高中数学选修1-2课后习题答案
新人教A版高中数学选修1-2第二章:推理与证明
第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理A级基础巩固一、选择题1.下列推理是归纳推理的是()A.F1,F2为定点,动点P满足|PF1|+|PF2|=2a>|F1F2|,得P 的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n 项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B项为归纳推理.答案:B2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.111 1110B.1 111 111C.1 111 112 D.1 111 113解析:由1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=111 111;…归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,所以123 456×9+7=1 111 111.答案:B3.观察图形规律,在其右下角的空格内画上合适的图形为()解析:观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案:A4.设n是自然数,则18(n2-1)[1-(-1)n]的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数解析:当n为偶数时,18(n2-1)[1-(-1)n]=0为偶数;当n为奇数时(n=2k+1,k∈N),18(n2-1)[1-(-1)n]=18(4k2+4k)·2=k(k+1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数. 答案:C5.在平面直角坐标系内,方程x a +y b=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +z ca =1 C.xy ab +yz bc +zx ca =1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1. 答案:A二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________.解析:计算得a 2=4,a 3=9,所以猜想a n =n 2.答案:n 27.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18. 答案:1∶88.观察下列各式:①(x3)′=3x2;②(sin x)′=cos x;③(e x-e-x)′=e x+e-x;④(x cos x)′=cos x-x sin x.根据其中函数f(x)及其导数f′(x)的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f(x)=x3为奇函数,f′(x)=3x2为偶函数;对于②,g(x)=sin x为奇函数,f′(x)=cos x为偶函数;对于③,p(x)=e x-e-x为奇函数,p′(x)=e x+e-x为偶函数;对于④,q(x)=x cos x 为奇函数,q′(x)=cos x-x sin x为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(132+52)(102+72)≥(13×10+5×7)2.请你观察这三个不等式,猜想出一个一般性结论,并证明你的结论.解:一般性结论为(a2+b2)(c2+d2)≥(ac+bd)2.证明:因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+b2c2+a2d2+b2d2-(a2c2+2abcd+b2d2)=b2c2+a2d2-2abcd=(bc-ad)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴的根数为() A.6n-2 B.8n-2C.6n+2 D.8n+2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.答案:C2.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b73.观察下列等式: ①sin 210°+cos 240°+sin 10°cos 40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.解:由①②知,两角相差30°,运算结果为34, 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+ sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 2.1.2 演绎推理A 级 基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=a x(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的________.解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.答案:小前提7.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是________.解析:要使函数有意义,则log 2x -2≥0,解得x ≥4,所以函数y =log 2x -2的定义域是[4,+∞).答案:函数y =log 2x -2的定义域是[4,+∞)8.下面几种推理过程是演绎推理的是________(填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式.解析:①为演绎推理,②为类比推理,③④为归纳推理.答案:①三、解答题9.设m 为实数,利用三段论求证方程x 2-2mx +m -1=0有两个相异实根.证明:如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两相异实根.(大前提)一元二次方程x 2-2mx +m -1=0的判别式Δ=(2m )2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两相异实根.(结论)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数f (x )的单调增区间.解:(1)∵x =π8是函数y =f (x )的图象的对称轴, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意,得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤5π8+k π,k ∈Z. 故函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z. B 级 能力提升1.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:若f ′(x 0),则x =x 0不一定是函数f (x )的极值点,如f (x )=x 3,f ′(0)=0,但x =0不是极值点,故大前提错误.答案:A2.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a 的值为________. 解析:因为f (x )是R 上的偶函数,所以f (-x )=f (x ),所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对于一切x ∈R 恒成立,由此得a -1a =0,即a 2=1.又a >0,所以a =1.答案:13.在数列{a n }中,a 1=2,a n +1=4a n -3n +1(n ∈N *).(1)证明数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:由已知a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),n ∈N *,又a 1-1=2-1=1≠0,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)得a n -n =4n -1,所以a n =4n -1+n .所以S n =a 1+a 2+a 3+…+a n =1+4+42+…+4n -1+(1+2+3+…+n )=4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)=-12(3n +4)(n -1)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A 级 基础巩固一、选择题1.在下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:由题设知,f (x )在(0,+∞)上是减函数,由f (x )=1x,得f ′(x )=-1x2<0,所以f (x )=1x 在(0,+∞)上是减函数. 答案:A2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b .答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形.答案:D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A,B为△ABC内角,A>B是sin A>sin B的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC中,A>B⇔a>b由正弦定理asin A=bsin B,从而sin A>sin B.因此A>B⇔a>b⇔sin A>sin B,为充要条件.答案:充要8.已知p=a+1a-2(a>2),q=2-a2+4a-2(a>2),则p,q的大小关系为________.解析:因为p=a+1a-2=(a-2)+1a-2+2≥2(a-2)·1a-2+2=4,又-a2+4a-2=2-(a-2)2<2(a>2),所以q=2-a2+4a-2<4≤p.答案:p>q三、解答题9.已知a>0,b>0,且a+b=1,求证:1a+1b≥4.证明:因为a >0,b >0且a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b≥2+2 b a ·a b =4. 当且仅当b a =a b,即a =b 时,取等号, 故1a +1b≥4. 10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,则tan⎝⎛⎭⎪⎫x-π4=________.解析:∵sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,∴cos x=-45,∴tan x=-12,∴tan⎝⎛⎭⎪⎫x-π4=tan x-11+tan x=-3.答案:-33.(2016·江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,所以DE∥A1C1.因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.又因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.第2课时分析法A级基础巩固一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法解析:由综合法和分析法的意义与特点,知C错误.答案:C2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac<3a,则证明的依据应是() A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a +c)>0⇔(a-c)(a-b)>0.答案:C3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.答案:C4.对于不重合的直线m,l和平面α,β,要证明α⊥β,需要具备的条件是()A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l⊂αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⊂α解析:对于选项A,与两相互垂直的直线平行的平面的位置关系不能确定;对于选项B,平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系不能确定;对于选项C,这两个平面有可能平行或重合;根据面面垂直的判定定理知选项D正确.答案:D5.设P=2,Q=7-3,R=6-2,则P,Q,R的大小关系是()A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较Q与R的大小.Q-R=7-3-(6-2)=(7+2)-(6+3).因为(7+2)2-(6+3)2=7+2+214-(6+3+218)=2(14-18)<0,所以Q<R.又P=2>R=2(3-1),所以P>R>Q.答案:B二、填空题6.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b7.当x>0时,sin x与x的大小关系为________.解析:令f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0,所以f(x)在(0,+∞)上是增函数,因此f(x)>f(0)=0,则x>sin x.答案:x>sin x8.如图,在直四棱柱A1B1C1D1ABCD(侧棱与底面垂直)中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).解析:要证明A 1C ⊥B 1D 1只需证明B 1D 1⊥平面A 1C 1C因为CC 1⊥B 1D 1只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题9.已知a >1,求证:a +1+a -1<2a .证明:因为a >1,要证a +1+a -1<2a ,只需证(a +1+a -1)2<(2a )2,只需证a +1+a -1+2(a +1)(a -1)<4a , 只需证(a +1)(a -1)<a ,只需证a 2-1<a 2,即证-1<0.该不等式显然成立,故原不等式成立.10.求证:2cos(α-β)-sin (2α-β)sin α=sin βsin α. 证明:欲证原等式2cos(α-β)-sin (2α-β)sin α=sin βsin α成立. 只需证2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以①成立,所以原等式成立.B 级 能力提升1.设a ,b ,c ,d 为正实数,若a +d =b +c 且|a -d |<|b -c |,则有( )A .ad =bcB .ad <bcC .ad >bcD .ad ≤bc解析:∵|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc ①又a +d =b +c∴a 2+d 2+2ad =b 2+c 2+2bc ②由②-①,得4ad >4bc ,即ad >bc .答案:C2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=3a -4a +1,则实数a 的取值范围是________. 解析:因为f (x )是周期为3的奇函数,且f (1)>1,所以f (2)=f (-1)=-f (1),因此3a -4a +1<-1,则4a -3a +1<0, 解之得-1<a <34. 答案:⎝ ⎛⎭⎪⎫-1,34 3.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,证明:a x +c y=2.证明:要证明ax+cy=2,只要证ay+cx=2xy,也就是证明2ay+2cx=4xy.由题设条件b2=ac,2x=a+b,2y=b+c,所以2ay+2cx=a(b+c)+(a+b)c=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+bc+ac=ab+2ac+bc,所以2ay+2cx=4xy成立,故ax+cy=2成立.2.2.2 反证法A级基础巩固一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③解析:由反证法的定义知,可把①②③作为条件使用,而④原命题的结论是不可以作为条件使用的.答案:C2.用反证法证明命题:“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B4.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.除去结论即为反设,应选D.答案:D5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确.答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交, ∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 成等差数列,则有2b =a +c ,即4b 2=a 2+c 2+2ac ,又a2,b2,c2成公比不为1的等比数列,且a,b,c为正数,所以b4=a2c2且a,b,c互不相等,即b2=ac,因此4ac=a2+c2+2ac,所以(a-c)2=0,从而a=c=b,这与a,b,c互不相等矛盾.故a,b,c不成等差数列.B级能力提升1.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值()A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2解析:假设a+1b,b+1c,c+1a都小于2则a+1b<2,b+1c<2,c+1a<2∴a+1b+b+1c+c+1a<6,①又a,b,c大于0所以a+1a≥2,b+1b≥2,c+1c≥2.∴a+1b+b+1c+c+1a≥6.②故①与②式矛盾,假设不成立所以a+1b,b+1c,c+1a至少有一个不小于2.答案:D2.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫作函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是()A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1) D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解,即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知二次函数f (x )=ax 2+bx +c (a >0,c >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,恒有f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小. (1)证明:因为f (x )的图象与x 轴有两个不同的交点,所以f (x )=0有两个不等实根x 1,x 2.因为f (c )=0,所以x 1=c 是f (x )=0的根,又x 1x 2=c a, 所以x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , 所以1a是f (x )=0的一个根. (2)解:假设1a<c ,又1a>0,且0<x <c 时,f (x )>0, 所以知f ⎝ ⎛⎭⎪⎫1a >0,这与f ⎝ ⎛⎭⎪⎫1a =0矛盾, 因此1a≥c , 又因为1a≠c , 所以1a>c .。
人教版高中数学文科选修1-2同步练习题、期中、期末复习资料、补习资料:47复数的概念与运算(文)
复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。
2.理解复数相等的充要条件。
3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。
4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。
5. 会进行复数乘法和除法运算。
【要点梳理】知识点一:复数的基本概念 1.虚数单位数叫做虚数单位,它的平方等于,即。
要点诠释:①是-1的一个平方根,即方程的一个根,方程的另一个根是;②可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。
2. 复数的概念形如()的数叫复数,记作:();其中:叫复数的实部,叫复数的虚部,是虚数单位。
全体复数所成的集合叫做复数集,用字母 表示。
要点诠释:复数定义中,容易忽视,但却是列方程求复数的重要依据. 3.复数的分类对于复数()若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。
分类如下:用集合表示如下图:i i 1-21i =-i 21x =-21x =-i -i a bi +,a b R ∈z a bi =+,a b R ∈a b i C ,a b R ∈z a bi =+,a b R ∈4.复数集与其它数集之间的关系(其中为自然数集,为整数集,为有理数集,为实数集,为复数集。
)知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:. 要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”. 知识点三、复数的加减运算 1.复数的加法、减法运算法则:设,(),我们规定:要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。
人教版A版高中数学选修1-2课后习题解答
人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。
它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。
回归分析的初步应用包括简单线性回归和多元线性回归。
1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。
其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。
独立性检验的初步应用包括卡方检验和Fisher精确检验。
第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。
演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。
两种推理方法都有其适用的场合,需要根据具体情况进行选择。
2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。
间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。
第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。
复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。
复数的引入扩充了数系,使得一些原本无解的方程可以得到解。
3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。
复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。
第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。
它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。
流程图可以帮助人们更好地理解算法或过程,从而提高效率。
4.2 结构图结构图是一种用于描述程序结构的图形表示方法。
它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。
人教版高中数学选修课后习题参考答案
⼈教版⾼中数学选修课后习题参考答案新课程标准数学选修2—2第⼀章课后习题解答第⼀章导数及其应⽤ 3.1变化率与导数练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度⼤约以1 ℃/h 的速度下降;在第5 h 时,原油温度⼤约以3 ℃/h 的速率上升.练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近⽐在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9)函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学⽣,然后让学⽣根据导数的⼏何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然⽽10102020()()()()W t W t t W t W t t t t--?--?≥-?-?. 所以,企业甲⽐企业⼄治理的效率⾼.说明:平均变化率的应⽤,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t+-==--,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t+-==+,所以,(5)10s '=.因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502k E =??= J.4、设车轮转动的⾓度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=. 车轮转动开始后第3.2 s 时的瞬时⾓速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ?+?-==?+??,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时⾓速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表⽰的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率⼤于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,⼏乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应⽤.6、第⼀个函数的图象是⼀条直线,其斜率是⼀个⼩于零的常数,因此,其导数()f x '的图象如图(1)所⽰;第⼆个函数的导数()f x '恒⼤于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x ⼩于零时,()f x '⼩于零,当x ⼤于零时,()f x '⼤于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满⾜上述条件的导函数图象中的⼀种.说明:本题意在让学⽣将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、⾼度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的⼤致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. ⾸先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的⼤致形状. 下⾯是⼀种参考答案.说明:这是⼀个综合性问题,包含了对导数内涵、导数⼏何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯⼀. 1.2导数的计算练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=;(2)2x y e '=;(3)4106y x x '=-;(4)3sin 4cos y x x '=--;(5)1sin 33xy '=-;(6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π?+?-==+,所以,0()lim(2)2r S r r r r ππ?→'=+?=. 2、()9.8 6.5h t t '=-+. 3、3213()34r V Vπ'=.4、(1)213ln 2y x x '=+;(2)1n x n x y nx e x e -'=+;(3)2323sin cos cos sin x x x x xy x-+'=;(4)9899(1)y x '=+;(5)2x y e -'=-;(6)2sin(25)4cos(25)y x x x '=+++. 5、()822f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+;(2)1y x =-. 7、1xy π=-+.8、(1)氨⽓的散发速度()500ln 0.8340.834t A t '=??.(2)(7)25.5A '=-,它表⽰氨⽓在第7天左右时,以25.5克/天的速率减少. 习题1.2 B 组(P19) 1、(1)(2)当h 越来越⼩时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的⽅程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮⽔的速度为0.42-m /h ;上午9:00时潮⽔的速度为0.63-m /h ;中午12:00时潮⽔的速度为0.83-m /h ;下午6:00时潮⽔的速度为 1.24-m /h.1.3导数在研究函数中的应⽤练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增;当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增;当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增;当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,注:图象形状不唯⼀.其中2x x =是函数()y f x =的极⼤值点,4x x =是函数()y f x =的极⼩值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极⼩值,并且极⼩值为211149()6()212121224f =?--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下⾯分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极⼤值,并且极⼤值为54;当3x =时,()f x 有极⼩值,并且极⼩值为54-. (3)因为3()612f x x x=+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下⾯分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极⼩值,并且极⼩值为10-;当2x =时,()f x 有极⼤值,并且极⼤值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下⾯分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极⼩值,并且极⼩值为2-;当1x =时,()f x 有极⼤值,并且极⼤值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极⼩值,并且极⼩值为149()1224f =-. ⼜由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最⼤值是20、最⼩值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极⼤值,并且极⼤值为(3)54f -=;当3x =时,3()27f x x x =-有极⼩值,并且极⼩值为(3)54f =-;⼜由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最⼤值是54、最⼩值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极⼤值,并且极⼤值为(2)22f =.⼜由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最⼤值是22、最⼩值是5527.(4)在[2,3]上,函数3()3f x x x =-⽆极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最⼤值是2-、最⼩值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈. 因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数.(4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极⼤值;(2)在1x x =和4x x =处,导函数()y f x '=有极⼩值;(3)在3x x =处,函数()y f x =有极⼤值;(4)在5x x =处,函数()y f x =有极⼩值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增;当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极⼩值,并且极⼩值为211149()6()212121224f -=?---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下⾯分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极⼤值,并且极⼤值为16;当2x =时,()f x 有极⼩值,并且极⼩值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±.下⾯分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极⼤值,并且极⼤值为22;当2x =时,()f x 有极⼩值,并且极⼩值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下⾯分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极⼩值,并且极⼩值为128-;当4x =时,()f x 有极⼤值,并且极⼤值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极⼩值,并且极⼩值为4724.由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最⼤值和最⼩值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极⼤值,并且极⼤值为16;当2x =时,函数3()12f x x x =-有极⼩值,并且极⼩值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最⼤值和最⼩值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1-上⽆极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最⼤值和最⼩值分别为26927,5-.(4)当4x =时,()f x 有极⼤值,并且极⼤值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最⼤值和最⼩值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略(2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;⼜11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略(4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略2、(1)函数32()f x ax bx cx d =+++的图象⼤致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有⼀个极⼤值和⼀个极⼩值,从图象上能⼤致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下⾯分类讨论:当0a ≠时,分0a >和0a <两种情形:①当0a >,且230b ac ->时,设⽅程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设⽅程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4⽣活中的优化问题举例习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正⽅形的边长分别为4x ,4l x -,两个正⽅形的⾯积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极⼩值点,也是最⼩值点.所以,当两段铁丝的长度分别是2时,两个正⽅形的⾯积和最⼩.2、如图所⽰,由于在边长为a 的正⽅形铁⽚的四⾓截去四个边长为x 的⼩正⽅形,做成⼀个⽆盖⽅盒,所以⽆盖⽅盒的底⾯为正⽅形,且边长为2a x -,⾼为x .(1)⽆盖⽅盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+,所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极⼤值点,也是最⼤值点.所以,当6ax =时,⽆盖⽅盒的容积最⼤.3、如图,设圆柱的⾼为h ,底半径为R ,则表⾯积222S Rh R ππ=+由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R Rππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>. 因此,R =是函数()S R 的极⼩值点,也是最⼩值点. 此时,22V h R R π===. 所以,当罐⾼与底⾯直径相等时,所⽤材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,(第3题)可以得到,11ni i x a n ==∑是函数()f x 的极⼩值点,也是最⼩值点.这个结果说明,⽤n 个数据的平均值11ni i a n =∑表⽰这个物体的长度是合理的,这就是最⼩⼆乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的⾯积为28x π2m ,矩形的⾯积为28x a π-2m ,矩形的另⼀边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极⼩值点,也是最⼩值点.时,所⽤材料最省. 6、利润L 等于收⼊R 减去成本C ,⽽收⼊R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再⽤导数求最⼤利润.收⼊211(25)2588R q p q q q q =?=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极⼤值点,也是最⼤值点.所以,产量为84时,利润L 最⼤,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<.令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极⼤值点,也是最⼤值点.所以,当每个房间每天的定价为350元时,宾馆利润最⼤. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c c c x a x b b-=-+?=--,54ba x <<.令845()0c ac bc L x x b b+'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极⼤值点,也是最⼤值点.所以,销售价为458a b+元/件时,可获得最⼤利润.1.5定积分的概念练习(P42) 83. 说明:进⼀步熟悉求曲边梯形⾯积的⽅法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'?≈?=?=-+?=-?+?,1,2,,i n =L .于是 111()n n ni i i i i is s s v t n ==='=?≈?=?∑∑∑2112[()]ni i n n n ==-?+?∑22211111()()()2n n n n n n n n -=-?--?-?+L2231[12]2n n=-++++L31(1)(21)26n n n n ++=-?+111(1)(1)232n n =-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑说明:进⼀步体会“以不变代变”和“逼近”的思想.2、223km.说明:进⼀步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的⽅法和步骤. 练习(P48)2304x dx =?. 说明:进⼀步熟悉定积分的定义和⼏何意义.从⼏何上看,表⽰由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的⾯积4S =.习题1.5 A 组(P50) 1、(1)1001111(1)[(1)1]0.495100100i i x dx =--≈+-?=∑?;(2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-?=∑?;(3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-?=∑?. 说明:体会通过分割、近似替换、求和得到定积分的近似值的⽅法.2、距离的不⾜近似值为:18112171310140?+?+?+?+?=(m );距离的过剩近似值为:271181121713167?+?+?+?+?=(m ).3、证明:令()1f x =. ⽤分点 011i i n a x x x x x b -=<<<<<<=L L将区间[,]a b 等分成n 个⼩区间,在每个⼩区间1[,]i i x x -上任取⼀点(1,2,,)i i n ξ=L作和式11()nni i i b af x b a nξ==-?==-∑∑,从⽽11lim nbn i b adx b a n→∞=-==-∑,说明:进⼀步熟悉定积分的概念.4、根据定积分的⼏何意义,0表⽰由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的⾯积,即四分之⼀单位圆的⾯积,因此4π=.5、(1)03114x dx -=-. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -?表⽰由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的⾯积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -?等于位于x 轴上⽅的曲边梯形⾯积减去位于x 轴下⽅的曲边梯形⾯积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -?等于位于x 轴上⽅的曲边梯形⾯积减去位于x 轴下⽅的曲边梯形⾯积.说明:在(3)中,由于3x 在区间[1,0]-上是⾮正的,在区间[0,2]上是⾮负的,如果直接利⽤定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项⼜有负项,⽽且⽆法抵挡⼀些项,求和会⾮常⿇烦. 利⽤性质3可以将定积分231x dx -?化为02331x dx x dx -+??,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利⽤定积分的定义,容易求出031x dx -?,230x dx ?,进⽽得到定积分231x dx -?的值. 由此可见,利⽤定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进⼀步体会定积分的⼏何意义.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间⾛过的路程⼤约为145 m.说明:根据定积分的⼏何意义,通过估算曲边梯形内包含单位正⽅形的个数来估计物体⾛过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i ==??=∑(m );不⾜近似值:81111879.819.8168.672242i i =-??==∑(m )(3)49.81tdt ?;49.81d 78.48t t =?(m ).3、(1)分割在区间[0,]l 上等间隔地插⼊1n -个分点,将它分成n 个⼩区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n -,记第i 个区间为(1)[,]i l iln n-(1,2,i n =L ),其长度为 (1)il i l l x n n n-?=-=.把细棒在⼩段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作:12,,,n m m m L ,则细棒的质量1ni i m m ==?∑.(2)近似代替当n 很⼤,即x ?很⼩时,在⼩区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很⼩,近似地等于⼀个常数,不妨认为它近似地等于任意⼀点(1)[,]i i l il n n ξ-∈处的函数值2()i i ρξξ=. 于是,细棒在⼩段(1)[,]i l il n n-上质量2()i i i lm x nρξξ?≈?=(1,2,i n =L ).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====?≈?=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm nξ→∞==∑,所以20l m x dx =?..1.6微积分基本定理练习(P55)(1)50;(2)503;(3)533-;(4)24;(5)3ln 22-;(6)12;(7)0;(8)2-.。
数学选修1-2习题答案
数学选修1-2习题答案数学选修1-2习题答案数学选修1-2是高中数学课程中的一部分,主要涵盖了函数、导数和微积分的基础知识。
在学习过程中,习题是检验自己对知识掌握程度的重要方式。
下面将为大家提供数学选修1-2习题的详细解答。
1. 函数f(x) = x^2 + 4x - 5,求f(x)的极值点和极值。
解答:首先,我们需要求出函数f(x)的导数f'(x)。
对于二次函数,其导数为一次函数。
根据导数的定义,我们有f'(x) = 2x + 4。
要求函数的极值点,我们需要令f'(x) = 0,即2x + 4 = 0。
解这个方程,我们得到x = -2。
将x = -2代入原函数f(x),我们可以求出f(-2) = (-2)^2 + 4(-2) - 5 = -9。
所以,函数f(x)的极值点为x = -2,极值为-9。
2. 已知函数f(x) = 3x^3 - 2x^2 + 5x - 1,求f(x)的导函数和二阶导函数。
解答:函数f(x)的导函数f'(x)表示f(x)的斜率,也就是函数曲线在某一点的切线的斜率。
对于多项式函数,求导的方法是将指数降低一次,并将系数乘以原指数。
根据这个规则,我们可以求得f'(x) = 9x^2 - 4x + 5。
二阶导函数f''(x)表示f(x)的导函数的导数,也就是函数曲线的曲率。
同样地,我们可以求得f''(x) = 18x - 4。
3. 函数f(x) = e^x + ln(x),求f(x)的导数。
解答:函数f(x)中包含了指数函数和对数函数。
对于指数函数e^x,其导数仍然是e^x。
对于对数函数ln(x),其导数是1/x。
所以,函数f(x)的导数f'(x) = e^x + 1/x。
4. 函数f(x) = sin(x) + cos(x),求f(x)的导数和极值点。
解答:函数f(x)中包含了正弦函数sin(x)和余弦函数cos(x)。
高中数学选修1-2第二章课后习题解答
高中数学高中数学新课程标准数学选修1—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P30)1、由12341a a a a ====,猜想1na=.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积,的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=××. 4、略. 练习(P33)1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a +=,p 是非零常数,则{}n a 是等比数列;是等比数列; …………………………大前提…………………………大前提又因为0cq ¹,则q 是非零常数,则11n n nna cq q a cq ++==;……………………小前提……………………小前提 所以,通项公式为(0)n n a cq cq =¹的数列{}n a 是等比数列.……………………结论……………………结论 3、由A D B D >,得到ACD BCD Ð>Ð的推理是错误的. 因为这个推理的大前提是因为这个推理的大前提是“在同一“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中. 4、略.习题2.1A 组(P35) 1、2(1)n -(n 是质数,且5n ³)是24的倍数.2、21n a n =+()n N *Î. 3、2F V E +=+. 4、当6n £时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *Î.5、212111(2)n n A A A n p++³-(2n >,且n N *Î). 6、121217n n b b b b b b -=(17n <,且n N *Î).7、如图,作DE ∥AB 交BC 于E . 因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形所以四边形ABED 是平行四边形是平行四边形.. 因为平行四边形的对边相等因为平行四边形的对边相等因为平行四边形的对边相等. . DEBAC(第7题)又因为四边形ABED 是平行四边形是平行四边形. .所以所以AB DE =.因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等, 又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的. 又因为△DEC 是等腰三角形是等腰三角形, , 所以DEC C Ð=Ð 因为平行线的同位角相等因为平行线的同位角相等 又因为DEC Ð与B Ð是平行线AB 和DE 的同位角的同位角, , 所以DEC B Ð=Ð 因为等于同角的两个角是相等的,因为等于同角的两个角是相等的, 又因为DEC C Ð=Ð,DEC B Ð=Ð, 所以B C Ð=Ð习题2.1B 组(P35) 1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P42)1、因为442222cos sin (cos sin )(cos sin )cos 2q q q q q q q -=+-=,所以,命题得证. 2、要证67225+>+,只需证22(67)(225)+>+, 即证1324213410+>+,即证42210>,只需要22(42)(210)>,即证4240>,这是显然成立的. 所以,原命题得证.3、因为、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b a a a a -=-+==, 又因为又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab a a a a a a a a a a +-=+-=×22222222sin (1cos )sinsin161616sin tan cos cos aa aa a a aa-===,从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P43)1、假设B Ð不是锐角,则90B г°. 因此9090180C B Ð+г°+°=°. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B Ð一定是锐角.2、假设2,3,5成等差数列,则2325=+.所以22(23)(25)=+,化简得5210=,从而225(210)=,即2540=, 这是不可能的. 所以,假设不成立. 从而,2,3,5不可能成等差数列. 说明:进一步熟悉运用反证法证明数学命题的思考过程与特点.习题2.2A 组(P44) 1、因为、因为(1tan )(1tan )2A B ++=展开得展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ① 假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B p <+<,从而2A B p+=,与已知矛盾.因此1tan tan 0A B -¹.①式变形得①式变形得 tan tan 11tan tan A BA B +=-,即tan()1A B +=. 又因为0A B p <+<,所以4A B p+=.说明:本题也可以把综合法和分析法综合使用完成证明. 2、因为PD ^平面ABC ,所以PD AB ^. 因为AC BC =,所以ABC D 是等腰三角形. 因此ABC D 底边上的中线CD 也是底边上的高,也是底边上的高, 因而CD AB ^ 所以AB ^平面PDC . 因此AB PC ^.3、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B p<不成立,即2B p³,则B 是ABC D 的最大内角,的最大内角,所以,b a b c >>(在三角形中,大角对大边),从而从而 11112a c b b b +>+=. 这与211b a c =+矛盾.所以,假设不成立,因此,2B p<.习题2.2B 组(P44) 1、因为、因为 1tan 12tan aa-=+,所以12tan 0a +=,从而2sin cos 0a a +=.另一方面,要证另一方面,要证3sin 24cos2a a =-, 只要证226sin cos 4(cos sin )a a a a =-- 即证即证 222sin 3sin cos 2cos 0a a a a --=,即证即证 (2s i n c o s )(s i n 2c o s a a a a+-= 由2sin cos 0a a +=可得,(2sin cos )(sin 2cos )0a a a a +-=,于是命题得证.说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.2、由已知条件得、由已知条件得2b ac = ① 2x a b =+,2y b c =+ ②要证2a cx y +=,只要证2ay cx xy +=,只要证224ay cx xy +=由①②,得由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2x y a b b c a b b a c b c a b a c b c=++=+++=++, 所以,224ay cx xy +=,于是命题得证.第二章 复习参考题A 组(P46)1、图略,共有(1)1n n -+(n N *Î)个圆圈.2、333n 个(n N *Î).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==………… 猜想()2n f n =.4、如图,设O 是四面体A BCD -内任意一点,连结AO ,BO ,CO ,DO 并延长交对面于A ¢,B ¢,C ¢,D ¢,则,则1O A O B O C O D A A B B C C D D ¢¢¢¢+++=¢¢¢¢ 用“体积法”证明:用“体积法”证明: O A O B O C O DA AB BC CD D¢¢¢¢+++¢¢¢¢ O B C D O C D AO D A B OA B C A B C D BC D A CD AB D A B CV VV V V VVV --------=+++1A B C D A B C DVV --==5、要证、要证(1tan )(1tan )2A B ++= 只需证只需证 1tan tan tan tan 2A B A B +++=即证即证t a n t a n 1t a n t a A B A B +=- 由54A B p +=,得tan()1A B +=. ①又因为2A B k p p +¹+,所以tan tan 11tan tan A BA B+=-,变形即得①式.所以,命题得证. 第二章 复习参考题B 组(P47)1、(1)25条线段,16部分;部分; (2)2n 条线段;条线段;(3)222n n ++部分. 2、因为90BSC Ð=°,所以BSC D 是直角三角形.A BCDA'B'D'C'(第4题)在Rt BSC D 中,有222BC SB SC =+.类似地,得类似地,得 222AC SA SC =+,222AB SB SA =+ 在ABC D 中,根据余弦定理得中,根据余弦定理得2222cos 02AB AC BC SA A AB AC AB AC+-==>××2222cos 02AB BC AC SB B AB BCAB BC+-==>×× 2222cos 02BC AC AB SC C BC ACBC AC +-==>×× 因此,,,A B C 均为锐角,从而ABC D 是锐角三角形. 3、要证、要证cos 44cos 43b a -= 因为因为 cos 44cos 4cos(22)4cos(22)b a b a -=´-´ 2212sin 24(12sin 2)b a =--´-222218s i n c o s 4(18s i n c o s )b b a a =--´-222218s i n (1s i n )4[18s i n (1s i n )]bb a a=---´-- 只需证只需证 222218sin (1sin )4[18sin (1sin )]3b b a a ---´--= 由已知条件,得由已知条件,得 sincos sin2q q a +=,2sin sin cos b q q =,代入上式的左端,得代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]b b a a ---´-- 2238sin cos (1sin cos )32sin (1sin )q q q q a a =---+-2238sin cos 8sin cos 2(12sin cos )(32sin cos )q q q q q q q q =--+++-222238s i n c o s 8s i nc o s 68s i n c o s 8s i nc o sq q q q q q q q =--++-+ 3= 因此,cos 44cos 43b a -=。
2020北师大版高中数学选修1-2 课后习题:第三章 归纳推理
[A 组 基础巩固]1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( ) A .f (x ) B .-f (x ) C .g (x )D .-g (x )解析:由所给函数及其导数知,偶函数的导函数为奇函数.因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ). 答案:D2.已知数列{a n }满足a 0=1,a n =a 0+a 1+…+a n -1(n ≥1),则当n ≥1时,a n 等于( ) A .2n B.12n (n +1) C .2n -1D .2n -1解析:a 0=1,a 1=a 0=1,a 2=a 0+a 1=2a 1=2,a 3=a 0+a 1+a 2=2a 2=4,a 4=a 0+a 1+a 2+a 3=2a 3=8,….猜想当n ≥1时,a n =2n -1. 答案:C3.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数的点数可以排成一个正三角形(如下图).试求第七个三角形数是( ) A .27 B .28 C .29D .30解析:第七个三角形数是1+2+3+4+5+6+7=28,故选B. 答案:B4.数列5,9,17,33,x ,…中的x 等于( ) A .47 B .65 C .63D .128解析:5=22+1,9=23+1,17=24+1,33=25+1, 归纳可得:x =26+1=65.答案:B5.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( ) A .289 B .1 024 C .1 225D .1 378解析:由图形可得三角形数构成的数列通项a n =n2(n +1),同理可得正方形数构成的数列通项b n =n 2,若a 既是三角形数又是正方形数,则a +1为偶数,a 为奇数,故排除B 、D ;由n2(n +1)=289=17×17,知n ∉N ,所以排除A ,而1 225=352=35×35×22=49×502=1 225,满足题意,故选C. 答案:C6.f (n )=1+12+13+…+1n (n ∈N +),计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,推测当n ≥2时,有________. 解析:f (4)=f (22)>2+22,f (8)=f (23)>3+22,f (16)=f (24)>4+22,f (32)=f (25)>5+22.答案:f (2n )>n +227.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为________.解析:由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81.答案:5+6+7+8+9+10+11+12+13=818.观察下列不等式:1+122<3 2,1+122+132<53,1+122+132+142<74,……照此规律,第五个...不等式为________.解析:归纳观察法.观察每行不等式的特点,每行不等式左端最后一个分数的分母与右端值的分母相等,且每行右端分数的分子构成等差数列.∴第五个不等式为1+122+132+142+152+162<116.答案:1+122+132+142+152+162<1169.意大利数学家斐波那契在他的1228年版的《算经》一书中记述了有趣的兔子问题:假定每对大兔子每月能生一对小兔子,而每对小兔子过了一个月就可以长成大兔子,如果不发生死亡,那么由一对大兔子开始,一年后能有多少对大兔子呢?我们依次给出各个月的大兔子对数,并一直推算下去到无尽的月数,可得数列:1,1,2,3,5,8,13,21,34,55,89,144,233,…这就是斐波那契数列,此数列中,a1=a2=1,当n≥3时,归纳出a n与a n-1间的递推关系式.解析:因为2=1+1,3=1+2;5=2+3,8=3+5,…,逐项观察分析每项与其前几项的关系易得:从第三项起,它的每一项等于它的前面两项之和,即a n=a n-1+a n-2(n≥3,n∈N+).10.已知sin230°+sin290°+sin2150°=32;sin25°+sin265°+sin2125°=32,通过观察上述两等式的规律,请你写出对任意角度α都成立的一般性的命题,并给予证明. 解析:一般形式:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明:左边=1-cos 2α2+1-cos (2α+120°)2+1-cos (2α+240°)2=32-12[cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2α·cos 240°-sin 2αsin 240°] =32-12[cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α]=32=右边 (将一般形式写成sin 2(α-60°)+sin 2α+sin 2(α+60°)=32,sin 2(α-240°)+sin 2(α-120°)+sin 2α=32等均正确.) [B 组 能力提升]1.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性( )解析:每行的各个方格中的白圈个数分别为9,8,7,排除B 项、D 项.黑圈按照依次向右,右边无圆圈则向下的顺序每次移动两格(下幅图中被消去的白圈不计算在移动格子内),所以符合条件的只有C 项. 答案:C2.数列2,5,11,20,x,47,…中的x 的值为________.解析:5-2=3,11-5=6,20-11=9,看出x -20=12,47-x =15,∴x =32. 答案:323.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=x x +2,f 2(x )=f (f 1(x ))=x 3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n∈N+且n≥2时,f n(x)=f(f n-1(x))=________.解析:依题意,先求函数结果的分母中x项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n=2n-1.又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n=2n.所以当n≥2时,f n(x)=f(f n-1(x))=x(2n-1)x+2n.答案:x(2n-1)x+2n4.(1)如图(a)(b)(c)(d)为四个平面图形.数一数,每个平面图形各有多少个顶点?多少条边?它们分别围成了多少个区域?请将结果填入下表(按填好的例子做).(2)(3)现已知某个平面图形有1 005个顶点,且围成了1 005个区域,试根据以上关系确定这个图形有多少条边.解析:(1)填表如下:(2)由该表可以看出,所给四个平面图形的顶点数、边数及区域数之间有下述关系:4+3-6=1,8+5-12=1,6+4-9=1,10+6-15=1.所以我们可以推断:任何平面图形的顶点数、边数及区域数之间都有下述关系:顶点数+区域数-边数=1.(3)由上面所给的关系,可知所求平面图形的边数. 边数=顶点数+区域数-1=1 005+1 005-1=2 009.5.某少数民族的刺绣有着悠久的历史,如图①②③④所示,为她们刺绣的最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多,刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式; (3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解析:(1)f (5)=41. (2)f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, ……由上述规律,得f (n +1)-f (n )=4n .∴f (n +1)=f (n )+4n ,f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2) =f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1.(3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n),∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12[(1-12)+(12-13)+(13-14)+…+(1n -1-1n )]=1+12(1-1n )=32-12n .。
高中数学选修1-2第一章课后习题解答
新课程标准数学选修1—2第一章课后习题解答第一章统计案例1.1回归分析的基本思想及其初步应用练习(P8)1、画散点图的目的是通过变量的散点图判断两个变量更近似于什么样的函数关系,以确定是否直接用线性回归模型来拟合原始数据.说明:学生在对常用的函数图象比较了解的情况下,通过观察散点图可以判断两个变量的关系更近似于哪种函数.2、分析残差可以帮助我们解决以下两个问题:(1)寻找异常点,就是残差特别大的点,考察相应的样本数据是否有错.(2)分析残差图可以发现模型选择是否合适.说明:分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适,是否有其他变量需要加入到模型中,模型的假设是否正确等. 本题只要求学生能回答上面两点即可,主要让学生体会残差和残差图可以用于判断模型的拟合效果.3、(1)解释变量和预报变量的关系式线性函数关系.R=.(2)21说明:如果所有的样本点都在一条直线上,建立的线性回归模型一定是该直线,所以每个=+,没有随机误差项,是严样本点的残差均为0,残差平方和也为0,即此时的模型为y bx aR=.格的一次函数关系. 通过计算可得21习题1.1 (P9)1、(1)由表中数据制作的散点图如下:从散点图中可以看出GDP值与年份近似呈线性关系.y表示GDP值,t表示年份. 根据截距和斜率的最小二乘计算公式,得(2)用tˆ14292537.729a≈-,ˆ7191.969b≈从而得线性回归方程ˆ7191.96914292537.729=-.y t残差计算结果见下表.GDP 值与年份线性拟合残差表(年实际GDP 值为117251.9,所以预报与实际相差4275.540-.(4)上面建立的回归方程的20.974R =,说明年份能够解释约97%的GDP 值变化,因此所建立的模型能够很好地刻画GDP 和年份的关系.说明:关于2003年的GDP 值的来源,不同的渠道可能会有所不同.2、说明:本题的结果与具体的数据有关,所以答案不唯一.3、由表中数据得散点图如下:从散点图中可以看出,震级x 与大于或等于该震级的地震数N 之间不呈线性相关关系,随着x 的减少,所考察的地震数N 近似地以指数形式增长. 做变换lg y N =,得到的数据如下表所示.x 和y 的散点图如下:从这个散点图中可以看出x 和y 之间有很强的线性相关性,因此可以用线性回归模型拟合它们之间的关系. 根据截距和斜率的最小二乘计算公式,得ˆ 6.704a≈,ˆ0.741b ≈-, 故线性回归方程为 ˆ0.741 6.704y x =-+. 20.997R ≈,说明x 可以解释y 的99.7%的变化.因此,可以用回归方程 0.741 6.704ˆ10x N-+= 描述x 和N 之间的关系. 1.2独立性检验的基本思想及其初步应用练习(P15)列联表的条形图如图所示.由图及表直观判断,好像“成绩优秀与班级有关系”. 因为2K 的观测值0.653 6.635k ≈<,由教科书中表1-11克重,在犯错误的概率不超过0.01的前提下,不能认为“成绩与班级有关系”.说明:(1)教师应要求学生画出等高条形图后,从图形上判断两个分类变量之间是否有关系. 这里通过图形的直观感觉的结果可能会出错.(2)本题与例题不同,本题计算得到的2K 的观测值比较小,所以没有理由说明“成绩优秀与班级有关系”. 这与反证法也有类似的地方,在使用反证法证明结论时,假设结论不成立的条件下如果没有推出矛盾,并不能说明结论成立也不能说明结论不成立. 在独立性检验中,没有推出小概率事件发生类似于反证法中没有推出矛盾.习题1.2 (P16)1、假设“服药与患病之间没有关系”,则2K 的值应该比较小;如果2K 的值很大,则说明很可能“服药与患病之间没有关系”. 由列联表中数据可得2K 的观测值 6.110 5.024k ≈>,而由教科书表1-11,得2( 5.024)0.025P K ≥≈,所以在犯错误的概率不超过0.025的前提下可以认为“服药与患病之间有关系”. 又因为服药群体中患病的频率0.182小于没有服药群体中患病的频率0.400,所以“服药与患病之间关系”可以解释为药物对于疾病有预防作用. 因此在犯错误的概率不超过0.025的前提下,可以认为药物有效.说明:仿照例1,学生很容易完成此题,但希望学生能理解独立性检验在这里的具体含义,即“服药与患病之间关系”可以解释为“药物对于疾病有预防作用”.2、如果“性别与读营养说明之间没有关系”,由题目中所给数据计算,得2K 的观测值为8.416k ≈,而由教科书中表1-11知2(7.879)0.005P K ≥≈,所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.3、说明:需要收集数据,所有没有统一答案. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.4、说明:需要从媒体上收集数据,学生关心的问题不同,收集的数据会不同. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.第一章 复习参考题A 组(P19)根据散点图,可以认为中国人口总数与年份呈现很强的线性相关关系,因此选用线性回归模型建立回归方程.由最小二乘法的计算公式,得 2095141.503a ≈-,1110.903b ≈,则线性回归方程为 ˆ1110.9032095141.503yx =-. 由2R 的计算公式,得 20.994R ≈,明线性回归模型对数据的拟合效果很好.根据回归方程,,预计2003年末中国人口总数约为129997万人,而实际情况为129227万人,预测误差为770万人;预计2004年末中国人口总数约为131108万人,而实际情况为129988万人,预测误差为1120万人.说明:数据来源为《中国统计年鉴》(2003). 由于人数为整数,所以预测的数据经过四舍五入的取整运算.2、(1)将销售总额作为横轴,利润作为纵轴,根据表中数据绘制散点图如下:由于散点图中的样本点基本上在一个带形区域内分布,猜想销售总额与利润之间呈现线性相关关系.(2)由最小二乘法的计算公式,得 ˆ1334.5a≈,ˆ0.026b ≈, 则线性回归方程为 ˆ0.0261334.5yx =+ 其残差值计算结果见下表:(3)对于(2)中所建立的线性回归方程,20.457R ≈,说明在线性回归模型中销售总额只能解释利润变化的46%,所以线性回归模型不能很好地刻画销售总额和利润之间的关系. 说明:此题也可以建立对数模型或二次回归模型等,只要计算和分析合理,就算正确.3、由所给数据计算得2K 的观测值为 3.689k ≈,而由教科书中表1-11知2( 2.706)0.10P K ≥=所以在犯错误的概率不超过0.10的前提下认为“婴儿的性别与出生的时间有关系”.第一章 复习参考题B 组(P19)1、因为 21(,)()ni i i Q a b y a bx ==--∑21(()())n i i i y bx y bx a y bx ==--+--+∑ 2211()()n n i i i i y bx y bx a y bx ===--++-+∑∑12()()ni i i y bx y bx a y bx =---+-+∑ 并且221()()n i a y bx n a y bx =-+=-+∑,12()()n i i i y bx y bx a y bx =--+-+∑ 1()(())ni i i a y bx y bx ny nbx ==-+--+∑ ()()0a y b x n y n b xn y n b x=-+--+= 所以 221(,)()()ni i i Q a b y bx y bx n a y bx ==--++-+∑.考察上面的等式,等号右边的求和号中不包含a ,而另外一项非负,所以ˆa和ˆb 必然使得等号右边的最后一项达到最小值,即 ˆˆ0ay bx -+=, 即ˆˆy a bx =+. 2、总偏差平方和21()n i i y y =-∑表示总的效应,即因变量的变化效应;残差平方和21ˆ()ni i y y =-∑表示随机误差的效应,即随机误差的变化效应;回归平方和21ˆ()ni yy =-∑表示表示变量的效应,即自变量的变化效应. 等式 222111ˆˆ()()()n n n i ii i i y y y y y y ===-=-+-∑∑∑ 表示因变量的变化总效应等于随机误差的变化效应与自变量的变化效应之和.3、说明:该题主要是考察学生应用回归分析模型解决实际问题的能力,解答应该包括如何获取数据,如何根据散点图寻找合适的模型去拟合数据,以及所得结果的解释三方面的内容.。
高中数学选修21课后习题答案[人教版].docx
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、略 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称.这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:若 a b 1,则a2b22a 4b3( a b)( a b) 2( a b) 2b3a b 2 2b3a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则a,b都是偶数.这是假命题.否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数.这是假命题.逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b不都是偶数.这是真命题.(2)逆命题:若方程 x2 x m 0 有实数根,则m 0. 这是假命题 . 否命题:若 m 0 ,则方程x2x m 0没有实数根.这是假命题.逆否命题:若方程x2x m 0 没有实数根,则m 0 .这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是e O的两条互相平分的相交弦,交点是 E ,若 E 和圆心 O 重合,则AB,CD是经过圆心 O 的弦,AB,CD是两条直径.若 E 和圆心 O 不重合,连结AO, BO,CO 和DO,则OE是等腰AOB , COD 的底边上中线,所以,OE AB ,OE CD .AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的.所以, E 和 O 必然重合.即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1).3( 1) .4、(1)真;(2)真;( 3)假;( 4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件.2、(1)p是q的必要条件;(2)p是q的充分条件;( 3)p是q的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc 0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形.(2)必要性:如果ABC是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a 所以 a 2b2c2ab ac bc 0 2b2c2ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假 .2、(1)真;(2)假 .3、(1)225,真命题;( 2)3 不是方程 x290的根,假命题;( 3)( 1)21,真命题.习题 1.3 A组( P18)1、(1) 4{2,3}或 2 {2,3},真命题;(2) 4{2,3}且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;( 4) 2 是偶数且 3 不是素数,假命题 .2、(1)真命题;( 2)真命题;(3)假命题 .3、(1) 2 不是有理数,真命题;( 2)5 是 15 的约数,真命题;(3)2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组( P18)(1)真命题 . 因为p为真命题,q为真命题,所以p q为真命题;(2)真命题 . 因为p为真命题,q为真命题,所以p q为真命题;(3)假命题 . 因为p为假命题,q为假命题,所以p q为假命题;(4)假命题 . 因为p为假命题,q为假命题,所以p q为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题 .2、(1)真命题;(2)真命题;(3)真命题 .练习( P26)1、(1) n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数 .2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数 .习题 1.4 A 组( P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题 .2、(1)真命题;(2)真命题;(3)真命题 .3、(1) x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3) x R, x2x 10 ;(4)所有四边形的对角线不互相垂直 .习题 1.4 B组( P27)(1)假命题 . 存在一条直线,它在y轴上没有截距;(2)假命题 . 存在一个二次函数,它的图象与 x 轴不相交;(3)假命题 . 每个三角形的内角和不小于180;(4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1) n N ,n20 ;(2)P { P P 在圆x2y2r 2上 } ,OP r (O 为圆心);(3)( x, y) {( x, y) x, y 是整数},2x 4y 3;( 4)x0{ x x 是无理数}, x03{ q q 是有理数} .6、(1)32,真命题;(2)5 4 ,假命题;( 3) x0R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1)p q;(2) ( p) (q) ,或 ( p q) .2、(1)Rt ABC,C90 ,A, B, C 的对边分别是 a, b, c ,则 c2a2b2;(2)ABC ,A,B,a b cC 的对边分别是 a, b,c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a32 ,b 18 .25253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率2 02kCAt2 t2所以, k CB1 t 2k CA2由直线的点斜式方程,得直线CB 的方程为 y2t2( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t ) .由于点 M 是线段 AB 的中点,由中点坐标公式得 xt, y4 t .t4 t ,22由 x得 t 2x ,代入 y 22 得 y42x,即 x y 20 ①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A 组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点M 的轨迹方程为 x 2y 2 4 .4、解法一:设圆 x 2y 2 6x 50 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CM AB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]yy1 (x 3, x 0)所以,3 xx化简得 x 2y 23x 0 (x 3, x 0)当 x 3 时, y 0 ,点 (3,0) 适合题意;当 x 0 时, y 0 ,点 (0,0) 不合题意 .解方程组x 2 y 23x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 23x 0 ,5x3.3解法二:注意到OCM 是直角三角形,利用勾股定理,得 x 2 y 2(x 3)2y 2 9 ,即 x 2y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为xy 1.a b因为直线 l 经过点 P(3,4) ,所以341因此, ab 4a 3bab由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3 y 0 .2、解:如图,设动圆圆心M 的坐标为 (x, y) .y由于动圆截直线 3xy0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD 4 . 过点 M 分别CMFE作直线 3x y0 和 3x y0 的垂线,垂足分别为E ,DF ,则 AE4 , CF2 . A3xy, MF3x yME1010 .Ox连接 MA , MC ,因为 MAMC ,(第 2 题)2ME 2CF 2MF 2 则有, AE(3 x y) 2(3 x y) 210 .所以, 1610410,化简得, xy因此,动圆圆心的轨迹方程是 xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1PF220 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1 ;(2) y2x21;(3) x2y21,或 y2x2 1616361636163、解:由已知,a 5, b 4 ,所以 c a2b2 3 .(1)AF1B 的周长AF1AF2BF1BF2.由椭圆的定义,得 AF1AF22a, BF1BF22a .所以, AF1B 的周长4a20.(2)如果AB不垂直于 x 轴, AF1B 的周长不变化 .这是因为①②两式仍然成立,AF1 B 的周长20,这是定值 .4、解:设点M的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x1)kAM;x1直线 BM 的斜率y(x1) ;kBMx1由题意,得kAM2,所以y2y( x1, y0) kBM x 1x1化简,得 x3( y0)因此,点 M 的轨迹是直线 x 3 ,并去掉点( 3,0) .练习( P48)yB2 1、以点 B2(或 B1)为圆心,以线段 OA2(或 OA1)为半径画圆,圆与 x 轴的两个交点分别为F1 , F2 .A 1F1O点 F1 , F2就是椭圆的两个焦点 .B 1这是因为,在 Rt B2OF2中,OB2 b , B2 F2OA2 a ,(第 1 题)所以, OF2 c .同样有 OF1 c .2、(1)焦点坐标为(8,0) , (8,0) ;14.1.F2 A 2x(2)焦点坐标为 (0,2) , (0, 2) .3、(1)x2y 21;(2) y2x2 1 . 363225164、(1)x2y21(2) x2y 21,或 y2x2 1. 9410064100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x2y2 1 的离心率是 1 ,316122因为221 ,所以,椭圆x2y2 1 更圆,椭圆 9x2y236 更扁;321612(2)椭圆 x29 y236 的离心率是22 ,椭圆 x2y2 1 的离心率是10 ,36105因为2210 ,所以,椭圆x2y2 1 更圆,椭圆 x29 y 236 更扁 . 356106、(1)(3,8(2) (0,2) ;( 3)(487082 ) ;,) .7、. 537377习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x2( y3)2x2( y3)210 以及椭圆的定义得,点 M 的轨迹是以F1(0,3) , F2 (0,3) 为焦点,长轴长为10 的椭圆 .它的方程是y2x21. 25162、(1)x2y 21;( 2)y2x2 1 ;(3) x2y21,或 y2x2 1. 3632259494049403、(1)不等式2x 2 , 4 y 4 表示的区域的公共部分;(2)不等式25x25 ,10y10表示的区域的公共部分 .图略 . 334、(1)长轴长2a8 ,短轴长 2b 4 ,离心率e 3 ,2焦点坐标分别是 (23,0), (23,0),顶点坐标分别为 (4,0), (4,0), (0,2) , (0,2) ;(2)长轴长2a18 ,短轴长 2b 6 ,离心率e 2 2 ,3焦点坐标分别是 (0, 62),(0,62),顶点坐标分别为 (0, 9) ,(0,9) , (3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2y21,或 y2x2 1 ;859819(3) x2y21,或 y 2x2 1 .2592596、解:由已知,椭圆的焦距F1F2 2 .因为PF1F2的面积等于1,所以,1F1F2y P1,解得y P1. 2代入椭圆的方程,得x211,解得 x15 .P54215l所以,点 P 的坐标是(1),共有 4个 .,2QA 7、解:如图,连接 QA .由已知,得 QA QP .O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以 OA OP(第 7 题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点, r 为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x m 代入椭圆方程x2y2 1 ,得 9x26mx2m218 0 .249这个方程根的判别式36m236(2 m 218)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 32,32) 时,直线与椭圆相交 .( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为M (x, y) .则 x x1x2m .23因为点 M 在直线y 3 x m 上,与 x m联立,消去 m ,得 3x 2 y0 .23这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .x2y29、3.5252 2.8752 1 .10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km.习题 2.2 B 组( P50)1、解:设点M的坐标为 ( x, y) ,点P的坐标为 ( x0 , y0 ) ,则 x x0, y 3 y0 .所以 x0x , y0 2 y① . 23因为点 P(x0, y0 ) 在圆上,所以 x02y02 4 ② .将①代入②,得点 M 的轨迹方程为x2 4 y24,即 x2y21949所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P(x, y) ,半径为R,两已知圆的圆心分别为O1, O2 .分别将两已知圆的方程x2y26x 50 , x2y 26x 910配方,得 (x 3)2y2 4 ,( x3) 2y2100当 e P 与e O1:( x3)2y2 4 外切时,有O1P R2①当 e P 与e O2:( x3)2y2100 内切时,有O2P10R ②①②两式的两边分别相加,得O1P O2 P12即, ( x 3)2y2(x 3)2y212③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2y212x ④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⑥3627由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12, 6 3 .解法二:同解法一,得方程( x 3)2y2( x 3)2y 212①由方程①可知,动圆圆心P(x, y) 到点 O1 ( 3,0) 和点 O2 (3,0)距离的和是常数12,所以点 P 的轨迹方程是焦点为( 3,0) 、 (3,0) ,长轴长等于 12 的椭圆 .并且这个椭圆的中心与坐标原点重合,焦点在 x 轴上,于是可求出它的标准方程 .因为 2c 6 , 2a 12 ,所以 c 3 , a 6所以 b 2 36 927 .于是,动圆圆心的轨迹方程为x 2y2361.273、解:设 d 是点 M 到直线 x8 的距离,根据题意,所求轨迹就是集合PMF 1 M2d( x2)2y 2 1由此得x28将上式两边平方,并化简,得3x24 y248 ,即x 2y 2 11612所以,点 M 的轨迹是长轴、短轴长分别为8, 4 3 的椭圆 .4、解:如图,由已知,得E(0, 3) , F (4,0) , G (0,3) , H ( 4,0) .DyGLC因为 R,S,T 是线段 OF 的四等分点,R'MR , S ,T 是线段 CF 的四等分点,S' 所以, R(1,0), S(2,0), T (3,0) ;HN T'O RSTF xR (4, 9 ), S (4, 3),T (4, 3) .424直线 ER 的方程是 y 3x 3 ;直线 GR 的方程是 y3.AEBx 31632 , y 45 .(第 4 题)联立这两个方程,解得x17 17所以,点 L 的坐标是 (32 ,45) .17 17同样,点 M 的坐标是 (16 , 9) ,点 N 的坐标是 ( 96 , 21) .5 525 25由作图可见,可以设椭圆的方程为x 2y 21 (m 0, n 0) ①nm 22把点 L, M 的坐标代入方程①,并解方程组,得11,11m 22232.4 n高中数学选修 2-1 课后习题答案 [ 人教版 ]所以经过点 L, M 的椭圆方程为x 2y 21 .16 9把点 N 的坐标代入x 2y 2 ,得 1( 96 ) 2 1 ( 21)2 1,169 16 259 25所以,点 N 在x 2y 2 1 上 . 169因此,点 L, M , N 都在椭圆x 2y 2 1 上.1692.3双曲线练习( P55)1、(1)x 2y 21 .(2) x 2y21.16 93(3)解法一:因为双曲线的焦点在y 轴上y 2x 21 ( a 0,b0)所以,可设它的标准方程为2b 2a将点 (2, 5) 代入方程,得254 1 ,即 a 2b 24a 2 25b 2 0a 2b 2又 a 2b 236解方程组a 2b 2 4a 2 25b 2 0a2b 236令 m a 2,nmn 4m 25n 0 b 2,代入方程组,得n 36m m 20 m 45 解得16,或9nn第二组不合题意,舍去,得a 2 20,b 2 16y 2x 2所求双曲线的标准方程为 120 16解法二:根据双曲线的定义,有 2a4 (5 6)24 (5 6)2 4 5 .所以, a 2 5高中数学选修2-1 课后习题答案 [ 人教版 ]又 c6,所以 b23620 16由已知,双曲线的焦点在y2x2y 轴上,所以所求双曲线的标准方程为 1 .20162、提示:根据椭圆中a2b2c2和双曲线中 a2b2c2的关系式分别求出椭圆、双曲线的焦点坐标 .3、由 (2 m)( m 1) 0 ,解得m 2 ,或 m1练习( P61)1、(1)实轴长 2a8 2 ,虚轴长2b 4 ;顶点坐标为(4 2,0),(42,0);焦点坐标为 (6,0),(6,0);离心率 e3 2 .4(2)实轴长2a 6 ,虚轴长 2b18 ;顶点坐标为(3,0),(3,0) ;焦点坐标为 (310,0),(310,0) ;离心率 e10 .(3)实轴长2a 4 ,虚轴长 2b 4 ;顶点坐标为(0,2),(0,2);焦点坐标为 (0,22),(0,22) ;离心率 e 2 .(4)实轴长2a10,虚轴长2b14;顶点坐标为(0,5),(0,5) ;焦点坐标为 (0,74),(0,74) ;离心率 e74 .52、(1)x2y 2 1 ;(2) y2x2 1.3、 x2y21169362835 4、 x2y2 1 ,渐近线方程为y x .18185、(1) (6,2),( 14,2) ;( 2) (25,3) 334习题 2.3 A组( P61)y2x21 . 因为a 8,由双曲线定义可知,点P 到两焦点距1、把方程化为标准方程,得1664离的差的绝对值等于16. 因此点P到另一焦点的距离是17.2、(1)x2y2 1 .(2) x2y2120162575高中数学选修 2-1 课后习题答案 [ 人教版 ]3、(1)焦点坐标为 F 1 ( 5,0), F 2 (5,0) ,离心率 e5 ;3 (2)焦点坐标为 F 1 (0, 5), F 2 (0,5) ,离心率 e5 ;44、(1)x 2y 21.( 2) y2x 2 1 2516916(3)解:因为 ec2 ,所以 c 22a 2 ,因此 b 2c 2 a 22a 2 a 2a 2 .a设双曲线的标准方程为x 2 y 21 ,或 y 2x 2 1.a 2 a 2a 2a 2将 ( 5,3) 代入上面的两个方程,得25 9 1 ,或 925 1 .a 2a 2 a 2a 2解得 a 216 (后一个方程无解) .所以,所求的双曲线方程为x 2 y 21 .16 165、解:连接 QA ,由已知,得 QA QP .所以, QA QO QP QO OP r .又因为点 A 在圆外,所以 OA OP .根据双曲线的定义,点Q 的轨迹是以 O, A 为焦点, r 为实轴长的双曲线 .6、 x 2 y 2 1 .8 8习题 2.3 B组( P62)1、 x 2y 2116 92、解:由声速及 A, B 两处听到爆炸声的时间差,可知A, B 两处与爆炸点的距离的差,因此爆炸点应位于以 A, B 为焦点的双曲线上 .使 A, B 两点在 x 轴上,并且原点 O 与线段 AB 的中点重合,建立直角坐标系 xOy .设爆炸点 P 的坐标为 ( x, y) ,则 PA PB 340 3 1020 .即 2a 1020 , a 510.又 AB1400,所以 2c 1400 , c 700 , b 2 c 2 a 2229900 .因此,所求双曲线的方程为x 2y22601001.2299003、 x 2y 2 1 a 2b 24、解:设点 A( x 1 , y 1) , B( x 2 , y 2 ) 在双曲线上,且线段 AB 的中点为 M ( x, y) .设经过点 P 的直线 l 的方程为 y 1 k ( x 1) ,即 ykx 1 k把 ykx1 k 代入双曲线的方程 x 2y 2 1得2(2 k 2 )x 2 2k(1 k )x (1 k 2 ) 20 ( 2 k 2 0 ) ①所以, x x 1 x 2 k(1 k)22 k2由题意,得k (1k) 1,解得 k 2 .2k 2当 k 2 时,方程①成为 2x 2 4x 3 0 .根的判别式16 24 8 0 ,方程①没有实数解 .所以,不能作一条直线 l 与双曲线交于 A, B 两点,且点 P 是线段 AB 的中点 .2.4 抛物线练习( P67)1、(1) y 2 12x ; ( 2) y 2x ;(3) y 24x, y 2 4x, x 2 4 y, x 24y .2、(1)焦点坐标 F (5,0) ,准线方程 x5 ; ( 2)焦点坐标 F (0, 1) ,准线方程 y1 ;88(3)焦点坐标 F ( 5 ,0) ,准线方程 x5; ( 4)焦点坐标 F (0, 2) ,准线方程 y 2 ; p . 8 83、(1) a , a ( 2) (6,6 2) , (6, 6 2)2提示:由抛物线的标准方程求出准线方程 . 由抛物线的定义,点 M 到准线的距离等于 9,所以 x 39 , x 6, y 6 2 .yy 2= 4x练习(P72)y 2= 2x1、(1) y216 x ; ( 2) x220 y ;y 2=x52 1=(3) y 216 x ;( 4) x 232 y .yx22、图形见右, x 的系数越大,抛物线的开口越大 .Ox3、解:过点 M (2,0) 且斜率为 1 的直线 l 的方程为 yx 2与抛物线的方程 y24x 联立y x 2y24x解得x 142 3 x 24 2 3,y 1 2 2 3y 2 2 2 3设 A(x 1, y 1 ) , B(x 2 , y 2 ) ,则 AB( x 2 x 1) 2( y 2 y 1 )2( 4 3) 2( 4 3) 2 4 6 .4、解:设直线 AB 的方程为 xa ( a 0) .将 x a 代入抛物线方程 y 2 4x ,得 y 24a ,即 y 2 a .因为AB 2 y 2 2 a 4 a 4 3 , 所以, a3因此,直线 AB 的方程为 x3 .习题 2.4 A 组( P73)1、(1)焦点坐标 F (0, 1) ,准线方程 y1 ;22(2)焦点坐标 F (0,3) ,准线方程 y3 ;1616(3)焦点坐标 F ( 1 ,0) ,准线方程 x1 ;8 8 (4)焦点坐标 F ( 3 ,0) ,准线方程 x3 .222、(1) y 28x ;( 2) (4,4 2) ,或 (4, 42)3、解:由抛物线的方程 y 2 2 px ( p0) ,得它的准线方程为 xp .2根据抛物线的定义,由 MF 2 p ,可知,点 M 的准线的距离为 2 p .设点 M 的坐标为 ( x, y) ,则xp 2 p ,解得 x3p .3 p 代入 y 222将 x2 px 中,得 y3 p .2因此,点 M 的坐标为 (3 p,3 p) , (3 p,3 p) .224、(1) y 2 24 x , y 2 24x ;(2) x 212 y (图略)5、解:因为xFM 60 ,所以线段 FM 所在直线的斜率 k tan 603 .因此,直线 FM 的方程为 y3( x 1)高中数学选修2-1 课后习题答案 [ 人教版 ]与抛物线 y 24xy3( x1)L L 1联立,得y 24xL L 2将 1 代入 2 得, 3x210 x 3 0 ,解得, x 11, x 2 33把 x 11, x 2 3 分别代入①得y 12 3, y 2 2 333由第 5 题图知 (1 ,2 3) 不合题意,所以点 M 的坐标为 (3,2 3) .33因此, FM(3 1)2 (2 3 0) 246、证明:将 y x2 代入 y 22x 中,得 ( x2) 2 2x ,化简得 x 2 6x 4 0 ,解得 x35则 y 3 5 2 15因为 k OB1 5, k OA 1 535 35所以 k OB k OA1 5 1 5 153535 915所以 OA OB7、这条抛物线的方程是 x217.5 yy8、解:建立如图所示的直角坐标系,Ox设拱桥抛物线的方程为 x 22 py ,2l因为拱桥离水面 2 m ,水面宽 4 m所以222 p( 2) , p 1因此,抛物线方程为 x 2 2y4①(第 8 题)水面下降 1 m ,则 y 3 ,代入①式,得 x 22 ( 3) , x6 .这时水面宽为 2 6 m.习题 2.2 B 组( P74)1、解:设垂线段的中点坐标为( x, y) ,抛物线上相应点的坐标为(x 1, y 1 ) .根据题意, x 1x , y 1 2 y ,代入 y 122 px 1 ,得轨迹方程为 y21px .2由方程可知,轨迹为顶点在原点、焦点坐标为( p,0) 的抛物线 .82、解:设这个等边三角形 OAB 的顶点 A, B 在抛物线上,且坐标分别为( x 1 , y 1 ) , (x 2 , y 2 ) ,则 y 12 2 px 1 , y 22 2 px 2 .又 OAOB ,所以 x 12 y 12 x 22 y 22即 x 12 x 22 2 px 1 2 px 2 0, (x 12 x 22 ) 2 p( x 1 x 2 ) 0因此, ( x 1 x 2 )( x 1 x 2 2 p)因为 x 1 0, x 2 0,2 p 0 ,所以 x 1 x 2由此可得 y 1y 2 ,即线段 AB 关于 x 轴对称 .因为 x 轴垂直于 AB ,且AOx 30 ,所以y 1tan303 .x 13因为 x 1y 12 ,所以 y 1 2 3p ,因此 AB2 y 14 3 p .2 p3、解:设点 M 的坐标为 ( x, y)由已知,得 直线 AM 的斜率 k AMy ( x1) .x 1直线 BM 的斜率 k BMy ( x 1) .x 1由题意,得 k AMkBM2 ,所以,yy2( x1) ,化简,得 x 2( y 1)(x1)x 1 x 1第二章复习参考题 A 组( P80)1、解:如图,建立直角坐标系, 使点 A, B, F 2 在 x 轴上, F 2 为椭圆的右焦点 (记 F 1 为左焦点) .因为椭圆的焦点在 x 轴上,所以设它的标准方程为x 2 y 2.a2b 21(a b0)y则 a c OAOF 2 F 2 A 6371 439 6810,a c OBOF 2F 2B 6371 2384 8755 ,解得 a 7782.5 , c 8755BF 1OF 2A x所以 ba 2c 2(a c)( ac)8755 6810用计算器算得 b 7722因此,卫星的轨道方程是x 2y 2 1.77832772222R r 1 r 2a cR r 1 a 22、解:由题意,得,解此方程组,得a c Rr 2r 1r 2c2因此卫星轨道的离心率 ecr 2 r 1 .a2R r 1r 23、(1) D ; ( 2) B .4、(1)当0 时,方程表示圆 .(2)当 090 时,方程化成 x 2y 21. 方程表示焦点在 y 轴上的椭圆 .1cos(3)当 90 时, x 2 1,即 x1,方程表示平行于 y 轴的两条直线 .(4)当 90180 时,因为 cos0,所以 x 2y 2 cos1 表示双曲线,其焦点在 x 轴上. 而当180 时,方程表示等轴双曲线 .5、解:将 ykx 1代入方程 x 2y 2 4得 x 2k 2 x 2 2kx 1 4 0即 (1 k 2 ) x 2 2kx 5 0 ①4k 2 20(1k 2 ) 20 16k 2令0 ,解得 k5,或 k522因为0 ,方程①无解,即直线与双曲线没有公共点,所以, k 的取值范围为 k5,或 k5226、提示:设抛物线方程为y 2 2 px ,则点 B 的坐标为 ( p, p) ,点 C 的坐标为 ( p, p)2 2 设点 P 的坐标为 ( x, y) ,则点 Q 的坐标为 ( x,0) .因为, PQ y2px , BC 2 p , OQ x .所以, PQ 2BC OQ ,即 PQ 是 BC 和 OQ 的比例中项 .7、解:设等边三角形的另外两个顶点分别是A, B ,其中点 A 在 x 轴上方 .高中数学选修2-1 课后习题答案 [ 人教版 ]3 p直线 FA 的方程为 y( x)32与 y 22 px 联立,消去 x ,得 y 2 23 py p 2解方程,得 y 1 ( 3 2) p , y 2 ( 3 2) p把 y 1( 3 2) p 代入 y3( xp ) ,得 x 1(72 3) p .322把 y 2( 3 2) p 代入 y3(xp) ,得 x 2 (72 3) p .322所以,满足条件的点 A 有两个 A 1 ((72 3) p,(3 2) p) , A 2 ((72 3) p,(3 2) p) .22根据图形的对称性,可得满足条件的点B 也有两个B 1(( 72 3) p, (3 2) p) ,2 7( 32) p)B 2 ((2 3) p,2所以,等边三角形的边长是A 1B 12( 3 2) p ,或者 A 2 B 22(23) p .8、解:设直线 l 的方程为 y 2xm .把 y2x m 代入双曲线的方程 2x 23y 2 6 0 ,得 10x 2 12mx 3m 2 6 0 .x 1 x 26m, x 1x 2 3m 2 6 ①5 10由已知,得(1 4)[( x 1 x 2 ) 2 4x 1x 2 ] 16②210 把①代入②,解得m3210 所以,直线 l 的方程为 y2x39、解:设点 A 的坐标为 (x 1, y 1 ) ,点 B 的坐标为 ( x 2 , y 2 ) ,点 M 的坐标为 (x, y) .并设经过点 M 的直线 l 的方程为 y1 k (x 2) ,即 ykx 1 2k .22y把 y kx 1 2k 代入双曲线的方程 x1 ,得(2 k 2 )x 22k (1 2k )x(1 2k)2 2 0 (2 k 2 0) . ①高中数学选修 2-1 课后习题答案 [ 人教版 ]x 1 x 2 k (1 2k)所以, x22 k 2由题意,得k(12k) 2 ,解得 k42 k 2当 k4 时,方程①成为 14 x 2 56x 51根的判别式56 256 51 2800 ,方程①有实数解 .所以,直线 l 的方程为 y4x 7 .10、解:设点 C 的坐标为 (x, y) .由已知,得 直线 AC 的斜率 k ACy (x5)x 5直线 BC 的斜率kBCy 5 ( x 5)x 由题意,得 k AC k BCm . 所以, y y m( x5)5 x 5x化简得,x 2y 2 1(x 5)2525m当 m 0 时,点 C 的轨迹是椭圆 (m 1) ,或者圆 ( m 1) ,并除去两点 ( 5,0),(5,0) ;当 m 0 时,点 C 的轨迹是双曲线,并除去两点( 5,0),(5,0) ;11、解:设抛物线 y 2 4x 上的点 P 的坐标为 ( x, y) ,则 y 24x .点 P 到直线 yx 3 的距离 dx y 3y 2 4y 12 ( y 2)2824 24 2.当 y 2时, d 的最小值是2 .此时 x1,点 P 的坐标是 (1,2) .12、解:如图,在隧道的横断面上,以拱y顶为原点、拱高所在直线为y 轴Ox(向上),建立直角坐标系 .抛物线设隧道顶部所在抛物线的方程6 mE为 x 22 py因为点 C (4, 4) 在抛物线上DC所以 422 p( 4) 2 mFA3 m3 m2 p 4B解得高中数学选修2-1 课后习题答案 [ 人教版 ]为 x 2 4 y .设 EFh 0.5. 则 F (3, h 5.5)把点 F 的坐标代入方程 x 24y ,解得 h3.25 .答:车辆通过隧道的限制高度为3.2 m.第二章复习参考题 B 组( P81)1、SPF 1F 224 3 .2、解:由题意,得 PF 1x 轴.把 xc 代入椭圆方程,解得yb 2 . 所以,点 P 的坐标是 ( c, b 2)aa 直线 OP 的斜率 k 1b 2 .直线 AB 的斜率 k 2b .aca由题意,得b 2b,所以, b c , a2c .ac a由已知及 F 1A a c ,得 ac 105所以 (1 2) c 105 ,解得 c5所以, a10 , b5因此,椭圆的方程为x 2 y 2 1.1053、解:设点 A 的坐标 (x 1, y 1 ) ,点 B 的坐标 ( x 2 , y 2 ) .由 OA OB ,得 x 1x 2y 1y 2 0 .由已知,得直线 AB 的方程为 y2x 5 .则有 y 1 y 25( y 1 y 2 ) 25 0 ①由 y2x 5 与 y 22px 消去 x ,得 y 2py 5 p0 ②y 1y 2p , y 1 y 25 p ③把③代入①,解得 p54高中数学选修 2-1 课后习题答案 [ 人教版 ]当 p5时,方程②成为 4 y 25y 25 0 ,显然此方程有实数根 .所以, p5444、解:如图,以连接 F 1 , F 2 的直线为 x 轴,线段 F 1 F 2 的中点为原点,建立直角坐标系 .对于抛物线,有p1763 529 2292 ,2所以, p4584 , 2 p 9168 .对于双曲线,有c a 2080c a 529解此方程组,得 a 775.5, c 1304.5因此, b 2 c 2 a 2 1100320 .(第 4 题)所以,所求双曲线的方程是x 2y 2 601400.31 ( x 775.5) .1100320因为抛物线的顶点横坐标是 (1763 a)(1763 775.5)987.5所以,所求抛物线的方程是y 2 9168( x987.5)答:抛物线的方程为 y 29168( x 987.5) ,双曲线的方程是x 2y 21 ( x 775.5) .601400.311003205、解:设点 M 的坐标为 ( x, y)由已知,得 直线 AM 的斜率 k AMy ( x 1)x 1直线 BM 的斜率 k BMy ( x 1)x1由题意,得 kAMk2 ,所以y y 2( x1),化简,得 xy x 2 1(x1)BMx1 x 1所以,点 M 轨迹方程是 xy x 21(x1) .6、解:(1)当 m 1时,方程表示 x 轴;( 2)当m3 时,方程表示 y 轴;(3)当 m1,m 3 时,把方程写成x 2 y23 mm 1.1①当 1 m 3, m 2 时,方程表示椭圆;② m 2 时,方程表示圆;③当 m 1,或 m3时,方程表示双曲线 .7、以 AB 为直径的圆与抛物线的准线 l 相切 .高中数学选修2-1 课后习题答案 [ 人教版 ]垂线,垂足分别为 D , E .由抛物线的定义,得AD AF , BE BF .所以, AB AF BF AD BE .设 AB 的中点为 M ,且过点 M 作抛物线y22px ( p0) 的准线l的垂线,垂足为C .显然 MC ∥x轴,所以, MC 是直角梯形 ADEB 的中位线.于是, MC 1( AD BE )1AB .因此,点 C 在以 AB 为直径的圆上.22又 MC l ,所以,以 AB 为直径的圆与抛物线的准线l 相切.类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离;对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.高中数学选修 2-1 课后习题答案 [ 人教版 ]第三章空间向量与立体几何3.1空间向量及其运算练习( P86)1、略 .2、略 .uuuur uuuruuur uuur uuuur uuur uuur uuur uuuur uuur uuur uuur 3、 A C ABAD AA , BD AB AD AA , DB AA AB AD .练习( P89)uuuruuuruuuur1、(1) AD ; (2) AG ;(3) MG .2、(1) x 1; (2) x y1; (3) x y1 .3、如图 .22A CPB QRSO(第 3 题)练习( P92)1、 B .uuuur uuur uuuruuur2、解:因为 ACABADAA ,uuuur2uuur uuur uuur 所以 AC( AB AD AA )2uuur 2 uuur 2 uuur 2uuur uuur uuur uuur uuur uuurABADAA2( AB AD AB AA AD AA )uuuur 42 32 52 2 (0 10 7.5)8585所以 AC3、解:因为 AC所以 AC BD , AC AB ,又知 BD AB .uuur uuur uuur uuur 0uuur uuur 0 .所以 AC BD 0 , AC AB ,又知 BD AB uuur 2 uuur uuur CD CD CDuuur uuur uuuruuur uuuruuur(CA AB BD ) (CA ABBD )uuur 2 uuur 2uuur2CAAB BDa 2b 2c 2所以 CDa 2b 2c 2 .高中数学选修 2-1 课后习题答案 [ 人教版 ]r r r r rr r r r r 1、向量 c 与 a b , a b 一定构成空间的一个基底 . 否则 c 与 ab , a b 共面,r r r2、共面于是 c 与 a , b 共面,这与已知矛盾 .uuur uuuruuur uuur uuur uuur uuur uuur uuuur r r r 2、(1)解: OB OBBB OA AB BB OA OC OO a b c ;uuur uuur uuur uuur uuuur r rBA BABBOC OOc buuur uuur uuur uuur uuur uuuur r r rCA CA AA OA OC OO a bcuuur uuur uuuruuur1 uuur r 1 rr 1rr1r(2) OGOC CGOCCBb (ac)ab2 c .222练习( P97)1、(1) ( 2,7,4) ; (2) ( 10,1,16); (3) ( 18,12,30) ; ( 4)2.2、略 .3、解:分别以 DA ,DC , DD 1 所在的直线为 x 轴、 y 轴、 z 轴,建立空间直角坐标系 .则 D (0,0,0) , B 1 (1,1,1), M (1,1,0) , C(0,1,0) 2uuuur uuuur 1所以, DB 1 (1,1,1), CM (1, ,0) .2uuuur uuuur 1 1uuuur uuuurDB 1 CM 015所以, cos2.DB 1, CMuuuur uuuur 1 15DB 1 CM31D'4C'习题 3.1 A 组( P97)A'B' Muuuruuur uuur D GC1、解:如图,(1) ABBC AC ;uuur uuur uuuruuur uuur uuur uuuur uuuur(2) AB AD AAACAA AC CC AC ;A(第 1 题) Buuur uuur1 uuuur uuur uuuuruuuur(3)设点 M 是线段 CC 的中点,则 ABADCCACCMAM ;1 uuur 21 uuuur(4)设点 G 是线段 AC 的三等分点,则uuur uuuruuur ( AB AD AA ) AC AG .uuur uuuur uuuur uuur33向量 AC , AC , AM , AG 如图所示 .2、 A .uuuur 2 uuur uuur uuur3、解: AC ( AB AD AA )2高中数学选修 2-1 课后习题答案 [ 人教版 ]uuur 2 uuur 2 uuur 2 uuur uuur uuur uuur uuur uuurAB AD AA 2( AB AD AB AA AD AA ) 52 32 722(5 3 1 5 72 3 7 2 )2 2298 56 2所以, AC13.3 .uuur uuuruuur uuur 1a2;4、(1) AB ACAB AC cos60uuur uuuruuur uuur21a 2;(2) AD DBAD DB cos120uuur uuur uuur uuur 2 uuur uuur1 a2 1 1(3) GF AC GF AC cos180 2 ( GF AC a) ;2 2 uuur uuur uuur uuur 1 a 2 uuur 1 uuur 1(4) EF BC EF BC cos60 4 ( EF 2 BD a) ; uuur uuur uuur uuur uuur uuur 21 2 1 1; (5) FG BA FG BA cos120 a ( FG2 AC a)4 2uuur uuur uuur uuur 1 uuur 1 uuur(6) GE GF(GCCB2 BA)CA21 uuuruuur1 uuur 1 uuur( DCCB2 BA)2 CA21 uuur uuur 1 uuur uuur 1 uuur uuur4 DC CA 2 CB CA 4 BA CA1 uuur uuur 1 uuur uuur 1 uuur uuur4 DC CA cos120 2 CB CA cos604 BA CA cos601 a 245、(1) 60 ; (2)略 .r rr6、向量 a 的横坐标不为 0,其余均为 0;向量 b 的纵坐标不为 0,其余均为 0;向量 c 的竖坐标不为 0,其余均为 0.7、(1)9; (2) (14, 3,3) .rr r r 0 ,即 82 3x0 ,解得 x10 . 8、解:因为 ab ,所以 a buuuruuur3(5,1, 10)9、解: AB ( 5, 1,10) , BAuuuur1 uuur uuur1 9 2) ,设 AB 的中点为 M , OM2(OAOB )( , ,uuur 2 2所以,点 M 的坐标为 (1 , 9 ,( 5)2( 1)21021262) , AB2 210、解:以 DA , DC , DD 1 分别作为 x 轴、 y 轴、 z 轴建立空间直角坐标系 O xyz .高中数学选修 2-1 课后习题答案 [ 人教版 ]则 C ,M , D 1 , N 的坐标分别为:uuuur 1 uuuur CM (1, 1, ) , D 1 N2 uuuur12 ( 1)2 ( 1) 2 所以 CM2C (0,1,0) , M (1,0, 1 1 ) ,D 1(0,0,1) , N (1,1, ) .122(1,1, )23uuuur 121)23, D 1 N12 ( 22 2uuuur uuuur1 1 11 cos CM , D 1N9 4 94由于异面直线 CM 和 D 1N 所成的角的范围是 [0,]2因此, CM 和 D 1 N 所成的角的余弦值为 1.31911、 ( , ,3)2 2 习题 3.1 B组( P99)1、证明:由已知可知,uuur uuur uuur uuurOA BC , OB ACuuur uuur uuur uuur uuur uuur uuur uuur uuur uuur∴ OA BC 0 , OB AC 0 ,所以 OA (OC OB ) 0 , OB (OC OA) 0 .uuur uuur uuur uuur uuur uuuruuur uuur∴ OA OC OA OB , OB OCOB OA .uuur uuur uuur uuur uuur uuur uuur uuur uuur∴ OA OC OB OC 0 , (OAOB) OC 0 , BA OC 0 .∴ OC AB .2、证明:∵点 E, F ,G , H 分别是 OA,OB, BC ,CA 的中点 . uuur1 uuuruuur1 uuuruuuruuur ∴ EFAB , HGAB ,所以 EFHG22∴四边形 EFGH 是平行四边形 .uuur uuur 1 uuur 1 uuur 1 uuur uuur uuur 1 uuur uuuruuur uuurEFEHABOC4 (OBOA) OC4(OB OCOA OC )2 2∵ OA OB , CA CB (已知), OC OC .∴ BOC ≌ AOC ( SSS )∴ BOC AOCuuur uuur uuur uuur∴ OB OC OA OCuuur uuur ∴ EF EH 0uuur uuur ∴ EF EH∴ 平行四边形 □ EFGH 是矩形 .。
金版新学案(人教版)高中数学选修1-2练习:2.1.2演绎推理(含答案)
第二章 2.1 2.1.2一、选择题(每小题5分,共20分)1.下面说法:①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”的形式;④演绎推理得到结论的正确与否与大前提、小前提和推理形式有关;⑤运用三段论推理时,大前提和小前提都不可以省略.其中正确的有()A.1个B.2个C.3个D.4个解析:①③④都正确.答案: C2.“所有9的倍数都是3的倍数,某奇数是9的倍数,故某奇数是3的倍数.”上述推理是()A.小前提错B.结论错C.正确的D.大前提错解析:演绎推理的结论不会超出前提所界定的范围,所以在演绎推理中,只要前提和推理形式正确,其结论就必然正确,故选C.答案: C3.推理过程“大前提:________,小前提:四边形ABCD是矩形.结论:四边形ABCD 的对角线相等.”应补充的大前提是()A.正方形的对角线相等B.矩形的对角线相等C.等腰梯形的对角线相等D.矩形的对边平行且相等解析:由三段论的一般模式知应选B.答案: B4.命题“有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提错误D.使用了“三段论”,但小前提错误解析:使用了“三段论”,大前提“有理数是无限循环小数”是错误的.答案: C二、填空题(每小题5分,共10分)5.给出下列推理过程:因为2和3都是无理数,而无理数与无理数的和是无理数,所以2+3也是无理数,这个推理过程________.(填“正确”或“不正确”)解析:结论虽然正确,但证明是错误的,这里使用的论据(即大前提)“无理数与无理数的和是无理数”是假命题.答案:不正确6.若向量a=(x+1,2),b=(4,-2),若a∥b,则实数x=________.解析:因为a∥b,所以(x+1)×(-2)=2×4,解得x=-5.答案:-5三、解答题(每小题10分,共20分)7.下列推理是否正确,错误的请指出其错误之处.(1)求证:四边形的内角和等于360°.证明:设四边形ABCD是矩形,则它的四个角都是直角,有∠A+∠B+∠C+∠D=90°+90°+90°+90°=360°,所以四边形的内角和为360°.(2)“因为过不共线的三点有且仅有一个平面(大前提),而A,B,C为空间三点(小前提),所以过A,B,C三点只能确定一个平面(结论).”(3)“因为金属铜、铁、铝能够导电(大前提),而金是金属(小前提),所以金能导电(结论).”解析:(1)错误.在证明过程中,把论题中的四边形改为了矩形.(2)不正确.小前提错误.因为若三点共线,则可确定无数平面,只有不共线的三点才能确定一个平面.(3)不正确.推理形式错误.因为演绎推理是从一般到特殊的推理,铜、铁、铝仅是金属的代表,是特殊事例,从特殊到特殊的推理不是演绎推理.8.已知如图在梯形ABCD中,AB=DC=DA,AC和BD是梯形的对角线.求证:AC平分∠BCD,DB平分∠CBA.证明:∵等腰三角形两底角相等,大前提如图,△DAC是等腰三角形,∠1和∠2是两个底角,小前提∴∠1=∠2.结论 ∵两条平行线被第三条直线截得的内错角相等, 大前提 ∠1和∠3是平行线AD ,BC 被AC 截得的内错角,小前提∴∠1=∠3结论 ∵等于同一个角的两个角相等, 大前提 ∠2=∠1,∠3=∠1,小前提 ∴∠2=∠3,即AC 平分∠BCD .结论同理可证DB 平分∠CBA .9.已知函数f (x )=2x -12x +1(x ∈R),(1)判定函数f (x )的奇偶性;(2)判定函数f (x )在R 上的单调性,并证明. 解析: (1)∀x ∈R 有-x ∈R ,并且f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ),所以f (x )是奇函数.(2)f (x )在R 上单调递增,证明如下: 任取x 1,x 2∈R ,并且x 1>x 2, f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=x 1-x 2+-x 2-x 1+x 1+x 2+=x 1-2x 2x 1+x 2+.∵x 1>x 2,∴2x 1>2x 2>0, ∴2x 1-2x 2>0,2x 1+1>0,2x 2+1>0.∴x 1-2x 2x 1+x 2+>0.∴f (x 1)>f (x 2).∴f (x )在R 上为单调递增函数.。
2019版【人教A版】高中数学:选修1-1、1-2课本例题习题改编(含答案)
2019版数学精品资料(人教版) 人教A 版选修1-1,1-2课本例题习题改编1. 原题(选修1-1第三十五页例3)改编 已知点A 、B 的坐标分别是A (0,-1),B (0,1),直线AM 、BM 相交于点M ,且它们的斜率之积是-t ,t ∈(0,1].求M 的轨迹方程,并说明曲线的类型. 解:设M (x ,y ),则10BM y k x -=- (x ≠0),(1)0AM y k x --=-(x ≠0),BM AM k k =-t ,10y x -- ∙(1)y x ---=-t(x ≠0),整理得221x y t+=1(x ≠0)(1)当t ∈(0,1)时,M 的轨迹为椭圆(除去A 和B 两点);(2)当t=1时,M 的轨迹为圆(除去A 和B 两点).2.原题(选修1-1第五十四页习题2.2A 组第一题)改编 1F 、2F 是双曲线2211620x y -=的焦点,点P 在双曲线上,若点P 到焦点1F 的距离等于9,则点P 到焦点2F 的距离等于解:∵双曲线2211620x y -=得:a=4,由双曲线的定义知||P 1F |-|P 2F ||=2a=8,|P 1F |=9, ∴|P 2F |=1<(不合,舍去)或|P 2F |=17,故|P 2F |=17.3. 原题(选修1-1第六十八页复习参考题B 组第一题)改编 已知F 1、F 2分别为椭圆191622=+y x 的左、右焦点,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,求21F PF ∆的面积. 解:依题意,可知当以F 1或F 2为三角形的直角顶点时,点P 的坐标为97,4⎛⎫±±⎪⎝⎭,则点P 到x 轴的距离为49,此时21F PF ∆的面积为479;当以点P 为三角形的直角顶点时,点P 的坐标为3779>,舍去。
故21F PF ∆的面积为479. 4. 原题(选修1-2第五十五页习题3.1B 组第二题)改编 设,C z ∈满足条件.12141log 21->--+-z z 的复数z 所对应的点z 的集合表示什么图形?1214|1|4log 12,12|1|2|1|8108z Z z Z Z Z -+-+>-<----->解:由可得0<化简得:所以表示以(,)为圆心,以为半径的圆的外部。
(典型题)高中数学选修1-2第三章《推理与证明》测试题(包含答案解析)
一、选择题1.观察下列一组数据12a = 246a =+ 381012a =++ 414161820a =+++…则20a 从左到右第三个数是( ) A .380B .382C .384D .3862.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .丙做对了B .甲做对了C .乙说对了D .乙做对了3.在等差数列{}n a 中,若0n a >,公差0d ≠,则有2415a a a a >.类比上述性质,在等比数列{}n b 中,若0n b >,公比1q ≠,则关于3b ,5b ,2b ,6b 的一个不等关系正确的是( ) A .3526b b b b > B .5623b b b b > C .3526b b b b +<+D .5623b b b b +<+4.在ABC △中,若AC BC ⊥,AC b =,BC a =,则ABC △的外接圆半径r =,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA 、SB 、SC 两两互相垂直,SA a =,SB b =,SC c =,则四面体S ABC -的外接球半径R =( )A .2B .3C D 5.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=6.中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法——二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):对于函数()y f x =在()123123,,x x x x x x <<处的函数值分别为()()()112233,,y f x y f x y f x ===,则在区间[]13,x x 上()f x 可以用二次函数()()()111212()f x y k x x k x x x x =+-+--来近似代替,其中3221112213231,,y y y y k k k k k x x x x x x ---===---.若令10x =,2π2x =,3πx =,请依据上述算法,估算2πsin 5的近似值是( ) A .2425B .1725C .1625D .357.将正整数排列如下:则图中数2020出现在( ) A .第64行第3列 B .第64行4列C .第65行3列D .第65行4列8.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .5519.英国数学家布鲁克泰勒(Taylor Brook ,1685~1731)建立了如下正、余弦公式( )()()357211sin 13!5!7!21!n n x x x x x x n --=-+-++-+-()()2462cos 112!4!6!2!nnx x x x x n -=-+-++-+其中*x R n N ∈∈,,!1234n n =⨯⨯⨯⨯⨯,例如:1!12!23!6===,,.试用上述公式估计cos0.2的近似值为(精确到0.01) A .0.99B .0.98C .0.97D .0.9610.现有A B C D 、、、四位同学被问到是否去过甲,乙,丙三个教师办公室时,A 说:我去过的教师办公室比B 多,但没去过乙办公室;B 说:我没去过丙办公室;C 说:我和A B 、去过同一个教师办公室;D 说:我去过丙办公室,我还和B 去过同一个办公室.由此可判断B 去过的教师办公室为( ) A .甲 B .乙 C .丙 D .不能确定11.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽.2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的 A .甲辰年B .乙巳年C .丙午年D .丁未年12.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是 A .甲B .乙C .丙D .无法预测二、填空题13.设1250,,,a a a 是从1-,0,1这三个整数中取值的数列,若12509a a a +++=,且()()()2221250111107a a a ++++++=,则1250,,,a a a 中数字0的个数为________ .14.已知集合22{|,}A m m x y x y ==-∈Z 、,将A 中的正整数从小到大排列为:1a ,2a ,3a ,….若2015n a =,则正整数n =________.15.我国南北朝时期数学家祖瞘,提出了著名的祖暅原理:“幂势既同, 则积不容异”,其中“幂”是截面积,“势” 是几何体的高,该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的xoy 平面内,若函数1,[1,0]()1,(0,1]x x f x x x ⎧+∈-⎪=⎨-∈⎪⎩的图象与轴x 围城一个封闭的区域A ,将区域A 沿z 轴的正方向平移2个单位长度,得到几何体(图一),现有一个与之等高的圆柱(图二),其底面积与区域A 的面积相等,则此圆柱的体积为 _______.图一 图二16.甲、乙、丙三个同学同时做标号为A 、B 、C 的三个题,甲做对了两个题,乙做对了两个题,丙做对了两个题,则下面说法正确的是_____.(1)三个题都有人做对;(2)至少有一个题三个人都做对;(3)至少有两个题有两个人都做对.17.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说“是乙或丙获奖”,乙说“甲、丙都未获奖”,丙说”我获奖了”,丁说“是乙获奖”.已知四位歌手有且只有一位说了假话,则获奖的歌手是________. 18.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________19.学校艺术节对同一类的A ,B ,C ,D 四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“C 或D 作品获得一等奖”; 乙说:“B 作品获得一等奖”; 丙说:“A ,D 两项作品未获得一等奖”; 丁说:“C 作品获得一等奖”. 若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______. 20.将正整数1,2,3,⋯按照如图的规律排列,则100应在第______列.三、解答题21.(1)用分析法证明:3725+<;(2)已知数列{}n a 的前n 项和为n S ,123a =-,满足()122nn n S a n S ++=≥,计算,1234,,,S S S S ,并猜想n S 的表达式.22.用综合法或分析法证明: (1)如果 ,0a b >,则 lg lg lg22a b a b++≥; (2)610232+>+.23.如图1,已知PAB ∆中,PA PB ⊥,点P 在斜边AB 上的射影为点H .(Ⅰ)求证:222111PH PA PB =+; (Ⅱ)如图2,已知三棱锥P ABC -中,侧棱PA ,PB ,PC 两两互相垂直,点P 在底面ABC 内的射影为点H .类比(Ⅰ)中的结论,猜想三棱锥P ABC -中PH 与PA ,PB ,PC 的关系,并证明. 24.证明下列不等式:(1)当2a >时,求证:0>; (2)设0a >,0b >,若0a b ab +-=,求证:4a b +≥. 25.证明:(Ⅰ)已知a b m 、、是正实数,且a b <.求证:a a mb b m+<+; (Ⅱ)已知a b c d R ∈、、、,且1a b +=,1c d +=,1ac bd +>.求证:a b c d 、、、中至少有一个是负数.26.设不等式2120x x -<--+<的解集为M ,,a b M ∈.(1)证明:111364a b +<; (2)比较14ab -与2a b -的大小,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先计算前19行数字的个数,进而可得20a 从左到右第三个数. 【详解】由题意可知,n a 可表示为n 个连续的偶数相加,从1a 到19a 共有()119191902+⨯=个偶数,所以20a 从左到右第一个数是第191个偶数,第n 个偶数为2n , 所以第191个偶数为2191382⨯=,20a 从左到右第三个数为386. 故选:D. 【点睛】本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档题.2.A解析:A 【分析】根据题意分析,分别假设甲、乙、丙做对了,由此推出结论. 【详解】假设甲做对了,则乙和丙都做错了,乙和丙说的都对了,这不合题意; 假设乙做对了,则甲和丙都说对了,也不合题意; 假设丙做对了,则甲说对了,乙和丙都说错了,符合题意. 所以,说对的是甲,做对的是丙. 故选:A . 【点睛】本题考查了阅读理解能力以及逻辑思维能力的应用问题,是中档题.3.C解析:C 【分析】利用等差数列和等比数列的通项公式及性质逐一计算判断即可. 【详解】在等比数列{}n b 中,0n b >,公比1q ≠,0q ∴>,即01q <<或1q >, 在A 中,3526b b b b =,故A 错误;在B 中,29561b b b q =,23231b b b q =,故当01q <<时,5623b b b b <,当1q >时5623b b b b >,故B 错误;在C 中,()3351b b b q q q+=+,()42611b b b q q +=+,而()()()()()()243332111110qq q q q q q q q +-+=---=-++>,得431qq q +>+,故3526b b b b +<+,故C 正确;在D 中,()45611b b b q q +=+,()2311b b b q q +=+,故当01q <<时,5623b b b b +<+,当1q >时5623b b b b +>+,故D 错误.故选:C. 【点睛】本题考查了等差数列和等比数列的综合应用,属于中档题.4.A解析:A 【解析】 【分析】四面体S ABC -中,三条棱SA 、SB 、SC 两两互相垂直,则可以把该四面体补成长方体,长方体的外接球就是四面体的外接球,则半径易求. 【详解】四面体S ABC -中,三条棱SA 、SB 、SC 两两互相垂直,则可以把该四面体补成长方体,SA a =,SB b =,SC c =是一个顶点处的三条棱长.所以外接球的直径就是长方体的体对角线,则半径2R =.故选A. 【点睛】本题考查空间几何体的结构,多面体的外接球问题,合情推理.由平面类比到立体,结论不易直接得出时,需要从推理方法上进行类比,用平面类似的方法在空间中进行推理论证,才能避免直接类比得到错误结论.5.C解析:C 【分析】根据合情推理与演绎推理的概念,得到A 是归纳推理,B 是归纳推理,C 是演绎推理,D 是类比推理,即可求解. 【详解】根据合情推理与演绎推理的概念,可得:对于A 中, 由金、银、铜、铁可导电,猜想:金属都可导电,属于归纳推理; 对于B 中, 猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+,属于归纳推理,不是演绎推理;对于C 中,半径为r 的圆的面积2S r π=,则单位圆的面积S π=,属于演绎推理; 对于D 中, 由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=,属于类比推理, 综上,可演绎推理的C 项,故选C . 【点睛】本题主要考查了合情推理与演绎推理的概念及判定,其中解答中熟记合情推理和演绎推理的概念,以及推理的规则是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.A解析:A 【分析】直接按照所给算法逐步验算即可得出最终结论. 【详解】解:函数()sin y f x x ==在0x =,π2x =,πx =处的函数值分别为 1(0)0y f ==,2π()12y f ==,3(π)0y f ==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--,故2222444()()2f x x x x x x πππππ=--=-+, 即2244sin x x x ππ≈-+,∴222424224sin()55525πππππ≈-⨯+⨯=, 故选:A . 【点睛】本题主要考查新定义问题,准确理解题目所给运算法则是解决本题的关键,属于中档题.7.B解析:B 【分析】根据题意,构造数列,利用数列求和推出2020的位置. 【详解】根据已知,第n 行有n 个数,设数列{}n a 为n 行数的数列,则n a n =, 即第1行有1个数,第2行有2个数,……,第n 行有n 个数, 所以,第1行到第n 行数的总个数()1122n n n S n +=+++=, 当63n =时,数的总个数()636363120162S ⨯+==, 所以,2020为64n =时的数,即64行的数为:2017,2018,2019,2020,……, 所以,2020为64行第4列. 故选:B. 【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.8.C解析:C 【分析】观察数阵可得出数阵从左到右从上到下顺序是正奇数顺序排列,要求出某一个位置的数,只要求出这个位置是第几个奇数即可,而每一行有12m -个数,可求出前m 行共有21m -个数,根据以上特征,即可求解. 【详解】由题意可得该数阵中第m 行有12m -个数,所以前m 行共有21m -个数,所以前8行共255个数.因为该数阵中的数依次相连成等差数列,所以该数阵中第9行, 从左往右数的第20个数是()127512549+-⨯=. 故选:C. 【点睛】本题以数阵为背景,考查等差、等比数列通项与前n 项和,认真审题,注意观察找出规律是解题的关键,属于中档题.9.B解析:B 【分析】利用题设中给出的公式进行化简,即可估算,得到答案. 【详解】由题设中的余弦公式得()()24620.20.20.20.2cos0.2112!4!6!2!nnn =-+-++-+0.040.00160.00006410.98224720=-+-+≈,故答案为B 【点睛】 本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.10.A解析:A 【解析】 【分析】根据已知信息:首先判断B 去过一个办公室,再确定B 去的哪一个办公室,得到答案. 【详解】C 说:我和A B 、去过同一个教师办公室⇒ B 至少去过一个办公室A 说:我去过的教师办公室比B 多,但没去过乙办公室⇒A 去过2个办公室,B 去过1个办公室.B 说:我没去过丙办公室,C 说:我和A B 、去过同一个教师办公室,A 没有去过乙办公室所以B 去的是甲办公室. 答案选A 【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力. 11.C解析:C 【分析】按照题中规则依次从2019年列举到2026年,可得出答案. 【详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选C . 【点睛】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题.12.A解析:A 【分析】若甲的预测正确,则乙、丙的预测错误,推出矛盾!若乙的预测正确,甲、丙的预测错误,推出矛盾!若丙的预测正确,甲、乙的预测错误,可推出三个人的名次. 【详解】若甲的预测正确,乙、丙的预测错误,则丙是第一名,甲不是第三名,则甲是第二名,乙是第三名,矛盾!若乙的预测正确,甲、丙的预测错误,则乙是第三名,甲的预测错误,那么甲是第三名,矛盾!若丙的预测正确,则甲、乙的预测错误,则甲是第三名,乙不是第三名,丙是第一名,则乙是第二名.因此,第三名是甲,故选A . 【点睛】本题考查合情推理,突出假设法在推理中的应用,通过不断试错来推出结论,考查推理分析能力,属于中等题.二、填空题13.11【分析】由题意中1的个数比的个数多9则中2的个数比0的个数多9个其他都是1由此可设中有个1个0列方程组求解【详解】设中有个1个0因为所以的个数为又由解得故答案为:11【点睛】本题考查推理关键是认解析:11 【分析】 由题意1250,,,a a a 中1的个数比1-的个数多9,则12501,1,,1a a a +++中2的个数比0的个数多9个,其他都是1,由此可设1250,,,a a a 中有m 个1,n 个0,列方程组求解. 【详解】 设1250,,,a a a 中有m 个1,n 个0,因为12509a a a +++=,所以1-的个数为9m -,()()()22212501114107a a a m n ++++++=+=,又(9)50m n m ++-=,由4107259m n m n +=⎧⎨+=⎩,解得2411m n =⎧⎨=⎩.故答案为:11. 【点睛】本题考查推理,关键是认识到12501,1,,1a a a +++是由1250,,,a a a 各加1得到的,因此数字的个数存在相应的关系.这样可列出方程组求解.14.1511【分析】利用平方差公式分解后对分别研究即可得到集合中的所有正整数然后从小到大排列观察规律进而计数即可【详解】当时(表示奇数)当时(表示4个倍数)∴将中的正整数从小到大排列可得134578…(解析:1511【分析】利用平方差公式分解后,对1x y -=,2x y -=分别研究,即可得到集合中的所有正整数,然后从小到大排列,观察规律,进而计数即可.【详解】22()()m x y x y x y =-=-+,当1x y -=时,21m y =+(表示奇数),当2x y -=时,44m y =+(表示4个倍数),∴将A 中的正整数从小到大排列,可得1,3,4,5,7,8,…,(每4个正整数,保留3个),又201545033÷=,∴503321511n =⨯+=.【点睛】本题考查分类讨论思想,观察归纳思想,属探索性试题,难度较大.15.【分析】先利用定积分计算底面面积再用体积公式得到答案【详解】的图象与轴围城一个封闭的区域故答案为【点睛】本题考查了体积的计算意在考查学生解决问题的能力 解析:73【分析】先利用定积分计算底面面积,再用体积公式得到答案.【详解】[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩的图象与轴x 围城一个封闭的区域A13221001217(1)(1)(1)10326A S x dx x x -=+-=+--=-⎰ 77263A V S h ==⨯= 故答案为73【点睛】 本题考查了体积的计算,意在考查学生解决问题的能力.16.③【分析】运用题目所给的条件进行合情推理即可得出结论【详解】若甲做对乙做对丙做对则题无人做对所以①错误;若甲做对乙做对丙做对则没有一个题被三个人都做对所以②错误做对的情况可分为这三种:三个人做对的都解析:③【分析】运用题目所给的条件,进行合情推理,即可得出结论.【详解】若甲做对A、B,乙做对A、B,丙做对A、B,则C题无人做对,所以①错误;若甲做对A、B,乙做对A、C,丙做对B、C,则没有一个题被三个人都做对,所以②错误.做对的情况可分为这三种:三个人做对的都相同;三个人中有两个人做对的相同;三个人每个人做对的都不完全相同,分类可知三种情况都满足③的说法.故答案是:③.【点睛】该题考查的是有关推理的问题,属于简单题目.17.乙【分析】根据乙丙;的说法是相互矛盾的得出乙与丙说法一对一错唉根据甲丁的说法都准确推出获奖的歌手是乙即可【详解】由题意乙与丙的说法是相互矛盾的所以乙与丙的说法中一对一错又甲说:是乙或丙获奖是正确;丁解析:乙【分析】根据乙丙;的说法是相互矛盾的,得出乙与丙说法一对一错,唉根据甲、丁的说法都准确,推出获奖的歌手是乙即可.【详解】由题意,乙与丙的说法是相互矛盾的,所以乙与丙的说法中一对一错,又甲说:“是乙或丙获奖”,是正确;丁说“是乙获奖”是正确,由此可知获奖的歌手是一,且乙说的也对.【点睛】本题主要考查了简单的合情推理的应用,其中解答中正确理解题意,合理利用合情推理进行,逐一判定是解答的关键,着重考查了推理与论证能力,属于基础题.18.A【解析】试题分析:由乙说:我没去过C城市则乙可能去过A城市或B 城市但甲说:我去过的城市比乙多但没去过B城市则乙只能是去过AB中的任一个再由丙说:我们三人去过同一城市则由此可判断乙去过的城市为A考点解析:A【解析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理19.B【分析】首先根据学校艺术节对四件参赛作品只评一件一等奖故假设分别为一等奖然后判断甲乙丙丁四位同学的说法的正确性即可得出结果【详解】若A 为一等奖则甲丙丁的说法均错误不满足题意;若B 为一等奖则乙丙的说 解析:B【分析】首先根据“学校艺术节对A B C D 、、、四件参赛作品只评一件一等奖”,故假设A B C D 、、、分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果.【详解】若A 为一等奖,则甲、丙、丁的说法均错误,不满足题意;若B 为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意;若C 为一等奖,则甲、丙、丁的说法均正确,不满足题意;若D 为一等奖,则乙、丙、丁的说法均错误,不满足题意;综上所述,故B 获得一等奖.【点睛】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设A B C D 、、、为一等奖并通过是否满足题目条件来判断其是否正确.20.【解析】分析:先找到数的分布规律求出第n 列结束的时候一共出现的数的个数每一列的数字都是从大大小按排列的且每一列的数字个数等于列数继而求出答案详解:由排列的规律可得第n 列结束的时候排了个数每一列的数字 解析:【解析】分析:先找到数的分布规律,求出第n 列结束的时候一共出现的数的个数,每一列的数字都是从大大小按排列的,且每一列的数字个数等于列数,继而求出答案.详解:由排列的规律可得,第n 列结束的时候排了()1123112n n n +++⋯+-=+个数. 每一列的数字都是从大大小按排列的,且每一列的数字个数等于列数,而第13列的第一个数字是()113131912⨯⨯+=,第14列的第一个数字是()1141411052⨯⨯+=, 故100应在第14列.故答案为:14点睛:此题主要考查了数字的变化规律,借助于一个三角形数阵考查数列的应用,是道基础题三、解答题21.(1)见证明;(2) 123S =-,234S =-;345S =-;456S =-;猜想12n n S n +=-+,n ∈+N .【分析】(1)不等式两边先平方,然后逐步化简,直到不等式明显成立为止;(2)分别令n=1,2,3,4,求出1234,,,S S S S ,然后找规律猜想表达式。
高中人教选修一数学课本习题答案
高中人教选修一数学课本习题答案在高中数学的学习过程中,习题是检验学生对知识点掌握程度的重要手段。
以下是人教版高中数学选修一课本中的部分习题答案,供同学们参考:第一章:集合与函数习题1:集合的表示方法有两种,列举法和描述法。
例如,集合A={1, 2, 3}是列举法表示,而集合B={x | x是小于10的正整数}是描述法表示。
习题2:若集合A={1, 2, 3},B={2, 3, 4},则A∩B={2, 3},A∪B={1, 2, 3, 4}。
习题3:函数f(x)=x^2+1在x=-1处的导数为2。
习题4:若f(x)=x^2,g(x)=3x+1,则复合函数f(g(x))=(x^2)(3x+1)。
第二章:三角函数与解三角形习题1:正弦定理:在三角形ABC中,a/sinA = b/sinB = c/sinC,其中a、b、c分别为角A、B、C所对的边。
习题2:余弦定理:在三角形ABC中,c^2 = a^2 + b^2 - 2ab*cosC。
习题3:若sinA = 3/5,且A在第一象限,则cosA = 4/5。
习题4:在三角形ABC中,若a=7,b=5,c=6,且cosC = 1/2,则角C=60°。
第三章:不等式习题1:解不等式x^2 - 4x + 4 ≤ 0,解集为[2, 2]。
习题2:若a > 0,b < 0,且|a| < |b|,则不等式ax + b > 0的解集为x < -b/a。
习题3:证明不等式:对于任意正数a、b,有a + b ≥ 2√(ab)。
习题4:若x > 0,y > 0,且x + y = 1,则x^2 + y^2 ≥ 1/2。
第四章:数列习题1:等差数列的通项公式为an = a1 + (n-1)d。
习题2:等比数列的通项公式为an = a1 * r^(n-1)。
习题3:若等差数列的前n项和为S,首项为a1,公差为d,则S = n/2 * (2a1 + (n-1)d)。
(完整版)高中数学选修1-2课后习题答案
me an di n高中数学选修1-2课后习题答案第Ⅰ卷选择题共50分一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的)参考公式P k ≥2(K )0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.8281.在画两个变量的散点图时,下面哪个叙述是正确的( )A 预报变量在轴上,解释变量在轴上B 解释变量在轴上,预报变量在轴上x y x y C 可以选择两个变量中任意一个变量在轴上 D 可以选择两个变量中任意一个变量在轴上x y 2.数列…中的等于()2,5,11,20,,47,x x A B C D 283233273.复数的共轭复数是( )25-i A i +2 B i -2C -i -2D 2 - i4.下面框图属于( )A 流程图B 结构图C 程序框图D 工序流程图5.设大于0,则3个数:,,的值( ),,a b c 1a b +1b c +1c a+A 都大于2 B 至少有一个不大于2 C 都小于2 D 至少有一个不小于26.当时,复数在复平面内对应的点位于( )132<<m )2()3(i i m +-+A 第一象限 B 第二象限 C 第三象限 D 第四象限7.考察棉花种子经过处理跟生病之间的关系得到如下表数据:种子处理种子未处理合计得病32101133不得病61213274合计93314407根据以上数据,则( )A 种子经过处理跟是否生病有关B 种子经过处理跟是否生病无关C 种子是否经过处理决定是否生病D 以上都是错误的11,9,8,5,若在实际问题中,的预报最大取值是10,则的最大取值不能超过( )y x A 16 B 17 C 15 D 129.根据右边程序框图,当输入10时,输出的是()A 12B 19C 14.1D-3010.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为( )第Ⅱ卷非选择题(共100分)二、填空题(本大题共5个小题,每小题4分,共20分,把答案填在答题卡的横线上)11.在复平面内,平行四边形ABCD 的三个顶点A 、B 、C 对应的复数分别是1+3i,-i,2+i,则点D 对应的复数为_________。
高中数学选修1-2第一章统计案例测试题带详细解答(可编辑修改word版)
1
A、增加3个单位B、增加个单位C、减少3个单位D、减少个单位
3
【答案】C
【解析】
解释变量即回归方程里的自变量xˆ,由回归方程知预报变量yˆ减少 3 个单位
4.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U
与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之
选修 1-2 第一章、统计案例测试
一、选择题
1.已知x与y之间的一组数据:
x
0
1
2
3
y
1
3
5
7
则y与x的线性回归方程为ybxa必过点() A.(2,2)B. (1.5 ,4)C.(1.5 ,0)D.(1,2)
【答案】B
【解析】
试题分析:由数据可知x1.5,y4,∴线性回归方程
4
为yb xa必过点(1.5,4)
5 =11.72
. Y =(1+2+3+4+5)
5 =3
∴这组数据的相关系数是r=7.2
19.172 =0.3755,
变量U与V相对应的一组数据为(10,5),(11.3,4),
(11.8,3),(12.5,2),(13,1)
. U =(5+4+3+2+1)
5 =3,
∴这组数据的相关系数是-0.3755,
【解析】
试题分析:由题意,年劳动生产率x(千元)和工人工资y(元)之间回归方程为
y1070x,
故当x增加 1 时,y要增加 70 元,
∴劳动生产率每提高1千元时,工资平均提高70元,故A正确.
【创新设计】高中数学(苏教版选修1-2)配套练习:1.1.2充分条件和必要条件(含答案解析)
充足条件和必需条件课时目标1.联合实例,理解充足条件、必需条件、充要条件的意义.2.会判断 (证明 )某些命题的条件关系.1.一般地, 假如 p? q ,那么称 p 是 q 的 ____________,同时 q 是 p 的 ______________. 2.假如 p? q ,且 q? p ,就记作 ________.这时 p 是 q 的 ______________ 条件,简称 ________条件,实质上p 与q 互为 ________条件.假如pq 且qp ,则p 是 q 的________________________ 条件.一、填空题1.用符号 “? ”或 “ ”填空 . (1)a>b________ac 2>bc 2;(2)ab ≠ 0________a ≠ 0.2.已知 a , b , c , d 为实数,且 c>d ,则 “ a>b 是”“a- c>b - d ”的______________ 条件.3.不等式 (a + x)(1 + x)<0 建立的一个充足而不用要条件是- 2<x< - 1,则 a 的取值范围为 ________.4.函数 y = ax 2+ bx + c (a>0)在 [1,+ ∞)上单一递加的充要条件是 __________ .5.设甲、乙、丙是三个命题,假如甲是乙的必需条件,丙是乙的充足条件但不是乙的 必需条件,则丙是甲的 ____________条件.a +b 2 a 2 +b 2,则 p 是 q 建立的 6.设 a , b ∈ R ,已知命题 p : a = b ;命题 q :2 ≤2________________ 条件.2=ac ”是 “a, b , c 成等比数列 ”的 ________________ 条件.7. “b8. “k= 1”是 “直线 x - y + k = 0 与圆 x 2+ y 2= 1 订交 ”的 ________________ 条件.二、解答题9.设 α、 β是方程 x 2- ax + b = 0 的两个实根,试剖析 “a>2且 b>1”是 “两根都大于 1”的什么条件?10.设 x, y∈R,求证 |x+ y|= |x|+ |y|建立的充要条件是xy ≥ 0.能力提高11.记实数 x1,x2,,x n中的最大数为max{x 1,x2,,x n} ,最小数为 min { x1,x2,,xn} .已知△ ABC的三边边长为a, b,c(a ≤b≤,c)定义它的倾斜度为a b c a b cl= max b,c,a min b,c,a,则“l=1”是“△ ABC 为等边三角形”的 ____________条件.12.已知 P= {x|a - 4<x<a+ 4} ,Q= {x|x 2- 4x+ 3<0} ,若 x∈ P 是 x∈ Q 的必需条件,务实数 a 的取值范围.1.充足条件和必需条件是数学中的重要观点,主要用来划分命题中的条件p 和结论q 之间的关系,主要以其余知识为载体对条件p 是结论q 的什么条件进行判断.2.证明充要条件时,既要证明充足性,又要证明必需性,即证明原命题和抗命题都成立.“A是 B 的充要条件”的命题的证明: A ? B 证了然充足性;B? A 证了然必需性.1. 1.2充足条件和必需条件知识梳理1.充足条件必需条件2. p? q 充足必需充要充要既不充足又不用要作业设计1. (1)(2) ?2.必需不充足分析∵ c>d,∴- c< - d, a>b,∴ a- c 与 b- d 的大小没法比较;当 a- c>b- d 建即刻,假定 a≤b,又- c<- d,∴ a- c<b- d,与题设矛盾,∴ a>b.综上可知,“a>b”是“a- c>b-d”的必需不充足条件.3. (2,+∞)分析不等式变形为 (x+ 1)(x + a)<0,因当- 2<x< - 1时不等式建立,因此不等式的解为- a<x<- 1.由题意有 (- 2,- 1)(- a,- 1),∴- 2>- a,即 a>2.4. b≥- 2a分析由二次函数的图象可知当-b2+bx+ c 在 [1,+∞)2a≤1,即 b≥- 2a 时,函数 y= ax上单一递加.5.充足不用要分析∵甲是乙的必需条件,∴乙? 甲.又∵丙是乙的充足条件,但不是乙的必需条件,∴丙 ? 乙,但乙丙.如下图.综上有丙 ? 乙 ? 甲,但乙丙,故有丙 ? 甲,但甲D? /丙,即丙是甲的充足条件,但不是甲的必需条件.6.充足不用要2+b 2分析由 a= b 知,a+b2=a2,a= a2,22∴ p? q;反之,若 q 建立,则 p 不必定建立,比如取 a=- 1,b= 1,则a+ b 2a2+ b2= 0≤1=,但 a≠b. 227.必需不充足分析由 b2= ac a, b, c 成等比数列,比如, a= 0, b= 0, c= 5.若 a,b, c 成等比数列,由等比数列的定义知b2= ac.8.充足不用要分析把 k= 1代入 x- y+ k= 0,推得“直线 x- y+ 1= 0与圆 x2+ y2=1订交”;但“直线 x- y+ k= 0与圆 x2+ y2= 1 订交”不必定推得“k= 1”.故“k= 1”是“直线 x- y+k= 0与圆 x2+ y2= 1 订交”的充足不用要条件.α+β=a,9.解由根与系数的关系得αβ= b判断的条件是 p:a>2α>1( Δ≥.0),结论是 q:β >1b>1①由α>1且β>1?a=α+β>2, b=αβ >1? a>2 且 b>1,故 q? p.111q.②取α=4,β=,则知足 a=α+β= 4+ >2, b=αβ= 4×= 2>1,但 p222综上所述,“a>2且 b>1”是“两根都大于1”的必需不充足条件.10.证明①充足性:假如xy ≥0,则有 xy= 0 和 xy>0 两种状况,当x= 0,xy= 0 时,不如设则 |x+ y|= |y|, |x|+ |y|= |y|,∴等式建立.当 xy>0 时,即 x>0 , y>0,或 x<0,y<0,又当 x>0 , y>0 时, |x+ y|=x+ y, |x|+ |y|=x+ y,∴等式建立.当 x<0, y<0 时, |x+ y|=- (x +y), |x|+ |y|=- x-y,∴等式建立.总之,当 xy≥0时, |x+ y|= |x|+ |y|建立.②必需性:若|x+ y|= |x|+ |y|且 x, y∈ R,则 |x+ y|2=(|x|+ |y|)2,即 x2+ 2xy + y2= x2+ y2+2|x||y|,∴ |xy|= xy ,∴ xy≥0.综上可知, |x+ y|= |x|+ |y|建立的充要条件是xy≥0. 11.必需而不充足分析当△ ABC 是等边三角形时,a= b=c,a b c a b c∴ l= max b,c ,a·min b,c,a= 1×1= 1.∴ “l=1”是“△ ABC 为等边三角形”的必需条件.∵ a≤b≤c,∴ max a b,c c b,a= .c a又∵ l= 1,∴ min a b,c a b,a=c,ca ab a即b=c或c=c,得 b=c 或 b= a,可知△ ABC 为等腰三角形,而不可以推出△ABC 为等边三角形.∴ “l=1”不是“△ ABC 为等边三角形”的充足条件.12.解由题意知, Q= {x|1<x<3} , Q? P,a- 4≤1∴,解得- 1≤a≤5.a+4≥3∴实数 a 的取值范围是[- 1,5].。
人教A版高中数学选修1-2 3.1.1同步练习习题
高中数学人教A版选修1-2 同步练习1.复数(a2-a-2)+(|a-1|-1)i(a∈R)是纯虚数,则有()A.a≠0B.a≠2C.a≠-1且a≠2 D.a=-1解析:选D.需要a2-a-2=0,且|a-1|-1≠0,即a=-1.2.设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确的是() A.B∪(∁S B)=C B.∁S A=BC.A∩(∁S B)=∅D.A∪B=C解析:选A.依据复数的分类可知B∪(∁S B)=C.3.以3i-2的虚部为实部,以-3+2i的实部为虚部的复数是__________.解析:3i-2的虚部为3,-3+2i的实部为-3.∴以3i-2的虚部为实部,以-3+2i的实部为虚部的复数是3-3i.答案:3-3i4.下列四个命题:①两个复数不能比较大小;②若x,y∈R,则x+y i=1+i的充要条件是x=y=1;③若实数a与a i对应,则实数集与纯虚数集一一对应;④纯虚数集相对复数集的补集是虚数集.其中真命题的个数是________.解析:①中当这两个复数都是实数时,可以比较大小.②由复数相等的充要条件知②是真命题.③若a=0,则a i不是纯虚数.④由纯虚数集、虚数集、复数集之间的关系知:所求补集应是非纯虚数集与实数集的并集.答案:1[A级基础达标]1.复数i-1的虚部为()A.0 B.1C.i D.-2解析:选B.i-1的虚部为1.2.下列说法正确的是()A.如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等B.若a,b∈R且a>b,则a i>b iC .如果复数x +y i 是实数,则x =0,y =0D .复数a +b i 不是实数解析:选A.由两个复数相等的充要条件知这两个复数的实部与虚部分别相等,即它们的实部差与虚部差都为0.3.若sin 2θ-1+i(2cos θ+1)是纯虚数,则θ的值为( )A .2k π-π4B .2k π+π4C .2k π±π4 D.k π2+π4(以上k ∈Z) 解析:选B.由⎩⎨⎧sin 2θ-1=0,2cos θ+1≠0,解得⎩⎨⎧θ=k π+π4,k ∈Z ,θ≠2k π+3π4且θ≠2k π+5π4,k ∈Z .∴θ=2k π+π4,k ∈Z.故选B. 4.若4=a +b i(i 为虚数单位,a ,b ∈R),则a +b =________.解析:∵a +b i =4,∴a =4,b =0,∴a +b =4.答案:45.已知复数z =k 2-3k +(k 2-5k +6)i(k ∈Z),且z <0,则k =________.解析:⎩⎪⎨⎪⎧k 2-3k <0k 2-5k +6=0⇒⎩⎪⎨⎪⎧0<k <3k =2或k =3⇒k =2. 答案:26.已知关于实数x ,y 的方程组⎩⎪⎨⎪⎧(2x -1)+i =y -(3-y )i ①(2x +ay )-(4x -y +b )i =9-8i ②有实数解,求实数a ,b 的值. 解:根据复数相等的充要条件,得⎩⎪⎨⎪⎧2x -1=y 1=-(3-y ), 解得⎩⎪⎨⎪⎧x =52y =4③.把③代入②, 得5+4a -(6+b )i =9-8i ,且a 、b ∈R ,∴⎩⎪⎨⎪⎧5+4a =96+b =8,解得⎩⎪⎨⎪⎧a =1b =2. [B 级 能力提升]7.下列命题中,正确命题的个数是( )①若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1;②若a ,b ∈R 且a >b ,则a +i >b +i ;③a i 一定为纯虚数.A .0B .1C .2D .3解析:选A.①由于x ,y ∈C ,∴x +y i 不一定是复数的代数形式,不符合复数相等的充要条件,①是假命题.②由于两个虚数不能比较大小,∴②是假命题.③当a ∈R 且a ≠0时,a i 才是纯虚数,∴③是假命题. 8.已知M ={1,2,m 2-3m -1+(m 2-5m -6)i},N ={-1,3},M ∩N ={3},则实数m 的值为( )A .-1或6B .-1或4C .-1D .4解析:选C.由M ∩N ={3},知m 2-3m -1+(m 2-5m -6)i =3,∴⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 9.已知z 1=-4a +1+(2a 2+3a )i ,z 2=2a +(a 2+a )i ,其中a ∈R ,z 1>z 2,则a 的值为________. 解析:由z 1>z 2,得⎩⎪⎨⎪⎧2a 2+3a =0,a 2+a =0,-4a +1>2a ,即⎩⎪⎨⎪⎧a =0或a =-32,a =0或a =-1,a <16.解得a =0.答案:010.已知关于t 的一元二次方程t 2+(2+i)t +2xy +(x -y )i =0(x ,y ∈R),若方程有实数根,求x ,y 满足的关系式.解:设实数根为a ,代入方程得(a 2+2a +2xy )+(a +x -y )i =0.由复数相等的充要条件,得⎩⎪⎨⎪⎧a 2+2a +2xy =0,①a +x -y =0,②由②得a =y -x ,③把③代入①,得(y -x )2+2(y -x )+2xy =0,整理,得(x -1)2+(y +1)2=2.故所求的关系式为(x -1)2+(y +1)2=2.11.(创新题)已知集合M ={(a +3)+(b 2-1)i ,8},集合N ={3i ,(a 2-1)+(b +2)i}同时满足M ∩N M ,M∩N ≠∅,求整数a 、b .解:依题意得(a +3)+(b 2-1)i =3i ,①或8=(a 2-1)+(b +2)i ,②或(a +3)+(b 2-1)i =(a 2-1)+(b +2)i.③由①得a =-3,b =±2,经检验,a =-3,b =-2不合题意,舍去.∴a=-3,b=2.由②得a=±3,b=-2.又a=-3,b=-2不合题意.∴a=3,b=-2.③中,a,b无整数解不符合题意.综上所述得a=-3,b=2或a=3,b=-2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修1-2课后习题答案
第Ⅰ卷选择题共50分
一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的)
参考公式
P k ≥2(K )
0.50
0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k
0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
1.在画两个变量的散点图时,下面哪个叙述是正确的( )
A 预报变量在x 轴上,解释变量在y 轴上
B 解释变量在x 轴上,预报变量在y 轴上
C 可以选择两个变量中任意一个变量在x 轴上
D 可以选择两个变量中任意一个变量在y 轴上 2.数列2,5,11,20,,47,x …中的x 等于( ) A 28 B 32 C 33 D 27 3.复数
2
5
-i 的共轭复数是( ) A i +2 B i -2 C -i -2 D 2 - i 4.下面框图属于( )
A 流程图
B 结构图
C 程序框图
D 工序流程图 5.设,,a b c 大于0,则3个数:1a b +
,1b c +,1
c a
+的值( ) A 都大于2 B 至少有一个不大于2 C 都小于2 D 至少有一个不小于2 6.当
13
2
<<m 时,复数)2()3(i i m +-+在复平面内对应的点位于( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 7.考察棉花种子经过处理跟生病之间的关系得到如下表数据:
种子处理 种子未处理 合计 得病 32 101 133 不得病 61 213 274 合计
93
314
407
根据以上数据,则( )
A 种子经过处理跟是否生病有关
B 种子经过处理跟是否生病无关
C 种子是否经过处理决定是否生病
D 以上都是错误的
若在实际问题中,y 的预报最大取值是10,则x 的最大取值不能超过( ) A 16 B 17 C 15 D 12 9.根据右边程序框图,当输入10时,输出的是( ) A 12 B 19 C 14.1 D -30
10.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为( )
第Ⅱ卷非选择题(共100分)
二、填空题(本大题共5个小题,每小题4分,共20分,把答案填在答题卡的横线上) 11.在复平面内,平行四边形ABCD 的三个顶点A 、B 、C 对应的复数分别是
1+3i,-i,2+i,则点D 对应的复数为_________。
12.在研究身高和体重的关系时,求得相关指数≈2
R ___________,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”所以身高对体重的效应比随机误差的效应大得多。
13.对于一组数据的两个函数模型,其残差平方和分别为153.4 和200,若从中
选取一个拟合程度较好的函数模型,应选残差平方和为_______的那个. 14.从2
2
2
576543,3432,11=++++=++=中得出的一般性结论是_____________。
15.设计算法,输出1000以内能被3和5整除的所有正整数,已知算法流程图如右图,请填写空余部分:① _________ ;②__________。
三、解答题:(本大题共 6 小题,共 80分。
解答应写出文字说明、证明过程或
演算步骤。
)
16(本小题满分12分)某班主任对全班50名学生进行了作业量多少的调查,
喜欢
玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人,则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约是多少?
开始
② 结束
是 否
输出a n : = 1 ① i : = i +1
第(15)题图
已知a ,b ,c 是全不相等的正实数,求证
3>-++-++-+c
c
b a b b
c a a a c b 。
18(本小题满分12分)已知.1
11
431052
121z z z z
i z i z ,求,,+=
-=+= 19(本小题满分14分)某工厂加工某种零件有三道工序:粗加工、返修加工和精加工。
每道工序完成时,都要对产品进行检验。
粗加工的合格品进入精加工,不合格品进入返修加工;返修加工的合格品进入精加工,不合格品作为废品处理;精加工的合格品为成品,不合格品为废品。
用流程图表示这个零件的加工过程。
20(本小题满分14分)设函数)0()(2
≠++=a c bx ax x f 中,c b a ,,均为整数,且)1(),0(f f 均为奇数。
求证:0)(=x f 无整数根。
21(本小题满分14分)设。
是实数,且是虚数,111
21
121≤≤-+=z z z z z (1)求 | z 1| 的值以及z 1的实部的取值范围; (2)若1
1
11z z +-=ω,求证:ω为纯虚数。
一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一项是符合题目
16、(本小题满分12分) 17、(本小题满分14分)。
学校:
班级: 姓名:
考号:
密
封 线
18、(本小题满分12分)
19、(本小题满分14分)
20、(本小题满分14分)
21、(本小题满分14分)
2007年增城市高二数学选修1-2(文科)测试题参考答案:
一、选择题:1、B 2、B 3、B 4、A 5、D 6、D 7、B 8、C 9、C 10、B 二、填空题:
11、3+5i 12、0.64 13、153.4
14、2
*
1...21
2...32(21),n n n n n n n N ++++-+++-=-∈ 注意左边共有21n -项 15、① a: = 15n ;② n > 66
三、解答题: 16
K 2=
059.523
272426)
981518(502
=⨯⨯⨯⨯-⨯, P (K 2>5.024)=0.025, 有97.5%的把握认为喜欢玩电脑游戏与认为作业多有关系。
17、证法1:(分析法) 要证
3>-++-++-+c
c
b a b b
c a a a c b 只需证明 1113b c c a a b
a a
b b
c c
+-++-++-> 即证
6b c c a a b
a a
b b
c c
+++++> 而事实上,由a ,b ,c 是全不相等的正实数
∴ 2,2,2b a c a c b
a b a c b c +>+>+> ∴ 6b c c a a b
a a
b b
c c
+++++> b c a a c b a b c
+-+-+-
证法2:(综合法)
∵ a ,b ,c 全不相等 ∴ a b 与b a ,a c 与c a ,b c 与c
b
全不相等. ∴
2,2,2b a c a c b
a b a c b c
+>+>+> 三式相加得
6b c c a a b
a a
b b
c c
+++++> ∴ (1)(1)(1)3b c c a a b
a a
b b
c c
+-++-++->
即 3b c a a c b a b c
a b c
+-+-+-++>.
18、解:2121211
11z z z z z z z +=+= i i i i i i i i i z z z z z 2
5
568)68)(1055(681055)43()105()43)(105(2
22121-=+-+=++=-++-+=+=∴
19解:流程图如右:
20、证明:假设0)(=x f 有整数根n ,则2
0,()an bn c n Z ++=∈
而)1(),0(f f 均为奇数,即c 为奇数,a b +为偶数,则,,a b c 同时为奇数‘
或,a b 同时为偶数,c 为奇数,当n 为奇数时,2an bn +为偶数;当n 为偶数时,2
an bn
+也为偶数,即2an bn c ++为奇数,与2
0an bn c ++=矛盾。
(19)图
()0f x ∴=无整数根。
21、解:(1)设)0,(1≠∈+=b R b a bi a z ,且,则
i b a b b b a a a bi a bi a z z z )()(112
222112+-+++=+++=+
= 因为 z 2是实数,b ≠0,于是有a 2+b 2=1,即|z 1|=1,还可得z 2=2a, 由-1≤z 2≤1,得-1≤2a ≤1,解得2121≤≤-
a ,即z 1的实部的取值范围是]2
1
,21[-. (2)i a b
b a bi b a bi a bi a z z 1
)1(2111112
22211+-=++---=++--=+-=ω
因为a ∈]2
1
,21[-
,b ≠0,所以ω为纯虚数。