ,∴A D =AD =5,A P =AP , ∴A E =A D-DE =5-3=2, ∴在 △R t A PE 中,A P 2=A E 2 +PE 2 ,∴AP 2=22+(4-AP )2,∴AP = ;②若点 A 在 AC 右侧,延长 A D 交 AC 于 E ,如图 2 所示:则 A E =DE +A D =3+5=8, 在 △R t EA P 中,A P 2=A E 2+EP 2,∴AP 2 =82+(AP -4)2,∴AP =10,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1第10 页,共16 页故答案为: 或 10.分点 A 在 AC 左侧,点 A 在AC 右侧两种情况讨论,由勾股定理可 AB =10,由平行线分 线段成比例可得 = = = ,可求 AE ,DE 的长,由勾股定理可求 AP 的长.本题考查了翻折变换的性质、直角三角形的性质、勾股定理、分类讨论等知识,熟练掌 握翻折变换的性质并进行分类讨论是解题的关键.15.【答案】解:原式=3× +2- +9= +2-+9=11.【解析】直接利用特殊角的三角函数值以及负指数幂的性质、绝对值的性质分别化简得 出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.【答案】解:设订购了 A 型粽子 x 千克,B 型粽子 y 千克,根据题意,得,解得.答:订购了 A 型粽子 40 千克,B 型粽子 60 千克.【解析】订购了 A 型粽子 x 千克,B 型粽子 y 千克.根据 B 型粽子的数量比 A 型粽子的 2 倍少 20 千克,购进两种粽子共用了 2560 元列出方程组,求解即可.本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条 件,找出合适的等量关系,列出方程组再求解.17.【答案】解:(1)如图所示 △,A B C 即为所求; (2)如图所示,△A △ B C 即为所求;(3)如图,点 B 绕原点 O 逆时针旋转 90°的路径长为=.【解析】(1)依据平移的方向和距离,即可得 △到A B C ;(2)依据旋转中心、旋转方向和旋转角度,即可得 △到A B C ;(3)利用弧长计算公式即可得到点 B 绕原点 O 逆时针旋转 90°的路径长.本题主要考查了利用平移变换以及旋转变换作图,旋转作图有自己独特的特点,决定图 形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到 的图形全等.1 1 1 1 12 2 2 1 1 1 2 2 218.【答案】4×5n2+3n+2【解析】解:(1)2+4+6+8=4×5,故答案为:4×5;(2)图ⓝ的面积为:(n+1)(n+2)=n2+3n+2,故答案为:n2+3n+2.(1)根据题目中的图形,可以将题目中的空补充完整;(2)根据题意,可以计算出图ⓝ的面积.本题考查图形的变化类,列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.19.【答案】解:(1)△R t ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)过B作BG⊥DE于G,由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,△R t BGC中,∠CBG=45°,∴CG=BG=5+15.△R t ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE-DE=5+15+5-15=20-10≈2.7m.答:宣传牌CD高约2.7米.【解析】(1)在△R t ABH中,通过解直角三角形求出BH;(2)过B作DE的垂线,设垂足为G.△在ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在△R t CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.20.【答案】解:(1)∵OA=OD,∴∠A=∠ODA=(180°-∠AOD=(180°-120°)=30°,∵BC为⊙O的切线,AB是直径,∴AB⊥BC,∴∠ABC=90°,∴∠C=90°-∠A=90°-30°=60°;(2)连接BD,如图,∵AB为直径,∴∠ADB=90°,∴∠C+∠A=90°,∠ABD+∠A=90°,∴∠ABD=∠C,在△R t ABD中,sin∠ABD==,∴AB=×8=10.【解析】(1)先利用等腰三角形的性质和三角形内角和计算出∠A =30°,再根据切线的 性质得到∠ABC=90°,然后利用互余可计算出∠C ;(2)连接 BD ,如图,利用圆周角定理得到∠ADB =90°,根据等角的余角相等得到 ∠ABD =∠C ,然后利用正弦的定义可计算出 AB .本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和解直 角三角形.21.【答案】(1)7 30%(2)补全条形图如下:(3)105 人; (4)画树状图如下:共有 12 种情况,选中一男一女的有 6 种,则 P = = .【解析】解:(1)本次调查的总人数为 10÷25%=40(人),∴参加音乐类活动的学生人数为 40×17.5%=7 人,参加球类活动的人数的百分比为 ×100%=30%,故答案为:7、30%;(2)见答案;(3)该校学生共 600 人,则参加棋类活动的人数约为 600× =105,故答案为:105 人;(4)见答案.(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得 到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统 计图直接反映部分占总体的百分比大小.22.【答案】解:(1)设 y =kx +b (k ≠0),根据题意代入点(21,29),(25,25),(一男一女)∴解得, ∴y =-x +50.(2)依题意得,w =(x -10)(-x +50)=-x 2 +60x -500=-(x -30)2 +400,∵a =-1<0,∴当 x=30 时,w 有最大值 400,即当销售单价定为 30 元时,每月可获得最大利润 400 元.(3)最新利润可表示为-x 2 ∴此时最大利润为+60x -500-a (-x +50)=-x 2+(60+a )x -500-50a ,=400-144,解得 a =8,a =72, ∵当 a =72 时,销量为负数舍去.∴a =8.【解析】(1)待定系数法求函数解析式.(2)总利润=单件利润×总销售量,先表示出 w ,再根据二次函数求最值问题进行配方 即可.(3)含参的二次函数问题,先表示出 w ,根据最大利润列式即可求出 a .此题考查了一次函数的实际应用,以及二次函数的实际应用,利用最大利润列式求解为 解题关键.23.【答案】(1)证明:如图 1 中,∵AC =BC ,∠ACE =∠BCD =90°,CE =CD ,∴△ACE ≌△BCD (SAS ),∴∠CAE =∠CBD ,∵DF =FB ,∴CF =FD =FB ,∴∠FCB =∠FBC ,∴∠FCB =∠CAB ,∵∠CAB +∠AEC =90°,∴∠AEC +∠FCB =90°,∴∠CGE =90°,∴CF ⊥AE .(2)①证明:如图 2 中,1 2∵FM⊥BC,∴∠FHC=∠CGE=∠MGF=90°,∴∠ECG+∠CEG=90°,∠ECG+∠CFH=90°,∴∠CEG=∠CFH,∴CG=GM,∴△CGE≌△MGF(AAS),∴CE=FM,EG=GF,∵CD=CE,∴CD=FM,∵∠FHB=∠ACB=90°,∴CD∥FM,∴四边形CDFM是平行四边形,∴CM=DF,∵CF=DF=FB,∴CM=CF.②连接EF,BM.设FG=EG=a,∵CM=BF,CM∥BF,∴FG∥BM,∴=,∵△CAE≌△CBD,∴∠CAE=∠CBD,∵∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB,∴=,a,易知OG=GF=EG=a,EF=EM=∴OM=2a+a,∴==.【解析】(1)证△明ACE≌△BCD(SAS),结合直角三角形斜边中线的性质解决问题即可.(2)①证明四边形CDFM是平行四边形,即可解决问题.②连接EF,BM.设FG=EG=a,证明GF∥BM,把问题转化为:==,求出OG,OM(用a表示),即可解决问题.本题属于相似形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考压轴题.。
2020-2021学年安徽省合肥市中考数学一模试卷及答案解析
安徽省合肥市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.6÷(﹣2)的结果为()A.3 B.﹣3 C.2 D.﹣22.(﹣xy3)2=()A.x2y5B.﹣x2y5C.xy6D.x2y63.下列因式分解正确的是()A.x2+y2=(x+y)2 B.y2﹣x2=(x+y)(y﹣x)C.x2+2xy﹣y2=(x﹣y)2D.x2﹣2xy+y2=(x+y)(x﹣y)4.一次函数y=ax﹣1和y=bx+5的图象如图所示,则a、b的值是()A.a=3,b=2 B.a=2,b=3 C.a=1,b=﹣1 D.a=﹣1,b=15.某市中考体育加试考查5个科目,具体规定是:A项目必考,再从B、C、D、E四项中随机抽考两项,则抽考两项中恰好是C、E两项的概率是()A.B.C.D.6.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,分别连接AD、BC,已知∠D=65°,则∠OCD=()A.30°B.35°C.40°D.45°7.如图1,把正方体沿上下底面的正方形对角线竖直方向切掉一半后得到图2,把切面作为正面观察,设它的主视图、左视图的面积分别为S1、S2,则S1:S2=()A.1:2 B.2:1 C.:1 D.2:18.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A.15%﹣5%=x B.15%﹣5%=2xC.(1﹣5%)(1+15%)=2(1+x) D.(1﹣5%)(1+15%)=(1+x)29.如图1,点D、B、C、E在同一条直线上,在△ABC中,∠BAC=40°,AB=AC=2,点D、E在直线BC上由左向右运动,且始终保持∠DAE=110°,当点D向点B运动时(D不与B重合),如图(2),设DB=x,CE=y,则y与x的函数关系的图象大致可以表示为()A.B.C.D.10.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是()A.0<AD<3 B.1≤AD< C.≤AD<D.≤AD<二、填空题(本大题共4小题,每小题5分,满分20分)11.据规划,截止年底,环巢湖将新建湿地3946000平方米,届时环巢湖将更加风景如画,其中数“3946000”用科学记数法表示为.12.计算:﹣(12﹣π)0+|﹣2|= .13.如图,AB是⊙O的直径,C是AB弧上一点,AP平分∠BAC,AB=3,AC=1,则PB= .14.已知:如图,BD为△ABC的内角平分线,CE为△ABC的外角平分线,AD⊥BD于D,AE⊥CE 于E,延长AD交BC的延长线于F,连接DE,设BC=a,AC=b,AB=c,(a<b<c)给出以下结论正确的有.①CF=c﹣a;②AE=(a+b);③DE=(a+b﹣c);④DF=(b+c﹣a)三、(本大题共2小题,每小题8分,满分16分)15.解不等式组:.16.观察下列等式:①﹣1=﹣②﹣4=﹣③﹣9=﹣…根据上述规律解决下列问题:(1)完成第四个等式:()﹣()=()(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.四、(本大题共2小题,每小题8分,满分16分)17.已知:如图,平行四边形ABCD中,AB=4,AD=6,∠A的平分线交BC于E,交DC延长线于点F,BG⊥AE,垂足为G,射线BG交AD于H,交CD延长线于M(1)求CE的长;(2)求MF的长.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O.(1)以O为位似中心,将△ABC作位似变换,且放大到原来的两倍,得到△A1B1C1,画出△A1B1C1;(2)若△A1B1C1三边中点分别为P1、P2、P3,将△A1B1C1绕P1、P2、P3中的某一点顺时针旋转90°,使得格点A1落在旋转后得到的△A2B2C2内,画出△A2B2C2,并标出旋转中心.五、(本大题共2小题,每小题10分,满分20分)19.如图,三条平行的高速公路l1、l2、l3分别经过A、B、C三个城市,AB、AC分别为两条连接城市的普通公路,AB、AC分别与l1成30°、45°角,已知AB=200千米,AC=400千米,求两条高速公路l2、l3之间的距离(结果保留根号).20.某工程需要开挖4200米长的隧道,了解甲、乙两工程队后得到如下信息:两个工程队单独完成这项工程所需费用相同,甲工程队比乙工程队每天可多完成20米,但每天需要的费用比乙工程队多40%.(1)求甲、乙两工程队每天各能完成多少米?(2)为加快工程进度,必须要求两个工程队同时从两个方向施工,已知乙工程队每天的费用为a万元,求两工程队合作完成后的总费用(用含a的代数式表示).六、(本题满分12分)21.某中学组织学生参加“社会主义核心价值观知识竞赛”,赛后随机抽查了部分参赛同学的成绩,整理并制成图表如下:分数段频数频率60≤x<70 30 0.170≤x<80 9080≤x<90 0.490≤x<100 60 0.2根据以上图表信息,解答下列问题:(1)补全频数分布表和频数直方图;(2)参赛的小明同学认为他的比赛成绩是所有参赛同学成绩的中位数,据此推断他的成绩落在分数段内;(3)如果该校共有2000名学生参赛,比赛成绩80分以上(含80分)为“优秀”,请估计该校获得“优秀”等级的人数.七、(本题满分12分)22.已知:Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,在三角形内裁剪正方形,使正方形四个顶点恰好在三角形的边上,共有两种裁法:(1)裁法1,如图(1),若a=6,b=8,且正方形两条边在直角边上,试求正方形的边长x;(2)裁法2,如图(2),若a=6,b=8,且正方形一条边在斜边上,试求正方形的边长y;(3)对于任意Rt△ABC,若c为斜边,以裁法1得到的正方形面积S1和以裁法2得到的正方形面积S2,试猜想S1与S2的大小,并证明你的结论.八、(本题满分14分)23.如图是排球比赛场景的示意图,AB是球网,长度为10米,高AC为2.4米,二传手在距边界C处0.5米的E点传球,球(看成一个点)从点M处沿如图所示的抛物线在网前飞行,点M 的高度为1.8米,球在水平方向飞行5米后达到最高3.8米.(1)以点C为坐标原点,建立直角坐标系,并求出抛物线的解析式;(2)甲球员在距二传手2米的F处起跳扣快球,其最大扣球高度为3.10米(只考虑在起跳点正上方扣球,不考虑起跳时间等因素),试问甲队员能否扣到球?(3)若乙队员的最大扣球高度是3.4米,而对方防守队员最大防守高度为3.2米,试问乙队员应在距点C多远的地方起跳,既能扣到球又避免对方拦网?(参考数据:=2.24,=5.48)安徽省合肥市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.6÷(﹣2)的结果为()A.3 B.﹣3 C.2 D.﹣2【考点】有理数的除法.【分析】根据有理数的除法计算即可.【解答】解:6÷(﹣2)=﹣3,故选B【点评】此题考查有理数的除法,注意同号得正,异号得负.2.(﹣xy3)2=()A.x2y5B.﹣x2y5C.xy6D.x2y6【考点】幂的乘方与积的乘方.【分析】根据积的乘方计算即可.【解答】解:(﹣xy3)2=x2y6,故选D【点评】此题考查积的乘方,关键是根据法则进行计算.3.下列因式分解正确的是()A.x2+y2=(x+y)2 B.y2﹣x2=(x+y)(y﹣x)C.x2+2xy﹣y2=(x﹣y)2D.x2﹣2xy+y2=(x+y)(x﹣y)【考点】因式分解-运用公式法.【分析】分别利用公式法分解因式进而判断得出即可.【解答】解:A、x2+2xy+y2=(x+y)2,故此选项错误;B、y2﹣x2=(x+y)(y﹣x),正确;C、x2+2xy+y2=(x+y)2,故此选项错误;D、x2﹣2xy+y2=(x﹣y)2,故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.4.一次函数y=ax﹣1和y=bx+5的图象如图所示,则a、b的值是()A.a=3,b=2 B.a=2,b=3 C.a=1,b=﹣1 D.a=﹣1,b=1【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据良好直线相交的问题,把两直线的交点坐标(3,2)分别代入两直线解析式即可求得a和b的值.【解答】解:把(3,2)代入y=ax﹣1得3a﹣1=2,解得a=1;把(3,2)代入y=bx+5得3b+5=2,解得b=﹣1.故选C.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.5.某市中考体育加试考查5个科目,具体规定是:A项目必考,再从B、C、D、E四项中随机抽考两项,则抽考两项中恰好是C、E两项的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中C、E两位同学的情况,再利用概率公式即可求得答案.【解答】解:列表得:(A,E)(B,E)(C,E)(D,E)﹣(A,D)(B,D)(C,D)﹣(E,D)(A,C)(B,C)﹣(D,C)(E,C)(A,B)﹣(C,B)(D,B)(E,B)﹣(B,A)(C,A)(D,A)(E,A)∵A项目必考,再从B、C、D、E四项中随机抽考两项,∴共有12种等可能的结果,恰好选中C、E两位同学的有2种情况,∴P(恰好选中C、E)==,故选A.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.6.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,分别连接AD、BC,已知∠D=65°,则∠OCD=()A.30°B.35°C.40°D.45°【考点】圆周角定理;垂径定理.【分析】根据圆周角定理求得∠B=65°,进而根据直角三角形两锐角互余求得∠BCE=25°,根据等边对等角求得∠OCB=∠B=65°,从而求得∠OCD=65°﹣25°=40°.【解答】解:∵∠B=∠D=65°,CD⊥AB,∴∠BCE=90°﹣65°=25°,∵OB=OC,∴∠OCB=∠B=65°,∴∠OCD=65°﹣25°=40°.故选C.【点评】本题考查了圆周角定理,等腰三角形的性质,直角三角形的性质,熟练掌握性质定理是解题的关键.7.如图1,把正方体沿上下底面的正方形对角线竖直方向切掉一半后得到图2,把切面作为正面观察,设它的主视图、左视图的面积分别为S1、S2,则S1:S2=()A.1:2 B.2:1 C.:1 D.2:1【考点】简单组合体的三视图.【分析】根据正方体的性质,三视图的知识可知图2的主视图与左视图都是矩形,它们的高相等,主视图是左视图底边的2倍,根据矩形的面积公式即可求解.【解答】解:∵把正方体沿上下底面的正方形对角线竖直方向切掉一半后得到图2,∴图2的主视图与左视图都是矩形,它们的高相等,主视图是左视图底边的2倍,、S2,∵主视图、左视图的面积分别为S1:S2=2:1.∴S1故选:B.【点评】考查了简单组合体的三视图,关键是得到图2的主视图与左视图都是矩形,以及它们相互间的关系.8.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A.15%﹣5%=x B.15%﹣5%=2xC.(1﹣5%)(1+15%)=2(1+x) D.(1﹣5%)(1+15%)=(1+x)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题进行计算,如果设平均每次降价的百分率为x,可以用x表示两次降价后的售价,然后根据已知条件列出方程.【解答】解:设一月份的产量为a,则二月份的产量为a(1﹣5%),三月份的产量为a(1﹣5%)(1+15%),根据题意得:a(1﹣5%)(1+15%)=a(1+x)2,即:(1﹣5%)(1+15%)=(1+x)2,故选:D.【点评】本题考查一元二次方程的应用,解决此类两次变化问题,可利用公式a(1+x)2=c,其中a是变化前的原始量,c是两次变化后的量,x表示平均每次的增长率.9.如图1,点D、B、C、E在同一条直线上,在△ABC中,∠BAC=40°,AB=AC=2,点D、E在直线BC上由左向右运动,且始终保持∠DAE=110°,当点D向点B运动时(D不与B重合),如图(2),设DB=x,CE=y,则y与x的函数关系的图象大致可以表示为()A.B.C.D.【考点】动点问题的函数图象.【分析】利用AB=AC可得∠ABC=∠ACB,进而可得∠ABD=∠ACE,然后证明∠ADB=∠CAE,可得△ADB∽△EAC,根据相似三角形的对应边成比例可得y与x之间的函数关系式,从而作出判断.【解答】解:∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∴∠ABD=∠ACE,∠ADB+∠BAD=70°,∵∠DAE=110°,∴∠BAD+∠CAE=70°,∴∠ADB=∠CAE,∴△ADB∽△EAC,∴,∴xy=4,解得y=.故选:A.【点评】本题主要考查了相似三角形的判定与性质和函数的图象,利用两角对应相等得到两三角形相似是解决本题的关键.10.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是()A.0<AD<3 B.1≤AD< C.≤AD<D.≤AD<【考点】直线与圆的位置关系.【分析】首先由Rt△ABC中,∠C=90°,AC=3,BC=4,可求得AB的长,然后根据题意画出图形,分别从当⊙D与BC相切时与当⊙D与BC相交时,去分析求解即可求得答案.【解答】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,以D为圆心,AD的长为半径画⊙D,①如图1,当⊙D与BC相切时,DE⊥BC时,设AD=x,则DE=AD=x,BD=AB﹣AD=5﹣x,∵∠BED=∠C=90°,∠B是公共角,∴△BDE∽△BAC,∴,即,解得:x=;②如图2,当⊙D与BC相交时,若交点为B或C,则AD=AB=,∴AD的取值范围是≤AD<.故选D.【点评】此题考查了点与圆的位置关系、勾股定理以及相似三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.据规划,截止年底,环巢湖将新建湿地3946000平方米,届时环巢湖将更加风景如画,其中数“3946000”用科学记数法表示为 3.946×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3946000用科学记数法表示为3.946×106.故答案为:3.946×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.计算:﹣(12﹣π)0+|﹣2|= +1 .【考点】实数的运算;零指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2﹣1+2﹣=+1,故答案为:+1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.13.如图,AB是⊙O的直径,C是AB弧上一点,AP平分∠BAC,AB=3,AC=1,则PB= .【考点】全等三角形的判定与性质;圆周角定理.【分析】延长AC,BP交于D,由AB是⊙O的直径,得到∠APB=∠ACB=90°,求得∠APD=∠DCB=90°,根据角平分线的定义得到∠DAP=∠BAP,推出△ADP≌△ABP,根据全等三角形的性质得到PD=PB,AD=AB=3,根据勾股定理得到BC==2,BD==2,即可得到结论.【解答】解:延长AC,BP交于D,∵AB是⊙O的直径,∴∠APB=∠ACB=90°,∴∠APD=∠DCB=90°,∵AP平分∠BAC,∴∠DAP=∠BAP,在△ADP与△ABP中,,∴△ADP≌△ABP,∴PD=PB,AD=AB=3,∴CD=AD﹣AC=2,∵∠ACB=90°,∴BC==2,∴BD==2,∴PB=BD=.【点评】本题考查了全等三角形的判定和性质,角平分线的定义,圆周角定理,正确的作出辅助线是解题的关键.14.已知:如图,BD为△ABC的内角平分线,CE为△ABC的外角平分线,AD⊥BD于D,AE⊥CE 于E,延长AD交BC的延长线于F,连接DE,设BC=a,AC=b,AB=c,(a<b<c)给出以下结论正确的有①③.①CF=c﹣a;②AE=(a+b);③DE=(a+b﹣c);④DF=(b+c﹣a)【考点】三角形中位线定理;等腰三角形的判定与性质.【分析】延长AE交BC的延长线与点M,则△ACM是等腰三角形,即可证明E是AM的中点,则DE是三角形的中位线,利用三角形的中位线定理求解.【解答】解:延长AE交BC的延长线与点M.∵CE⊥AE,CE平分∠ACB,∴△ACM是等腰三角形,∴AE=EM,AC═CM=b,同理,AB=BF=c,AD=DF,AE=EM.∴DE=FM,∵CF=c﹣a,∴FM=b﹣(c﹣a)=a+b﹣c.∴DE=(a+b﹣c).故①③正确.故答案是:①③.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确作出辅助线是关键.三、(本大题共2小题,每小题8分,满分16分)15.解不等式组:.【考点】解一元一次不等式组.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:,由①得:x>4,由②得:x≤6,不等式组的解集为4<x≤6.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.观察下列等式:①﹣1=﹣②﹣4=﹣③﹣9=﹣…根据上述规律解决下列问题:(1)完成第四个等式:()﹣(16 )=(﹣)(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.【考点】规律型:数字的变化类.【分析】(1)由①②③不难看出各式分母不变,分子是连续奇数的平方,根据规律写出第四个等式即可;(2)根据(1)由特殊到一般的思想可写出一般式,化简后左边等于右边即可证明.【解答】解:(1)由①②③不难看出各式分母不变,分子是连续奇数的平方,所以第四个等式是:﹣16=﹣;(2)第n个等式(用含n的式子表示)是:﹣n2=﹣;证明:左边==﹣=右边.所以此式正确.【点评】本题主要考查了数字变化规律问题,解决此类问题的关键是运用由特殊到一般的思想,找到一般规律,要善于前后联系,挖掘规律.四、(本大题共2小题,每小题8分,满分16分)17.已知:如图,平行四边形ABCD中,AB=4,AD=6,∠A的平分线交BC于E,交DC延长线于点F,BG⊥AE,垂足为G,射线BG交AD于H,交CD延长线于M(1)求CE的长;(2)求MF的长.【考点】平行四边形的性质;等腰三角形的判定与性质.【分析】(1)由角平分线得出∠BAE=∠DAE,由平行四边形的性质得出AD∥BC,BC=AD=6,证出∠DAE=∠AEB,∠BAE=∠AEB,得出BE=AB=4,即可得出结果;(2)由ASA证明△ABG≌△AHG,得出AH=AB=4,∠ABG=∠AHG,得出HD=2,由平行线的性质和角的关系得出∠M=∠MHD,得出DM=DH=2,同理得出CF=CE=2,即可得出结果.【解答】解:(1)∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=6,AB=CD=4,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴BE=AB=4,∴CE=BC﹣BE=6﹣4=2;(2)∵BG⊥AE,∴∠AGB=∠AGH,在△ABG和△AHG中,,∴△ABG≌△AHG(ASA),∴AH=AB=4,∠ABG=∠AHG,∴HD=AD﹣AH=6﹣4=2,∵AB∥MF,∴∠ABG=∠M,∵∠AHG=∠MHD,∴∠M=∠MHD,∴DM=DH=2,同理可得:CF=CE=2,∴MF=DM+CD+CF=2+4+2=8.【点评】本题考查了平行四边形的性质、等腰三角形的判定与性质、角的平分线、全等三角形的判定与性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O.(1)以O为位似中心,将△ABC作位似变换,且放大到原来的两倍,得到△A1B1C1,画出△A1B1C1;(2)若△A1B1C1三边中点分别为P1、P2、P3,将△A1B1C1绕P1、P2、P3中的某一点顺时针旋转90°,使得格点A1落在旋转后得到的△A2B2C2内,画出△A2B2C2,并标出旋转中心.【考点】作图-位似变换;作图-旋转变换.【专题】作图题.【分析】(1)延长AO到A1,使OA1=OA,同样作出点B1、C1,则△A1B1C1为所求;(2)以A1C1的中点P1为旋转中心,顺时针旋转90°,利用网格特点画出△A2B2C2.【解答】解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所求,旋转中心为A1C1的中点P1.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.五、(本大题共2小题,每小题10分,满分20分)19.如图,三条平行的高速公路l1、l2、l3分别经过A、B、C三个城市,AB、AC分别为两条连接城市的普通公路,AB、AC分别与l1成30°、45°角,已知AB=200千米,AC=400千米,求两条高速公路l2、l3之间的距离(结果保留根号).【考点】解直角三角形的应用.【分析】过A作AD⊥l2于D,延长AD交l3于E,构成两个直角三角形,解两个直角三角形分别求得AD=100,AE=200,即可求得两条高速公路l2、l3之间的距离.【解答】解:过A作AD⊥l2于D,延长AD交l3于E,在RT△ABD中,∠ABD=30°,AB=200,∴AD=100,在RT△ACE中,∠ACE=45°,AC=400,∵sin∠ACE=,∴AE=AC•sin45°=200,∴DE=AE﹣DE=200﹣100,答:两条高速公路l2、l3之间的距离为(200﹣100)千米.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.20.某工程需要开挖4200米长的隧道,了解甲、乙两工程队后得到如下信息:两个工程队单独完成这项工程所需费用相同,甲工程队比乙工程队每天可多完成20米,但每天需要的费用比乙工程队多40%.(1)求甲、乙两工程队每天各能完成多少米?(2)为加快工程进度,必须要求两个工程队同时从两个方向施工,已知乙工程队每天的费用为a万元,求两工程队合作完成后的总费用(用含a的代数式表示).【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设甲工程队每天能完成x米,则乙工程队每天完成(x﹣20)米,设乙工程队每天需要费用为a,则甲工程队每天需要费用为a(1+40%),根据两个工程队单独完成这项工程所需费用相同,列方程求解;(2)设两个工程队合作m天完成工程,根据(1)求得数据代入求出m的值,然后求出总费用.【解答】解:(1)设甲工程队每天能完成x米,则乙工程队每天完成(x﹣20)米,设乙工程队每天需要费用为a,则甲工程队每天需要费用为a(1+40%),由题意得,a(1+40%)•=a•,解得:x=70,经检验,x=70是分式方程的解,且符合题意,则x﹣20=50.答:甲工程队每天能完成70米,则乙工程队每天完成50米;(2)设两个工程队合作m天完成工程,由题意得,70m+50m=4200,解得:m=35,则总费用为:35[a+a(1+40%)]=84a(万元).答:两工程队合作完成后的总费用为84a万元.【点评】本题考查了分式方程和一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.六、(本题满分12分)21.某中学组织学生参加“社会主义核心价值观知识竞赛”,赛后随机抽查了部分参赛同学的成绩,整理并制成图表如下:分数段频数频率60≤x<70 30 0.170≤x<80 9080≤x<90 0.490≤x<100 60 0.2根据以上图表信息,解答下列问题:(1)补全频数分布表和频数直方图;(2)参赛的小明同学认为他的比赛成绩是所有参赛同学成绩的中位数,据此推断他的成绩落在80≤x<90 分数段内;(3)如果该校共有2000名学生参赛,比赛成绩80分以上(含80分)为“优秀”,请估计该校获得“优秀”等级的人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据各组的频率的和是1,用1减去其它组的频数,即可求得70≤x<80一组的频率,根据频率=即可求得总数,然后利用公式求得第三组的频数;(2)根据中位数的定义即可判断;(3)利用总人数乘以对应的频率即可.【解答】解:(1)70≤x<80段的频数是1﹣0.2﹣0.4﹣0.1=0.3.总人数是30÷0.1=300(人),80≤x<90段的频数是300×0.4=120(人),分数段频数频率60≤x<70 30 0.170≤x<80 90 0.380≤x<90 120 0.490≤x<100 60 0.2(2)共有300个数据,中位数为第150个数据和第151个数据的平均数,这两个数都在80≤x <90这一组.故答案是80≤x<90;(3)根据题意得2000×(0.4+0.2)=1200(名).答:该校获得“优秀”等级的人数是1200名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.七、(本题满分12分)22.已知:Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,在三角形内裁剪正方形,使正方形四个顶点恰好在三角形的边上,共有两种裁法:(1)裁法1,如图(1),若a=6,b=8,且正方形两条边在直角边上,试求正方形的边长x;(2)裁法2,如图(2),若a=6,b=8,且正方形一条边在斜边上,试求正方形的边长y;(3)对于任意Rt△ABC,若c为斜边,以裁法1得到的正方形面积S1和以裁法2得到的正方形面积S2,试猜想S1与S2的大小,并证明你的结论.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)裁法1的正方形的边长为x,由EF∥BC,于是得到△AEF∽△ABC,所以=即可得到x=;(2)根据勾股定理得到c=10,设斜边上的高为h,根据三角形的面积公式的ab=ch,求出h=4.8得到比例式,即可得到y=;(3)由(1)知,,得到x=,由(2)知,得到y=,于是得到﹣=,由于c>a,c>b,于是得到(c﹣a)(c﹣b)>0,求出>0,得到x>y,即可得到结论.【解答】解:(1)裁法1的正方形的边长为x,∵EF∥BC,∴△AEF∽△ABC,∴=,∴,∴x=;(2)∵a=6,b=8,∴c=10,设斜边上的高为h,根据三角形的面积公式的ab=ch,∴h=4.8,∵裁法2的正方形的边长y,则,解得:y=,(3)S1>S2,理由:由(1)知,,得bx=ab﹣ax,∴x=,由(2)知,得y=,即y=,∴﹣===,∵c>a,c>b,∴(c﹣a)(c﹣b)>0,∴>0,∴,∴x>y,即裁法1得到的正方形边长>裁法2得到的正方形边长,>S2.∴S1【点评】本题考查了相似三角形的判定和性质,正方形的性质,三角形的面积公式,勾股定理,熟练掌握各性质定理是解题的关键.八、(本题满分14分)23.如图是排球比赛场景的示意图,AB是球网,长度为10米,高AC为2.4米,二传手在距边界C处0.5米的E点传球,球(看成一个点)从点M处沿如图所示的抛物线在网前飞行,点M 的高度为1.8米,球在水平方向飞行5米后达到最高3.8米.(1)以点C为坐标原点,建立直角坐标系,并求出抛物线的解析式;(2)甲球员在距二传手2米的F处起跳扣快球,其最大扣球高度为3.10米(只考虑在起跳点正上方扣球,不考虑起跳时间等因素),试问甲队员能否扣到球?(3)若乙队员的最大扣球高度是3.4米,而对方防守队员最大防守高度为3.2米,试问乙队员应在距点C多远的地方起跳,既能扣到球又避免对方拦网?(参考数据:=2.24,=5.48)【考点】二次函数的应用.【分析】(1)建立平面直角坐标系,根据题意设y=a(x﹣h)2+k,用待定系数法求出函数关系式;(2)把x=2.5代入(1)的函数关系式,求出y的值与最大扣球高度3.10米进行比较即可;(3)把y=3.4和y=3.2代入函数关系式解方程,然后根据二次函数的图象和性质得到答案.【解答】解:以0为坐标原点,CD为x轴正方向建立平面直角坐标系,(1)令y=a(x﹣h)2+k,把(5.5,3.8)代入,得y=a(x﹣5.5)2+3.8∵点M(0.5,1.8)在图象上,∴1.8=a(0.5﹣5.5)2+3.8,解得:a=﹣,∴y=﹣(x﹣5.5)2+3.8;(2)当x=2.5时,y=﹣(2.5﹣5.5)2+3.8=3.08,∵3.08<3.10,∴甲队员能扣到球;(3)当y=3.4时,3.4=﹣(x﹣5.5)2+3.8,解得:x1=7.74,x2=3.26,当y=3.2时,3.2=﹣(x﹣5.5)2+3.8,解得:x1=8.24,x2=2.76,∵a=﹣<0,∴抛物线开口向下,∴当3.2<y≤3.4时,2.76<x≤3.26或7.74≤x<8.24,∴乙队员在离边界C点2.76<x≤3.26或7.74≤x<8.24范围时起跳扣球,可扣到球又避免对方拦网.【点评】本题主要考查了二次函数的实际应用,选择恰当的坐标原点,建立平面直角坐标系,用待定系数法求出二次函数解析式,然后运用二次函数图象和性质解决实际问题.。
安徽省合肥市2020年第一次中考模拟考试数学试卷
安徽省合肥市2020年第一次中考模拟考试数学试卷一、选择题1.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D ,若∠ABD =24°,则∠C 的度数是( )A.48°B.42°C.34°D.24°2.下列说法正确的是A .一组数据1,2,5,5,5,3,3,这组数据的中位数和众数都是5B .了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C .掷一枚质地均匀的骰子,骰子停止转动后,6 点朝上是必然事件D .一组数据的方差越大,则这组数据的波动也越大 3.近似数1.23×103精确到( ) A .百分位B .十分位C .个位D .十位4.若一个多边形的外角和是其内角和的12,则这个多边形的边数为( ) A.2 B.4 C.6 D.85.若方程4x 2+(a 2﹣3a ﹣10)x+4a =0的两根互为相反数,则a 的值是( )A .5或﹣2B .5C .﹣2D .非以上答案6.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A .正视图的面积最大B .俯视图的面积最大C .左视图的面积最大D .三个视图的面积一样大 7.2019年春节联欢晚会在某网站取得了同时在线人数超34200000的惊人成绩,创下了全球单平台网络直播记录,将数34200000用科学记数法表示为( ) A .80.34210⨯ B .73.4210⨯C .83.4210⨯D .634.210⨯8.如图,直线a ∥b ,在Rt △ABC 中,点C 在直线a 上,若∠1=54°,∠2=24°,则∠A 的度数为( )A .56°B .36°C .30°D .26°9.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为()A.45561x y y xx y-=+⎧⎨+=⎩B.54561x y y xx y+=+⎧⎨+=⎩C.45561x y y xx y+=+⎧⎨+=⎩D.45561x y y xx y+=+⎧⎨-=⎩10.如图一,在等腰△ABC中,AB=AC,点P、Q从点B同时出发,点P的速度沿BC方向运动到点C停止,点Q以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则y与x之间的函数关系图象如图二所示,则BC长为( )A.4cm B.8cm C.D.11.关于x的一元二次方程x2+kx﹣3=0有一个根为﹣3,则另一根为()A.1 B.﹣2 C.2 D.312.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①BE=2AE;②△DFP~△BPH;③35PFPH=;④DP2=PH•PC;其中正确的是()A.①②③④B.①③④C.②③D.①②④二、填空题13.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,AE=8,则ED=_____.14.如果样本x1,x2,x3,…,x n的平均数为5,那么样本x1+2,x2+2,x3+2,…x n+2的平均数是_____ 15.若2x2+3与2x2﹣4互为相反数,则x为__________.16.在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色,从袋中随机摸出个,则摸到的是蓝色小球的概率为______17.如图,在△ABC中,∠B=45°,tanC=12,ABAC=_____.18.已知不等式组1xx a>⎧⎨<⎩无解,则a的取值范围是_____.三、解答题19.某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)20.如图是某种品牌的篮球架实物图与示意图,已知底座BC=0.6米,底座BC与支架AC所成的角∠ACB =75°,支架AF的长为2.5米,篮板顶端F点到篮框D的距离FD=1.4米,篮板底部支架HE与支架AF 所成的角∠FHE=60°,求篮框D到地面的距离.(精确到0.1米.参考数据:cos75°≈0.3,≈1.4)21.(1)计算:113tan30(12-︒⎛⎫--+-+⎪⎝⎭(2)先化简,再求值221122121x x x xx x x x---⎛⎫-÷⎪+++⎝⎭,其中,x满足x2﹣x=1.22.如图,在△ABC中,点D在BC边上,BC=3CD,分别过点B,D作AD,AB的平行线,并交于点E,且ED交AC于点F,AD=3DF.(1)求证:△CFD∽△CAB;(2)求证:四边形ABED为菱形;(3)若DF =53,BC =9,求四边形ABED 的面积.23.111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦ 24.在平面直角坐标系xOy 中,抛物线2y x bx c =++交x 轴于()1,0A -,()3,0B 两点,交y 轴于点C .(1)如图,求抛物线的解析式;(2)如图,点P 是第一象限抛物线上的一个动点,连接CP 交x 轴于点E ,过点P 作//PK x 轴交抛物线于点K ,交y 轴于点N ,连接AN 、EN 、AC ,设点P 的横坐标为t ,四边形ACEN 的面积为S ,求S 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)如图,在(2) 的条件下,点F 是PC 中点,过点K 作PC 的垂线与过点F 平行于x 轴的直线交于点H , KH CP =,点Q 为第一象限内直线KP 下方抛物线上一点,连接KQ 交y 轴于点G ,点M 是KP 上一点,连接MF 、KF ,若MFK PKQ ∠=∠,512MP AE GN =+,求点Q 坐标25.阳春三月,龙泉驿区的桃花又开了,小明乘坐地铁到龙泉看桃花,计划在龙平路地铁口下车,如图是龙平路地铁口的平面图,其有A、B、C、D四个出入口,小明任选一个出口下车出站,赏花结束后,任选一个入口入站乘车.(1)小明从出站到入站共有多少种可能的结果?请用树形图或列表说明;(2)求出小明从龙平路同一侧出入站的概率.【参考答案】一、选择题二、填空题13.414.715.±1 216.1 41718.a≤1三、解答题19.(1)DH=1.2米;(2)点D与点C的高度差DH为1.2米;所用不锈钢材料的总长度约为5.0米.【解析】【分析】(1)通过图观察可知DH高度包含3层台阶,因而DH=每级小台阶高度×小台阶层数.(2)首先过点B作BM⊥AH,垂足为M.求得AM的长,在Rt△AMB中,根据余弦函数cosAMAAB即可求得AB的长,那么根据不锈钢材料的总长度l=AD+AB+BC,求得所用不锈钢材料的长.【详解】(1)DH=1.6×34=1.2(米);(2)过B作BM⊥AH于M,则四边形BCHM是矩形.∴MH =BC =1∴AM =AH ﹣MH =1+1.2﹣1=1.2. 在Rt △AMB 中,∠A =66.5°. ∴AB =1.23.0cos66.50.40AM ︒≈=(米). ∴l =AD+AB+BC≈1+3.0+1=5.0(米).答:点D 与点C 的高度差DH 为1.2米;所用不锈钢材料的总长度约为5.0米.【点睛】此题考查了三角函数的基本概念,主要是在解题过程中作辅助线BM ,利用余弦概念及运算,从而把实际问题转化为数学问题加以解决. 20.篮框D 到地面的距离是2.9米. 【解析】 【分析】延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,解直角三角形即可得到结论. 【详解】解:延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G , 在Rt △ABC 中,tan ∠ACB =,ABBC∴AB =BC•tan75°=0.60×3.732=2.22, ∴GM =AB =2.22,在Rt △AGF 中,∵∠FAG =∠FHE =60°,sin ∠FAG =,FGAF∴sin60°=2.5FG = ∴FG =2.125,∴DM =FG+GM ﹣DF≈2.9米. 答:篮框D 到地面的距离是2.9米.【点睛】考查解直角三角形的应用,构造直角三角形,选择合适的锐角三角函数是解题的关键. 21.(1)1-+2)12. 【解析】 【分析】(1)按顺序先分别进行负整数指数幂的运算、代入特殊角的三角函数值、零指数幂的运算、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后由x 2﹣x =1,得x 2=x+1,代入化简后的式子即可解答本题. 【详解】(1)1013tan30(12-︒⎛⎫--+-+ ⎪⎝⎭=(﹣2)﹣3×3=(﹣2=﹣(2)221122121x x x xxx x x ---⎛⎫-÷ ⎪+++⎝⎭ =()()()()()()21111121x x x x x x x x x -+--++-=()()()211121x x x x x x +-+-=212x x +, ∵x 2﹣x =1, ∴x 2=x+1, ∴原式=12. 【点睛】本题考查分式的化简求值、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.22.(1)见解析;(2)见解析;(3)四边形ABED 的面积为24. 【解析】 【分析】(1)由平行线的性质和公共角即可得出结论;(2)先证明四边形ABED 是平行四边形,再证出AD =AB ,即可得出四边形ABED 为菱形;(3)连接AE 交BD 于O ,由菱形的性质得出BD ⊥AE ,OB =OD ,由相似三角形的性质得出AB =3DF =5,求出OB =3,由勾股定理求出OA =4,AE =8,由菱形面积公式即可得出结果. 【详解】(1)证明:∵EF ∥AB , ∴∠CFD =∠CAB , 又∵∠C =∠C ,∴△CFD ∽△CAB ;(2)证明:∵EF ∥AB ,BE ∥AD , ∴四边形ABED 是平行四边形, ∵BC =3CD , ∴BC :CD =3:1, ∵△CFD ∽△CAB ,∴AB :DF =BC :CD =3:1, ∴AB =3DF , ∵AD =3DF , ∴AD =AB ,∴四边形ABED 为菱形;(3)解:连接AE 交BD 于O ,如图所示: ∵四边形ABED 为菱形, ∴BD ⊥AE ,OB =OD , ∴∠AOB =90°, ∵△CFD ∽△CAB ,∴AB :DF =BC :CD =3:1, ∴AB =3DF =5, ∵BC =3CD =9, ∴CD =3,BD =6, ∴OB =3,由勾股定理得:OA 4,∴AE =8,∴四边形ABED 的面积=12AE×BD=12×8×6=24.【点睛】本题考查了相似三角形的判定与性质、菱形的判定和性质、平行四边形的判定、勾股定理、菱形的面积公式,熟练掌握相似三角形的判定与性质,证明四边形是菱形是解题的关键. 23.x=0 【解析】 【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答. 【详解】111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦193(3)93x x x x --+=- 9299x x x --=-60x = 0x =【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘.24.(1)223y x x =--;(2)21122S t t =+;(3)1744,525Q ⎛⎫ ⎪⎝⎭【解析】 【分析】(1)把A,B 点代入解析式即可(2)过点P 作PH y ⊥轴,交y 轴于点H ,点()2,23P t t t --,可得32OE t =-,即可解答 (3)过点K 作KR FH ⊥于点R ,KH CP =,HK PC ⊥,求出点()4,5P ,再根据对称轴1x =,由对称性得()2,5K -,然后设点()2,23Q m m m --过点Q 作QW KP ⊥交KP 于W ,得到NG,MP,KM 的值,过点F 作FL KP ⊥于点L ,()2,1F 得到tan tan 4MFK QKP m ∠=∠=-,过点M 作MT FK ⊥于点T,51266KT MT m ⎛⎫==+ ⎪⎝⎭,求出m 即可解答 【详解】 (1)解抛物线2y x bx c =++过点()1,0A -,()3,0B()2210330b c b c ⎧-++=⎪⎨++=⎪⎩解得32c b =-⎧⎨=-⎩ ∴抛物线解析式为223y x x =--(2)过点P 作PH y ⊥轴,交y 轴于点H ,点()2,23P t t t --,222332CN t t t t =--+=-,21tan 252PH t PCH CH t t ∴∠===-- 123OE OE t OC ==- 32OE t ∴=- 2111222NCE NAC S S S AE CN t t ∆∆=+=⋅=+ (3)过点K 作KR FH ⊥于点R ,KH CP =,HK PC ⊥NCP H ∴∠=∠90R PNC ∠=∠=︒ CNP KRH ∴∆≅∆ PN KR NS ∴== 点F 是CP 中点//SF NP 12PN KR NS CN ∴=== 212t t t ∴=-,10t =(舍),24t =.∴点()4,5P ,()222314y x x x =--=--, ∴对称轴1x =,由对称性得()2,5K -.32OE =,52AE =,设点()2,23Q m m m --过点Q 作QW KP ⊥交KP 于W . ()2252328WQ m m m m =---=-++2WK t =+228tan 42WQ m m QKP mWK m -++∠===-+,tan 42NG NG QPK m NK ∠===-,82NG m =- ()555535821221266MP AE GN m m =+=+-=-+ 5355166666m KM KP MP m ⎛⎫=-=-+=+ ⎪⎝⎭过点F 作FL KP ⊥于点L ,()2,1F4FL KL ∴==45LKF ∴∠=︒ MFK QKP ∠=∠ tan tan 4MFK QKP m ∠=∠=-过点M 作MT FK ⊥于点T,5166KT MT m ⎫==+⎪⎝⎭51266m TF ⎛⎫=+⎪⎝⎭51tan 4m MFT m ⎫+⎪∠==-解得111m =(舍),2175m =1744,525Q ⎛⎫= ⎪⎝⎭【点睛】此题考查二次函数的综合题,运用三角函数和做辅助线是解题关键 25.(1)见解析,有16种可能的结果;(2). 【解析】 【分析】(1)画树状图列出所有等可能结果;(2)从中找到小明从龙平路同一侧出入站的结果数,再根据概率公式求解可得. 【详解】解:(1)画树状图如下:小明从出站到入站共有16种可能的结果.(2)∵小明从龙平路同一侧出入站的有8种等可能结果,∴小明从龙平路同一侧出入站的概率为.【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,解决本题的关键是要熟练掌握画树状图的方法.。
安徽省合肥市2020年中考数学一模试卷(含解析)
安徽省合肥市2020年中考数学一模试卷一、选择题1.下列实数中最小的数是()A.2 B.﹣3 C.0 D.π2.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.3.安徽省的陆地面积为139400km2,139400用科学记数法可表示为()A.1394×102B.1.394×104C.1.394×105D.13.94×1044.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.﹣6a6÷2a2=3a35.若分式=0,则x的值是()A.±2 B.2 C.﹣2 D.06.如图是某市2016年四月份每日的最低气温的统计图,则四月份每日的最低气温(单位:℃)众数分别是()A.14 B.30 C.12 D.187.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x 满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=168.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.89.如图,是二次函数y=ax2+bx+c图象的一部分,下列结论中:①abc>0;②a﹣b+c<0;③ax2+bx+c+1=0有两个相等的实数根;④9a+3b+c>0.其中正确的结论的序号为()A.①②B..①③C..②③D..①④10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6 B.2+1 C.9 D.二、填空题(共4小题,每小题5分,满分20分)11.计算:﹣=.12.命题:“若ab=0,则a、b中至少有一个为0”的逆命题是13.如图,已知A为反比例函数(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B,若△OAB的面积为2,则k的值为14.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D交于点C,∠OCA=30°,则图中阴影部分面积为.(结果保留根号和π)三、(本大题共2小题,每小题8分,满分16分)15.解方程:x2=4x.16.如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB 相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.四、(本大题共2小题,每小题8分,满分16分)17.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).18.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为a1,第二个数记为a2,…,第n个数记为a n.(1)请写出29后面的第一个数;(2)通过计算a2﹣a1,a3﹣a2,a4﹣a3,…由此推算a100﹣a99的值;(3)根据你发现的规律求a100的值.五、(本大题共2小题,每小题10分,满分20分)19.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.六、(本大题12分)21.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?七、(本大题12分)22.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A (0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x 轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.八、(本大题14分)23.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t=.参考答案一、选择题(共10小题,每小题4分,满分40分)1.下列实数中最小的数是()A.2 B.﹣3 C.0 D.π【分析】先根据实数的大小比较法则比较数的大小,再得出选项即可.解:∵﹣3<0<2<π,∴最小的数是﹣3,故选:B.2.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.3.安徽省的陆地面积为139400km2,139400用科学记数法可表示为()A.1394×102B.1.394×104C.1.394×105D.13.94×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将139400用科学记数法表示为:1.394×105.故选:C.4.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.﹣6a6÷2a2=3a3【分析】根据合并同类项、同底数幂的乘法和幂的乘方以及整式的除法解答即可.解:A、a+2a=3a,错误;B、a3•a2=a5,正确;C、(a4)2=a8,错误;D、﹣6a6÷2a2=﹣3a4,错误;故选:B.5.若分式=0,则x的值是()A.±2 B.2 C.﹣2 D.0【分析】分式的值为0时,分子等于0且分母不等于0.解:依题意得:x2﹣4=0且x﹣2≠0,解得x=﹣2.故选:C.6.如图是某市2016年四月份每日的最低气温的统计图,则四月份每日的最低气温(单位:℃)众数分别是()A.14 B.30 C.12 D.18【分析】根据众数的定义直接求解即可.解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;故选:A.7.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x 满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选:D.8.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8【分析】由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE 面积,即可确定出三角形ABC面积.解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.9.如图,是二次函数y=ax2+bx+c图象的一部分,下列结论中:①abc>0;②a﹣b+c<0;③ax2+bx+c+1=0有两个相等的实数根;④9a+3b+c>0.其中正确的结论的序号为()A.①②B..①③C..②③D..①④【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对各个结论进行判断.解:①由抛物线的开口方向向上可推出a>0,与y轴的交点为在y轴的负半轴上可推出c=﹣1<0,对称轴为x=﹣>1>0,a>0,得b<0,故abc>0,故①正确;②由对称轴为直线x=﹣>1,抛物线与x轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(﹣1,0)之间,所以当x=﹣1时,y>0,所以a﹣b+c>0,故②错误;③抛物线与y轴的交点为(0,﹣1),由图象知二次函数y=ax2+bx+c图象与直线y=﹣1有两个交点,故ax2+bx+c+1=0有两个不相等的实数根,故③错误;④x=3时,y=ax2+bx+c=9a+3b+c>0,故④正确;故选:D.10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6 B.2+1 C.9 D.【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故选:C.二、填空题(共4小题,每小题5分,满分20分)11.计算:﹣=.【分析】先化简=2,再合并同类二次根式即可.解:=2﹣=.故答案为:.12.命题:“若ab=0,则a、b中至少有一个为0”的逆命题是若a,b至少有一个为0,则ab=0【分析】根据逆命题的概念得出原命题的逆命题即可.解:命题:“若ab=0,则a、b中至少有一个为0”的逆命题是若a,b至少有一个为0,则ab=0,故答案为:若a,b至少有一个为0,则ab=0.13.如图,已知A为反比例函数(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B,若△OAB的面积为2,则k的值为﹣4【分析】利用反比例函数比例系数k的几何意义得到|k|=2,然后根据反比例函数的性质确定k的值.解:∵AB⊥y轴,∴S△OAB=|k|=2,而k<0,∴k=﹣4.故答案为﹣4.14.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D交于点C,∠OCA=30°,则图中阴影部分面积为2π﹣2.(结果保留根号和π)【分析】连接AB,根据∠AOB=90°可知AB是直径,再由圆周角定理求出∠OBA=∠C=30°,由锐角三角函数的定义得出OA及AB的长,根据S阴影=S半圆﹣S△ABO即可得出结论.解:连接AB,∵∠AOB=90°,∴AB是直径,根据同弧对的圆周角相等得∠OBA=∠C=30°,∵OB=2,∴OA=OB tan∠ABO=OB tan30°=2×=2,AB=AO÷sin30°=4,即圆的半径为2,∴S阴影=S半圆﹣S△ABO=﹣×2×2=2π﹣2.故答案为:2π﹣2.三、(本大题共2小题,每小题8分,满分16分)15.解方程:x2=4x.【分析】先移项得到x2﹣4x=0,然后利用因式分解法求解.解:x2﹣4x=0,x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4.16.如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB 相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP= 1 .【分析】(1)根据坐标画得到对应点B1、C1,连接即可;(2)取AB的中点D画出直线CD,(3)得出△PBC为等腰直角三角形,∠PCB=45°,可求出tan∠BCP=1解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.四、(本大题共2小题,每小题8分,满分16分)17.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).【分析】(1)设这个月有x天晴天,根据总电量550度列出方程即可解决问题.(2)需要y年才可以收回成本,根据电费≥40000,列出不等式即可解决问题.解:(1)设这个月有x天晴天,由题意得30x+5(30﹣x)=550,解得x=16,故这个月有16个晴天.(2)需要y年才可以收回成本,由题意得(550﹣150)•(0.52+0.45)•12y≥40000,解得y≥8.6,∵y是整数,∴至少需要9年才能收回成本.18.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为a1,第二个数记为a2,…,第n个数记为a n.(1)请写出29后面的第一个数;(2)通过计算a2﹣a1,a3﹣a2,a4﹣a3,…由此推算a100﹣a99的值;(3)根据你发现的规律求a100的值.【分析】(1)根据差值的规律计算即可;(2)a2﹣a1,=2,a3﹣a2=3,a4﹣a3=4…由此推算a100﹣a99=100;(3)根据a100=2+2+3+4+…+100=1+×100计算即可;解:(1)29后面的第一位数是37;(2)由题意:a2﹣a1,=2,a3﹣a2=3,a4﹣a3=4…由此推算a100﹣a99=100;(3)a100=2+2+3+4+…+100=1+×100=5051五、(本大题共2小题,每小题10分,满分20分)19.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).【分析】过点A作AD⊥BC于点D,延长AD交地面于点E,根据锐角三角函数的定义即可求出答案.解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.20.如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.【分析】(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA=AB=3,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.六、(本大题12分)21.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【分析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.七、(本大题12分)22.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A (0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x 轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.【分析】(1)将A(0,﹣3)、B(3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C点坐标和E点坐标,则CE=2,分两种情况讨论:①若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,②若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),可分别得到方程求出点M的坐标;(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),可由,得到m的表达式,利用二次函数求最值问题配方即可.解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3)、B(3,0)两点,∴,∴,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3)、B(3,0)两点,∴,解得:,∴直线AB的解析式为y=x﹣3,(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a=,a=(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或().(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),∴PG=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S△PAB=S△PGA+S△PGB===﹣,∴当m=时,△PAB面积的最大值是,此时P点坐标为().八、(本大题14分)23.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t=.【分析】(1)①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.(2)设DH=x,由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB•CM=AD•CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题.【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,则CM=3a,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,∴==.故答案为.。
2020年安徽省中考数学一模试卷 (含解析)
2020年安徽省中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.比−4小的数是()A. −2B. −1C. −6D. 62.计算a6÷(−a)2的结果是()A. a3B. a4C. −a3D. −a43.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.4.2018年安徽省上半年实现GDP约为14264亿元,将14264亿用科学记数法表示为()A. 0.14264×1013B. 1.4264×1013C. 1.4264×1012D. 1.4264×1045.方程x2−kx+1=0有两个相等的实数根,则k的值是()A. 2B. −2C. ±2D. 06.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、−1、2、0,其中判断错误的是()A. 前一组数据的中位数是200B. 前一组数据的众数是200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去2007.一次函数y=kx−1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (−5,3)B. (1,−3)C. (2,2)D. (5,−1)8.已知Rt△ABC中,∠C=90°,CD是AB边上的高,且AB=5,cosA=45,则CD的长为()A. 35B. 45C. 125D. 1659.下列命题为假命题的是()A. 对顶角相等B. 垂线段最短C. 同位角相等D. 同角的补角相等10.如图,边长分别为2和4的两个等边三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止.设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.化简:√25=.12.分解因式:16m2−4=.13.如图,直线l⊥x轴于点P,且与反比例函数y1=k1x(x>0)及y2=k2x(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1−k2=______.14.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________°.三、解答题(本大题共9小题,共90.0分)15.解不等式:x−22<7−x3.16.如图,已知A(1,−1),B(3,−3),C(4,−1)是直角坐标平面上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3)判断以B,B1,B2,为顶点的三角形的形状(无需说明理由).17.观察下列各式:2×6+4=42…………①4×8+4=62…………②6×10+4=82…………③……探索以上式子的规律:(1)试写出第5个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.18.塔是一种亚洲常见的有着特定的形式和风格的传统建筑.在成都某公园内有一座古塔,如图小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.19.据了解某市区居民生活用水开始实行阶梯式计量水价,实行的阶梯式计量水价分为三级(污水处理费、垃圾处理费等另计),如下表所示:例:若某用户2016年9月份的用水量为35吨,按三级计算则应交水费为:20×1.6+10×2.4+ (35−20−10)×4.8=80(元)(1)如果小白家2016年6月份的用水量为10吨,则需缴交水费______ 元;(2)如果小明家2016年7月份缴交水费44元,那么小明家2016年7月份的用水量为多少吨?(3)如果小明家2016年8月份的用水量为a吨,那么则小明家该月应缴交水费多少元?(用含a的代数式表示)20.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE//AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=10,AC=4√5,求AE的长.21.合肥46中体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)“喜欢乒乓球”的学生所占的百分比是__________并请补全条形统计图(图2);(2)请你估计全校1200名学生中“喜欢足球”项目的有__________名;(3)在扇形统计图中,“喜欢篮球”部分所对应的圆心角是__________度;(4)从“喜欢排球”的6人(4男2女)和“喜欢其他”的2人(1男1女)中各选1人参加座谈,被选中的两人恰好是1男1女的概率是多少?22.如图,已知点A(0,2),B(2,2),C(−1,−2),抛物线F:y=x2−2mx+m2−2与直线x=−2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤−2,比较y1与y2的大小.23.已知矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,点E为边BC上的一点,连接EO并延长,交CD的延长线于点F.(1)如图1,若EF⊥AC.①求证:BC=OF②求证:AB2=BE⋅OF(2)如图2,若AB=BE⋅BC,求OFOD 的值.【答案与解析】1.答案:C解析:本题考查了有理数比较大小,两负数比较大小,绝对值大的数反而小是解题关键.根据两负数比较大小,绝对值大的数反而小,可得答案.解:−6<−4,故选C.2.答案:B解析:解:原式=a6÷a2=a4.故选B.首先计算(−a)2,然后利用同底数的幂的除法法则即可求解.本题考查同底数幂的除法法则,理解法则是关键.3.答案:D解析:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.找到从左面看所得到的图形即可.本题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:14264亿=1.4264×1012,故选C.5.答案:C解析:本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2−4ac>0时,方程有两个不相等的实数根;当b2−4ac=0时,方程有两个相等的实数根;当b2−4ac<0时,方程无实数根.根据已知得出△=0,代入求出即可.解:∵方程x2−kx+1=0有两个相等的实数根,∴△=(−k)2−4×1×1=0,解得:k=±2,故选C.6.答案:D解析:本题主要考查方差,中位数,众数,算术平均数,一组数据中出现次数最多的那个数据叫做这组数据的众数;一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数;方差为这组数据与平均数差的平方的平均数,据此可逐项求解.解:A.前组数据的众数是200,故该选项说法正确;B.前组数据的中位数是200,故该选项说法正确;C.后一组数据的平均数等于前一组数据的平均数减去200,故该选项说法正确;D.后一组数据的方差等于前一组数据的方差,故该选项说法错误.故选D.7.答案:C解析:本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键. 将选项的各点代入解析式,求出k 的值,再与0比较大小即可.解:一次函数y =kx −1的图象的y 值随x 值的增大而增大,∴k >0,A .把点(−5,3)代入y =kx −1得到:k =−45<0,不符合题意;B .把点(1,−3)代入y =kx −1得到:k =−2<0,不符合题意;C .把点(2,2)代入y =kx −1得到:k =32>0,符合题意;D .把点(5,−1)代入y =kx −1得到:k =0,不符合题意;故选C . 8.答案:C解析:解:∵Rt △ABC 中,∠C =90°,AB =5,cosA =45,cosA =AC AB ,∴AC =4,∴BC =√52−42=3,∵AC⋅BC 2=AB⋅CD 2, ∴4×32=5×CD 2,解得,CD =125,故选:C . 根据Rt △ABC 中,∠C =90°,AB =5,cosA =45,可以求得AC 的长,然后根据勾股定理即可求得BC 的长,然后根据等积法即可求得CD 的长.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答. 9.答案:C解析:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据真命题与假命题的定义分别进行判断即可求出答案;正确的命题叫真命题,错误的命题叫做假命题.解:A.对顶角相等;真命题;B.垂线段最短;真命题;C.同位角相等;假命题;同位角不一定相等;D.同角的补角相等;真命题;故选C.10.答案:C解析:本题考查动点问题的函数图象,根据题意可知在点C′移动到点C的过程中,重合部分的面积不变,可以算出相应的面积,C′继续向右移动可以求出相应的重合部分的面积,从而可得到相应的函数解析式,从而可以明确哪个选项是正确的.解:由题意可知,当C′从左向右移动到C的位置时,△ABC与△A′B′C′重合的面积是△A′B′C′的面积,∵△A′B′C′是等边三角形,边长等于2,∴S△A′B′C′=2×√3×12=√3;①当x≤2时,两个三角形重叠面积为:y=12×2×√3=√3;②当2<x≤4时,两个三角形重叠面积为:y=12(4−x)×√32(4−x)=√34x2−2√3x4√3=√34(4−x)2此时函数图象为抛物线,开口向上,顶点坐标是(4,0).故选C.11.答案:5解析:本题主要考查二次根式的性质与化简,属于简单题.直接利用二次根式的性质化简求出即可.解:√25=5.故答案为5.12.答案:4(2m+1)(2m−1)解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取4,再利用平方差公式分解即可.解:原式=4(4m2−1)=4[(2m)2−1]=4(2m+1)(2m−1),故答案为4(2m+1)(2m−1).13.答案:6解析:由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=12k1,S△OBP=12k2,根据△OAB的面积结合三角形之间的关系即可得出结论.本题考查了反比例函数与一次函数的交点问题以及反比例函数系数k的几何意义,属于基础题,用系数k来表示出三角形的面积是关键.解:∵反比例函数y1=k1x (x>0)及y2=k2x(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=12k1,S△OBP=12k2.∴S△OAB=S△OAP−S△OBP=12(k1−k2)=3,解得:k1−k2=6.故答案为:6.14.答案:55°解析:本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD+∠EAD=∠BAE+∠EAD,∴∠D1AD=∠BAE=55°,故答案为55°.15.答案:解:去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并得:5x<20,系数化1,得:x<4.解析:根据解不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可求得答案.此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.16.答案:解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)△BB1B2是等腰直角三角形.解析:本题考查作图−旋转变换,轴对称变换,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)△BB1B2是等腰直角三角形.17.答案:解:(1)第5个等式:10×14+4=122;(2)第n个等式:2n(2n+4)+4=(2n+2)2;证明:∵2n(2n+4)+4=4n2+8n+4,(2n+2)2=4n2+8n+4,∴2n(2n+4)+4=(2n+2)2,故原等式成立.解析:(1)根据观察发现,发现第5个等式:10×14+4=122;(2)根据观察发现,发现第n个等式:2n(2n+4)+4=(2n+2)2;将等式两边展开,即可证明等式相等.本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.18.答案:解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=AH,HE则AH=HE⋅tan∠AEH≈1.9a,∴AG=AH−GH=1.9a−0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a−0.2,∴BD=1.9a−0.2,答:小亮与塔底中心的距离BD为(1.9a−0.2)米;(2)由题意得,1.9a−0.2+a=52,解得,a=18,则AG=1.9a−0.2=34,∴AB=AG+GB=35.7,答:慈氏塔的高度AB为35.7米.解析:本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.(1)根据正切的定义用a先表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.19.答案:(1)16(2)∵20×1.6=32(元)、20×1.6+10×2.4=56(元)∵32<44<56∴小明家2016年7月份缴交水费属于第二级设小明家2016年7月份的用水量为x吨,根据题意,得:20×1.6+2.4(x−20)=44解得:x=25答:小明家2016年7月份的用水量为25吨;(3).当0≤a≤20时,该月应缴交水费为1.6a元;当20≤a≤30时,该月应缴交水费为1.6×20+2.4(a−20)=2.4a−16元;当a≥30时,该月应缴交水费为1.6×20+2.4×10+4.8(a−30)=4.8a−88元.解析:本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.(1)判断得到10吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得7月份用水量在20吨−30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.解:(1)1.6×10=16;故答案为16;(2)见答案;(3)见答案.20.答案:(1)证明:∵AE与⊙O相切,AB是⊙O的直径,∴∠BAE=90°,∠ADB=90°=∠ADC,∵CE//AB,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵AB//CE,∴∠BAC=∠ACE,∴∠BCA=∠ACE,又∵AC=AC,∴△ADC≌△AEC(AAS),∴AD═AE;(2)解:设BD=x,CD=10−x,AD2=AB2−BD2=AC2−CD2,即102−x2=(4√5)2−(10−x)2,解得:x=6,∴AD=AE=8.解析:本题主要考查的是切线的性质,圆周角定理及其推论,全等三角形的判定及性质,平行线的性质,等腰三角形的性质,勾股定理等有关知识.(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明△AEC和△ADC全等即可证明AD=AE,(2)设BD=x,CD=10−x,利用勾股定理即可求出AE的长.21.答案:解:(1)28%;(2)192;(3)144;(4)如图:总情况有12种,被选中的两人恰好是1男1女的有6种,被选中的两人恰好是1男1女的概率是612=12.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用1200乘以样本中喜欢排球的百分比可根据估计全校1200名学生中最喜欢“足球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50−8−20−6−2=14(人),×100%=28%,所以喜欢乒乓球的学生所占的百分比=1450补全条形统计图如下:故答案为28%;(2)1200×16%=192(人),故答案为192;(3)篮球”部分所对应的圆心角=360 ∘×40%=144°;(4)见答案.22.答案:解:(1)∵抛物线F经过点C(−1,−2),∴−2=1+2m+m2−2,∴m=−1,∴抛物线F的表达式是y=x2+2x−1.(2)当x=−2时,y P=4+4m+m2−2=(m+2)2−2,∴当m=−2时,y P的最小值为−2.此时抛物线F的表达式是y=(x+2)2−2,∴当x≤−2时,y随x的增大而减小.∵x1<x2≤−2,∴y1>y2.解析:本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.(1)根据待定系数法即可求得;(2)把x=−2代入解析式得到P点的纵坐标y P=4+4m+m2−2=(m+2)2−2,即可得到当m=−2时,y P的最小值为−2,然后根据二次函数的性质即可判断y1与y2的大小.23.答案:证明:(1)①∵四边形ABCD是矩形,∴AB//CD,∠ABC=90°,OB=OA=OC,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC,∵EF⊥AC,∴∠COF=90°,∴∠ABC=∠COF,∵AB//CD,∴∠OCF=∠BAC,在△ABC和△COF中{∠BAC=∠OCF AB=OC∠ABC=∠COF,∴△ABC≌△COF(ASA),∴BC=OF;②∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB,∵∠AOB=60°,∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵∠COF=90°=∠AOE,∴∠CEO=60°,∠EOB=30°,∴∠EOB=∠OCB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴BEBO =BOBC,即BO2=BE⋅BC,由①可知BC=OF,AB=BO,∴AB2=BE⋅OF;(2)∵四边形ABCD是矩形,∴OB=OC=OD,∠BCD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC=OD,∵∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵AB2=BE⋅BC,∴OB2=BE⋅BC,∴OBBE =BCOB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴∠EOB=∠OCB=30°,∴∠OCF=60°,∵∠DOF=∠EOB,∠COD=∠AOB,∴∠COF=90°,∴OFOD =OFOC=tan∠OCF=√3.解析:(1)①根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等,进而证明即可;②利用矩形的性质和相似三角形的判定和性质得出比例式即可;(2)根据矩形的性质和等边三角形的性质,利用比例式解答即可.此题属于四边形的综合题.考查了矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识.根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等是解此题的关键.。
2020-2021年九年级数学下学期人教版安徽省合肥市第四十二中学中考模试卷
2021年安徽省合肥四十二中中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的。
1.4的相反数是()A.±2B.﹣C.﹣4D.2.计算(x3)2•(﹣x)2,结果为()A.﹣x8B.x7C.﹣x7D.x83.方程(x﹣1)(x+3)=x﹣1的根是()A.x=1B.x1=﹣3,x2=1C.x1=﹣2,x2=1D.x1=﹣3,x2=04.如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为()A.30°B.20°C.25°D.15°5.一个几何体的三视图如图所示,若其俯视图为正方形,则这个几何体的体积是()A.6B.12C.12D.12+46.如图,AB为⊙O的直径,点C、D在⊙O上.若∠ABD=36°,则∠BCD的度数是()A.144°B.126°C.132°D.138°7.为了做好疫情防控工作,每天学生入校,学校都要给所有学生检查体温,现抽取七(1)班46名学生周一早晨的体温记录表,简单汇总结果如下:体温(单位:)36.036.136.336.536.6人数10131175则这46名学生体温的众数和中位数分别是()A.36.3,36.3B.36.1,36.2C.13,36.2D.36.1,36.38.将一次函数y=﹣x+1的图象向右平移2个单位后与x轴交于点A,点B的坐标是(0,﹣3),则线段AB的长为()A.5B.7C.1D.9.已知三个实数a,b,c满足ab<0,a+b+c=0,a﹣b+c>0,则下列结论成立的是()A.a>0,b2≥4ac B.a>0,b2≤4ac C.a<0,b2≥4ac D.a<0,b2≤4ac10.如图,在Rt△ABC中,∠ACB=90°,BC=3,AB=5,点D是边BC上一动点,连接AD,在AD上取一点E,使∠DAC=∠DCE,连接BE,则BE的最小值为()A.2﹣3B.C.﹣2D.二、填空题(本大题共4小题,每小题5分,滴分20分)11.已知某大米新品种一粒的质量约0.000019千克,现在研究员要选取100粒这样的大米进行试验,则100粒大米的质量用科学记数法表示为千克.12.如图,已知四边形ABCD中,AD∥BC,∠C=90°,AB=AD=12,BC=15,连接BD,AE⊥BD,垂足为E.线段AE=.13.如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B、D在反比例函数y=(x >0)的图象上,点C在反比例函数y=(x>0)的图象上,k=.14.如图,△BAC中,∠BAC=90°,AB=AC,点D为AC上一个动点,过A作AE⊥BD交BC于E,垂足为F.(1)当DE⊥BC时,则的值为;(2)当DE⊥AC时,则的值为.三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣()﹣1+||.16.如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上,请完成下列任务(在网格之内面图):(1)请画出△ABC绕点C按顺时针方向旋转90°后得到的△A1B1C;线段AC旋转到A1C的过程中,所扫过的图形的面积是;(2)以点O为位似中心,位似比为2,将△A1B1C放大得到△A2B2C2.17.据报道,安徽省2018年全省GDP约为3万亿元,虽然2019年因疫情对经济产生了巨大影响,但在全省人民的共同努力下,2020年全省GDP仍然达到约3.9万亿元.若2019年、2020年全省GDP逐年增长,请解答下列问题:(1)求2019年、2020年安徽省全省GDP年平均增长率(≈1.14);(2)如果2021年和2022年安徽省全省GDP仍保持相同的平均增长率,请预测2022年全省GDP能达到约多少万亿元?18.观察以下等式:第1个等式:﹣=;第2个等式:﹣=;第3个等式:﹣=;第4个等式:﹣=;…按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.19.已知,如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE⊥AB,垂足为点F,连接BD、BE.(1)若AD=2BE,求的值;(2)若∠A=30°,CD=3,求⊙O的半径.20.磬是我国古代的一种打击乐器和礼器(如图),据先秦文献《吕氏春秋•古乐篇》记载:尧命击磬“以象上帝”“以致舞百兽”,描绘出一幅古老的原始社会的乐舞生活场景.20世纪70年代在山西夏县出土了一件大石磬,上部有一穿孔,击之声音悦耳,经测定,此磬据今约4000年,属于夏代的遗存,这是迄今发现最早的磬的实物.从正面看磬是一个多边形图案(如图2),已知MN为地面,测得AB=30厘米,BC=20厘米,∠BCN=60°,∠ABC=95°,求磬的最高点A到地面MN的高度h.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,≈1.73,结果保留一位小数)六、(本题满分12分)21.感恩是中华民族的传统美德,学校在3月份提出了“感恩父母、感恩老师、感恩他人”感恩在行动教育活动.感恩行动有:A.由你为父母过一次有意义的生日;B.为班级设计一个班徽;C.主动找老师进行一次交流,谈一谈自己对于未来的憧憬;D.关注身边有需要帮助的同学,帮助有困难的同学渡过难关.为了了解学生对这4种感恩行动的选择情况,学校德育处在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的学生在4种感恩行动中只选择最喜欢做的一种),将数据进行整理并绘制成如图两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全扇形统计图中的数据及条形统计图;(3)本次九(1)班被抽样的学生共5名同学,其中3名是选A的同学,1名是选C的同学,1名是选D的同学,班委会准备组织一次主题班会,要从这5名同学中随机选出2人在班会上介绍自己的行动方案,请通过树状图或列表求两人均是选A的概率.七、(本题满分12分)22.某电子科技公司研发生产一种儿童智力玩具,每件成本为65元,零售商到公司一次性批发x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,求y与x的函数关系式.(2)某零售商一次性批发180件,需要支付多少元?(3)零售商厂一次性批发x(100≤x≤350)件,该公司的利润为w元,问:x为何值时,w最大?最大值是多少?八、(本题满分14分)23.如图①,△ABC和△ACD中,AB=AC=CD=2,AC⊥AB,AC⊥CD.(1)则BD的长为(直接写出结果);(2)如图②,将△ACD绕点A顺时针旋转至△AC'D',使D'恰好在线段CB的延长线上.①求BD'的长.②若点E是线段C'D'的中点,求证:CE⊥C'D'.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的。
2020年安徽省合肥四十二中中考数学一模试卷
2020年安徽省合肥四十二中中考数学一模试卷一、选择题(共10小题) 1.(3分)一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .2.(3分)若点1(A x ,3)-,2(B x ,1),3(C x ,2)在反比例函数6y x=的图象上,则1x ,2x ,3x 的大小关系是( )A .132x x x <<B .123x x x <<C .231x x x <<D .321x x x <<3.(3分)在平面直角坐标系中,将抛物线221y x x =--先向上平移3个单位长度,再向左平移2个单位长度,所得的抛物线的解析式是( ) A .2(1)1y x =++B .2(3)1y x =-+C .2(3)5y x =--D .2(1)2y x =++4.(3分)如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A B C D E ''''',已知10OA cm =,20OA cm '=,则五边形ABCDE 的周长与五边形A B C D E '''''的周长比是( )A .1:2B .2:1C .1:3D .3:1 5.(3分)已知抛物线24y x bx =-++经过(2,)n -和(4,)n 两点,则n 的值为( )A .2-B .4-C .2D .46.(3分)若函数ky x=与2y ax bx c =++的图象如图所示,则函数y kx b =+的大致图象为( ) A .B .C .D .7.(3分)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )A .12 B .34C .112 D .5128.(3分)如图,ABC ∆是等边三角形,被一矩形所截,AB 被截成三等分,//EH BC ,则四边形EFGH 的面积是ABC ∆的面积的( )A .19B .49 C .13 D .949.(3分)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90︒的扇形,则此扇形的面积为( )A .22m πB .232m π C .2m π D .22m π10.(3分)如图,正ABC ∆的边长为4,点P 为BC 边上的任意一点(不与点B 、C 重合),且60APD ∠=︒,PD 交AB 于点D .设BP x =,BD y =,则y 关于x 的函数图象大致是( )A .B .C .D .二、填空题(共4小题) 11.(3分)已知37a b b -=,则ba 的值为 .12.(3分)在Rt ABC ∆中,90C ∠=︒,如果3tan 3A =,那么cos B = . 13.(3分)如图,圆锥的母线长为10cm ,高为8cm ,则该圆锥的侧面展开图(扇形)的弧长为 cm .(结果用π表示)14.(3分)如图,4CD =,90C ∠=︒,点B 在线段CD 上,43AC CB =,沿AB 所在的直线折叠ACB ∆得到△AC B ',若△DC B '是以BC '为腰的等腰三角形,则线段CB 的长为 .三、解答题(共9小题)15.计算:101()123tan60(3)|134π--︒-+16.ABC ∆在平面直角坐标系中的位置如图,其中每个小正方形的边长为1个单位长度. (1)画出ABC ∆关于原点O 的中心对称图形△111A B C ; (2)画出将ABC ∆绕点C 顺时针旋转90︒得到△222A B C .(3)在(2)的条件下,求点A 旋转到点2A 所经过的路线长(结果保留)π.17.如图是某儿童乐园为小朋友设计的滑梯平面图.已知4BC =米,6AB =米,中间平台宽度1DE =米,EN 、DM 、CB 为三根垂直于AB 的支柱,垂足分别为N 、M 、B ,31EAB ∠=︒,DF BC ⊥于F ,45CDF ∠=︒.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1米,参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60)︒≈18.有4张看上去无差别的卡片,上面分别写着1,2,3,4.(1)一次性随机抽取2张卡片,求这两张卡片上的数字之和为奇数的概率;(2)随机摸取1张后,放回并混在一起,再随机抽取1张,求两次取出的卡片上的数字之和等于4的概率.19.已知AB 为O 的直径,点C 为O 上一点,点D 为AB 延长线一点,连接AC . (Ⅰ)如图①,OB BD =,若DC 与O 相切,求D ∠和A ∠的大小;(Ⅱ)如图②,CD 与O 交于点E ,AF CD ⊥于点F 连接AE ,若18EAB ∠=︒,求FAC ∠的大小.20.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF AM ⊥,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:ABM EFA ∆∆∽;(2)若12AB =,5BM =,求DE 的长.21.已知二次函数2(12)13y mx m x m =+-+-.(1)当2m =时,求二次函数图象的顶点坐标; (2)已知抛物线与x 轴交于不同的点A 、B . ①求m 的取值范围;②若34m 时,求线段AB 的最大值及此时二次函数的表达式.22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式,并求出自变量x 的取值范围; (3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本⨯每天的销售量)23.如图,矩形()ABCD AB AD >中,点M 是边DC 上的一点,点P 是射线CB 上的动点,连接AM ,AP ,且2DAP AMD ∠=∠.(1)若76APC ∠=︒,则DAM ∠= ;(2)猜想APC ∠与DAM ∠的数量关系为 ,并进行证明; (3)如图1,若点M 为DC 的中点,求证:2AD BP AP =+;(4)如图2,当AMP APM ∠=∠时,若15CP =,32AM AD =时,则线段MC 的长为 .2020年安徽省合肥四十二中中考数学一模试卷参考答案一、选择题(共10小题) 1.(3分)一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .【解答】解:该几何体的主视图如下:故选:C .2.(3分)若点1(A x ,3)-,2(B x ,1),3(C x ,2)在反比例函数6y x=的图象上,则1x ,2x ,3x 的大小关系是( )A .132x x x <<B .123x x x <<C .231x x x <<D .321x x x <<【解答】解:反比例函数6y x=, ∴在每个象限内y 随x 的增大而减小,在第三象限内的点对应的纵坐标都小于零,在第一象限内点对应的纵坐标都大于零,点1(A x ,3)-,2(B x ,1),3(C x ,2)在反比例函数6y x=的图象上, 132x x x ∴<<, 故选:A . 3.(3分)在平面直角坐标系中,将抛物线221y x x =--先向上平移3个单位长度,再向左平移2个单位长度,所得的抛物线的解析式是( )A .2(1)1y x =++B .2(3)1y x =-+C .2(3)5y x =--D .2(1)2y x =++【解答】解:抛物线221y x x =--可化简为2(1)2y x =--,先向上平移3个单位长度,再向左平移2个单位长度,所得的抛物线的解析式22(12)23(1)1y x x =-+-+=++;故选:A . 4.(3分)如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A B C D E ''''',已知10OA cm =,20OA cm '=,则五边形ABCDE 的周长与五边形A B C D E '''''的周长比是( )A .1:2B .2:1C .1:3D .3:1 【解答】解:以点O 为位似中心,将五边形ABCDE 放大后得到五边形A B C D E ''''',10OA cm =,20OA cm '=, ∴五边形ABCDE 的周长与五边形A B C D E '''''的位似比为:10:201:2=, ∴五边形ABCDE 的周长与五边形A B C D E '''''的周长比是:1:2. 故选:A . 5.(3分)已知抛物线24y x bx =-++经过(2,)n -和(4,)n 两点,则n 的值为( ) A .2-B .4-C .2D .4【解答】解:抛物线24y x bx =-++经过(2,)n -和(4,)n 两点, 可知函数的对称轴1x =,∴12b=, 2b ∴=;224y x x ∴=-++,将点(2,)n -代入函数解析式,可得4n =-; 故选:B .6.(3分)若函数ky x=与2y ax bx c =++的图象如图所示,则函数y kx b =+的大致图象为( )A .B .C .D .【解答】解:根据反比例函数的图象位于二、四象限知0k <, 根据二次函数的图象可知0a >,0b <,∴函数y kx b =+的大致图象经过二、三、四象限,故选:C . 7.(3分)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( ) A .12B .34C .112D .512【解答】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率2553025512P ==++,故选:D . 8.(3分)如图,ABC ∆是等边三角形,被一矩形所截,AB 被截成三等分,//EH BC ,则四边形EFGH 的面积是ABC ∆的面积的( )A .19B .49C .13D .94【解答】解:AB 被截成三等分,AEH AFG ABC ∴∆∆∆∽∽, ∴12AE AF =,13AE AB =, :4:9AFG ABC S S ∆∆∴=:1:9AEH ABC S S ∆∆=411993ABC ABC ABC S S S S ∆∆∆∴=-=阴影部分的面积故选:C . 9.(3分)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90︒的扇形,则此扇形的面积为( )A .22m πB .232m π C .2m π D .22m π【解答】解: 连接AC ,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90︒的扇形,即90ABC ∠=︒,AC ∴为直径,即2AC m =,AB BC =(扇形的半径相等), 2222AB BC +=,2AB BC m ∴==,∴阴影部分的面积是2290(2)1()2m ππ⨯=,故选:A . 10.(3分)如图,正ABC ∆的边长为4,点P 为BC 边上的任意一点(不与点B 、C 重合),且60APD ∠=︒,PD 交AB 于点D .设BP x =,BD y =,则y 关于x 的函数图象大致是( )A .B .C .D .【解答】解:ABC ∆是正三角形,60B C ∴∠=∠=︒,BPD APD C CAP ∠+∠=∠+∠,60APD ∠=︒, BPD CAP ∴∠=∠, BPD CAP ∴∆∆∽, ::BP AC BD PC ∴=,正ABC ∆的边长为4,BP x =,BD y =, :4:(4)x y x ∴=-,21(04)4y x x x ∴=-+<<故选:C .二、填空题(共4小题) 11.(3分)已知37a b b -=,则b a 的值为710 . 【解答】解:37a b b -=, 773a b b ∴-=,则710a b =, 则710b a =.故答案为:710. 12.(3分)在Rt ABC ∆中,90C ∠=︒,如果3tan 3A =,那么cos B = 12. 【解答】解:3tan 3A =, 30A ∴∠=︒, 90C ∠=︒,180309060B ∴∠=︒-︒-︒=︒,1cos 2B ∴=.故答案为:12.13.(3分)如图,圆锥的母线长为10cm ,高为8cm ,则该圆锥的侧面展开图(扇形)的弧长为 12π cm .(结果用π表示)【解答】解:设底面圆的半径为rcm , 由勾股定理得:221086r =-=, 22612r πππ∴=⨯=, 故答案为:12π.14.(3分)如图,4CD =,90C ∠=︒,点B 在线段CD 上,43AC CB =,沿AB 所在的直线折叠ACB ∆得到△AC B ',若△DC B '是以BC '为腰的等腰三角形,则线段CB 的长为 2或10053.【解答】解:当BC BD '=时,2BC BD ==.当BC C D '='时,作C H BD '⊥于H ,CM AB ⊥于M ,取AB 的中点N ,连接CN .设3BC k =,4AC k =,5AB k =.则125CM k =,52CN k =, 22710MN CN CM k ∴-=, 180DBC CBC ∠'+∠'=︒,180CAC CBC ∠'+∠'=︒, C BH CAC ∴∠'=∠', NC NA BN ==, NAC NCA ∴∠=∠,2CNM NAC NCA NAC CAC ∴∠=∠+∠=∠=∠', C BH CNM ∴∠'=∠,90CMN BHC ∠=∠'=︒,CMN∴∆∽△C HB',∴CN MN BC BH=',∴751024332kkkk=-,解得100117k=,10039BC∴=,综上所述,BC的长为2或10039.三、解答题(共9小题)15.计算:101()123tan60(3)|13|4π--+-︒--+-【解答】解:原式42333131=-+--+-6=-.16.ABC∆在平面直角坐标系中的位置如图,其中每个小正方形的边长为1个单位长度.(1)画出ABC∆关于原点O的中心对称图形△111A B C;(2)画出将ABC∆绕点C顺时针旋转90︒得到△222A B C.(3)在(2)的条件下,求点A旋转到点2A所经过的路线长(结果保留)π.【解答】解:(1)如图所示,△111A B C即为所求;(2)如图所示,△222A B C即为所求;(3)由勾股定理可得10AC=,∴弧2AA的长1010ππ==.17.如图是某儿童乐园为小朋友设计的滑梯平面图.已知4BC=米,6AB=米,中间平台宽度1DE=米,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,31EAB∠=︒,DF BC⊥于F,45CDF∠=︒.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60)︒≈【解答】解:设BM x =米. 45CDF ∠=︒,90CFD ∠=︒, CF DF x ∴==米,(4)BF BC CF x ∴=-=-米.(4)EN DM BF x ∴===-米.6AB =米,1DE =米,BM DF x ==米, (5)AN AB MN BM x ∴=--=-米.在AEN ∆中,90ANE ∠=︒,31EAN ∠=︒, tan31EN AN ∴=︒. 即4(5)0.6x x -=-⨯, 2.5x ∴=,答:DM 和BC 的水平距离BM 的长度为2.5米.18.有4张看上去无差别的卡片,上面分别写着1,2,3,4.(1)一次性随机抽取2张卡片,求这两张卡片上的数字之和为奇数的概率;(2)随机摸取1张后,放回并混在一起,再随机抽取1张,求两次取出的卡片上的数字之和等于4的概率. 【解答】解:(1)根据题意画树状图如下:由树状图可知这两张卡片上的数字之和为奇数的概率82123==;12341 (1,1) (2,1) (3,1) (4,1)2 (1,2) (2,2) (3,2) (4,2)3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)率316=. 19.已知AB 为O 的直径,点C 为O 上一点,点D 为AB 延长线一点,连接AC . (Ⅰ)如图①,OB BD =,若DC 与O 相切,求D ∠和A ∠的大小;(Ⅱ)如图②,CD 与O 交于点E ,AF CD ⊥于点F 连接AE ,若18EAB ∠=︒,求FAC ∠的大小.【解答】解:(Ⅰ)如图①,连接OC ,BC ,AB 为O 的直径,90ACB ∴∠=︒,DC 与O 相切,90OCD ∴∠=︒,OB BD =,12BC OD OB BD ∴===, BC OB OC ∴==,OBC ∴∆是等边三角形,60OBC OCB COB ∴∠=∠=∠=︒,30BCD OCA ∴∠=∠=︒,30D A ∴∠=∠=︒;(Ⅱ)如图②,连接BE ,AB 为O 的直径,90AEB ∴∠=︒,AF CD ⊥,90AFC ∴∠=︒,ACF ∠是圆内接四边形ACEB 的外角,ACF ABE ∴∠=∠,18FAC EAB ∴∠=∠=︒,答:FAC ∠的大小为18︒.20.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF AM ⊥,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:ABM EFA ∆∆∽;(2)若12AB =,5BM =,求DE 的长.【解答】(1)证明:四边形ABCD 是正方形,AB AD ∴=,90B ∠=︒,//AD BC ,AMB EAF ∴∠=∠,又EF AM ⊥,90AFE ∴∠=︒,B AFE ∴∠=∠,ABM EFA ∴∆∆∽;(2)解:90B ∠=︒,12AB =,5BM =,1213AM ∴==,12AD =,F 是AM 的中点,1 6.52AF AM ∴==, ABM EFA ∆∆∽,∴BM AM AF AE=, 即5136.5AE=, 16.9AE ∴=,4.9DE AE AD ∴=-=.21.已知二次函数2(12)13y mx m x m =+-+-.(1)当2m =时,求二次函数图象的顶点坐标;(2)已知抛物线与x 轴交于不同的点A 、B .①求m 的取值范围;②若34m 时,求线段AB 的最大值及此时二次函数的表达式.【解答】解:(1)当2m =时,22(12)13235y mx m x m x x =+-+-=--,函数的对称轴为直线332224b x a -=-=-=⨯, 当34x =时,249358y x x =--=-, 故顶点坐标为3(4,49)8-; (2)①△2224(12)4(13)(41)0b ac m m m m =-=---=->,故410m -≠,解得:14m ≠; 而2(12)13y mx m x m =+-+-为二次函数,故0m ≠,故m 的取值范围为:0m ≠且14m ≠; ②2(12)13(31)(1)y mx m x m mx m x =+-+-=-++,令0y =,则13x m=-或1-, 则1|4|AB m=-, 34m , ∴111534AB , 故AB 的最大值为154, 此时4m =,当4m =时,22(12)134711y mx m x m x x =+-+-=--. 22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式,并求出自变量x 的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本⨯每天的销售量)【解答】解:(1)当销售单价为70元时,每天的销售利润(7050)[505(10070)]4000=-⨯+⨯-=元;(2)由题得2(50)[505(100)]580027500(50)y x x x x x =-+-=-+-.销售单价不得低于成本,50x ∴.且销量0>,5(100)500x -+,解得110x ,50100x ∴.(3)该企业每天的总成本不超过7000元50[505(100)]7000x ∴⨯+-(8分)解得82x .由(2)可知2(50)[505(100)]580027500y x x x x =-+-=-+-抛物线的对称轴为80x =且50a =-<∴抛物线开口向下,在对称轴右侧,y 随x 增大而减小.∴当82x =时,y 有最大,最大值4480=,即 销售单价为82元时,每天的销售利润最大,最大利润为4480元.23.如图,矩形()ABCD AB AD >中,点M 是边DC 上的一点,点P 是射线CB 上的动点,连接AM ,AP ,且2DAP AMD ∠=∠.(1)若76APC ∠=︒,则DAM ∠= 38︒ ;(2)猜想APC ∠与DAM ∠的数量关系为 ,并进行证明;(3)如图1,若点M 为DC 的中点,求证:2AD BP AP =+;(4)如图2,当AMP APM ∠=∠时,若15CP =,32AM AD =时,则线段MC 的长为 .【解答】解:(1)//AD CP ,76APC ∠=︒,104DAP ∴∠=︒,2DAP AMD ∠=∠,52AMD ∴∠=︒,又90D ∠=︒,38DAM ∴∠=︒,故答案为:38︒;(2)2APC DAM ∠=∠,理由如下:四边形ABCD 是矩形,90D ∴∠=︒,//AD BC ,点P 是射线BC 上的点,//AD CP ∴,180DAP APC ∴∠+∠=︒,2DAP AMD ∠=∠,2180AMD APC ∴∠+∠=︒,在Rt AMD ∆中,90D ∠=︒,90AMD DAM ∴∠=︒-∠,2(90)180DAM APC ∴︒-∠+∠=︒, 2APC DAM ∴∠=∠,故答案为:2APC DAM ∠=∠;(3)如图1,延长AM 交BC 的延长线于点E ,延长BP 到F ,使PF AP =,连接AF ,四边形ABCD 是矩形,//AD BC ∴,AD BC =,90ABC ∠=︒,//AD BE ∴,AB BE ⊥,DAM E ∴∠=∠,M 是DC 中点,DM CM ∴=,又12∠=∠,()AMD EMC AAS ∴∆≅∆,AD CE ∴=,2BE BC CE AD ∴=+=,2APC DAM ∠=∠,2APC E ∴∠=∠,PA PF =,PAF F ∴∠=∠,2APC F ∴∠=∠,E F ∴∠=∠,AE AF ∴=,又AB BE ⊥,BE BF ∴=,又BF BP PF BP AP =+=+,2AD BP AP ∴=+;(4)如图2,延长MD 到点E ,使DE MD =,连接AE ,过点E 作EF MA ⊥于点F ,设3AM x =,2AD x =,则5DM DE x =,3AE AP x ==,AMD EMF ∠=∠,90ADM EFM ∠=∠=︒,ADM EFM ∴∆∆∽,∴AM DA EM EF =225x EFx =, 解得45EF =, 2213AF EA EF x ∴-, DE MD =,AD CE ⊥,AME AEM ∴∠=∠,则2EAF AMD ∠=∠,//AD BC ,2DAP AMD ∠=∠,2APB DAP AM D ∴∠=∠=∠,EAF APB ∴∠=∠,又90EFA B ∠=∠=︒,AE AP =,()EAF APB AAS ∴∆≅∆,13PB AF x ∴==, 由AD BC =得11523x x +=, 解得9x =,AB ∴=MC DC DM AB DM ∴=-=-=故答案为:。
2020-2021学年安徽省合肥市中考数学一模试卷及答案解析A
安徽省合肥市中考数学一模试卷一、选择题(每小题4分,共40分)1.在﹣2,﹣5,5,0这四个数中,最小的数是()A.﹣2 B.﹣5 C.5 D.02.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010 C.40.570×1011D.4.0570×10123.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°4.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.5.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.6.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.7.下表是某校合唱团成员的年龄分布年龄/岁13141516频数515x10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数 B.众数、中位数C.平均数、方差D.中位数、方差8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数9.某工厂二月份的产值比一月份的产值增长了x%,三月份的产值又比二月份的产值增长了x%,则三月份的产值比一月份的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%10.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.二、填空题(每小题5分,共20分)11.分解因式:m3n﹣4mn= .12.若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为.13.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为.14.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;③EC平分∠DCH;④当点H与点A重合时,EF=2以上结论中,你认为正确的有.(填序号)三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣22﹣+2cos45°+|1﹣|16.如图,一次函数的图象经过(2,0)和(0,﹣4),根据图象求的值.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.18.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.五、解答题(本大题共2小题,每小题10分,共20分)19.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)20.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)六、解答题(本题满分12分)21.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q 点坐标.七、解答题(本题满分12分)22.某网店打出促销广告:最潮新款服装50件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低2元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?八、解答题(本题满分14分)23.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).参考答案与试题解析一、选择题(每小题4分,共40分)1.在﹣2,﹣5,5,0这四个数中,最小的数是()A.﹣2 B.﹣5 C.5 D.0【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣5<﹣2<0<5,∴在﹣2,﹣5,5,0这四个数中,最小的数是﹣5.故选:B.2.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010 C.40.570×1011D.4.0570×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中40570亿,有13位整数,n=13﹣1=12.【解答】解:40570亿=4057000000000=4.057×1012,故选D.3.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【考点】平行线的性质.【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.4.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:∵由题意可得,由①得,x≥﹣3,由②得,x<0,∴﹣3≤x<0,在数轴上表示为:.故选:B.5.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【解答】解:所给图形的俯视图是B选项所给的图形.故选B.6.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.【考点】锐角三角函数的定义;旋转的性质.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.7.下表是某校合唱团成员的年龄分布年龄/岁13141516频数515x10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数 B.众数、中位数C.平均数、方差D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】求出一次函数和反比例函数的解析式,根据其性质进行判断.【解答】解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=﹣4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.9.某工厂二月份的产值比一月份的产值增长了x%,三月份的产值又比二月份的产值增长了x%,则三月份的产值比一月份的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%【考点】列代数式.【分析】直接利用已知表示出三月份的产值,进而表示出增长率,即可得出答案.【解答】解:设一月份的产值为a,则二月份的产值为:a(1+x%),故三月份的产值为:a(1+x%)2,则三月份的产值比一月份的产值增长了﹣1=(2+x%)x%.故选:D.10.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.【考点】相似三角形的判定与性质;等腰三角形的判定与性质.【分析】依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.【解答】解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.二、填空题(每小题5分,共20分)11.分解因式:m3n﹣4mn= mn(m﹣2)(m+2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式mn,再利用平方差公式分解因式得出即可.【解答】解:m3n﹣4mn=mn(m2﹣4)=mn(m﹣2)(m+2).故答案为:mn(m﹣2)(m+2).12.若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为﹣2 .【考点】反比例函数与一次函数的交点问题.【分析】根据函数解析式,可得b=,b=a﹣2,进而得出ab=1,b﹣a=﹣2,即可求得﹣===﹣2.【解答】解:∵函数y=与y=x﹣2图象的一个交点坐标(a,b),∴b=,b=a﹣2,∴ab=1,b﹣a=﹣2,∴﹣===﹣2故答案为﹣2.13.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9 .【考点】规律型:数字的变化类.【分析】根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.【解答】解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.14.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;③EC平分∠DCH;④当点H与点A重合时,EF=2以上结论中,你认为正确的有①②④.(填序号)【考点】翻折变换(折叠问题);菱形的判定;矩形的性质.【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出②正确;③根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出③错误;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【解答】解:①∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,故①正确;②点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,故②正确;③∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,故③错误;过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF==2,故④正确.综上所述,结论正确的有①②④.故答案为:①②④.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣22﹣+2cos45°+|1﹣|【考点】实数的运算;特殊角的三角函数值.【分析】原式利用乘方的意义,二次根式性质,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣4﹣2+2×+﹣1=﹣5.16.如图,一次函数的图象经过(2,0)和(0,﹣4),根据图象求的值.【考点】一次函数图象上点的坐标特征.【分析】先根据题意得出一次函数的解析式,求出k、b的值,再代入代数式进行计算即可.【解答】解:∵一次函数的图象经过(2,0)和(0,﹣4),∴,解得.∵k2﹣2kb+b2=(k﹣b)2=(2+4)2=36,∴==6.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.【考点】作图﹣旋转变换;作图﹣平移变换.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).18.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.【考点】列表法与树状图法;勾股定理的逆定理.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这三条线段能组成三角形的情况,再利用概率公式求解即可求得答案;(2)首先由树状图求得这三条线段能组成直角三角形的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:∵共有12种等可能的结果,这三条线段能组成三角形的有7种情况,∴这三条线段能组成三角形的概率为:;(2)∵这三条线段能组成直角三角形的只有:3cm,4cm,5cm;∴这三条线段能组成直角三角形的概率为:.五、解答题(本大题共2小题,每小题10分,共20分)19.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【分析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AP的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.【解答】解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴=,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=,即≈4.0,解得x=,即x≈19,答:古塔BC的高度约为19米.20.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)求出DE,解直角三角形求出OC,分别求出△ACO的面积和扇形COD的面积,即可得出答案.【解答】(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC=2,∴S阴影=×2×2﹣=2﹣.六、解答题(本题满分12分)21.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q 点坐标.【考点】二次函数综合题.【分析】(1)根据同角的余角相等求出∠A=∠CPD,然后求出△ABP和△PCD相似,再根据相似三角形对应边成比例列式整理即可得证;(2)与(1)的证明思路相同;(3)利用待定系数法求出二次函数解析式,根据抛物线解析式求出点P的坐标,再过点P作PC⊥x轴于C,设AQ与y轴相交于D,然后求出PC、AC的长,再根据(2)的结论求出OD的长,从而得到点D的坐标,利用待定系数法求出直线AD的解析式,与抛物线解析式联立求解即可得到点Q的坐标.【解答】(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴=,∴AB•CD=PB•PD;(2)AB•CD=PB•PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴=,∴AB•CD=PB•PD;(3)设抛物线解析式为y=ax2+bx+c(a≠0),∵抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),∴,解得,所以,y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4),过点P作PC⊥x轴于C,设AQ与y轴相交于D,则AO=1,AC=1+1=2,PC=4,根据(2)的结论,AO•AC=OD•PC,∴1×2=OD•4,解得OD=,∴点D的坐标为(0,),设直线AD的解析式为y=kx+b(k≠0),则,解得,所以,y=x+,联立,解得,(为点A坐标,舍去),所以,点Q的坐标为(,).七、解答题(本题满分12分)22.某网店打出促销广告:最潮新款服装50件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低2元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【考点】二次函数的应用.【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=;(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣2x2+120x,当x=30时,y取得最大值=1400,∴顾客一次购买30件时,该网站从中获利最多.八、解答题(本题满分14分)23.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【考点】几何变换综合题;三角形的外角性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)∵∠BPA=∠BOA=90°,∴点P、B、A、O四点共圆,∴当点P在劣弧OB上运动时,点P的纵坐标随着∠PAO的增大而增大.∵OE′=1,∴点E′在以点O为圆心,1为半径的圆O上运动,∴当AP与⊙O相切时,∠E′AO(即∠PAO)最大,此时∠AE′O=90°,点D′与点P重合,点P的纵坐标达到最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.4月18日。
安徽省合肥市2020届中考一模考试数学试卷
安徽省合肥市2020届中考一模考试数学试卷学校:___________注意事项: 2、请将答案正确填写在答题卡上一、单选题( )A.2B.3- C.0 D.π1.答案:B解析:先根据实数的大小比较法则比较数的大小,再得出选项即可.解:∵302π﹣,<<<∴最小的数是3-,故选:B.2.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A. B. C. D.2.答案:B解析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.139400km,139400用科学记数法可表示为( )3.安徽省的陆地面积为2A.2⨯ D.413.9410⨯1394101.39410⨯ B.41.39410⨯ C.53.答案:C解析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.将139400用科学记数法表示为:51.39410⨯. 故选:C .4.下列运算正确的是( ) A.223a a a += B.325a a a ⋅=C.()246a a =D.623623a a a =-÷4.答案:B解析:A 、23a a a +=,错误; B 、325a a a ⋅=,正确; C 、()248a a =,错误;D 、624623a a a -÷=-,错误; 故选:B .5.若分式2402x x -=-,则x 的值是( )A.2±B.2C.2-D.05.答案:C解析:依题意得:240x -=且20x -≠, 解得2x =-. 故选:C .6.如图是某市2016年四月份每日的最低气温的统计图,则四月份每日的最低气温(单位:℃)众数分别是( )A.14B.30C.12D.186.答案:A解析:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;故选:A . 7.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( )A.()161225x +=B.()251216x -=C.()216125x =+D.()225116x =-7.答案:D解析:第一次降价后的价格为:()251x ⨯-; 第二次降价后的价格为:()2251x ⨯-; ∵两次降价后的价格为16元, ∴()225116x =-. 故选:D .8.如图,在ABC △中,点D 为BC 边上的一点,且2,AD AB AD AB ==⊥.过点D 作DE AD ⊥,DE 交AC 于点E .若1DE =,则ABC △的面积为( )A. B.4 C. D.88.答案:B解析:∵,AB AD AD DE ⊥⊥, ∴90BAD ADE ∠=∠=︒, ∴DE AB , ∴CED CAB ∠=∠, ∵C C ∠=∠, ∴CED CAB △∽△,∵1,2DE AB ==,即:1:2DE AB =, ∴:1:4DEC ACB S S =△△, ∴:3:4ACB ABDE S S =△四边形,∵11222121322ABD ADE ABDE S S S ==⨯⨯+⨯++⨯==△△四边形,∴4ACB S =△, 故选:B .9.如图,是二次函数2y ax bx c =++图象的一部分,下列结论中:①0abc >; ②0a b c -+<; ③210ax bx c +++=有两个相等的实数根; ④930a b c ++>.其中正确的结论的序号为( )A.①②B.①③C.②③D.①④9.答案:D解析:①由抛物线的开口方向向上可推出0a >, 与y 轴的交点为在y 轴的负半轴上可推出10c =-<, 对称轴为102bx a=->>,0a >,得0b <, 故0abc >,故①正确; ①由对称轴为直线12bx a=->,抛物线与x 轴的一个交点交于()2,0,()3,0之间,则另一个交点在()0,0,()1,0-之间, 所以当1x =-时,0y >, 所以0a b c -+>,故①错误;①抛物线与y 轴的交点为()0,1-,由图象知二次函数2y ax bx c =++图象与直线1y =-有两个交点, 故210ax bx c +++=有两个不相等的实数根,故①错误; ①3x =时,2930y ax bx c a b c =++=++>,故①正确; 故选:D .10.如图,在ABC △中,10,8,6AB AC BC ===,以边AB 的中点O 为圆心,作半圆与AC 相切,点,P Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A.6B.1C.9D.22310.答案:C解析:如图,设O 与AC 相切于点E ,连接OE ,作1OP BC ⊥垂足为1P 交O 于1Q , 此时垂线段1OP 最短,11PQ 最小值为11OP OQ -, ∵10,8,6AB AC BC ===, ∴222AB AC BC +=,∴90C ∠=︒, ∵190OPB ∠=︒, ∴1OP AC ∵AO OB =, ∴11PC PB =, ∴1124OP AC ==, ∴11PQ 最小值为111OPOQ -=, 如图,当2Q 在AB 边上时,2P 与B 重合时,22P Q 经过圆心,经过圆心的弦最长, 22P Q 最大值538=+=,∴PQ 长的最大值与最小值的和是9. 故选:C .二、解答题11.解方程:4x x =. 11.答案:解:240x x -=,()40x x -=, 0x =或40x =-,所以120,4x x ==. 解析:12.如图,已知ABC △三个顶点的坐标分别为()()()2,4,0,4,1,1A B C ----(1)请在网格中,画出线段BC 关于原点对称的线段11B C ;(2)请在网格中,过点C 画一条直线CD ,将ABC △分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若另有一点()3,3P --,连接PC ,则tan BCP ∠=__________. 12.答案:(1)作出线段11B C 、连接即可; (2)画出直线CD ,点D 坐标为()1,4--, (3)连接PB ,∵22221310PB BC +===,2222420PC +==, ∴222PB BC PC =+, ∴PBC △为等腰直角三角形, ∴45PCB ∠=︒, ∴tan 1BCP ∠=, 故答案为1.解析:13.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).13.答案:(1)设这个月有x 天晴天,由题意得()30530550x x +-=, 解得16x =,故这个月有16个晴天.(2)需要y 年才可以收回成本,由题意得()()5501500.520.451240000y -⋅+⋅≥,解得8.6y ≥, ∵y 是整数,∴至少需要9年才能收回成本. 解析:14.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为1a ,第二个数记为2a ,…,第n 个数记为n a . (1)请写出29后面的第一个数;(2)通过计算213243,,a a a a a a ---,…由此推算10099a a -的值; (3)根据你发现的规律求100a 的值. 14.答案:(1)29后面的第一位数是37;(2)由题意:2132432,3,4a a a a a a -=-=-=…由此推算10099100a a -=; (3)10011002234100110050512a +++++⋯+=+⨯== 解析:15.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB 长92cm ,车杆与脚踏板所成的角70ABC ∠=︒,前后轮子的半径均为6cm ,求把手A 离地面的高度(结果保留小数点后一位;参考数据:700.94,700.34,70 2.75sin cos tan ︒≈︒≈︒≈).15.答案:过点A 作AD BC ⊥于点D ,延长AD 交地面于点E , ∵sin ADABD AB∠=, ∴920.9486.48AD =⨯≈, ∵6DE =,∴92.5AE AD DE =+=,∴把手A 离地面的高度为92.5cm .解析:16.如图,已知在ABC △中,,,D E F 分别是,,AB BC AC 的中点,连结,,DF EF BF . (1)求证:四边形BEFD 是平行四边形;(2)若90AFB ∠=︒,6AB =,求四边形BEFD 的周长.16.答案:(1)证明:∵,,D E F 分别是,,AB BC AC 的中点, ∴,DF BC EF AB , ∴,DF BE EF BD ,∴四边形BEFD 是平行四边形;(2)解:∵90AFB ∠=︒,D 是AB 的中点,6AB =, ∴132DF DB DA AB ====, ∵四边形BEFD 是平行四边形, ∴四边形BEFD 是菱形, ∵3DB =,∴四边形BEFD 的周长为12. 解析:17.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m 的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理? 17.答案:(1)总人数1525%60=÷=(人). A 类人数602415912=---=(人).∵12600.220%÷==, ∴20m =. 条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率249116020+==; (3)∵80025%200,2002010⨯=÷=,∴开设10个“实验活动类”课程的班级数比较合理. 解析:18.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =+﹣与直线y kx b =+都经过()()0,33,0A B -、两点,该抛物线的顶点为C .(1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M N C E 、、、是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB △面积最大时,求点P 的坐标,并求PAB △面积的最大值.18.答案:(1)∵抛物线22y ax x c -=+经过()()0,33,0A B -、两点, ∴9603a c c +-=⎧⎨=-⎩,∴13a c =⎧⎨=-⎩,∴抛物线的解析式为223y x x -=-, ∵直线y kx b =+经过()()0,33,0A B -、两点, ∴303k b b +=⎧⎨=-⎩,解得:13k b =⎧⎨=-⎩,∴直线AB 的解析式为3y x =-, (2)∵()222314y x x x -==---, ∴抛物线的顶点C 的坐标为()1,4-, ∵CE y 轴, ∴()1,2E -, ∴2CE =,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =, 设(),3M a a -,则()2,23N a a a --, ∴()223233MN a a a a a =---=-+-,∴232a a -+=,解得:2,1a a ==(舍去),∴()2,1M -,②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =设(),3M a a -,则()2,23N a a a --,∴()222333MN a a a a a =------,∴232a a -=,解得:a a ==(舍去),∴M ⎝⎭,综合可得M 点的坐标为()2,1-或⎝⎭. (3)如图,作PG y 轴交直线AB 于点G ,设()2,23P m m m --,则(),3G m m -,∴()223233PG m m m m m =----+=-, ∴()221139332222PAB PGA PGB PG O S S S B m m m m ==⋅=-+⨯=-++△△△2239332722228m m m ⎛⎫=-+=--+ ⎪⎝⎭, ∴当32m =时,PAB △面积的最大值是278,此时P 点坐标为315,24⎛⎫- ⎪⎝⎭. 解析: 19.数学活动课上,某学习小组对有一内角为120°的平行四边形()120ABCD BAD ∠=︒进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD 所在平面内旋转,且60°角的顶点始终与点C 重合,较短的直角边和斜边所在的两直线分别交线段,AB AD 于点,E F (不包括线段的端点).(1)初步尝试:如图1,若AD AB =,求证:①BCE ACF △≌△,②AE AF AC +=;(2)类比发现:如图2,若2AD AB =,过点C 作CH AD ⊥于点H ,求证:2AE FH =;(3)深入探究:如图3,若3AD AB =,探究得:3AE AF AC+的值为常数t ,则t =_________________. 19.答案:(1)①∵四边形ABCD 是平行四边形,120BAD ∠=︒, ∴60D B ∠=∠=︒,∵AD AB =,∴ABC △,ACD △都是等边三角形,∴60B CAD ∠=∠=︒,60ACB ∠=︒,BC AC =, ∵60ECF ∠=︒,∴60BCE ACE ACF ACE ∠+∠=∠+∠=︒, ∴BCE ACF ∠=∠,在BCE △和ACF △中,B CAF BC ACBCE ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BCE ACF △≌△.②∵BCE ACF △≌△,∴BE AF =,∴AE AF AE BE AB AC +=+==.(2)设DH x =,由题意,2,CD x CH =, ∴24AD AB x ==,∴3AH AD DH x =-=,∵CH AD ⊥,∴AC ==,∴222AC CD AD =+,∴90ACD ∠=︒,∴90BAC ACD ∠=∠=︒,∴30CAD ∠=︒,∴60ACH ∠=︒,∵60ECF ∠=︒,∴HCF ACE ∠=∠,∴ACE HCF △∽△, ∴2AE AC FH CH==, ∴2AE FH =.解析:20.=21.命题:“若0ab =,则a b 、中至少有一个为0”的逆命题是______________________.21.答案:若a b 、至少有一个为0,则=0ab . 解析:命题:“若=0ab ,则a b 、中至少有一个为0”的逆命题是若a b 、至少有一个为0,则=0ab .22.如图,已知A 为反比例函数()0k y x x=<的图象上一点,过点A 作AB y ⊥轴,垂足为B ,若OAB △的面积为2,则k 的值为______________.22.答案:4-解析:∵AB y ⊥轴,∴2OAB S k ==△, 而0k <,∴4k =-.故答案为4-.23.如图,在平面直角坐标系中,已知D 经过原点O ,与x 轴、y 轴分别交于A B 、两点,B点坐标为(,OC 与D 交于点C ,30OCA ∠=︒,则图中阴影部分面积为______________.(结果保留根号和π)23.答案:2π-解析:解:连接AB ,∵90AOB ∠=︒,∴AB 是直径,根据同弧对的圆周角相等得30OBA C ∠=∠=︒,∵OB =,∴tan tan30OA OB ABO OB =∠=︒=,304AB AO sin =÷︒=,即圆的半径为2,∴2π2122π22ABO S S S ⨯-=-⨯⨯=-△阴影半圆= .故答案为:2π-.。
2024年安徽省合肥四十二中本部中考数学一模试卷及答案解析
2024年安徽省合肥四十二中本部中考数学一模试卷一、选择题(共10小题,每小题4分,共40分)1.(4分)﹣2的倒数是()A.﹣2B.﹣C.D.22.(4分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4500000人,将这个数用科学记数法表示为()A.0.45×107B.4.5×107C.4.5×106D.45×1063.(4分)如图所示的几何体的左视图是()A.B.C.D.4.(4分)下列运算正确的是()A.a2•a3=a8B.(3xy)2=6xy2C.(b3)2=b6D.3a÷2a=a5.(4分)如图,已知直线l1∥l2,将一个含45°角的三角尺按图中方式放置,如果∠1=24°,那么∠2的度数为()A.24°B.45°C.66°D.21°6.(4分)若2a=3b=4c,且abc≠0,则的值是()A.2B.﹣2C.3D.﹣37.(4分)如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2B.x>﹣1C.x>0D.x>18.(4分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)9.(4分)如图,正方形ABCD的边长为4,△EBC的边EB,EC分别与AD边相交于点F,G,若△EBG的面积为6,则FG与BC的长度比为()A.3:4B.3:5C.3:7D.3:810.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=8,动点P在△ABC内,且使得△ACP的面积为3,点Q为AB中点,则PB+PQ的最小值为()A.B.C.D.+3二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)分解因式:x2+5x=.12.(5分)不等式x+2>3x﹣4的解集是.13.(5分)如图,△ABC内接于⊙O,∠A=45°,CD⊥AB于点D,若AB=8,CD=6,则⊙O的半径为.14.(5分)如图,在矩形AOBC中,OB=6,OA=3.分别以OB、OA所在直线为x轴、y 轴建立如图所示的平面直角坐标系.F为BC边上的一个动点(不与B,C重合),过点F 的反比例函数y=(k>0)的图象与边AC交于点E,连接EF.(1)tan∠EFC=;(2)将△CEF沿EF折叠,点C恰好落在边OB上的点G处,此时k的值为.三、(本大题共2小题,每小题8分,共16分)15.(8分)计算:﹣23+|1﹣|﹣2sin45°.16.(8分)我国古代有一道著名的估算题,原文如下:甲,乙二人隔溪牧羊,二人相互商量,甲云得乙羊九只,多乙一倍正当;乙云得甲羊九只,两人羊数一样.甲,乙羊各几何?译文为:甲,乙两人在小河边放羊,甲说:如果你给我9只羊,那么我的羊的数量比你的多1倍;乙说:如果你给我9只羊,我们俩的羊就一样多了,问甲、乙两人各有多少只羊?请回答上述问题.四、(本大题共2小题,每小题8分,共16分)17.(8分)如图,在网格纸中,有一个格点△ABC(顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移6个单位长度,再向下平移4个单位长度得到△A1B1C1,请直接画出平移后的△A1B1C1;(2)仅使用无刻度直尺画出∠CAB的角平分线,交BC于E点,标出点E(保留作图痕迹,无需写作法.)18.(8分)用同样规格的黑白两种颜色的正方形,按如图所示的方式组成图案:(1)根据规律可知,第⑥个图案中有黑色正方形个,白色正方形______个;(2)第n个图案中有黑色正方形个,白色正方形个.(用含n的代数式表示)(3)在某个图案中,白色正方形的个数能刚好比黑色正方形的个数多2024吗?若能,求出是第几个图案;若不能,请说明理由.五、(本大题共2小题,每小题10分,共20分)19.(10分)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为α,cosα=.小文在C 点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,C,D在同一平面内).(1)求C,D两点的高度差;(2)求居民楼的高度AB.(结果精确到1m,参考数据:≈1.7)20.(10分)如图,⊙O是△ABC的外接圆,AB=AC,CD⊥AB于点D,BO的延长线交CD于点E.(1)求证:∠DBE=∠DCB;(2)若BC=4,BE=4,求OE的长.六、(本题满分12分)21.(12分)某校七年级开展了一次知识竞赛活动,赛后随机抽取了七(1),七(2)两班各20名同学的初赛成绩x(单位:分)进行整理分析,给出了部分信息如下:【信息一】七(1)班同学的样本成绩频数分布表:成绩x(分)x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数24554各组平均数/分5162758796【信息二】七(1)班样本成绩在70≤x<80一组的是(单位:分):73,73,73,77,79;七(1)班样本成绩的众数在70≤x<80这一组.【信息三】七(2)班样本成绩的平均数为74.5分,中位数为76分.(1)七(1)班样本成绩的众数是分,七(1)班样本成绩的中位数是分,七(1)班样本成绩的平均数分;(2)根据两个班样本成绩的平均数和中位数,请你判断哪个班的竞赛初赛成绩较好;(3)七(1)班抽取样本成绩在中90≤x≤100共有两名男生和两名女生,若从中选择两位同学参加决赛,恰好男女生各一名的概率是多少?七、(本题满分12分)22.(12分)如图,在正方形ABCD中,点F是CD的中点,连接AF并延长,与BC的延长线交于点E,作∠BAE的平分线交DC的延长线于点G,分别交BD,BC于点H,M.(1)如图1,求的值;(2)如图1,求证:△CGE≌△BMA;(3)如图2,连接HF,FM,求证:FH=FM.八、(本题满分14分)23.(14分)已知抛物线L:y=ax2﹣4x+c(a>0)与直线y=ax﹣c都经过点A(﹣1,m),y=ax﹣c与抛物线L的对称轴交于点B.(1)求m的值;(2)求证:a2+c2>4;(3)当a=1时,将抛物线L向左平移n(n>0)个单位得到抛物线P,抛物线P与抛物线L的对称轴交于点M,且点M在点B的下方.过点A作x轴的平行线交抛物线P 于点N,且点N在点A的右侧,求BM﹣AN的最大值,并求出此时n的值.2024年安徽省合肥四十二中本部中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分)1.【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.【点评】本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.【分析】科学记数法的表示形式为a×10n,其中1≤|a|<10,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,由此解答即可.【解答】解:4500000=4.5×106,故选:C.【点评】本题考查了用科学记数法表示较大的数,正确确定a、n的值是解题的关键.3.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,是一个矩形,矩形的中间有一条横向的虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.【分析】运用同底数幂相乘、积的乘方、幂的乘方和单项式除以单项式的计算方法进行逐一辨别.【解答】解:∵a2•a3=a5,∴选项A不符合题意;∵(3xy)2=9x2y2,∴选项B不符合题意;∵(b3)2=b6,∴选项C符合题意;∵3a÷2a=,∵∴选项D不符合题意,【点评】此题考查了同底数幂相乘、积的乘方、幂的乘方和单项式除以单项式的计算能力,关键是能准确理解并运用以上知识进行正确地计算.5.【分析】利用平行线的性质同旁内角互补,计算可得结论.【解答】解:由题意含45°角的三角尺可知,∠3=45°,∠4=90°.∵l1∥l2,∴∠1+∠3+∠2+∠4=180°.∴∠2=180°﹣∠1﹣∠3﹣∠4=180°﹣24°﹣45°﹣90°=21°.故选:D.【点评】本题考查了平行线的性质,掌握“两直线平行,同旁内角互补”是解决本题的关键.解决本题亦可过三角形的另一个顶点作l1的平行线,利用45°角求解.6.【分析】根据2、3、4的最小公倍数是12,设2a=3b=4c=12k(k≠0),然后表示出a、b、c,再代入代数式进行计算即可得解.【解答】解:设2a=3b=4c=12k(k≠0),则a=6k,b=4k,c=3k,所以,===﹣2.故选:B.【点评】本题考查了比例的性质,利用k表示出a、b、c可以使计算更加简便.7.【分析】先把(﹣1,0)代入y=kx+b得b=k,则k(x﹣1)+b>0化为k(x﹣1)+k>0,然后解关于x的不等式即可.【解答】解:把(﹣1,0)代入y=kx+b得﹣k+b=0,解b=k,则k(x﹣1)+b>0化为k(x﹣1)+k>0,而k>0,所以x﹣1+1>0,解得x>0.故选:C.一次函数y=kx+b(k>0)的图象向右平移1个单位得y=k(x﹣1)+b,∵一次函数y=kx+b(k>0)的图象过点(﹣1,0),∴一次函数y=k(x﹣1)+b(k>0)的图象过点(0,0),由图象可知,当x>0时,k(x﹣1)+b>0,∴不等式k(x﹣1)+b>0的解集是x>0,故选:C.【点评】本题考查了一次函数与一元一次不等式,把点(﹣1,0)代入解析式求得k与b 的关系是解题的关键.8.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【点评】此题主要考查了根据实际问题列二次函数解析式,关键是正确理解题意,找出题目中的等量关系,再列函数解析式.9.【分析】由正方形的性质可求S△BGC=8,BC=4,由面积的和差关系可求S△BCE=14,即可求EM=7,EN=3,由相似三角形的判定和性质可求解.【解答】解:如图,过点E作EM⊥BC于M,交AD于N,在正方形ABCD中,∠BAD=∠ABC=90°,AD∥BC,又∵EM⊥BC,∴四边形ABMN是矩形,∴AB=MN,∵正方形ABCD的边长为4,∴正方形ABCD的面积=4×4=16,=×16=8,∴S△BGC∵△EBG的面积为6,=8+6=14=×BC•EM,∴S△BCE∴EM=7,∵AD∥BC,EM⊥BC,∴△EFG∽△EBC,EN⊥AD,∴==,故选:C.【点评】本题考查了相似三角形的判定和性质,矩形的判定和性质,三角形的面积公式,添加恰当辅助线构造直角三角形是解题的关键.10.【分析】先算出AC,根据△ACP的面积为3,可得P点到AC的距离,画出P点所在直线l,作B关于直线l的对称点E,连接EQ,交直线l于点P,EQ即PB+PQ的最小值,因为点Q为AB中点,可得BQ=CQ=5,证△QFC≌△QFB,可得BF的长,由勾股定理得QF的长,因为B与E关于直线l对称,可得BE、EF的长,由勾股定理可得EQ的长,即PB+PQ的最小值.【解答】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,过P作PD⊥AC,交AC于点D,=×AC×PD,∵△ACP的面积为3,S△ACP∴PD=1,作直线l∥AC,距离为1,则点P在直线l上运动且在△ABC内,B到直线l的距离为7,作B关于直线l的对称点E,连接EQ,交直线l于点P,∴EP=BP,∴PB+PQ=EP+PQ=EQ,EQ即PB+PQ的最小值,过Q作QF⊥BC,交BC于点F,∵点Q为AB中点,∴BQ=AQ=CQ=5,∴∠QCF=∠QBF,∵QF⊥BC,∴∠QFC=∠QFB=90°,即∠CQF+∠QCF=∠BQF+∠QBF=90°,∴∠CQF=∠BQF,∵QF=QF,∴△QFC≌△QFB(SAS),∴CF=BF=4,∵BQ=5,∠QFB=90°,∴QF==3,∵BE=14,BF=4,∴EF=10,∴EQ==,故选:C.【点评】本题考查了轴对称﹣最短路线问题,关键是掌握将军饮马模型.二、填空题(本大题共4小题,每小题5分,共20分)11.【分析】通过观察可知此题的公因式是x,直接提取可得.【解答】解:x2+5x=x(x+5).【点评】此题考查的是提取公因式分解因式,关键是找出公因式.12.【分析】解一元一次不等式步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.【解答】解:移项,得x﹣3x>﹣4﹣2,合并同类项,得﹣2x>﹣6,化系数为1,得x<3,故答案为x<3.【点评】本题考查了一元一次不等式,熟练解一元一次不等式是解题的关键.13.【分析】连接CO和BO,根据∠A=45°,CD⊥AB于点D,推出AD=CD=6,算出BD,根据勾股定理算出BC,证△BCO是等腰直角三角形,根据代入计算即可.【解答】解:如图,连接CO和BO,∵∠A=45°,CD⊥AB于点D,AB=8,CD=6,∴∠ACD=∠A=45°,AD=CD=6,BD=AB﹣AD=8﹣6=2,∴,∵∠A=45°,∴∠COB=90°,(同弧所对圆周角是圆心角的一半)又∵CO=BO,∴△BCO是等腰直角三角形,∴,故答案为:【点评】本题考查了圆周角定理,结合勾股定理、等腰直角三角形的性质,掌握知识点计算是解题的关键.14.【分析】(1)用k分别表示出点E和点F的坐标即可解决问题.(2)过点E作x轴的垂线,利用相似三角形即可解决问题.【解答】解:(1)因为四边形AOBC是矩形,且OB=6,OA=3,所以x F=6,y E=3.又因为点E和点F在反比例函数y=的图象上,所以点E坐标为(),点F坐标为(6,),所以CE=6﹣,CF=3﹣.在Rt△CEF中,tan∠EFC=.(2)过点E作x轴的垂线,垂足为M,因为点F坐标为(),点E坐标为(),所以BF=,CE=.有折叠可知,tan∠GFE=tan∠EFC=2,所以.因为∠MEG+∠MGE=∠MGE+∠BGF=90°,所以∠MEG=∠BGF.又因为∠EMG=∠GBF=90°,所以△EMG∽△GBF,所以,所以MG=,GB=,则MG+GB=EC,即,解得k=.故答案为:.【点评】本题考查反比例函数与一次函数图象交点问题,熟知一次函数和反比例函数的图象与性质是解题的关键.三、(本大题共2小题,每小题8分,共16分)15.【分析】直接利用绝对值的性质以及特殊角的三角函数值分别化简,进而得出答案.【解答】解:原式=﹣8+﹣1﹣2×=﹣8+﹣1﹣=﹣9.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.【分析】根据题意可以列出相应的方程组,本题得以解决.【解答】解:设甲有x只羊,乙有y只羊,,解得,,答:甲有63只羊,乙有45只羊.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的知识解答.四、(本大题共2小题,每小题8分,共16分)17.【分析】(1)根据平移的性质作图即可.(2)结合等腰三角形的性质,取格点D,使AD=AC=5,连接CD,取CD的中点F,连接AF,与BC交于点E,则AE即为所求.【解答】解:(1)如图,△A1B1C1即为所求.(2)由勾股定理得,AC==5,如图,取格点D,使AD=AC=5,连接CD,取CD的中点F,连接AF,交BC于点E,则AE即为所求.【点评】本题考查作图﹣平移变换、等腰三角形的性质,熟练掌握平移的性质、等腰三角形的性质是解答本题的关键.18.【分析】(1)依次求出图形中黑色正方形和白色正方形的个数,发现规律即可解决问题.(2)根据(1)中发现的规律即可解决问题.(3)根据(2)中的结论即可解决问题.【解答】解:(1)由所给图形可知,第①个图案中黑色正方形的个数为:4=1×3+1,白色正方形的个数为:11=1×7+4;第②个图案中黑色正方形的个数为:7=2×3+1,白色正方形的个数为:18=2×7+4;第③个图案中黑色正方形的个数为:10=3×3+1,白色正方形的个数为:25=3×7+4;…,所以第n个图案中黑色正方形的个数为(3n+1)个,白色正方形的个数为(7n+4)个,当n=6时,3n+1=3×6+1=19(个),7n+4=7×6+4=46(个),即第⑥个图案中黑色正方形的个数为19个,白色正方形的个数为46个.故答案为:19,46.(2)由(1)知,第n个图案中黑色正方形的个数为(3n+1)个,白色正方形的个数为(7n+4)个.故答案为:(3n+1),(7n+4).(3)不能,理由:7n+4﹣(3n+1)=2024,解得n=,所以不能.【点评】本题考查图形变化的规律,能根据所给图形发现黑色正方形的个数依次增加3,白色正方形的个数依次增加7是解题的关键.五、(本大题共2小题,每小题10分,共20分)19.【分析】(1)过点D作DE⊥BC,交BC的延长线于点E,在Rt△DCE中,可得(m),再利用勾股定理可求出DE,即可得出答案.(2)过点D作DF⊥AB于F,设AF=x m,在Rt△ADF中,tan30°=,解得DF=x,在Rt△ABC中,AB=(x+9)m,BC=(x﹣12)m,tan60°==,求出x的值,即可得出答案.【解答】解:(1)过点D作DE⊥BC,交BC的延长线于点E,∵在Rt△DCE中,cosα=,CD=15m,∴(m).∴(m).答:C,D两点的高度差为9m.(2)过点D作DF⊥AB于F,由题意可得BF=DE,DF=BE,设AF=x m,在Rt△ADF中,tan∠ADF=tan30°=,解得DF=x,在Rt△ABC中,AB=AF+FB=AF+DE=(x+9)m,BC=BE﹣CE=DF﹣CE=(x﹣12)m,tan60°==,解得,经检验,是原方程的解且符合题意,∴AB=++9≈24(m).答:居民楼的高度AB约为24m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,熟练掌握锐角三角函数的定义是解答本题的关键.20.【分析】(1)延长BE交⊙O于点F,连接CF,根据直径所对的圆周角是直角可得∠BCF =90°,从而可得∠F+∠FBC=90°,再根据垂直定义可得∠BDC=∠ADC=90°,从而可得∠A+∠ACD=90°,然后利用同弧所对的圆周角相等可得∠A=∠F,从而可得∠ACD=∠FBC,再利用等腰三角形的性质可得AB=AC,从而可得∠ABC=∠ACB,最后利用等式的性质可得∠DBE=∠DCB,即可解答;(2)根据直角三角形的两个锐角互余可得∠DBE+∠DEB=90°,∠FCE+∠DCB=90°,从而利用等角的余角相等可得∠DEB=∠FCE,再利用对顶角相等可得∠DEB=∠FEC,从而可得∠FEC=∠FCE,进而可得FE=FC,然后设FE=FC=x,在Rt△CBF中,利用勾股定理列出关于x的方程,进行计算即可解答.【解答】(1)证明:延长BE交⊙O于点F,连接CF,∵BF是⊙O的直径,∴∠BCF=90°,∴∠F+∠FBC=90°,∵CD⊥AB,∴∠BDC=∠ADC=90°,∴∠A+∠ACD=90°,∵∠A=∠F,∴∠ACD=∠FBC,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠FBC=∠ACB﹣∠ACD,∴∠DBE=∠DCB;(2)解:∵∠BDC=90°,∴∠DBE+∠DEB=90°,∵∠FCB=90°,∴∠FCE+∠DCB=90°,∵∠DBE=∠DCB,∴∠DEB=∠FCE,∵∠DEB=∠FEC,∴∠FEC=∠FCE,∴FE=FC,设FE=FC=x,在Rt△CBF中,BC=4,BF=BE+EF=4+x,∴BC2+CF2=BF2,∴32+x2=(4+x)2,解得:x=2,∴BF=4+x=6,∴OB=BF=3,∴OE=BE﹣OB=4﹣3=1,∴OE的长为1.【点评】本题考查了三角形的外接圆与外心,圆周角定理,勾股定理,等腰三角形的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.六、(本题满分12分)21.【分析】(1)根据众数、中位数以及平均数的定义即可得出结论;(2)从平均数和中位数两方面进行判断即可;(3)画树状图,共有12种等可能的结果,其中恰好男女生各一名的结果有8种,再由概率公式求解即可.【解答】解:(1)由题意得:七(1)班样本成绩的众数是73分,七(1)班样本成绩的中位数是=78(分),七(1)班样本成绩的平均数=×(51×2+62×4+75×5+87×5+96×4)=77.2(分),故答案为:73,78,77.2;(2)七(1)班的竞赛初赛成绩较好,理由如下:七(1)样本成绩的平均数、中位数大于七(2)班的,因此七(1)的竞赛初赛成绩较好;(3)画树状图如下:共有12种等可能的结果,其中恰好男女生各一名的结果有8种,∴恰好男女生各一名的概率为=.【点评】本题考查的是用树状图法求概率以及平均数、中位数、众数等知识,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.【分析】(1)由正方形的性质可得AB∥CD,AB=AD=CD=BC,由角平分线的性质和平行线的性质可得∠GAF=∠AGF,可得AF=GF=DF,即可求解;(2)利用相似三角形的性质可证AB=CE,BM=CG,由“SAS”可证△CGE≌△BMA;(3)利用相似三角形的性质可证MG=AH,由“SAS”可证△AFH≌△CFM,可求解.【解答】(1)解:∵四边形ABCD是正方形,∴AB∥CD,AB=AD=CD=BC,∴∠BAM=∠AGD,∵点F是CD的中点,∴DF=CF=CD,∴AB=DC=2DF,AF=DF,∵AG平分∠BAE,∴∠BAM=∠GAF,∴∠GAF=∠AGF,∴AF=GF=DF,∴CG=GF﹣CF=(﹣1)DF,∴=;(2)证明:∵AD∥BC,∴△ADF∽△ECF,∴=1,∴AD=CE,∴AB=CE,∵AB∥CD,∴==,∴CM=BM,∵CM+BM=BC=2DF,∴BM=(﹣1)DF=CG,又∵∠ABC=∠GCE=90°,∴△CGE≌△BMA(SAS);(3)∵AB∥CD,∴△ABH∽△GDH,∴,∴=,∴=,∵AB∥CD,∴△ABM∽△GCM,∴,∴=,∴=,∴=,∴MG=AH,又∵∠GAF=∠AGF,AF=GF,∴△AFH≌△CFM(SAS),∴HF=MF.【点评】本题是相似形综合题,考查了全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.八、(本题满分14分)23.【分析】(1)把A代入y=ax2﹣4x+c与y=ax﹣c中,得m=a+4+c①,m=﹣a﹣c②,①+②得m=2.(2)由a+c=m=﹣2得a2+2ac+c2=4,由a+c=﹣2,a>0,得﹣2ac>0,故a2+c2>4.(3)由a=1得抛物线L为y=x2﹣4x﹣3=(x﹣2)2﹣7,得M(2,n2﹣7),故n2﹣7<5,由BM=5﹣(n2﹣7)=12﹣n2,AN=(n﹣3)2﹣7﹣2=n2﹣6n,得BM﹣AM=12﹣n2﹣(n2﹣6n)=﹣2n2+6n+12,再利用顶点式计算即可.【解答】(1)解:把A代入y=ax2﹣4x+c与y=ax﹣c中,得m=a+4+c①,m=﹣a﹣c②,①+②得m=2.(2)证明:∵a+c=﹣m=﹣2,∴(a+c)2=(﹣2)2,∴a2+2ac+c2=4,∴a2+c2=4﹣2ac.∵a+c=﹣2,又a>0,∴c<0,∴ac<0,∴﹣2ac>0,∴4﹣2ac>4,∴a2+c2>4.(3)如图:∵a=1,∴c=﹣3,∴将抛物线L为y=x2﹣4x﹣3=(x﹣2)2﹣7,直线为y=x+3,∵抛物线L向左平移,∴抛物线P为y=(x﹣2+n)2﹣7,∵抛物线L的对称轴为直线x=2,∵抛物线P与抛物线L的对称轴交于点M,∴M(2,n2﹣7),∵直线与抛物线L的对称轴交于点B,∴B(2,5),∵点M在点B的下方,∴n2﹣7<5,∵AN∥x轴,∴x=﹣1时,y=(n﹣3)2﹣7,∵点N在点A的右侧,∴(n﹣3)2﹣7>2,∴BM=5﹣(n2﹣7)=12﹣n2,AN=(n﹣3)2﹣7﹣2=n2﹣6n,∴BM﹣AM=12﹣n2﹣(n2﹣6n)=﹣2n2+6n+12,∴对称轴为直线x==时,y最大为:﹣2×()2+6×+12=,故n=.【点评】本题考查了二次函数的知识,掌握二次函数最值的求法是解题关键。
2020-2021学年安徽省合肥市中考数学一模试题及答案解析
2020-2021学年安徽省合肥市中考数学⼀模试题及答案解析安徽省合肥市中考数学⼀模试卷⼀、选择题(本⼤题共10⼩题,每⼩题4分,满分40分)1.下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5 C.3a2+2a3=5a5D.2a2?3a3=6a52.不等式组的解集在数轴上表⽰正确的是()A.B.C.D.3.南海是我们固有领⼟,南海资源丰富,其⾯积约为350万平⽅千⽶,相当于我国的渤海、黄海和东海总⾯积的3倍,其中350万⽤科学记数法表⽰为()A.3.5×106B.3.5×107C.0.35×108D.3.5×1094.七(1)班学雷锋⼩组整理校实验室,已知6个⼈共要做4⼩时完成,则每⼈每⼩时的⼯作效率是()A.B.C.D.5.与最接近的整数是()A.1 B.2 C.3 D.46.定义:⼀个⾃然数,右边的数字总⽐左边的数字⼩,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取⼀个,恰好是“下滑数”的概率为()A.B.C.D.7.图(1)表⽰⼀个正五棱柱形状的⾼⼤建筑物,图(2)是它的俯视图.⼩健站在地⾯观察该建筑物,当他在图(2)中的阴影部分所表⽰的区域活动时,能同时看到建筑物的三个侧⾯,图中∠MPN的度数为()A.30°B.36°C.45°D.72°8.如图,在平⾯直⾓坐标系中,正⽅形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆⼼M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(5,﹣4)D.(4,﹣5)9.某公司为增加员⼯收⼊,提⾼效益.今年提出如下⽬标,和去年相⽐,在产品的出⼚价增加10%的前提下,将产品成本降低20%,使产品的利润率(利润率=×100%)较去年翻⼀番,则今年该公司产品的利润率为()A.40% B.80% C.120% D.160%10.已知:如图,点P是正⽅形ABCD的对⾓线AC上的⼀个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正⽅形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,⼤致表⽰y与x之间的函数关系的是()A.B.C.D.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.把代数式2x4﹣2y2分解因式.12.如图,锐⾓△ABC内接于圆O,连接OA,设∠OBA=α,∠C=β,则α+β的度数为.13.⼀次函数y=ax+5a(a≠0)与⼆次函数y=x2+2x﹣b(b≠0)交于x轴上⼀点,则当﹣2≤x≤3时⼆次函数y=x2+2x﹣b(b≠0)的最⼩值为.14.如图,在△ABC中,∠BAC=90°,AB=AC=10.现将⼀个⾜够⼤的透明的三⾓板的直⾓顶点放在BC的中点D处,将三⾓板绕点D旋转,三⾓板的两边与△ABC的边AB、AC分别交于点E、F,下列结论:①旋转过程中,DE可能与EF相等;②旋转过程中,△DEF是等腰三⾓形;③旋转过程中,四边形AEDF的⾯积是⼀定值,且⾯积为25;④E、F分别在AB、CA延长线上时,且BE=2,四边形AFED的⾯积为40.其中,正确的有:(直接填序号)三、(本⼤题共2⼩题,每⼩题8分,满分16分)15.﹣12015+(3﹣π)0﹣|2sin45°﹣1|+(﹣)﹣1.16.如图,⼀次函数y1的图象与反⽐例函数y2的图象交于A(﹣5,2)、B(m,﹣5)两点.(1)求的函数y1、y2表达式;(2)观察图象,当时﹣4<x<2,⽐较y1、y2的⼤⼩?四、(本⼤题共2⼩题,每⼩题10分,满分20分)17.观察下⾯图形我们可以发现:第1个图中有1个正⽅形,第2个图中有5个正⽅形,按照这种规律变化下去…(1)第3个图中有个正⽅形;(2)第4个图形⽐第3个图形多个正⽅形;(3)第n个图形⽐前⼀个图形多个正⽅形(⽤含有n的式⼦表⽰);(4)按照规律,是否存在某个图形,它⽐前⼀个图形增加2015个正⽅形?为什么?18.如图是规格为10×10的正⽅形⽹格,请在所给⽹格中按下列要求操作:(1)请在⽹格中建⽴平⾯直⾓坐标系,使点A、B的坐标分别为(1,﹣2)、(2,﹣1);(2)以坐标原点O为位似中⼼,在第⼆象限内将线段AB放⼤到原来的2倍得到线段A1B1;(3)在第⼆象限内的格点(横、纵坐标均为整数的点叫做格点)上画⼀点C1,使点C1与线段A1B1组成⼀个以A1B1为底边的等腰三⾓形,且腰长是⽆理数.此时,点C1的坐标是,△A1B1C1的周长是(写出⼀种符合要求的情况即可,结果保留根号).五、(本⼤题共2⼩题,每⼩题10分,满分20分)19.在△ABC中,BC=3,中线CD⊥BC,若BD﹣CD=1,求AB的长及sinB的值.20.⼩芳每次骑车从家到学校都要经过⼀段坡度相同的上坡路和下坡路,假设她骑车坡度相等的上坡路与下坡路平均速度基本相同,且上坡路骑⾏50⽶与下坡路骑⾏80⽶所⽤的时间相等.当她从家到学校时,下坡路的长为400⽶,下坡路⽐上坡路多花⼀分钟,设她骑⾏下坡路的速度为x⽶/分钟.(1)⽤含x的代数式表⽰她从家到学校时上坡路段的路程.(2)当她从学校回家时,在这两个坡道所花的时间为10分30秒,请求出她回家时在下坡路段所花的时间.六、(本题满分12分)21.A市为制定居民⽤⽔价格调整⽅案,就每⽉的⽤⽔量、可承受的⽔价调整幅度等进⾏民意调查,调查采⽤随机抽样的⽅式.图1、图2为某⼀⼩区的调查数据统计图.已知被调查居民每户每⽉的⽤⽔量在5m3~35m3之间,被调查的居民中对居民⽤⽔价格调价幅度抱“⽆所谓”态度的有8户,试回答下列问题:(1)请补全图1的统计图;(2)被调查居民⽤⽔量的中位数落在什么范围内:(直接填写范围即可,如5m3~35m3等);(3)若采⽤阶梯式累进制调价⽅案(如下表所⽰),试估计该⼩区有百分之⼏的居民⽤⽔费⽤的增长幅度不超过50%?阶梯式累进制⾃来⽔调价⽅案级数⽤⽔量范围现⾏价格(元/m3)调整后价格(元/m3)第⼀级0~15m3(含15m3) 1.80 2.50第⼆级15m3以上 1.80 3.30七、(本题满分12分)22.如图,⽤篱笆围成⼀个两⾯靠墙(两墙垂直,墙AB的最⼤利⽤长度为26⽶,墙BC⾜够长)中间隔有⼀道篱笆的矩形菜园,已知篱笆的长度为60m,设菜园的宽度为xm,总占地⾯积为ym2.(1)求y关于x的函数表达式;(2)求⾃变量x的取值范围;(3)菜园的宽x为多少时围成的菜园⾯积最⼤,最⼤⾯积是多少?⼋、(本题满分14分)23.对于两个相似三⾓形,如果沿周界按对应点顺序环绕的⽅向相同,那么称这两个三⾓形互为顺相似;如果沿周界按对应点顺序环绕的⽅向相反,那么称这两个三⾓形互为逆相似.例如,如图①,△ABC∽△A′B′C′且沿周界ABCA与A′、B′、C′、A′环绕的⽅向相同,因此△ABC 与△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′、B′、C′、A′环绕的⽅向相反,因此△ABC 与△A′B′C′互为逆相似.(1)根据图I、图Ⅱ和图Ⅲ满⾜的条件,可得下列三对相似三⾓形:①△ADE与△ABC;②△GHO 与△KFO;③△NQP与△NMQ.其中,互为顺相似的是;互为逆相似的是.(填写所有符合要求的序号)(2)如图③,在锐⾓△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A、B、C重合).过点P画直线截△ABC,使截得的⼀个三⾓形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满⾜的条件,不必说明理由.安徽省合肥市中考数学⼀模试卷参考答案与试题解析⼀、选择题(本⼤题共10⼩题,每⼩题4分,满分40分)1.下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5 C.3a2+2a3=5a5D.2a2?3a3=6a5【考点】幂的乘⽅与积的乘⽅;合并同类项;同底数幂的乘法;单项式乘单项式.【分析】根据合并同类项法则、幂的乘⽅、单项式乘法的运算⽅法,利⽤排除法求解.【解答】解:A、应为6a﹣5a=a,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、3a2与2a3不是同类项,不能合并,故本选项错误;D、2a2?3a3=2×3a2?a3=6a5,正确.故选D.【点评】本题主要考查了合并同类项的法则,幂的乘⽅的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.2.不等式组的解集在数轴上表⽰正确的是()A.B.C.D.【考点】在数轴上表⽰不等式的解集;解⼀元⼀次不等式组.【专题】计算题.【分析】先解不等组得到﹣1≤x<1,根据数轴表⽰数的⽅法解集在﹣1的右边(含﹣1)并且在1的左边.【解答】解:,解不等式①得x<1,解不等式②得x≥﹣1,∴﹣1≤x<1.故选D.【点评】本题考查了在数轴上表⽰不等式的解集:先求出不等式组的解集,然后根据数轴表⽰数的⽅法把对应的未知数的取值范围通过画区间的⽅法表⽰出来,等号时⽤实⼼,不等时⽤空⼼.3.南海是我们固有领⼟,南海资源丰富,其⾯积约为350万平⽅千⽶,相当于我国的渤海、黄海和东海总⾯积的3倍,其中350万⽤科学记数法表⽰为()A.3.5×106B.3.5×107C.0.35×108D.3.5×109【考点】科学记数法—表⽰较⼤的数.【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将350万⽤科学记数法表⽰为3.5×106.故选A.【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.4.七(1)班学雷锋⼩组整理校实验室,已知6个⼈共要做4⼩时完成,则每⼈每⼩时的⼯作效率是()A.B.C.D.【考点】有理数的混合运算.【分析】根据除法的意义先求出1个⼈4⼩时的⼯作效率,再求出每⼈每⼩时的⼯作效率.【解答】解:1÷6÷4=.故每⼈每⼩时的⼯作效率是.故选:D.【点评】考查了有理数的混合运算,本题也可以先求出6个⼈1⼩时的⼯作效率,再求出每⼈每⼩时的⼯作效率.5.与最接近的整数是()A.1 B.2 C.3 D.4【考点】估算⽆理数的⼤⼩.【分析】按要求找到2到2.5之间的⽆理数,须使被开⽅数⼤于4⼩于6.25即可求解.【解答】解:∵4<6<6,25,∴2<<2.5,∴最接近的整数是2,故选B.【点评】本题主要考查了⽆理数的估算,解题关键是确定⽆理数的整数部分即可解决问题.6.定义:⼀个⾃然数,右边的数字总⽐左边的数字⼩,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取⼀个,恰好是“下滑数”的概率为()A.B.C.D.【考点】概率公式.【专题】压轴题;新定义.【分析】根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数⽬:从总数中找出符合条件的数共有45个;⼆者的⽐值就是其发⽣的概率.【解答】解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为=.故选A.【点评】此题考查概率的求法:如果⼀个事件有n种可能,⽽且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=.7.图(1)表⽰⼀个正五棱柱形状的⾼⼤建筑物,图(2)是它的俯视图.⼩健站在地⾯观察该建筑物,当他在图(2)中的阴影部分所表⽰的区域活动时,能同时看到建筑物的三个侧⾯,图中∠MPN的度数为()A.30°B.36°C.45°D.72°【考点】视点、视⾓和盲区.【专题】压轴题.【分析】根据正五边形的内⾓为108°,观察图形,利⽤三⾓形内⾓和为180°,和对顶⾓相等,可求出∠MPN的度数.【解答】解:由题意我们可以得出,正五棱柱的俯视图中,正五边形的内⾓为=108°,那么∠MPN=180°﹣(180°﹣108°)×2=36°.故选B.【点评】利⽤数学知识解决实际问题是中学数学的重要内容.本题的关键是弄清所求⾓与正五棱柱的俯视图的关系.8.如图,在平⾯直⾓坐标系中,正⽅形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆⼼M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(5,﹣4)D.(4,﹣5)【考点】垂径定理;坐标与图形性质;勾股定理;正⽅形的性质.【专题】证明题.【分析】过点M作MD⊥AB于D,连接AM.设⊙M的半径为R,因为四边形OABC为正⽅形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA= AB=4,DM=8﹣R,AM=R,⼜因△ADM是直⾓三⾓形,利⽤勾股定理即可得到关于R的⽅程,解之即可.【解答】解:过点M作MD⊥AB于D,交OC于点E.连接AM,设⊙M的半径为R.∵以边AB为弦的⊙M与x轴相切,AB∥OC,∴DE⊥CO,∴DE是⊙M直径的⼀部分;∵四边形OABC为正⽅形,顶点A,C在坐标轴上,点A的坐标为(0,8),∴OA=AB=CB=OC=8,DM=8﹣R;∴AD=BD=4(垂径定理);在Rt△ADM中,根据勾股定理可得AM2=DM2+AD2,∴R2=(8﹣R)2+42,∴R=5.∴M(﹣4,5).故选A.【点评】本题考查了垂径定理、坐标与图形性质、勾股定理及正⽅形的性质.解题时,需仔细分析题意及图形,利⽤勾股定理来解决问题.9.某公司为增加员⼯收⼊,提⾼效益.今年提出如下⽬标,和去年相⽐,在产品的出⼚价增加10%的前提下,将产品成本降低20%,使产品的利润率(利润率=×100%)较去年翻⼀番,则今年该公司产品的利润率为()A.40% B.80% C.120% D.160%【考点】分式⽅程的应⽤.【分析】设去年产品出⼚价为a,去年产品成本为b,根据利润率=×100%列出⽅程,求出a和b的数量关系,进⽽求出产品的利润率.【解答】解:设去年产品出⼚价为a,去年产品成本为b,根据题意,100%=×2×100%,即整理得:=2a﹣2b,解得:a=b,所以把a=b,代⼊×2中得×2=×2=120%.故选:C.【点评】本题主要考查了分式⽅程的应⽤,解答本题的关键是正确设出产品的出⼚价和成本价,求出出⼚价和成本价之间的数量关系,此题难度不⼤.10.已知:如图,点P是正⽅形ABCD的对⾓线AC上的⼀个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正⽅形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,⼤致表⽰y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】根据函数解析式求函数图象.【解答】解:由题意可得:△APE和△PCF都是等腰直⾓三⾓形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正⽅形的边长.则y=2x,为正⽐例函数.故选:A.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.把代数式2x4﹣2y2分解因式2(x2+y)(x2﹣y).【考点】提公因式法与公式法的综合运⽤.【专题】计算题.【分析】原式提取2,再利⽤平⽅差公式分解即可.【解答】解:原式=2(x4﹣y2)=2(x2+y)(x2﹣y).故答案为:2(x2+y)(x2﹣y)【点评】此题考查了提公因式法与公式法的综合运⽤,熟练掌握因式分解的⽅法是解本题的关键.12.如图,锐⾓△ABC内接于圆O,连接OA,设∠OBA=α,∠C=β,则α+β的度数为90°.【考点】圆周⾓定理.【分析】延长AO交圆O于D,连接BD,根据直径所对的圆周⾓是直⾓得到∠ABD=90°,根据同弧所对的圆周⾓相等得到∠D=β,等量代换得到答案.【解答】解:延长AO交圆O于D,连接BD,∵AD为直径,∴∠ABD=90°,∴α+∠D=90°,∵∠ACB=∠D,∴α+β=90°,故答案为:90°.【点评】本题考查度数圆周⾓定理,掌握同弧所对的圆周⾓相等和直径所对的圆周⾓是直⾓是解题的关键.13.⼀次函数y=ax+5a(a≠0)与⼆次函数y=x2+2x﹣b(b≠0)交于x轴上⼀点,则当﹣2≤x≤3时⼆次函数y=x2+2x﹣b(b≠0)的最⼩值为﹣16 .【考点】⼆次函数的最值.【分析】根据⼀次函数求得交点坐标,代⼊⼆次函数y=x2+2x﹣b求得b的值,求得⼆次函数的对称轴,根据对称轴在﹣2≤x≤3内,即可求得⼆次函数的最⼩值.【解答】解:∵⼀次函数y=ax+5a(a≠0)与⼆次函数y=x2+2x﹣b(b≠0)交于x轴上⼀点,∴把y=0,代⼊得,0=ax+5a,解得x=﹣5,∴交点为(﹣5,0),代⼊y=x2+2x﹣b得,0=25﹣10﹣b,解得b=15,∴⼆次函数为y=x2+2x﹣15,∵⼆次函数y=x2+2x﹣15对称轴为y=﹣=﹣1,∴当﹣2≤x≤3时,x=﹣1,⼆次函数有最⼩值为1﹣2﹣15=﹣16.故答案为﹣16.【点评】本题考查了待定系数法求⼆函数的解析式以及⼆次函数对称轴的求解,考查了⼆次函数的最值问题,本题中求得⼆次函数的对称轴是解题的关键.14.如图,在△ABC中,∠BAC=90°,AB=AC=10.现将⼀个⾜够⼤的透明的三⾓板的直⾓顶点放在BC的中点D处,将三⾓板绕点D旋转,三⾓板的两边与△ABC的边AB、AC分别交于点E、F,下列结论:①旋转过程中,DE可能与EF相等;②旋转过程中,△DEF是等腰三⾓形;③旋转过程中,四边形AEDF的⾯积是⼀定值,且⾯积为25;④E、F分别在AB、CA延长线上时,且BE=2,四边形AFED的⾯积为40.其中,正确的有:②③(直接填序号)【考点】旋转的性质;全等三⾓形的判定与性质;等腰直⾓三⾓形.【分析】如图1,根据等腰直⾓三⾓形的性质得∠ABC=∠C=45°,AD=BD=CD,AD⊥BC,∠1=45°,再利⽤等⾓的余⾓相等得∠2=∠4,则可证明△ADE≌△CFD,得到DE=DF,于是可判断△DEF为等腰直⾓三⾓形,则对②进⾏判断,根据等腰直⾓三⾓形EF=DE,则可对①进⾏判断;由于△ADE≌△CFD,则S△ADE=S△CFD,所以四边形AEDF的⾯积=S△ADC=S△ABC=25,则可对③进⾏判断;如图2,作DH⊥AC于H,根据等腰直⾓三⾓形的性质得DH=AH=CH=5,同理可证得△ADE≌△CFD,则AE=CF,所以AF=BE=2,DE=DF,同样得到△DEF为等腰直⾓三⾓形,在Rt△DHF中利⽤勾股定理计算出DF2=74,则S△DEF=DF2=37,⽽S△ADF=5,所以四边形AFED的⾯积=42,则可对④进⾏判断.【解答】解:如图1,∵∠BAC=90°,AB=AC=10,∴∠ABC=∠C=45°,∵点D为BC的中点,∴AD=BD=CD,AD⊥BC,∠1=45°,∵∠EDF=90°,即∠2+∠3=90°,⽽∠4+∠3=90°,。
【附5套中考模拟试卷】安徽省合肥市2019-2020学年中考数学一模考试卷含解析
50≤x≤54
55≤x≤59
人数
(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)
(2)分析数据:样本数据的平均数、中位满分率
46.8
47.5
45%
得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为;
(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.
收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
A. B. C. D.
8.函数y=ax2与y=﹣ax+b的图象可能是( )
A. B.
C. D.
9.平面直角坐标系中的点P(2﹣m, m)在第一象限,则m的取值范围在数轴上可表示为()
A. B.
C. D.
10.3的倒数是()
A. B. C. D.
11.在同一直角坐标系中,二次函数y=x2与反比例函数y= (x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )
②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
平均数
中位数
满分率
45.3
49
51.2%
请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.
【精选3份合集】安徽省合肥市2020年中考一模数学试卷有答案含解析
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图所示,在平面直角坐标系中,抛物线y=-x2+23x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+12AP的最小值为().A.3 B.23C.3221+D.323+解析:A【解析】【分析】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+23x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= 12AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+23x=0,得x1=0,x2=23,所以B (23,0),由于y=-x2+23x=-(x-3)2+3,所以A(3,3),所以AB=AO=23,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH= 12AP,因为AP垂直平分OB,所以PO=PB,所以OP+1 2AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=32AB=3,所以最小值为3.故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键. 2.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.7解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.39()A.±3B.3 C.9 D.81解析:C【解析】939 3故选C.4.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC 垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=12S△CEF,其中正确的是()A .①③B .②④C .①③④D .②③④解析:C【解析】【分析】 ①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.【详解】①四边形ABCD 是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE 和Rt△ADF 中,AE AF AB AD =⎧⎨=⎩, ∴Rt△ABE≌Rt△ADF(HL ),∴BE=DF∵BC=CD,∴BC -BE=CD-DF ,即CE=CF ,∵AE=AF,∴AC 垂直平分EF .(故①正确).②设BC=a ,CE=y ,∴BE+DF=2(a-y ) 2y ,∴BE+DF 与EF 关系不确定,只有当y=(2−2)a 时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(2x)2∴x2=2y(x+y)∵S△CEF=12x2,S△ABE=12y(x+y),∴S△ABE=12S△CEF.(故④正确).综上所述,正确的有①③④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.5.下列各式中的变形,错误的是(()A.B.C.D.解析:D【解析】【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选:D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.6.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A .平均数B .中位数C .众数D .方差解析:D【解析】【详解】 解:A .原来数据的平均数是2,添加数字2后平均数仍为2,故A 与要求不符;B .原来数据的中位数是2,添加数字2后中位数仍为2,故B 与要求不符;C .原来数据的众数是2,添加数字2后众数仍为2,故C 与要求不符;D .原来数据的方差=222(12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222(12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D .7.-2的倒数是( )A .-2B .12- C .12D .2 解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握8.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =- D .10x =,23x = 解析:D【解析】【分析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,。
2020年安徽省中考数学一模试卷(有答案解析)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,,b,按照从小到大的顺序排列A. B.C. D.3.2020年新冠状病毒全球感染人数约33万,科学记数法如何表示A. B. C. D.4.若是关于x的一元一次方程的解,则的值是A. B. C. 8 D. 45.如图,,A在DE上,C在GF上为等边三角形,其中,则度数为A. B. C. D.6.二次函数的图象如图所示,现有以下结论:;;;;其中正确的结论有A. 1个B. 2个C. 3个D. 4个7.某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为A. B. C. D.8.如图,中,BD是的平分线,交BC于E,,,则AB长为A. 6B. 8C.D.9.如图,在等腰中,,,点P从点B出发,以的速度沿BC方向运动到点C停止,同时点Q从点B出发,以的速度沿方向运动到点C停止,若的面积为,运动时间为,则下列最能反映y与x之间函数关系的图象是A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在锐角中,,,,将绕点B按逆时针方向旋转,得到点E为线段AB中点,点P是线段AC上的动点,在绕点B按逆时针方向旋转过程中,点P的对应点是点,线段长度的最小值是______.11.把多项式分解因式的结果是______.12.不等式组的所有整数解的积为______.13.设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式______.14.如图,在等腰中,,,点D在底边BC 上,且,将沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.三、解答题(本大题共9小题,共90.0分)15.计算:16.九章算术是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.17.如图,已知平面直角坐标内有三点,分别为,,.请画出关于原点O对称的;直接写出把绕点O顺时针旋转后,点C旋转后对应点的坐标.18.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第个图形中有1个正方形;第个图形有个小正方形;第个图形有个小正方形;第个图形有小正方形;根据上面的发现我们可以猜想:______用含n的代数式表示;请根据你的发现计算:;.19.如图,在同一平面内,两条平行高速公路和间有一条“Z”型道路连通,其中AB段与高速公路成角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离结果保留根号.20.如图,AC是的直径,AB与相切于点A,四边形ABCD是平行四边形,BC交于点E.证明直线CD与相切;若的半径为5cm,弦CE的长为8cm,求AB的长.21.如图,在中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且,AF是的平分线,交BC于点F,交DE于点G.求证:;.22.受西南地区旱情影响,某山区学校学生缺少饮用水.我市中小学生决定捐出自己的零花钱,购买300吨矿泉水送往灾区学校.运输公司听说此事后,决定免费将这批矿泉水送往灾区学校.公司现有大、中、小三种型号货车.各种型号货车载重量和运费如表所示.大中小载重吨台201512运费元辆150012001000司机及领队往返途中的生活费单位:元与货车台数单位:台的关系如图所示.为此,公司支付领队和司机的生活费共8200元.求出y与x之间的函数关系式及公司派出货车的台数;设大型货车m台,中型货车n台,小型货车p台,且三种货车总载重量恰好为300吨.设总运费为元,求W与小型货车台数P之间的函数关系式.不写自变量取值范围;若本次派出的货车每种型号不少于3台且各车均满载.求出大、中、小型货车各多少台时总运费最少及最少运费?由于油价上涨,大、中、小三种型号货车的运费分别增加500元辆、300元辆、a元辆,公司又将如何安排,才能使总运费最少?23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且.求证:;求证:∽;如图2,若AD、BC所在直线互相垂直,求的值。
合肥市2020版中考数学一模试卷(II)卷
合肥市2020版中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若反比例函数的图像上有两个点A(-1, ),B()那么大小关系是()A .B .C .D . 无法确定2. (2分) (2016九上·萧山期中) 由二次函数y=2(x﹣3)2+1,可知()A . 其图像的开口向下B . 其图像的对称轴为直线x=﹣3C . 其最小值为1D . 当x<3时,y随x的增大而增大3. (2分)如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB,OC.若∠BAC与∠BOC互补,则弦BC的长为()A . 4B . 3C . 2D .4. (2分)(2017·吉林模拟) 如图所示的几何体的俯视图是()A .B .C .D .5. (2分)我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为()古时子时丑时寅时卯时今时23:00~1:001:00~3:003:00~5:005:00~7:00A .B .C .D .6. (2分) (2017九上·淅川期中) 在坡度为1:1.5的山坡上植树,要求相邻两树间的水平距离为6m,则斜坡上相邻两树间的坡面距离为()A . 4mB . mC . 3mD . m7. (2分)二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A . x<-1B . x>3C . -1<x<3D . x<-1或x>38. (2分) (2017九下·杭州期中) 如图,在平面直角坐标系中,点A(1,),点B(2,0),P为线段OB上一点,过点P作PQ∥OA,交AB于点Q,连接AP,则△APQ面积最大值为()A .B .C .D .9. (2分)如图,在中,,,以点为中心,把逆时针旋转,得到,则图中阴影部分的面积为()A . 2B .C . 4D .10. (2分)如图,抛物线y=ax2+bx+c(a≠0)经过点(-1,0),对称轴为:直线x=1,则下列结论中正确的是()A . a>0B . 当x>1时,y随x的增大而增大C . c<0D . x=3是一元二次方程ax2+bx+c=0(a≠0)的一个根二、填空题 (共4题;共5分)11. (1分)函数y=(x﹣1)2+3的最小值为________.12. (1分)如图,,,,是上的四个点,,则 ________度.13. (1分)在等腰三角形ABC中,∠C=90°,BC=2cm.如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距________cm.14. (2分) (2019九上·靖远月考) 若菱形的对角线长分别是6cm、8cm,则其周长是________,面积是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年合肥42中数学一模试卷
一、选择题(共10小题) 题号 1 2 3 4 5 6 7 8 9 10 答案
1.一个由5个相同的小正方体组成的立体图形如下右图所示,则从正面看到的平面图形是
A .
B .
C .
D .
2.若点A (1x ,-3),B (2x ,1),C (3x ,2)在反比例函数x
y 6
=的图象上,则1x ,2x ,3x 的大小关系是
A . 1x <3x <2x
B .1x <2x <3x
C . 2x <3x <1x
D . 3x < 2x < 1x
3.在平面直角坐标系中,将抛物线122
--=x x y 先向上平移3个单位长度,再向左平移2个单位长度,所得的抛物线的解析式是
A . 1)1(2
++=x y B . 1)3(2
+-=x y C . 5)3(2
--=x y D . 2)1(2
++=x y
4.如下左图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A ′B ′C ′D ′E ′,已知OA =10cm ,OA ′=20cm ,则五边形ABCDE 的周长与五边形A ′B ′C ′D ′E ′的周长比是 A. 1:2 B. 2:1 C. 1:3 D. 3:1
5.已知抛物线42
++-=bx x y 经过(−2,n )和(4,n )两点,则n 的值为 A. −2 B. −4 C. 2 D. 4
6.若函数x
k y =
与c bx ax y ++=2
的图象如上右图所示,则函数b kx y +=的大致图象为 A. B. C. D.
7.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是 A.
21 B. 43 C. 121 D. 12
5 8. 如下左图,△ABC 是等边三角形,被一矩形所截,AB 被截成三等分,EH ∥BC ,则四边形EFGH 的面积是△ABC 的面积的
A.
91 B.94 C.31 D.4
9 9.如上中图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为
A .
2
2
m π B . 223m π C . 2m π D . 22m π 10.如上右图,正ΔABC 的边长为4,点P 为BC 边上的任意一点(不与点B 、C 重合),且∠APD =60°,PD 交AB 于点D ,设BP =x ,BD =y ,则y 关于x 的函数图象大致是
A. B. C. D.
二、填空题(共4小题) 11.已知
73=-b b a ,则=a
b
;
12.在RtΔABC 中,∠C =90°,如果3
3
tan =
∠A ,那么=∠B cos ; 13.如下左图,圆锥的母线长为10cm ,高为8cm ,则该圆锥的侧面展开图(扇形)的弧长为 cm .(结果用π表示)
14.如上右图,CD = 4,∠C =90°,点B 在线段CD 上,
3
4
=CB AC ,沿AB 所在的直线折叠△ACB 得到△AC ′B ,若△DC ′B 是以BC ′为腰的等腰三角形,则线段CB 的长为 . 三、解答题(共9小题)
15.计算:31)3(60tan 312)4
1
(01-+---+--πο
16.△ABC 在平面直角坐标系中的位置如图,其中每个小正方形的边长为1个单位长度。
(1)画出△ABC 关于原点O 的中心对称图形△A 1B 1C 1; (2)画出将△ABC 绕点C 顺时针旋转90°得到△A 2B 2C . (3)在(2)的条件下,求点A 旋转到点A 2所经过的路线长(结果保留π)
17.如图是某儿童乐园为小朋友设计的滑梯平面图。
已知BC=4m,AB=6m,中间平台宽度DE=1m,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°。
求DM和BC的水平距离BM的长度。
(结果精确到0.1米,参考数据:sin31°≈0.52,cos30°≈0.86,tan31°≈0.60)
18.有4张看上去无差别的卡片,上面分别写着1、2、3、4
(1)一次性随机抽取2张卡片,求这两张卡片上的数字之和为奇数的概率;
(2)随机摸取1张后,放回并混在一起,再随机抽取1张,求两次取出的卡片上的数之和等于4的概率。
19.如图AB为⊙O的直径,点C是⊙O上的一点,点D为AB延长线上一点,连接AC。
(1)如图①,OB=OD,若DC与⊙O相切,求∠D与∠A的大小;
(2)如图②,CD与⊙O交于点E,AF⊥CD于点F,连接AE,若∠EAB=18°,求∠F AC的大小。
20.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EF A;
(2)若AB=12,BM=5,求DE的长
21.已知二次函数m x m mx y 31)21(2
-+-+= (1)当2=m 时,求二次函数图象的顶点坐标; (2)已知抛物线与x 轴交于不同的点A 、B . ①求m 的取值范围;
②若43≤≤m 时,求线段AB 的最大值及此时二次函数的表达式.
22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销。
据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本。
(1)当销售单价为70元时,每天的销售利润是多少?
(2)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式,并求出自变量x 的取值范围; (3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)
23.如图,矩形ABCD (AB >AD )中,点M 是边DC 上的一点,点P 是射线CB 上的动点,连接AM ,AP ,且∠DAP =2∠AMD 。
(1)若∠APC =76°,则∠DAM = ;
(2)猜想∠APC 与∠DAM 的数量关系为 ;并进行证明; (3)如图1,若点M 为DC 的中点,求证:2AD =BP +AP ; (4)如图2,当∠AMP =∠APM 时,若CP =15,
2
3
AD AM 时,则线段MC 的长为 。