西南交大考研试题(信号与系统)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2000年

一、选择题(每小题3分,共30分)

1、已知y (t )=x (t )*h (t ),g (t )=x (3t )*h (3t ),x (t )↔X (j ω),h (t )↔H (j ω),则g (t ) = ( )。

(a )⎪⎭

⎫ ⎝⎛33t y

(b )

⎪⎭

⎫ ⎝⎛331t y (c )

()t y 33

1

(d )

()t y 39

1

2、差分方程)()2()5()3(6)(k f k f k y k y k y --=+++-所描述的系统是( )的线性时不变

系统。 (a )五阶 (b )六阶 (c )三阶 (d )八阶

3、已知信号f 1(t ),f 2(t )的频带宽度分别为∆ω1和∆ω2,且∆ω2>∆ω1,则信号y (t )= f 1(t )*f 2(t )的不失真采样

间隔(奈奎斯特间隔)T 等于( )。

(a )

2

ωω∆+∆

(b )

1

ωω∆-∆

(c )

2

πω∆ (d )

1

πω∆ 4、已知f (t )↔F (j ω),则信号y (t )= f (t )δ (t -2)的频谱函数Y (j ω)=( )。

(a )ωω2j e )j (F

(b )ω2-j e )2(f

(c ))2(f

(d )ω2j e )2(f

5、已知一线性时不变系统的系统函数为)

2)(1(1

-)(-+=s s s s H ,若系统是因果的,则系统函数H (s )的

收敛域ROC 应为( )。 (a )2]Re[>s

(b )1]Re[-

(c )2]Re[

6、某线性时不变系统的频率特性为ω

ω

ωj j )j (-+=a a H ,其中a >0,则此系统的幅频特性|H (j ω)|=

( )。 (a )

2

1 (b )1

(c )⎪⎭⎫

⎝⎛-a ω1

tan (d )⎪⎭

⎫ ⎝⎛-a ω1tan 2 7、已知输入信号x (n )是N 点有限长序列,线性时不变系统的单位函数响应h (n )是M 点有限长序列,

且M >N ,则系统输出信号为y (n )= x (n )*h (n )是( )点有限长序列。 (a )N +M (b )N +M -1 (c )M (d )N 8、有一信号y (n )的Z 变换的表达式为113

112

4111)(---+-=

z z z Y ,如果其Z 变换的收敛域为3

1

||41<

n ⎪⎭

⎝⎛+⎪⎭⎫ ⎝⎛

(b ))1(312)(41--⎪⎭

⎝⎛+⎪⎭⎫ ⎝⎛n u n u n

n

(c ))1(312)(41--⎪⎭

⎝⎛-⎪⎭⎫ ⎝⎛n u n u n

n

(d ))1(312)1(41--⎪⎭

⎝⎛---⎪⎭⎫ ⎝⎛-n u n u n

n

9、x (t ), y (t )分别是系统的输入和输出,则下面的4个方程中,只有( )才描述的因果线性、时

不变的连续系统。

(a ))1()(+=t x t y

(b )0)()()(=+'t x t y t y

(c ))()()(t x t ty t y =+'

(d ))()()(2)(t x t y t y t y '=+'+''

10、双向序列f (k ) = a | k | 存在Z 变换的条件是( )。

(a )a >1 (b )a <1 (c )a ≥1 (d )a ≤1

二、(15分) 如下图所示系统,已知输入信号的频谱X (j ω)如图所示,试确定并粗略画出y (t )的频谱Y (j ω)。

三、(10分)

已知系统函数)

3)(1(1

)(++=s s s H 。激励信号)(e )(2t u t f t -=。求系统的零状态响应y f (t )。

四、(10分)如下图所示系统,已知1

1

)(+=s s G 。求:

(1)系统的系统函数H (s ); (2)在s 平面画出零极点图; (3)判定系统的稳定性; (4)求系统的的冲激响应。

五、(15分)

求一个理想低通滤波器对具有sinc 函数x (t )的响应问题,即

0-20 F (s )

(s )

t

t

t x πsin )(i ω=

当然,该理想低通滤波器的冲激响应具有与x (t )相类似的形式,即

t

t

t h πsin )(c ω=

试证明该滤波器的输出y (t )还是一个sinc 函数。 (注:sinc(x )=sin πx /πx ) 六、(20分)

有一个离散因果线性时不变系统,其差分方程为

)()1()(3

10

)1(n x n y n y n y =++-

- (1) 求该系统的系统函数H (z ),并画出零极点图,指出收敛域; (2) 求系统的单位函数响应;

(3) 你应能发现该系统是不稳定的,求一个满足该差分方程的稳定(非因果)单位函数响应。