数学认识概率复习课件.ppt

合集下载

10.1.4概率的基本性质课件共17张PPT

10.1.4概率的基本性质课件共17张PPT

3.某校高二(1)班甲、乙两名同学进行投篮比赛,
他们投进球的概率分别是 3 和 4 ,现甲、乙两人各投篮一次, 45
恰有一人投进球的概率是( D )
A. 1 20
C. 1 5
B. 3 20
D. 7 20
甲投进而乙没有投进的概率为
3 4
1
4 5

3 20
,
乙投进而甲没有投进的概率为
1
3 4
4 5
A. 1
B. 2
3
5
C. 2
D. 4
3
5
记事件 A:甲获得冠军,事件 B:比赛进行了三局,
事件 AB:甲获得冠军,且比赛进行了三局,
即第三局甲胜,前二局甲胜了一局,

P(
AB)
C12
3 4
1 4
3 4
9 32
,
对于事件 A,甲获得冠军包含两种情况:前两局甲胜和事件 AB,
P(A)
3 4
2
9 32
学习目标:
1通过实例,理解概率的性质. 2结合实例,掌握随机事件概率的运算法则. 3能够利用概率的性质求较复杂事件的概率.
学习重点:
概率的运算法则及性质.
.
探究一: 概率的基本性质
性质 1 对任意的事件 A,都有 P(A)≥0. 性质 2 必然事件的概率为 1,不可能事件的概率为 0,即 P(Ω)=1,P(∅)=0. 性质 3 如果事件 A 和事件 B 互斥,那么 P(A∪B)=P(A)+P(B).
性质 4 如果事件 A 与事件 B 互为对立事件, 那么 P(B)=1-P(A),P(A)=1-P(B). 性质 5 如果 A⊆B,那么 P(A)≤P(B). 性质 6 设 A,B 是一个随机试验中的两个事件, 我们有 P(A∪B)=P(A)+P(B)-P(A∩B).

第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)

第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)
第三章 概率的进一步认识
第三章 复习课
复习目标
1.回顾本章的内容,梳理本章的知识结构,建立有关概率知
识的框架图.
2.知道求概率的一般方法——树状图和列表法.
3.知道试验频率与理论概率的关系;会合理运用概率的思想,
解决生活中的实际问题.
◎重点:会用树状图或列表法计算简单事件的概率,以及用
试验或模拟试验的方法估计复杂事件发生的概率.
时,用列表法.
(3)用树状图或表格求概率的关键:
①各种情况出现的可能性 一定要相同 ;
事件发生的次数 )
②P(A)= 各种情况出现的次数 ;
(
③在统计各种情况出现的次数和某一事件发生的次数时,
要做到不重不漏.
预习导学
4.估计总体数目.
通过试验法估计总体数目的方法:(1) 抽取 法估算总体
数目;(2)用 放入 法估算总体数目.
预习导学
·导学建议·
本节可通过问题的形式引导学生,梳理知识结构,重点关
注以下几个问题:(1)频率与概率的区别;(2)计算概率的两种方
法;(3)概率与统计之间的内在的联系.
合作探究
随机事件的概率计算
1.某市体育中考现场考试内容有三项:50米跑为必测项目,
另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二
(2)小国同学的父亲认为,如果到A处不买,到B处发现比A
处便宜就马上购买,否则到C处购买,这样更有希望买到最低价
格的礼物.这个想法是否正确?试通过树状图分析说明.
解:(1)∵在每一处都有价格最低,最高,较高的可能,

∴P(A处买到最低价格礼物)= .

合作探究
(2)作出树状图如下:

概率PPT课件

概率PPT课件

知2-练
感悟新知
知识点 3 概率的计算
知3-讲
一般地,如果在一次试验中,有n种可能的结果,
并且它们发生的可能性都相等,事件A包含其中的m 种结果,那么事件A发生的概率 P( A) m .
n
感悟新知
特别提醒
使用概率公式计算的试验需具有以下特点:
知3-讲
1. 每一次试验中,可能出现的结果是有限个;
S
课堂小结
平均数
结果只有有限个
0≤P(A)≤1
概率
P( A) m n
各种结果出现的可能性相等
苏科版 八年级上
第三节
第二章 物态变化
熔化和凝固
夯实基础·逐点练
4 【中考•赤峰】下列各组固体中具有确定熔点的一组是 ( C) A.蜡、玻璃、沥青 B.蜡、铝、玻璃 C.冰、铁、铝 D.冰、铁、沥青
习题链接
夯实基础·逐点练
10 冬天穿棉衣可以有效阻止人体热量向外散发,使人感 到暖和,而棉衣自身并不发热.据说法国准备生产一 种夹克,其衣料纤维中添加一种微胶囊,这种胶囊所 含物质在常温下呈液态,温度降低时会结晶.人们穿 上它,气温较高时,胶囊中物质_熔__化__吸__热_,使人感到 凉爽;气温降低时,胶囊中物质_凝__固__放__热_,使人感到 温暖.
我们用 1 表示每一种点数出现的可能性大小. 6
感悟新知
归纳
知1-讲
一般地,对于一个随机事件A,我们把刻画其发 生可能性大小的数值,称为随机事件A发生的概率, 记作P(A).
感悟新知
例 1 [ 中考·衡阳 ]已知抛一枚均匀硬币正面朝上
知1-练
的概率为1/2 ,下列说法错误的是( A)
A. 连续抛一枚均匀硬币 2 次必有 1 次正面朝上

《概率》概率初步PPT免费课件

《概率》概率初步PPT免费课件

为红、绿、黄三种.指针的位置固定,转动转盘后任
其自由停止,其中的某个扇形会恰好停在指针所指
的位置(指针指向两个图形的交线时,当作指向其右
边的图形).求下列事件的概率:
(1)指针指向红色;
1 4
(2)指针指向黄色或绿色.
3 4
探究新知
素养考点 4 利用概率解决实际问题
例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9
字被抽取的可能性大小相等,所以我们可以用
1 5
表示每一个数
字被抽到的可能性大小.
探究新知
活动2 : 掷骰子 掷一枚骰子,向上一面的点数有6种可能,即1、2、
3、4、5、6.
因为骰子形状规则、质地均匀,又是随机掷出,所以每
种点数出现的可能性大小相等.我们用
1 6
表示每一种点数出现
的可能性大小.
探究新知
3
巩固练习
袋子里有1个红球,3个白球和5个黄球,每一个 球除颜色外都相同,从中任意摸出一个球,则
1
P(摸到红球)= 9 ;
1
P(摸到白球)= 3 ;
5
P(摸到黄球)= 9 .
探究新知
素养考点 3 简单转盘的概率计算
例3 如图所示是一个转盘,转盘分成7个相同的扇形, 颜色分为红黄绿三种,指针固定,转动转盘后任其自 由停止,某个扇形会停在指针所指的位置,(指针指 向交线时当作指向其右边的扇形)求下列事件的概率. (1)指向红色; (2)指向红色或黄色; (3)不指向红色.
巩固练习
掷一个骰子,观察向上的一面的点数,求下列事 件的概率: (1)点数为2; (2)点数为奇数; (3) 点数大于2小于5.
(1)点数为2有1种可能,因此P(点数为2)= 1 ; 6

概率基础知识ppt课件

概率基础知识ppt课件

n
② pi=1. i=1
③一般地,离散型随机变量在某一范围内取值的概率等于这 个范围内每个随机变量值的概率__之__和____. 思考探究 如何求离散型随机变量的分布列? 提示:首先确定随机变量的取值,求出离散型随机变量的每一 个值对应的概率,最后列成表格.
可编辑课件PPT
15
2.常见离散型随机变量的分布列
概率基础知识
可编辑课件PPT
1

基本事件
互斥事件





并(和)事件的概率


目ห้องสมุดไป่ตู้事件

对立事件






不可能事件


独立事件

率 必然事件
交(积)事件的概率


条件概率



古典概型





比例算法






几何概型



随机试验
可编辑课件PPT
2
集合知识回顾: 1、集合之间的包含关系:
称为离散型随机变量X的概率分布列,简称X的分布列.有时 为了表达简单,也用等式__P_(_X_=__x_i_)=___p_i,__i=__1_,_2_,__…__,__n__表示
X的分布列.
可编辑课件PPT
14
(2)离散型随机变量分布列的性质 ①____p_i≥__0_,__i_=__1_,2_,__…__,__n_;
PA∩B
P(B|A)=___P__A_____,P(A)>0.

人教版九年级上册数学《概率》说课教学复习课件

人教版九年级上册数学《概率》说课教学复习课件
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
踩雷即游戏结束,下一步该点击A区域还是B区域?
P(点击A区域遇雷)=


P(点击B区域遇雷)=



=
P(点击A区域遇雷)<P(点击B区域遇雷)
等,事件A包含其中的m种结果,那么事件A发生的概率
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
P(A)=


【思考二】P(A)=0或P(A)=1时代表了什么,并在下图中表示出来?
0
事件发生的可能性越来越小
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
P(A)=


【思考一】P(A)的取值范围是多少?
∵m≥0,n>0,
∴0≤m≤n.

∴0≤ ≤1,
即0≤P(A)≤1.
小结
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相

苏教版八下数学第十二章《第12章认识概率》复习课件

苏教版八下数学第十二章《第12章认识概率》复习课件

易错点2:忽视在等可能条件下研究概率问题
【思一思】每步试验结果必须具有等可能性
错题纠正反思
小亮书架上放着一套《上下五千年》,共上、中、下 3册,它们从封面上看完全一样.小亮任意从中抽出2册, 恰好抽到上册和下册的概率.
易错点3: 不能区分试验是“放回”还是“不放回”
错题纠正反思
小亮书架上放着一套《上下五千年》,共上、中、下 3册,它们从封面上看完全一样.小亮任意从中抽出2册, 恰好抽到上册和下册的概率.
端午节吃粽子是中华民族的传统习俗.五月初五早 晨,妈妈为洋洋准备了四只粽子:一只香肠馅,一只红 枣馅,两只什锦馅,四只粽子除内部馅料不同外,其他 均一切相同.洋洋喜欢吃什锦馅的粽子. (2)请你设计一个替代试验,模拟吃粽子的过程.(要求 写清楚替代工具和试验规则)
在吃粽子之前,洋洋准备用如图所示的转盘进行吃 粽子的模拟试验(此转盘被等分成四个扇形区域,指针 的位置是固定的,转动转盘后任其自由停止,其中的某 个扇形会恰好停在指针所指的位置.若指针指向两个扇 形的交线时,重新转动转盘),规定:连续转动两次转 盘表示随机吃两只粽子,从而估计吃两只粽子刚好都是 什锦馅的概率.你认为这种模拟试验的方法正确吗?
易错点3: 不能区分试验是“放回”还是“不放回”
错题纠正反思
小亮书架上放着一套《上下五千年》,共上、中、下 3册,它们从封面上看完全一样.小亮任意从中抽出2册, 恰好抽到上册和下册的概率.
易错点3: 不能区分试验是“放回”还是“不放回”
【思一思】认真审题,分清“放回”与“不放回”
端午节吃粽子是中华民族的传统习俗.五月初五早 晨,妈妈为洋洋准备了四只粽子:一只香肠馅,一只红 枣馅,两只什锦馅,四只粽子除内部馅料不同外,其他 均一切相同.洋洋喜欢吃什锦馅的粽子. (1)请你用树状图或列表法为洋洋预测一下吃两只粽子刚 好都是什锦馅的概率;

概率的基本性质ppt课件

概率的基本性质ppt课件
5
我们借助树状图来求相应事件的样本点数,
可以得到,样本空间包含的样本点个数为 n 6 5 30 , 解法二: 上述解法需要分若干种情况计算概率, 注意到事件A的对立事件是“不中奖”,即“两罐都不中奖”。
因为n A1 A2
4 3 12,P A1 A2
12 2 30 5
所以PA 1 P A1 A2
所以P(R1)=P(R2)=6/12, P(R1UR2)=10/12.因此 P(R1∪R2)≠P(R1)+P(R2). 这是因为R1∩R2={(1,2),(2,1)}≠Φ,即事件R1, R2不是互斥的, 容易得到P(R1∪R2)=P(R1)+P(R2)-P(R1∩R2).
性质6 设A,B是一个随机试验中的两个事件,我 们有P(AUB)=P(A)+P(B)-P(A∩B)
解析 设事件 A=“中奖”,事件 A1 =“第一罐中奖”,事件 A2 =“第二罐中奖”,
那么事件 A1A2 =“两罐都中奖”, A1 A2 =“第一罐中奖,第二罐不中奖”,
A1A2 =“第一罐不中奖,第二罐中奖”,且 A A1A2 A1 A2 A1A2 ,
因为 A1A2, A1 A2, A1A2 两两互斥,所以根据互斥事件的概率加法公式,
这种处理问题的方法称为逆向思维,有时能使问题的解决事半功倍.
练习1.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别
为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:
(1)射中10环或7环的概率;(2)不够7环的概率.
[解析] (1)设“射中10环”为事件A,“射中7环”为事件B, 由于在一次射击中,A与B不可能同时发生,故A与B是互斥 事件.“射中10环或7环”的事件为A∪B. 故P(A∪B)=P(A)+P(B)=0.21+0.28=0.49. ∴射中10环或7环的概率为0.49.

第26章概率初步期末复习PPT课件(沪科版)

第26章概率初步期末复习PPT课件(沪科版)

5 000 4 005 0.801
根据以上数据可以估计,该玉米种子发芽的概
率约为___0_.8__(精确到0.1).
17. 在军事选拔赛中,某部队一名战士射击
了160次,其成绩记录如下:
射击次数
射中9环以上 的次数
射中9环以上 的频率
20 40 60 80 100 120 140
16 31 49 63 81 97 110
沪科版
第26章 概率初步 期末复习
复习要点
1.事件产生的可能性
必然事件 确定事件
不可能事件
(1)事件按可能性分类:事件
随机事件
(2)相关定义
①必然事件:在一定的条件下,必定 会产生的事件. ②不可能事件:在一定的条件下,必然 不 产生的事件. ③确定事件: 必然 事件和 不可能事件统称确定事件.
④随机事件:在一定条件下,可能 产生 也可能不产生 的事件.
A.
1 27
B.
1 3
C.
1 9
D.
2 9
11.在一个不透明的布袋中装有红色、白色玻 璃球共 40 个,除颜色外其他完全相同.小明通过 多次摸球实验后发现,其中摸到红色球的概率稳
定在 15% 左右,则口袋中红色球可能有( B ).
A.4个 B.6个 C.34个 D.36个
12.一个口袋中有 3 个红球和若干个黄球,在不 允许将球倒出来数的前提下,小强为估计其中的黄 球数,采用如下的方法:从口袋中随机摸出一球, 记下颜色,然后把它放回口袋中,摇匀后再随机摸 出一球,记下颜色,……不断重复上述过程.小强 共摸了 100 次,其中 20 次摸到红球.根据上述数
例2.在数学课上,老师拿出4张牌,牌面分别 是1、2、3和4. 老师提出以下两个问题: (1)若随机抽取两张牌,则抽出牌面数字刚好

概率的基本性质ppt课件

概率的基本性质ppt课件


新知探究
思考:在上面的摸球试验中, R1=“第一次摸到红球”, R2=“第二次摸到红
球”,“两个球中有红球”=R1∪R2 , “两个球都是红球”=R1∩R2 ,那么P(R1∪R2)
和P(R1)+ P(R2)相等吗?如果不相等,请你说明原因,并思考如何计算P(R1∪R2).

n(R1)=6
P(R1)=
24
14
7
若从这100名学生中随机选一名学生, 求下列概率:
0.52
1
0.48
P(M) =______,
P(F) =______,
P(M∪F) =______,
0.76
0
P(MF) =______,
P(G1) = 0.35
______,P(M∪G2) =_______,
0.07
P(FG3) =______.
(1)事件R与事件G互斥,
R∪G=“两次摸到球颜色相同”
(2)因为 n(R)=2,n(G)=2,n(R∪G)=2+2=4,
n(Ω)=12
2
2
4


所以P(R)+P(G)= 12 12 12
= P( R∪ G)

新知探究
➢ 性质3:如果事件A与事件B互斥,那么p(A ∪ B) = p(A) + p(B).
会相等,分别计算下列事件的概率:
(1)女孩A得到一个职位;
(2)女孩A和B各得到一个职位;
(3)女孩A或B得到一个职位.

巩固练习 课本P246
8.某品牌计算机售后保修期为1年,根据大量的维修记录资料,这种品牌的计算
机在使用内维修次数最多的是3次,其中维修1次的占15%,维修2次的占6%,维
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、“任意画一个三角形,则这个三角形中至少有两个钝 角”这一事件的概率是___0 __
4、一枚一向硬币,在连续抛掷9次都是正面朝上的情况下, 那么第10次抛掷反面朝上的可能性是_____50%
5、从形状和大小相同的9张卡片(1~9)中,任意抽1张, 抽出的恰好是:①奇数;②不小于4的数;③合数。将
2.一副扑克牌中, 任意摸一张,P(摸到红桃)=___
3.掷一枚均匀的骰子,其结果 P (“4”点朝上) ____P(“6”点朝上)
4、将写有1、2、3、4、5、6、7、8八个数字的纸片背 面朝上洗匀后,任意抽出一张: (1)P(抽到数字7)=________; (2)P(抽到数字3)=_____; (3)P(抽到一位数)=______; (4)P(抽到两位数)=_____; (5)P(抽到的数不大于4)=___; (6)P(抽到奇数)=_____
(1)飞镖投到区域A、B、C的概率是多少?
BC
(2)飞镖投在区域A或B中的概率是多少?
A
(3)飞镖没有投在区域C中的概率是多少?
9、小亮设计了如图4所示的转盘,任意转动 转盘,当转盘停止转动时,指针落在空白区 的概率是多少?
题组三
1、一个桶里有60个球——一些是红色的, 一些是蓝色的,一些是白色的。拿出红 色球的概率是35%,拿出蓝色球的概率 是25%。桶里每种颜色的球各有多少?
A、1个 B、2个 C、3个 D、4个
5、生活中“几乎不可能”表示(B ) A、不可能事件 B、随机事件 C、必然事件 D、表示事件发生的概率为0.5 6、如图是一个被分成3个相等的扇形的转盘, 分别涂有红、黄、蓝三色,若任意转1次,则 指针指向区域( D ) A、一定是红色 B、一定是蓝色 C、一定是黄色 D、红色、蓝色或黄色都有可能 7、有20个同品种的工艺品,其中一等品14件,二等品5件,
三等品1件,从中任意取1件。不太可能取到_等品一。 8、在1~100这100个数中,随意抽出一个数,它是2的倍数
的可能性_大_于__它是5的倍数的可能性(填:大于、 等于或小于) 9、“地球围绕太阳转”是必_然_事_件_(必然事件、随机事 件、不可能事件)
1、设总共做n次重复实验,而事件A发生了m次,我 们称比值 m 为事件A发生的___频__率___ 如果一个实n验有n个等可能结果,而事件A包含其中k 个结果。我们称比值 m 为事件A发生的__概__率____
不可能事件。
3、下列事件中,不可能事件是( C )
A、掷两个色子,点数和为12;
B、打开电视机,正在放球赛;
C、一个三角形的内角和为2700;
D、购买福利彩票中奖。
4、下列事件(1)硬币只有正、反两面,第一次抛硬币 时正面朝下,第二次抛硬币时正面朝上;(2)2003年运 动员小张参加世界田径锦标赛110m跨栏比赛的成绩是 11s;(3)一个长方体的体积是8,则它的长、宽、高 分别为1、2、3;(4)一次考试,全班50%的学生得 分在95分以上。上述事件中,随机事件有( B )
这些事件按概率从大到小排列_②_①_③__(只写序号)。
6、有长度分别为2、4、6、8的4根铁丝,每次从中任取3 根组成一个三角形,通过实验估计能构成三角形的可能 性为__1_/4 _。
题组二、
1.我们班有男生26人,女生25人,现在要选1名学生 领操,选中的这名学生是女生的概率为________
第8章 认识概率复习课
你知道吗?
1、必然发生的事件叫 必然事件 ;必然不发生的 事件叫__不__可_能__事_件__;可能发生也可能不发生 事件叫____随__机_事__件_
2、事件也可以分为__确_定__事_件__和_不__确_定__事__件_两类
看谁做的好
1、下列事件中,随机事件是( C ) A、一个有理数的绝对值是非负数; B、内错角相等,两直线平行; C、 a 是正数; D、鸡兔同笼,有5个头,22条腿。 2、下列说法中,正确的是( C ) A、出现的可能性很大的事情必然会发生; B、一件事件出现的可能性为0,该事件是不确定件; C、出现的可能性很小的事情也有可能发生; D、如果一件事情发生的可能性是万分之一,那么它是
2、.在质量检查时,某商品中有6件次品,据 此计算,次品率是3%。此次检查时共有 多少件商品?
题组四
1、将一枚硬币连续抛掷两次,朝上的一面 两次都是正面的概率是多少?
2.盒子里有标号为1、2、3的三个球,任意取 出一个球记好数放回,再任意取出一个球 记好数放回。求下列事件发生的概率.
(1)两个球的号码之相同;(2)两个球的号码 都是奇数.
C、1/2
D、1
2、事件发生的可能性不是50%的是( C )
A、公路上行驶的一辆车的车牌号是奇数
B、数轴上除原点以外的一点表示的数是正数
C、在1、2、3、4、5、6、7、8、9、10这10个数中, 任取1个是质数
D、不透明的袋中有4个大小相同的玻璃球,其中2个红 球,1个白球,1个黑球,从中任取1个是红球。
34%
6.一个口袋中有8个红球,2个黑球,每个球除颜色不同 外,其余都相同,若从中任意拿出1个球,拿出的这个 球是红球的概率为_____
7.如图,一任意转动的转盘被均匀分成六份,当随 意转动一次,停止后指针落在阴影部分的概率是 ________,落在空白部分的概率为________.
8、飞镖随机地掷在下面的靶子上。
5、不透明的袋中有3个大小相同的小球,其中2个为白色, 1个为红色,每次从袋中摸出1个球,然后放回搅匀再摸, 在摸球实验中得到下列表中部分数据:
摸球次数 40 80 100 150 200
出现红色 的频数

14
24
38
50
68
出现红色 的频率
35%
30%
38% 33%
34%
(1)请将表补充完整; (2)观察上面的图表,请说说摸出红球的概率为多少?
n
2、事件A发生的概率记作P(A事件),则P(A事件)的取值 范围是0≤_P_(__A_事__件__)_≤_1_______;
P(必然事件)=1;P(不可能事件)=0;0<P(随机事件)<1
题组一、
1、在1、3、5、7、9中任取两个数,组成一个两位数,
该两位数是奇数的概率是( D )
A、0
B、1/4
相关文档
最新文档