分布式冷热电三联供技术解读
分布式冷热电三联供技术解读
1. 冷热电三联供技术概述
基本概念
与其它能源技术有机融合,组成多元化供能系统
1. 冷热电三联供技术概述
设备组成
辅 助 系 统
余热 利用 系统
?冰蓄冷装置 · 电制冷机 ?蓄热装置 · 燃气锅炉 ? 热泵 ? 余热锅炉 ?吸收式制冷机
? 换热装置
动
力
? 燃气轮机
· 斯特林机
系
? 燃气内燃机 · 燃料电池
1. 冷热电三联供技术概述
微燃机-性能特点
微型燃气轮机叶片心透平,冷热电联供系统所使用的微型燃气轮机的功率在 30kW~300kW之间。
微燃机的特点是废气余热回收为热水; 运动部件少,重量轻,振动小,没有必要设置特殊的防振设施; 输出功率受环境温度影响;罩外噪声小; 100 kW以下可切网运行。另外, 小叶片的冷却问题使透平进口温度受到限制,使目前的微型燃气轮机简单循 环的效率很难超过20 % ,带回热器的可以接近 30 %。发电效率低、发电功率小
统
? 微燃机
1. 冷热电三联供技术概述
动力系统
目前三联供系统常用的发电机有燃气内燃机、燃气轮机、微燃机 等不同形式,各种发电机的三联供系统的一些参数比较如下表
容量( kW ) 发电效率 (%) 综合效率 (%)
燃料 启动时间 燃料供应压力
噪音 NOX 含量 (ppm)
燃气内燃机 20-5000 22-40 70-90 天然气 10s 低压 高(中) 较高
1 冷热电三联供技术概述 2 冷热电三联供系统基本类型 3 冷热电三联供设计、选型与优化 4 影响冷热电三联供经济性因素 5 冷热电三联供相关政策及前景
2. 冷热电三联供系统基本类型
采用燃气轮机,为充分利用烟气余热和烟气中的含氧量,宜采用:
分布式燃气冷热电三联供技术
分布式燃气冷热电三联供技术分布式燃气冷热电三联供技术是一种将燃气能源进行有效利用的技术,能够同时提供冷、热和电能源。
这种技术通过灵活的设备配置和优化的能源管理,将能源利用效率最大化,同时降低能源消耗和环境污染。
在分布式燃气冷热电三联供技术中,燃气被转化为电力、热能和冷能。
具体而言,燃气通过内燃机或燃气轮机产生电力,同时也产生热能,这些热能可以用于加热建筑物或生产过程中的蒸汽。
此外,燃气中的废热可以通过吸收式制冷机等冷能设备转化为冷能,用于空调或工业过程中的冷却。
分布式燃气冷热电三联供技术具有多项优势。
首先,它能够充分利用燃气资源,提高能源利用效率。
相比于传统的电力供应方式,该技术能够更高效地将燃气能源转化为电力。
同时,废热能够被充分利用,不仅降低了能源消耗,还减少了废物排放。
其次,该技术具有很强的灵活性和可扩展性。
设备配置可根据需要进行调整,能够适应不同规模的供暖或制冷需求。
此外,该技术也能够应对电力中断的问题,起到备用电源的作用。
除了以上的优势之外,分布式燃气冷热电三联供技术还有一些挑战需要克服。
首先,设备的投资成本较高,需要进行长期的经济评估。
其次,技术的运维和管理也需要一定的专业知识和维护成本。
此外,该技术在一些地方可能受到政府政策和监管的限制。
总体而言,分布式燃气冷热电三联供技术是一种具有广泛应用前景的能源技术。
通过充分利用燃气资源,提高能源利用效率,并减少能源消耗和环境污染,该技术可以为人们提供可靠而高效的能源供应。
然而,技术的投资成本和管理问题仍然需要进一步研究和解决,以实现该技术的商业化和大规模应用。
分布式燃气冷热电三联供技术在当今的能源领域备受关注。
随着全球能源需求的不断增加和对可再生能源的追求,这项技术成为了一个具有潜力的解决方案。
这篇文章将继续探讨分布式燃气冷热电三联供技术的相关内容。
分布式燃气冷热电三联供技术的核心是利用燃气能源,通过内燃机或燃气轮机产生电能,同时产生的热能可以为建筑物供暖或生产过程提供蒸汽,而废热则可以通过吸收式制冷机等冷能设备转化为冷能,用于空调或工业过程中的冷却。
冷热电三联供综合阐述
一、冷热电三联供概念:冷热电联产是指使用一种燃料,在发电的同时将产生的余热回收利用,做到能源阶梯级利用;冷热电联供系统一般由动力系统、燃气供应系统、供配电系统、余热利用系统、监控系统等组成。
按燃气原动机的类型不同,分为燃气轮机联供系统和内燃机联供系统。
与传统的击中式供电相比,这种小型化、分布式的供能方式。
可以使能源的综台使用率提高到85%以上。
一般情况可以节约能源成本的30—50%以上;由于使用天然气等清洁能源,降低了二氧化硫、氨氧化物和二氧化碳等温室气体的排放量,从而实现了能源的高效利用与环保的统一,减低了碳排放。
二、冷热电三联供技术优点1、系统整体能源利用效率非常高;2、自行笈电,提高了用电的可靠性;3、减少了电同的投资;4、降低了输配电网的输配电负荷;5、减少了长途输电的输电损失;6、节能环保、经济高效、安全可靠。
三、冷热电联供系统与传统制冷技术的对比优势(1)、使用热力运行,利用了低价的”多余能源”;(2)、吸收式冷水机组内没有移动件,节省了维修成本;(3)、冰水机组运行无噪音;(4)、运行和使用周期成本低;(5)、采用水为冷却介质,没有使用对大气层有害的物质。
四、采用冷热电联供的意义1. 实现能量综合梯级利用,提高能源利用效率具有发电、供热、制冷、能量梯级利用等优势,年平均能量的综合利用率高达80~90%图4.6-2 燃气热能的梯级综合利用流程关系示意图2.集成供能技术,系统运行灵活可靠三联供系统是供冷、供热、供电的技术集成,设备优化配置,集成优化运行,实现既按需供应,又可靠运行。
3.用电用气峰谷负荷互补,利于电网、气网移峰填谷对于电网、气网,负荷峰谷差越小,越有利于系统稳定、安全、节能运行。
五、冷热电联供的使用条件天然气近似为一种清洁能源,燃气冷热电三联供系统为主要的应用形式。
1.应具备的能源供应条件(1)保证天然气供应量,并且供气参数比较稳定;(2)燃气发出的电量,既可自发自用,亦可并入市电网运行,燃气发电停止运行时又可实现市电网供电;(3)市电网供电施行峰谷分时电价;(4)电网供电难以实施时,用户供电、供冷、供热负荷使用规律相似,用电负荷较稳定,发电机可采用孤网运行方式。
热电冷三联产
进气冷却系统
商用电系统
电力调配装置
供电
空气
供电
制冷系统
燃气轮机 烟气 燃料
发电机
供冷
烟气补燃型 溴化锂制冷机
供热
2、燃气-蒸汽联合循环系统
如果单循环中的余热用余热锅炉回吸收,可以产生的参数很高的蒸汽,可 以增设供热汽轮机,使余热锅炉产生的较高参数的蒸汽在供热汽轮机中继续 做功发电,其抽汽或背压排汽用于供热,可以形成燃气-蒸汽联合循环系统。
分布式能源—冷热电三联供系CCHP
1、解决能源短缺的优化方案
2、节能环保—促进循环经济发展
3、是一种无风险有回报的投资
一、分布式能源方案
1、为什么要提倡分布式能源 能源和环保是当今经济发展的主要障碍,也是全球关 注的焦点。随着电慌、石油危机和环境恶化不断加剧, 保证能源的稳定供应和环境优美才能确保一个区域国家 的经济可持续发展,因此寻找环保和经济性的能源解决 能源危机是当务之急-----分布式能源。 2、分布式能源的种类 分布式能源主要包括: 1)传统的水力/火力发电; 2) 光伏发电; 3) 风力发电 4) 生物质发电; 5)冷热电CHP 三联产
燃料
空气 进气冷却系统 商用电系统
供电
电力调配装置
供冷 制冷系统
发电机
电力调配装置
其他余热蒸汽
余热回收 锅炉HRSG
蒸汽轮机蒸汽 发电机
供热 供冷 联合循环CCHP适用于具有充足的余热蒸汽和电量需求大的区域 蒸汽双效溴化锂 吸收式制冷机
四、供电系统—燃气轮机/发电机组介绍
燃气轮机/发电机组是冷热电CCHP系统最重要的部分。冷热电系统的设 计,根据应用区域的实际情况,是以电耗量为基准定系统还是冷或热量作为 设计依据,关系到整个系统的合理、经济运行。 大型燃气轮机 >25MKW
分布式三联供PPT课件
一、胜动集团简介
7、社会及政府高度重视
10
二、国际、国内发展形势及背景
热电联供国际发展现状 欧美各国从政策上大力支持热电冷联产系统。如从法
律上解决分布式热电上网的问题、减免各项税收、给予相 关补贴等等。这些措施有力的推动了热电联产的迅速发展。 目前美国已经有6000多座分布式能源站,美国政府计划到 2020年,有一半以上的新建办公或商用建筑采用和15%的现 有建筑改用分布式热电冷三联供。日本2007年DES/CCHP总 装机容量已达9.2GW,44%用天然气。英国分布式能源站目 前已达1000多个,节约能源20%以上;荷兰一公司经营着 1000多个分布式能源站,法国仅Dalkia公司就经营着200 多个分布式能源项目,这些国家的能源利用效率高达50%以 上,而中国目前仅为36.8%。
联供系统可以匹配地源(污水源)热泵。消耗发电机 组发电量,调节电力平衡;当天然气停气时,地源(污水 源)热泵可以应急供暖制冷;电价处于谷价时发电机组可 以停机,只运行热泵。
中控系统动态的分析系统电力、冷能、热能以及各种 能源的峰谷价格等因素,实时的调整系统的运行模式,保 证系统可靠运行的基础上实现合理的能源匹配和最高的经 济收益。
能源综合利用率较高 集中供电方式发电效率虽然最高可以达到40%-50%,但
是由于距离终端用户过远,其余50%-60%的能量很难充分 利用。
而热电冷三联供由于建设在用户附近,不但可以获得 35%左右的发电效率,还能将中温废热回收利用供冷、供热, 其综合能源利用率可达80%以上。另外,与传统长距离输电 相比,能源产业成套技术提供商 ★发电设备的研发生产销售 ★发电站设计安装建造总包 ★发电工程项目的运营服务
6
一、胜动集团简介
4、国家相关标准制定者
冷热电三联供系统
第十章 冷热电三联供系统
10.1概述
10.2集中式冷热电联供技术
10.3建筑分布式冷热电联供技术
10.1概述
如果将发电过程中所产生的“废热”直接用于工厂或建筑供热,就能合理 地利用能源,减少能源资源的消耗,同时,又能减少对环境的污染,起到 保护环境的作用。这种在生产电的同时,为用户提供热的能源生产方式称 为热电联供。如果利用热能来驱动以热能为动力的制冷装置,为用户提供 冷冻水,满足用户对制冷的需求,则称这种能源利用系统为冷热电三联供 系统,简称冷热电联供。 如图10-1所示是冷热电三联供系统的示意图。
图10-13建筑冷热电联供系统流程图
分布式发电技术是一种小规模现场发电技术,应用于建筑冷热电联供系统 的分布式发电技术主要包括:微型燃气轮机、燃料电池和往复式内燃机。 (1)微型燃气轮机(Mi-croturbine,MT)微型燃气轮机是指单机功率为 30~400kW的一种小型热力发动机,它是20世纪90年代以来才发展起来 的一种先进的动力装置,装置采用布雷顿循环,主要包括:压气机、燃烧 室、燃气轮机、回热器、发电机和控制装置等组成部分。其工作流程图如 图10-14所示 。
图10-7基本燃气同发电循环
由于燃气轮机的排气温度还相当高,热能利用率较低,为了提高热能利用效 率,可以利用余热锅炉或换热器对燃气轮机的尾气进行热回收,用于供热或 驱动吸收式制冷机,提供空调冷冻水,从而实现冷热电联供。燃气轮机冷热 电联供系统的原理如图10-9所示。
分布式三联供PPT课件
8
一、胜动集团简介
6、国内外市场开发的领先者 ★全国除西藏外所有省市 ★出口世界30多个国家 ★综合市场占有率80% ★建设新能源项目600多个 ★总装机容量150万千瓦 ★年燃气能源发电70亿度 ★减排二氧化碳约9000万 吨
14
三、热电冷三联供系统介绍
系统主要构成 系统主要由燃料供应单元、燃气内燃机、发电机、溴
化锂直燃机、电力分配单元、终端和中控系统组成。
燃气发动机是三联供系统的核心,在电力负荷2005000kW功率段,燃气内燃机是最优的动力源,其具有功率 范围合适,发电效率高,启动时间短,造价相对较低等优 势。电力的应用包括独立负荷、挂网运行和网上售电三种 模式。
9
一、胜动集团简介
7、社会及政府高度重视
10
二、国际、国内发展形势及背景
热电联供国际发展现状 欧美各国从政策上大力支持热电冷联产系统。如从法
律上解决分布式热电上网的问题、减免各项税收、给予相 关补贴等等。这些措施有力的推动了热电联产的迅速发展。 目前美国已经有6000多座分布式能源站,美国政府计划到 2020年,有一半以上的新建办公或商用建筑采用和15%的现 有建筑改用分布式热电冷三联供。日本2007年DES/CCHP总 装机容量已达9.2GW,44%用天然气。英国分布式能源站目 前已达1000多个,节约能源20%以上;荷兰一公司经营着 1000多个分布式能源站,法国仅Dalkia公司就经营着200 多个分布式能源项目,这些国家的能源利用效率高达50%以 上,而中国目前仅为36.8%。
三联供
C C
排烟温度
水流量 发动机转速 电力输出功率
O
C
95
1.8 68000 80
kg/s rpm kW
尺寸 L×W×H
重量
mm
kg
3100×876×1955
1930
“卡伯斯通”微燃 机
型 号 C30微型气涡轮发电 机组—低压天然气 C30微型气涡轮发电 机组—高压天然气 C60微型气涡轮发电 机组—高压天然气
方案 产生热量 kWh 产生电量 kWh 总产出 元
燃气锅炉
直燃机 三联供
8.778
9.022 3.932
0
0 2.906
2.026
2.082 3.669
*热价0.231元/ kWh(蒸汽),平均电价0.95元/ kWh
三联供系统得到的经济效益比燃气锅炉采暖高81%; 比直燃机采暖高76%
三联供项目适用于:
ST5R
395 4.35 11009 32.7 365 7992 511 75
ST5S
457 7 15319 23.5 587 8280 1196 85
ST6L-721
508 7.82 15385 23.4 514 10800 1337 85
ST6L-795
678 9.88 14575 24.7 589 11664 1655 85
Centaur 50
人马座 50 4234 12541 53.1
Mercury 60
水星 60 4072 9209 37.5
Taurus 60
金牛座 60 5069 12093 61.3
Taurus 70
金牛座 70 6728 11281 75.9
Mars 90
分布式冷热电三联供技术
停电时的纽约
解决途径:分布式能源系统
• 问题:
– 建筑能源系统直接将高品位能用于低品位能的需求 – 又试图将太阳能等低密度能源艰难地转换为高品位能
• 思路: 系统集成、传统与可再生能源互补系统
• 发展趋势: 热电联产
冷热电一体化
生态建筑
分布式能源系统概念:
实现传统能源与可再生能源的联合使用,形成有机 的整体
根据负荷变化和各能源品种的特点,灵活、高效、 合理地调配
多能源输入与多能源输出 多功能的分布式能源系统
方案定位:追求国际领先水平
实现多种能源互补,充分利用可再生能源(包括太阳能、水 源、地源、风源);
系统高度集成:能量梯级利用,特别是中低温余热的利用;
电输出占很大比重,冷电 比(热电比)仅为 0.2~0.5。此系统技术发 展还不成熟,尚处实验阶 段。
分布式能源系统设计思路
分布式能源系统的主要特点是直接面向用户、按用户需求提 供各种形式能量的中小型多功能能量转换利用系统,所以在进行 分布式能源系统设计时须考虑以下几点: 1)明确用户真正的冷电比(热电比)即真实的冷热电负荷。 2)对发电机组独立供电运行模式,在机组选型配备时,可以考 虑利用电制冷方式,将一部分冷负荷转移到电负荷,从而满足真 正的冷电比。 3)若在冷负荷峰值时冷电比过大,可考虑冰水蓄冷进一步改善 冷热电联产系统的热力学性能和经济性。(对于酒店通常晚上耗 电量相对较大,而耗冷相对较少,可以考虑晚上冰水蓄冷) 4)对发电机组与市电并网运行模式,可按考虑同时使用系数之 后冷负荷做设备选型。
L/O/G/O
分布式能源系统
传统建筑能源
• 主要供能方式:
– 燃煤供暖:严重恶化环境 – 天然气或电直接供热(冷):能源利用率低 – 集中热电并供:距离限制
燃气冷热电三联供技术及其应用情况
燃气冷热电三联供技术及其应用情况信息来源:互联网更新日期:09-05-25分布式能源系统(DistributedEnergySystem)在许多国家、地区已经是一种成熟的能源综合利用技术,它以靠近用户、梯级利用、一次能源利用效率高、环境友好、能源供应安全可靠等特点,受到各国政府、企业界的广泛关注、青睐。
分布式能源系统有多种形式,区域性或建筑群或独立的大中型建筑的冷热电三联供(CombinedCoolingheatingandpowe r,简称CCHP)是其中一种十分重要的方式。
燃气冷热电三联供系统是一种建立在能量的梯级利用概念基础上,以天然气为一次能源,产生热、电、冷的联产联供系统。
它以天然气为燃料,利用小型燃气轮机、燃气内燃机、微燃机等设备将天然气燃烧后获得的高温烟气首先用于发电,然后利用余热在冬季供暖;在夏季通过驱动吸收式制冷机供冷;同时还可提供生活热水,充分利用了排气热量。
提高到80%左右,大量节省了一次能源。
燃气气冷热电三联供系统按照供应范围,可以分为区域型和楼宇型两种。
区域型系统主要是针对各种工业、商业或科技园区等较大的区域所建设的冷热电能源供应中心。
设备一般采用容量较大的机组,往往需要建设独立的能源供应中心,还要考虑冷热电供应的外网设备。
楼宇型系统则是针对具有特定功能的建筑物,如写字楼、商厦、医院及某些综合性建筑所建设的冷热电供应系统,一般仅需容量较小的机组,机房往往布置在建筑物内部,不需要考虑外网建设。
燃气热电冷三联供的特点1)与集中式发电-远程送电比较,燃气热电冷三联供可以大大提高能源利用效率:大型发电厂的发电效率一般为30%~40%;而经过能源的梯级利用cchp使能源利用效率从常规发电系统的40%左右提高到80~90%,且没有输电损耗。
热电产生过程就是天然气燃烧产生热量,然后通过能量转换得到电能或机械能。
天然气在燃气轮机或发动机中燃烧产生电能或机械能用于空气调节或压缩空气,泵水等,在这个过程中,热能没有浪费而被利用,并被广泛应用。
天然气冷热电三联供的节能分析
天然气冷热电三联供的节能分析摘要:分布式冷热电三联供系统可以实现能源的阶梯利用,提高能源利用效率。
本文主要介绍天然气冷热电三联供的种类、技术特点、各项节能性和经济性的评价指标以及主要供能形式。
关键词:天然气冷热电三联供;评价指标;供能形式天然气冷热电三联供系统是一种节能高效的分布式能源系统,利用对环境负荷较小的天然气作为燃料,产生的高品位热能用于供电,低品位热能用于供热或者被吸收式热源设备利用来供冷,从而实现一能多用以及能源的梯级利用。
相比传统的集中式供能,天然气冷热电三联供系统是建立在用户侧的小型的、模块化的能源供给系统,避免了长距离能源输送的损失,为能源供应增加了安全性、可靠性和灵活性。
一、天然气冷热电三联供分类天然气冷热电三联供系统应用于商业、工业等各个领域,一般分为楼宇型和区域型两种。
楼宇型冷热电三联供系统,规模较小,主要用于满足单独建筑物的能量需求(如医院、学校、宾馆、大型商场等公共设施)。
单独建筑物一天内的负荷变化较大,会出现高峰或低谷的情况,而系统的运行需要不断进行调整,与负荷需求相匹配。
因此,楼宇型冷热电三联供系统对设备的启停机及变工况运行性能有较高的要求,同时在系统集成方面,发电设备、热源设备、蓄能设备之间的优化设计以及与电网配合的优化运行模式也十分必要。
区域型分布式冷热电三联供系统主要应用于一定区域内的由多栋建筑物组成的建筑群。
区域内建筑物用途具有多样性,各个建筑物对用能需求的时间段也不同,由于不同用途建筑物负荷之间的相互耦合,使得区域能源需求虽然比较大,但是供能曲线相对比较平稳,设备的变工况运行要求不高。
当规模较大时,一般采用高效的燃气蒸汽联合循环机组二、评价指标1.节能性节能率是反映三联供系统先进性的一个重要指标,三联供系统的节能主要体现在天然气就近梯级利用的高效与传统大电网供电方式到用户端较低的供电效率相比较的优势。
具体指的是在满足对象区域冷热电负荷的情况下,采用天然气冷热电三联供之后,和传统供能系统相比,一整年节约的一次能源消费量。
天然气分布式冷热电三联供分析
电力工程技术天然气分布式冷热电三联供(以下简称“冷热电三联供”)模式在国内主要表现为天然气分布式能源联供系统,分为工业园天然气分布式能源和楼宇式天然气分布式能源两大综合利用系统。
冷热电三联供以天然气为燃料,分布在用户负荷侧,就近实现能源梯级利用,为用户提供冷、热、电三种能源,以满足用户对冷热电的需求。
一、冷热电三联供供热原理冷热电三联供是我国近年发展的能源利用项目,与热电联产供热相比,增加了冷负荷的供应,可以做成集中供热模式,即一对多模式。
冷热电三联供是利用发电做功后的蒸汽进行供热,尾部烟气产生的热水或低压蒸汽进行供冷,高品位热能进行发电,较低品位的热能用来供热,最低品位的热能用来供冷,热效率可达到80%以上。
冷热电三联供机组一般采用天然气作为燃料,作为整个工业园区的配套设施,也是园区基础设施的重要组成部分。
主要设计原理是根据整个工业园区的冷热负荷合理配置系统、设备型号、参数、运行方式等,以满足工业园区生产工艺、能力的需要。
二、冷热电三联供供热特点冷热电三联供是我国近几年开始发展的能源供应模式,主要采用燃气内燃机或燃气轮发电机组,燃气-蒸汽联合循环运行方式,满足工业园区用电、用热、用冷的需求。
冷热电三联供主要适合在工业热负荷和供冷季较长的区域,取缔分散式小锅炉供热。
冷热电三联供项目审批手续相对简单,以冷热定电为设计原则,机组启停操作简单、时间短,可就近接入负荷端,区域经济发展状况和速度不同,可采用冷热电三联供。
冷热电三联供具有的特点:(1)热效率高。
冷热电三联供利用高品位的热能进行发电,较低品位的热能(抽汽)供热,最低品位的热能(尾部烟气或热水)供冷,热效率高达80%以上,能源得到充分利用。
供热系统稳定。
冷热电三联供机组发电、供热、供冷同时进行,供热系统稳定、供热负荷易于调整。
可实现多负荷集中供热。
冷热电三联供一般根据工业园整体规划冷热负荷进行设计,同时对园区内多个冷热用户集中供应。
安全可靠。
冷热电三联供采用的燃气轮发电机组具有黑启动功能,当电网出现大面积停电事故时,冷热电三联供可在20分钟内完成系统启动,快速提供能源供应,由此可提高区域供电的安全性和可靠性。
天然气分布式能源冷电三联供技术及其应用分析
天然气分布式能源冷电三联供技术及其应用分析发布时间:2023-03-03T09:33:32.512Z 来源:《科技新时代》2022年第20期作者:杨毅涛[导读] 随着经济的快速发展,城市的迅速膨胀,人民生活水平的不断提高,杨毅涛身份证号码:3305211991****4612摘要:随着经济的快速发展,城市的迅速膨胀,人民生活水平的不断提高,对集中供热和供冷需求越来越大,随之带来了热源不足、大量采用燃煤带来的环境污染、热效率低、能源浪费等一系列问题。
天然气是目前世界上使用的最主要的化石能源之一,作为一种清洁能源,天然气在城镇能源消耗比例中所占的份额正逐步提高,但目前宝贵的天然气资源在城市中的利用更多地是直接被烧掉,其中一个有效途径是利用天然气分布式能源系统天然气分布式能源是指分布在用户端的能源综合利用系统。
关键词:天然气分布式能源;冷电三联供技术;应用;前言:目前我国正处于天然气快速发展阶段,通过各种途径发展天然气,提高天然气在一次能源中的比例,实现降低污染、改善大气环境的目的。
同时,近两年部分地区出现了不同程度的供电紧张,为了缓解“电荒”,国家也出台了相应的鼓励政策,以支持天然气冷热电联供技术为主导的分布式能源系统的推广应用。
一、天然气分布式能源的定义天然气分布式能源是指利用天然气为燃料,通过冷、热、电联供等方式实现能源的梯级利用,综合能源利用效率在 70% 以上,并在负荷中心就近实现现代能源供应方式。
与传统的集中式能源系统相比,天然气分布式能源具有节省输配电投资、提高能源利用效率、实现对天然气和电力双重“削峰填谷 ”、设备启停灵活、提高系统供能的可靠性和安全性、节能环保等优势。
按照规模划分,天然气分布式能源系统主要包括楼宇型和区域型两种类型。
楼宇型一般适用于二次能源需求性质相近且用户相对集中的楼宇(群),电需求较大的工业园区、产业园区、大型商务区等,一般采用燃气轮机作为动力设备。
按照与电网的关系划分,天然气分布式能源系统主要包括独立运行、并网不上网、并网上网和发电量全部上网 4 种类型。
冷热电三联供标准
冷热电三联供标准
冷热电三联供是一种分布式能源系统,通过对其做功发电后,产生热水和高温废气并加以利用,以满足服务对象在相同时空条件下的冷、热、电需求。
该系统的标准因国家和地区的不同而有所差异,但一般都会涉及到以下几个方面:
1. 能效标准:冷热电三联供系统的能效标准通常是指系统综合能源利用效率(IECC),即系统在一定时间内提供的冷、热、电能总量与系统消耗的能源总量之比。
美国、欧洲等国家和地区都有相应的能效标准,其中美国的IECC标准最高,欧洲的能效标准也在不断提高。
2. 环保标准:冷热电三联供系统在运行过程中会产生废气、废水等污染物,因此需要符合相关的环保标准。
这些标准通常涉及到排放物的种类、浓度、处理方式等方面的规定。
3. 安全性标准:冷热电三联供系统的安全性也是非常重要的,涉及到设备的安全性能、操作人员的安全培训、安全管理制度等方面的内容。
这些标准通常由相关的安全监管机构制定并实施。
4. 可靠性标准:冷热电三联供系统需要保证供电、供暖和制冷等服务的可靠性和稳定性,因此需要符合相关的可靠性标准。
这些标准通常涉及到设备的设计、制造、安装、维护等方面的规定。
5. 经济性标准:冷热电三联供系统的投资和运行成本较高,因此需要符合相关的经济性标准。
这些标准通常涉及到系统的初投资、运行费用、维护费用等方面的规定。
综上所述,冷热电三联供的标准是一个综合性的概念,涉及到能效、环保、安全性、可靠性和经济性等多个方面。
在设计和实施冷热电三联供系统时,需要综合考虑这些标准,以实现系统的最佳性能和效益。
燃气冷热电三联供技术及应用
能源利用率 >80% 增加占地 -10%~30% 增量投资回收年限 5~10年 发电成本 0.4~0.5元/kWh 并网与独立运行 均可
四、三联供系统优势及适用项目特点
天然气生产能源产品价值对比
天然气生产能源产品价值(元/m3)
商业高峰电1.18元/度 商业平均电0.82元/度
冷40元/m2、热30元/m
2
5.80
供冷 20MJ/m3
3.20
供热 16MJ/m3 热量 32MJ/m3 供热 29MJ/m3 供电 2.7kwh/m3
供电 2.7kwh/m3
四、三联供系统优势及适用项目特点
年单位平均耗气量(Nm3/m2)
总耗气量
发电机组耗气量
汇报内容
一、北京市天然气用气量发展概述
50 45 40 35 200.0% 180.0% 160.0% 140.0% 120.0% 100.0% 80.0% 60.0% 40.0% 20.0% 0.0% 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 用气量 增长率
亿立方米
30 25 20 15 10 5 0
供能系统的意见》;
2005年,上海市建设和交通委员会颁布《分布式供能系统工程技术规程》(试
行版);
2006年,建设部行业标准启动《燃气冷热电联供工程技术规程》; 2007年,国家发改委出台《天然气利用政策》鼓励燃气冷热电联供应用;
2008年,上海市建设和交通委员会修订《分布式供能系统工程技术规程》及相
三、三联供常用设备及系统形式
系统运行模式
一年之中在有冷热负荷的冬夏季运行
冷热电三联供简介及其优化措施
冷热电三联供简介及其优化措施一、冷热电三联供的概念分布式能源系统(Distributed Energy System)是指将冷热电系统以小规模。
小容量(几千瓦至50MW、模块化、分散式的方式布置在用户附近,可独立的输出冷、热、电能的系统,减少了能源输送系统的投资和能量损失。
分布式能源的先进技术包括太阳能利用、风能利用、燃料电池和燃气冷热电三联供等多种形式。
冷热电三联供,即CCHP (Combined Cooling, Heating and Power) 是指以天然气为主要燃料带动燃气轮机或内燃机发电机等燃气发电设备运行,产生的电力用于满足用户的电力需求,系统所排出的废热通过余热回收利用设备(余热锅炉或者余热直燃机等)向用户进行供热、供冷经过对能源的梯级利用使能源的利用效率从常规发电系统的40%左右提高到80%左右,能源梯级利用效率达到60%〜80%,大量节约一次能源。
因此说,燃气冷热电三联供系统是分布式能源的先进技术之一,也是最具实用性和发展活力的系统。
典型的燃气冷热电三联产系统一般包括动力系统和发电机、余热回收装置、制冷或供热系统等组成部分,主要用到的发电设备有小型和微型燃气轮机、燃气内燃机、燃料电池等;空调设备有余热锅炉、余热吸收式制冷机以及以蒸汽为动力的压缩式制冷机等。
针对不同的用户需求,冷热电联产系统可以有多种多样的组织方式,方案的可选择范围较大。
二、冷热电三联供的优点①提高能源綜合利用率传统火电的综合能源利用效率低,燃气冷热电三联供供能系统的综合能源利用效率可达到60%-80%.燃气锅炉直接供热的效率虽然能达到90%,但是它的最终产出能量形式为低品位的热能,而燃气冷热电三联供供能系统中有45%左右的高品位电能产出.因此燃气冷热电三联供供能系统的能源综合利用效率比传统的大电网供电和燃气锅炉直接供热的传统供能方式有大幅度提高。
②电力燃气消耗双重削峰填谷、改善城市能源结构在传统的能源结构中,夏季大量电空调的使用和冬季大量燃气锅炉采暖的使用造成了夏季用电量远高于冬季、冬季用气量远高于夏季的情况,这种不合理的能源结构导致了相关市政设施的低投资效率,造成了资源浪费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 冷热电三联供系统基本类型
采用燃气轮机,为充分利用烟气余热和烟气中的含氧量,宜采用:
1)燃气轮机+补燃型吸收式冷暖机(直燃机); 2)燃气轮机+余热吸收式冷暖机(直燃机)+电制冷机+燃气锅炉; 3)燃气轮机+余热锅炉+蒸汽型吸收式制冷机+电制冷机+汽水换热装 置+燃气锅炉; 4)燃气轮机+余热锅炉+蒸汽型吸收式制冷机+热泵型电制冷机+电制 冷机+换热装置+燃气锅炉; 5)燃气轮机+补燃型吸收式冷暖机(直燃型)+电制冷; 6)燃气轮机+高压余热锅炉+汽轮发电机+低压余热锅炉+蓄热装置+ 蒸汽吸收式制冷机+电制冷机+换热装置
分布式冷热电三联供技术
目录
主要内容
1 冷热电三联供技术概述 2 冷热电三联供系统基本类型 3 冷热电三联供设计、选型与优化 4 影响冷热电三联供经济性因素 5 冷热电三联供相关政策及前景
1. 冷热电三联供技术概述
基本概念
燃气冷热电三联供,即 CCHP
(Combined Cooling, Heating and Power ),是指以天然气为主要燃料 带动燃气轮机或内燃机等燃气发电设备 运行,产生的电力满足用户的电力需求, 系统排出的废热通过余热锅炉或者余热 直燃机等余热回收利用设备向用户供热、 供冷。经过能源的梯级利用使能源利用 效率从常规发电系统的 40% 左右提高 到80% 左右,节省了大量一次能源。
单机能源转换效率高,发电效率最高可达 40%以上,能源消 耗率低。
地理环境造成的影响最小,高温、高海拔下可正常运行。
通常海拔高度每增加 300m,内燃机的发电出力下降 3%;环 境温度每增加1℃,内燃机的发电出力下降 0.32%。
可直接利用中低压天然气。
1. 冷热电三联供技术概述
燃气轮机-性能特点
统
? 微燃机
1. 冷热电三联供技术概述
动力系统
目前三联供系统常用的发电机有燃气内燃机、燃气轮机、微燃机 等不同形式,各种发电机的三联供系统的一些参数比较如下表
容量( kW ) 发电效率 (%) 综合效率 (%)
燃料 启动时间 燃料供应压力
噪音 NOX 含量 (ppm)
燃气内燃机 20-5000 22-40 70-90 天然气 10s 低压 高(中) 较高
1. 冷热电三联供技术概述
设备组成
辅 助 系 统
余热 利用 系统
?冰蓄冷装置 · 电制冷机 ?蓄热装置 · 燃气锅炉 ? 热泵 ? 余热锅炉 ?吸收式制冷机
? 换热装置
动
力
? 燃气轮机
· 斯特林机
系
? 燃气内燃机 · 燃料电池
统
? 微燃机
1. 冷热电三联供技术概述
三联供系统常用的余热利用设备有余热锅炉、吸收式制冷机和换热设备
设备组成Байду номын сангаас
辅 助 系 统
余热 利用 系统
?冰蓄冷装置 · 电制冷机 ?蓄热装置 · 燃气锅炉 ? 热泵 ? 余热锅炉 ?吸收式制冷机
? 换热装置
动
力
? 燃气轮机
· 斯特林机
系
? 燃气内燃机 · 燃料电池
统
? 微燃机
1. 冷热电三联供技术概述
辅助设备
蓄冷设备 蓄热设备 燃气锅炉 电制冷机
热泵
目录
主要内容
1. 冷热电三联供技术概述
基本概念
与其它能源技术有机融合,组成多元化供能系统
1. 冷热电三联供技术概述
设备组成
辅 助 系 统
余热 利用 系统
?冰蓄冷装置 · 电制冷机 ?蓄热装置 · 燃气锅炉 ? 热泵 ? 余热锅炉 ?吸收式制冷机
? 换热装置
动
力
? 燃气轮机
· 斯特林机
系
? 燃气内燃机 · 燃料电池
2. 冷热电三联供系统基本类型
采用微燃机时,由于发电量小,当回热器的回热量可调时,宜采用:
2. 冷热电三联供系统基本类型
采用内燃机,内燃机有烟气、缸套水等余热,为充分利用余热宜采用:
1)燃气内燃机+热水型吸收式制冷机+电制冷机+燃气锅炉; 2)燃气内燃机+热水型吸收式制冷机+热泵型电制冷机+电制冷机+蓄 冷装置+燃气锅炉; 3)燃气内燃机+补燃型烟气热水型吸收式冷暖机(直燃机)+电制冷 机。
1. 冷热电三联供技术概述
微燃机-性能特点
微型燃气轮机叶片很小,为了获得较好的空气动力学性能,多使用单级离心 压气机和单级向心透平,冷热电联供系统所使用的微型燃气轮机的功率在 30kW~300kW之间。
微燃机的特点是废气余热回收为热水; 运动部件少,重量轻,振动小,没有必要设置特殊的防振设施; 输出功率受环境温度影响;罩外噪声小; 100 kW以下可切网运行。另外, 小叶片的冷却问题使透平进口温度受到限制,使目前的微型燃气轮机简单循 环的效率很难超过20 % ,带回热器的可以接近 30 %。发电效率低、发电功率小
余热锅炉
1. 冷热电三联供技术概述
吸收式制冷机
溴化锂制冷机 氨制冷机
蒸汽型 以蒸汽的潜热为驱动源
直燃型 以燃料燃烧为驱动源
热水型 以热水的显热为驱动源
余热型 以各种余热为驱动源
复合热源型
热水与直燃型复合 热水与蒸汽型复合 蒸气与直燃型复合 烟气与直燃型复合
……
1. 冷热电三联供技术概述 换热器
1. 冷热电三联供技术概述
燃气轮机 1000-500000
22-36 50-70 天然气 6min-1hr 中高压
中 低
微燃机 30-350 18-27 50-70 天然气
60s 中压
中 低
1. 冷热电三联供技术概述
燃气内燃机-性能特点
燃气内燃发电机突出的优势是发电效率高、环境变化(海拔高度、 温度)对发电效率的影响力小、所需然气压力低、单位造价低, 当然也有余热利用较为复杂、氮氧化物排放量略高的缺陷 ,其特 点主要如下:
燃气轮机发电机具有体积小、运行成本低和寿命周期较长(大修周期在 6 万小时左右)、出口烟气温度较高、氮氧化物排放率低等优点 燃气轮机发电机组发电电压等级高、功率大,供电半径大、适用于用电负 荷较大的场所。 发电机输出功率受环境温度影响较大。当大气温度由 15 ℃降至-20 ℃时, 功率增加25%~35% ,效率增加6%~10% ;当大气温度由15 ℃降 至40 ℃时,功率降低17%~23% ,效率降低5%~8% 。 燃气轮机发电机组余热利用系统简单、高效。 燃气轮机发电机组一般需要次高压或高压燃气。