低温空气源热泵化霜控制因素研究

合集下载

空气源热泵除霜方法的研究现状及展望

空气源热泵除霜方法的研究现状及展望

空气源热泵除霜方法的研究现状及展望空气源热泵是一种利用室外空气中的热能加热室内环境的系统,可以用于取暖和热水供应。

然而,在使用过程中,空气源热泵面临着除霜问题。

因此,研究除霜方法成为了热泵技术的研究热点。

以下是空气源热泵除霜方法的研究现状及展望。

目前,空气源热泵的除霜方法主要有以下几种:1.周期性的逆转热泵周期:这种方法通过逆转制冷循环的工作过程,将表面冰层融化,并把融化水排出系统。

这种方法简单直接,但能耗较高。

2.电热除霜:在热泵蒸发器表面安装电加热器,通过加热使冰层融化。

这种方法较为常见,但能耗较高。

3.感应电热除霜:将热泵蒸发器表面加热片替换为线圈,通过感应加热的方式进行除霜。

这种方法能耗较低,但材料成本较高。

未来,对空气源热泵除霜方法的研究将继续深入。

以下是几个可能的展望:1.新型材料的应用:目前,电热除霜方法和感应电热除霜方法在能耗和成本方面存在一定的问题。

因此,研究者可以将目光投向新型材料的研发。

比如,通过设计特殊导热材料,提高蒸发器表面的热传导能力,从而加快除霜过程。

2.微创技术的应用:目前,空气源热泵的除霜方法大都需要停机进行操作,影响系统的正常运行。

因此,研究者可以探索微创技术的应用,例如利用微小的振动或者声波,直接作用于蒸发器表面,从而减少除霜时间。

3.智能控制系统的应用:目前,空气源热泵的除霜方法大多是基于定时或者温度的设定。

由于室外环境的变化,这种方法往往无法满足实际需求。

因此,研究者可以借助智能控制系统,结合室内外温度和湿度的实时监测数据,实现智能化的除霜控制。

总之,空气源热泵除霜方法的研究现状较为成熟,但在能耗和成本方面仍存在一定问题。

未来的研究可以探索新型材料、微创技术和智能控制系统的应用,从而实现更加高效和可靠的除霜方法。

低温环境下空气源热泵的应用分析

低温环境下空气源热泵的应用分析

低温环境下空气源热泵的应用分析低温环境下的空气源热泵系统由压缩机、冷凝器、膨胀阀和蒸发器等组成。

在制冷和制热过程中,系统需要通过油冷却和制热器的增设来增加系统的性能和效益。

空气源热泵的性能主要受到环境温度的影响,因此在低温环境下,其性能受到了很大的限制。

具体来说,低温环境下空气源热泵存在以下问题:1.效率降低。

由于环境温度低,空气源热泵需要消耗更多的能量来提供相同的热能,从而导致效率下降。

2.压缩机故障率提高。

低温环境下,压缩机的工作压力增大,增加了机械冲击和摩擦损失,导致压缩机故障的概率增加。

3.管道及阀门冻结。

低温环境下,管道和阀门中的水分会结冰,导致空气源热泵无法正常运作。

为了解决以上问题,需要采取一些措施来提升空气源热泵在低温环境下的性能。

具体措施包括:1.选择适用制冷剂。

在低温环境下,制冷剂的选择很重要,一般建议选择低温工作的制冷剂。

常用的低温工作制冷剂有R404a和R410a等。

2.加装热水辅助装置。

由于低温环境下空气源热泵的制热效率较低,可以考虑加装热水辅助装置来提高其热效率。

3.增加制热器。

在低温环境下,制热器可以起到增加温度的作用,从而提高空气源热泵的热效率。

4.加装排气加热系统。

通过加装排气加热系统,可以提高低温下空气源热泵的制热效率。

5.加强维护保养。

在低温环境下,空气源热泵需要更加频繁的维护和保养,包括清洁过滤器、检查阀门和管道等。

总之,低温环境下空气源热泵的应用需要针对其性能受限的问题采取相应的措施来提高性能和效率。

随着技术的不断进步和应用经验的积累,相信空气源热泵在未来的应用中会更加广泛和成熟。

空气源热泵机组除霜性能试验研究X

空气源热泵机组除霜性能试验研究X

空气源热泵机组除霜性能试验研究Ξ董云达 付 兰(宁波奥克斯电气有限公司) (埃美圣龙(宁波)机械有限公司)摘 要 为了研究不同节流机构、不同除霜方式对空气源热泵机组除霜性能的影响,在空气源热泵机组上对热力膨胀阀、电子膨胀阀作为除霜节流机构,以及采用“四通换向阀直接换向除霜”和“压缩机停机四通换向阀换向除霜”2种除霜方式,进行了试验比较研究。

结果表明:采用电子膨胀阀的除霜时间比热力膨胀阀的短12s,即减少11%。

笔者提出采用电子膨胀阀+压缩机停机四通换向阀换向除霜模式的结合,具备四通换向阀换向除霜的除霜强度,解决了“奔油”等部分缺陷,而且采用电子膨胀阀进行除霜可缩短部分除霜时间。

关键词 热力膨胀阀 电子膨胀阀 四通换向阀 空气源热泵机组Experiment on defrosting performance of air2source heat pump unitDong Yunda Fu Lan(Ningbo AU X Electric Appliance Co.,Ltd.) (IM I Shenglong(Ningbo)Machinery Co.,Ltd.)ABSTRACT To study the effect of defrosting performance of air2source heat pump units, which is caused by using different expansion device and different defrosting methods,compares two methods based on using thermal expansion valve and the electronic expansion valve as the expansion device of the air2source heat pump unit including“defrosting by directly reversing four way valve”and“defrosting by reversing four way valve with compressor off”.The result shows that the defrosting period of machine with electronic expansion valve is12seconds or 11%shorter than that with thermal expansion electronic valve,so suggests integrating both two methods by using the electronic expansion valve and defrosting by reversing four2way valve with compressor off.It keeps the defrosting capability of four way valve and,in a certain ex2 tent,it can solve the problem of“pouring oil in”from compressor,in the mean time,it can shorten defrosting period by using the expansion valve.KE Y WOR DS thermostatic expansion valve;electronic expansion valve;four2way valve;air2 source heat pump unit 空气源热泵冷热水机组以其节水、冷热兼用、安装灵活、使用方便等特点受到了市场的广泛青睐,在我国大部分地区得到了广泛的应用。

空气源热泵除霜原理及除霜方式研究

空气源热泵除霜原理及除霜方式研究

空气源热泵除霜原理及除霜方式研究随着环保和节能意识日益提高,空气源热泵作为一种环保、高效、节能的供暖设备被越来越多的人所关注和使用。

在使用过程中,除霜是一个非常重要的问题,因为在低温环境下,空气源热泵容易结霜影响效率,甚至无法工作。

因此,本文将重点介绍空气源热泵除霜原理及除霜方式的研究。

一、空气源热泵除霜原理空气源热泵除霜的基本原理是将室外机表面结成的冰雪除去,使空气源热泵能够正常工作。

空气源热泵除霜的方法有三种:时间除霜、逆周期除霜、间歇除霜。

1. 时间除霜时间除霜是指空气源热泵在制热运行中定时启动除霜功能,一般设置在20~60分钟间隔,可以通过程序设定工作时间。

时间除霜的优点是简单易行,不需要多余的设备,只需通过程序设置即可。

但是时间除霜的不足之处在于不能根据室外温度的变化改变除霜间隔,如果室外温度过低,除霜间隔过短,容易影响热泵的正常运行。

此外,时间除霜在除霜期间不能进行制热,无法满足用户需要。

2. 逆周期除霜逆周期除霜是指在空气源热泵制热运行时,反向工作,将室外机的热量释放到室外,使室外机表面的冰雪融化。

逆周期除霜的优点在于它是根据室外温度的变化及时调整除霜间隔,避免了除霜时间过短或过长的问题,并且可以在除霜期间继续进行制热。

但是逆周期除霜需要使用阀门、电动阀等多余的设备,增加了设备的成本和维护难度。

3. 间歇除霜间歇除霜是指在空气源热泵制热运行时,当感应器探测到室外机表面出现冰霜时,立即启动除霜功能。

间歇除霜的优点在于它既可以根据室外温度的变化调整除霜频率,也可以避免除霜时间过长导致制热中断。

间歇除霜还可以根据不同的需求,选择合适的除霜频率和除霜时间,达到最佳的除霜效果。

但是间歇除霜同样需要使用阀门、电动阀等多余的设备,增加了设备的成本和维护难度。

二、空气源热泵除霜方式的研究除了上述三种常见的除霜方式外,随着技术的发展,还出现了一些新型的除霜方式:1. 离子风除霜离子风除霜是指通过发生器产生高能量的静电离子,将冷凝器和蒸发器表面的冰雪吹散。

空气源热泵除霜原理

空气源热泵除霜原理

空气源热泵除霜原理一、霜的形成与影响霜是由于空气中水蒸气在低温下凝结而形成的白色冰晶。

在空气源热泵工作过程中,室外蒸发器表面温度远低于空气露点温度,从而导致空气中的水蒸气在蒸发器表面冷凝并结霜。

随着时间的推移,霜层会逐渐增厚,对热泵的正常运行产生严重影响。

霜层的导热性能较差,会阻碍热量从蒸发器表面传递到空气中,导致热泵系统的能效比下降,同时蒸发器的散热效果也会变差,导致热泵系统的整体性能降低。

二、除霜必要性为了避免因霜层积累而对热泵系统性能产生负面影响,需要采取有效的除霜措施。

除霜的目的是确保热泵系统能够正常运行,并保持较高的能效比和稳定的散热效果。

除霜的方法有很多种,包括逆循环除霜、智能除霜、加热除霜等。

选择合适的除霜方法可以有效延长热泵系统的使用寿命,提高其稳定性和可靠性。

三、除霜时机确定确定除霜时机是确保除霜效果的关键。

常见的除霜时机判断方法有定时除霜、温度除霜、压差除霜等。

定时除霜是根据设定的时间间隔进行除霜,这种方法简单易行,但可能存在除霜过早或过晚的情况。

温度除霜是通过检测蒸发器表面温度来判断是否需要除霜,这种方法比较准确,但需要温度传感器的支持。

压差除霜是通过检测蒸发器进出口空气压力来判断是否需要除霜,这种方法简单可靠,但精度相对较低。

根据实际情况选择合适的除霜时机判断方法,可以更好地平衡热泵系统的能效比和稳定性。

四、逆循环除霜方式逆循环除霜是通过改变热泵系统的运行方式来进行除霜的。

在逆循环除霜过程中,压缩机的高温高压气体不直接进入蒸发器进行换热,而是通过四通阀改变方向后进入冷凝器,通过放热来化掉蒸发器表面的霜层。

在逆循环除霜过程中,蒸发器内的压力和温度会发生变化,同时会有一部分制冷剂被反向循环带回到压缩机中。

由于制冷剂在循环过程中会对管路进行加热,因此这种方法可以有效化掉蒸发器表面的霜层。

逆循环除霜方式的优点是技术成熟、操作简单、可靠性高,但需要注意的是,在除霜过程中热泵系统的能效比会降低。

空气源热泵延缓结霜及除霜方法研究共3篇

空气源热泵延缓结霜及除霜方法研究共3篇

空气源热泵延缓结霜及除霜方法研究共3篇空气源热泵延缓结霜及除霜方法研究1近年来,空气源热泵作为一种新型能源被广泛运用于房屋供暖、制冷以及热水供应领域。

然而,在使用过程中,热泵室外机会因为低温和湿度而出现结霜的问题,导致热泵的运行性能和效率受到严重影响。

因此,研究空气源热泵的延缓结霜及除霜方法显得相当重要。

一、空气源热泵的结霜原因空气源热泵的冷凝器室外风扇会吸入外界的空气,将冷媒的热量通过换热器散发到外界,同时将空气中的水蒸气也带入冷凝器中。

当冷凝器表面温度小于空气中的露点温度时,水蒸气就会在冷凝器表面凝结成霜或冰。

长时间的结霜会导致热泵的效率降低,甚至会损坏设备。

二、空气源热泵结霜的解决方法1.升高室外空气温度:增加热泵的室外机的温度可以大大减少结霜的产生。

可以通过将室外机安装在遮挡物下、加装遮阳板等方式升高温度。

2.排水系统的修复:检查排水系统中是否存在堵塞或者破损的情况,及时修复。

3.采用多联机空气源热泵:采用多联机方式,增加冷凝器的数量,使每个冷凝器的负荷降低,结霜减少。

4.加装电辅助热棒:在空气源热泵负荷较轻的情况下,可以通过加热热泵表面进行除霜。

缺点是需要增加电费,且会导致系统效率下降。

三、空气源热泵的除霜方式1.制热模式下周期性除霜:当热泵处于制热模式下,当冷凝器表面出现结霜时,通过周期性反向运行热泵来使热泵室外机除霜,此时热泵室内风机停止运行。

2.制热模式下强制除霜:当热泵处于制热模式下,当冷凝器表面结霜厚度达到一定程度,系统将自动启动强制除霜功能,此时热泵室内风机停止运行,室外机的电加热器开启使冷凝器表面融化。

3.制冷模式下周期性除霜:当热泵处于制冷模式下,当冷凝器表面结霜良率超过一定程度时,在室内温度不低于设定温度的情况下,系统周期性反向运行热泵来使热泵室外机除霜。

4.制冷模式下强制除霜:当热泵处于制冷模式下,当冷凝器表面结霜良率达到一定程度时,系统将自动实行强制除霜功能。

综上所述,为了提高空气源热泵的效率和使用寿命,延缓结霜和除霜是非常重要的。

空气源热泵热水机组模糊除霜控制器的研究

空气源热泵热水机组模糊除霜控制器的研究
湿 工 况 下 运 行 的稳 定性 和 对 环 境 的广 泛 适 应 性 。 关 键 词 空 气 源 热 泵热 水 机 组 模 糊 除 霜 实 验 研 究


Re e r h o o r le o u z e r s i g o i o r e he t s a c n c nt o l r f r f z yX f o tn f a r s u c a d
江 乐新” 张 学 文” 楼 静 ” 黎 恢 山 ’
”(中南 大学 ) ’湖 南 亿利 达实业 有 限公 司 ) (
n a


●L
摘 要
设计 空 气 源热 泵 热 水 机 组 模 糊 除 霜 控 制 方 案 , 从 输 入 量 模 糊 化 模 块 、 糊 推 理 模 块 、 霜 控 制 模 并 模 除


c n r le o l p r d fo tn i ou c e tp mp a d d fo tng mo io n mp o e o to lr c ud u g a eder si g ofar s r e h H u n e r s i n t r a d i r v a wo k n t blt n l w e e a u e a i h hu d t n hea a t b l y t u r u dng r i g sa i y i o t mp r t r nd h g miiy a d t d p a ii o s r o n i . i t



o ts u y o u z er si g c n r le r m u z e s ig mou l ,der si o r lmo ul u t d ff z y d fo tn o to l rfo f z y r a onn de fo t ng c nto d e h a O on,e t bih sp re tc n r l w n o d t x rme t Th e ut s o h t t e nd S sa l e e f c o to1fo a d c n ucs e pei n . s e r s l h ws t a h

北方地区低温环境下空气源热泵应用研究

北方地区低温环境下空气源热泵应用研究

北方地区低温环境下空气源热泵应用研究摘要随着清洁供暖深入推进和“煤改电”政策的落实,空气源热泵以优异的节能效果、良好的用户体验、使用维护方便等显著优点,成为热泵诸多型式中应用最为广泛的一种。

空气源热泵在低温环境下应用时,突出问题是制热能力受室外温度波动和结霜严重程度的影响。

本文结合低温环境下空气源热泵应用现状和典型问题,针对低温环境情况,进行空气源热泵应用的适宜性研究和应用时的关键技术指标计算方法的研究,提出提高低温环境下空气源热泵应用性能的建议和措施,以促进空气源热泵技术在清洁供暖应用领域的推广应用。

关键词空气源热泵;低温环境;应用适宜性;计算方法;建议;措施1 北方地区空气源热泵应用现状和典型问题分析空气源热泵在北方地区低温环境下的推广和应用,关注的焦点就是它的应用受到气候条件的约束,热泵机组出现的突出问题是制热能力受室外温度波动和结霜程度的双重影响。

2 低温环境下空气源热泵应用的适宜性研究2.1低温环境下空气源热泵应用的适宜性研究按照《民用建筑热工设计规范》(GB50716-2016)的建筑热工设计原则[1],建筑热工设计区划分为两级。

其中,严寒、寒冷地区的建筑热工设计区划指标见表1所示。

表1 建筑热工设计区划指标及设计要求[4]一级区划名称区划指标二级区划名称区划指标主要指标辅助指标严寒地区(1)t min.m≤-10℃145≤d≤5严寒A区(1A)6000≤HDD18严寒B区(1B)5000≤HDD18<6000严寒C区(1C)3800≤HDD18<5000寒冷地区(2)-10℃<t min.m≤0℃90≤d≤5<145寒冷A区(2A)2000≤HDD18<3800CDD26≤90寒冷B区(2B)CDD26>90北方地区的严寒B区气候酷寒,极端最低温度低于-30℃,可选择-35℃超低温空气源热泵;严寒C区气候寒冷,极端最低气温在-25℃左右,宜选择-25℃超低温空气源热泵,可保证供暖期的正常启动和运行;寒冷A区和寒冷B区冬季平均气温在0℃左右,冬季供暖期气候整体比严寒地区温和,寒冷A区可选择配备低温空气源热泵以应对极端最低气温,寒冷B区选择常规空气源热泵即可。

空气源热泵除霜方法的研究现状及展望

空气源热泵除霜方法的研究现状及展望

空气源热泵除霜方法的研究现状及展望随着能源危机和环境问题的日益突出,空气源热泵作为一种高效、清洁的取暖方式,得到了越来越多的关注和应用。

然而,空气源热泵在运行过程中存在着一个普遍的问题,就是冬季工作时的结霜现象。

结霜不仅会降低热泵的换热效率,还会增加能耗和损害设备。

因此,研究空气源热泵除霜方法成为热泵领域的热点课题。

本文主要对空气源热泵除霜方法的研究现状进行综述,并展望未来的发展方向。

目前,空气源热泵除霜方法主要包括四种:时间除霜、逆周期除霜、加热除霜和在线传感器除霜。

时间除霜是指根据气温和运行时间来设定除霜周期,定时进行除霜操作。

逆周期除霜是通过改变热泵的工作模式,使其在制冷模式下进行除霜。

加热除霜是通过加热器加热空气源热泵的蒸发器,使结霜的冷凝器上的冰融化。

在线传感器除霜是通过感知冷凝器上的结霜状态,并根据结霜程度来进行除霜。

这些方法各有优缺点,适用于不同的环境和需求。

时间除霜是最简单、成本最低的一种除霜方法,适用于气温低且相对稳定的环境。

逆周期除霜是目前应用最广泛的除霜方法,可以在较低的能耗下实现较好的除霜效果。

加热除霜虽然效果明显,但能耗较大,需要额外的加热设备。

在线传感器除霜技术则可以根据结霜情况灵活调整除霜周期和时间,能够更好地适应变化的环境条件。

未来,空气源热泵除霜方法的发展主要从以下几个方面进行展望。

首先,提高除霜效率和能耗控制是重要的研究方向。

目前存在的问题是除霜时能耗较高,且需要较长的时间,影响热泵的正常运行。

因此,需要进一步研究并优化除霜过程中的各个参数,提高除霜效率,减少能耗。

其次,研发新型的除霜设备和材料也是未来的重点。

目前市场上的除霜设备主要是采用电加热方式,需要较大的能量投入,且存在一定的安全隐患。

因此,需要开发和应用新型的除霜设备和材料,如微波除霜、无能源除霜、自清洁材料等,以提高除霜效果和降低能耗。

最后,智能化和自适应控制也是未来的发展方向。

目前的除霜方法大多是基于固定的时间或传感器,无法灵活应对变化的环境条件。

空气源热泵除霜原理及除霜方式研究分析

空气源热泵除霜原理及除霜方式研究分析

空气源热泵除霜原理及除霜方式研究分析空气源热泵是一种新型的节能环保的供暖设备,具有使用成本低、效益高等优点,深受消费者欢迎。

然而,在使用过程中,空气源热泵会出现冬季结霜的问题,这会造成设备效率低下、耗能增加等诸多问题。

因此,了解空气源热泵的除霜原理及除霜方式对于提升设备效率、降低运行成本具有重要意义。

一、除霜原理空气源热泵的除霜原理主要有以下两种:基于周期性反转的“倒换式”除霜和基于周期性切换的“双回路”除霜。

1. 倒换式除霜倒换式除霜在空气源热泵中应用较为广泛,其工作原理是通过调节制冷循环中的制热/制冷阀,将室内供暖循环转为制冷循环,室外汽化器则转变为冷凝器,从而使霜冻逐渐融化。

具体过程如下:(1)在制热模式下,热泵通过室外换热器吸收和压缩热量,将室内制热循环水加热,并通过室内暖风机将热量传递至室内。

(2)当室外换热器的温度下降到一定值时,空气中的水分就会开始凝结在换热器表面形成霜冻,同时由于室外换热器的热传递效率下降,热泵的工作效率也随之下降。

(3)为了解决结霜问题,空气源热泵会根据预设的结霜温度和时间点,通过倒换制冷/制热阀,将制热循环转为制冷循环。

通过此时的制冷循环,将制热水道中的热量释放到室外,产生高温冷凝器,从而达到除霜的效果。

(4)当除霜完成后,系统会自动切换回制热模式,继续为室内供暖。

2. 双回路除霜双回路除霜的工作原理是通过两个独立的制冷/制热回路,分别对室内和室外进行冷却和加热,实现结霜的除去。

具体过程如下:(1)在制热模式下,热泵通过室外换热器吸收和压缩热量,将室内制热循环水加热,并通过室内暖风机将热量传递至室内。

(2)当室外换热器的温度下降到一定值时,空气中的水分就会开始凝结在换热器表面形成霜冻,同时由于室外换热器的热传递效率下降,热泵的工作效率也随之下降。

(3)为了解决结霜问题,双回路除霜通过独立的制冷回路,将高压制冷剂注入到室外换热器,从而实现结霜的除去。

同时,室内的加热回路也会停止工作,避免浪费能量。

关于低温环境下空气源热泵的探讨

关于低温环境下空气源热泵的探讨

能源是人类和社会生存发展的重要资源,但是随着人类社会的不断发展以及人民生活水平的不断提高,能源需求量不断增大,由此导致的能源消耗和环境污染问题也日益严重,节约能源和保护环境已经成为人类不可推卸的责任。

空气源热泵是一种以逆卡诺循环为工作原理,把丰富的空气作为低温热源,通过电能的驱动,将空气中大量的低温热能转变为高温热能的装置。

近些年来,空气源热泵技术以其高效节能、安装方便、环保无污染的特点,有效的解决了在冬季我国北方以燃煤为供暖模式所带来的负面影响,缓解了我国资源紧张的局面,成为热泵技术中应用最为广泛的一种。

但是,在室外温度较低的情况下,空气源热泵系统并不能高效安全的运行,成为了空气源热泵系统在寒冷地区应用的制约因素。

本文对空气源热泵系统进行了简单介绍,指出在寒冷地区空气源热泵系统容易出现的问题,综合国内外专家学者的研究成果,对不同的改善措施进行分析,希望能对空气源热泵技术的发展起到积极作用。

1 空气源热泵系统热泵是一种将低位热源的热能转移到高位热源的装置,也是全世界倍受关注的新能源技术。

它不同于人们所熟悉的可以提高位能的机械设备—“ 泵”,热泵通常是先从自然界的空气、水或土壤中获取低品位热能,经过电力做功,然后再向人们提供可被利用的高品位热能。

空气源热泵作为热泵技术的一种,有“ 大自然能量的搬运工” 的美誉,利用蒸汽压缩制冷循环工作原理,以无处不在的空气中的能量作为主要动力,通过少量电能驱动压缩机运转,实现能量的转移,满足用户对生活热水、地暖或空调等需求。

空气源热泵系统不需要复杂的配置、昂贵的取水、回灌或者土壤换热系统和专用机房,它能够逐步减少传统采暖方式给大气环境带来的大量污染物排放,保证采暖功效的同时实现节能环保的目的。

空气源热泵系统通常由压缩机、冷凝器、蒸发器和膨胀阀 4 部分构成,通过让工质不断完成蒸发→ 压缩→ 冷凝→节流→ 再蒸发的热力循环过程,从而实现热量的转移.在制热时,液态制冷剂在空气换热器中汽化,吸收空气中的热量,低温低压的气态制冷剂经压缩机压缩后变为高温高压气体送至水换热器。

空气源热泵系统结霜及除霜实验研究

空气源热泵系统结霜及除霜实验研究

2020.12科学技术创新空气源热泵系统结霜及除霜实验研究李刚田小亮(青岛大学机电工程学院,山东青岛266071)近年来,空气源热泵因其节能环保、能源利用率高,具备制冷制热双重功能等优势在暖通空调领域得以广泛应用。

然而空气源热泵极易出现蒸发器结霜现象,空气源热泵的结霜过程极其复杂,涉及到进风温湿度、空气流量、换热器翅片类型及间距、翅片表面特性以及霜层结构等众多影响因素[1]。

更重要的是,结霜会导致换热器传热热阻增大、空气流量减少、换热能力降低等问题,因此换热器表面结霜到一定程度时需要转换为除霜模式[2]。

目前空气源热泵常用的除霜方式有电热法、逆循环法等,然而在实际工程运用中,采用这类除霜方式时往往存在化霜水清除不彻底的情况,当机组重启制热模式时,换热器表面的滞留水会使得结霜状况更加严重,甚至会对换热器造成破坏。

这不仅大大降低了空气源热泵系统工作效率及用户的热舒适度,也造成了巨大的能量损失[3]。

本文从空气源热泵系统在暖通空调领域的实际工程运用出发,搭建了空气源热泵系统结霜化霜可视化实验平台。

实验研究了空气源热泵系统在低温环境运行时霜层的形成、发展过程及其随换热器性能的影响。

并采用对低温空气除霜方法,对化霜过程及化霜效果进行了验证和探究。

同时分析了不同化霜时间下,换热器恢复制热模式时翅片表面残留的滞留水对系统性能以及换热器再结霜过程的影响。

最大限度缩短了系统化霜时间、减少了翅片表面滞留水量,降低了结霜、化霜过程对系统性能的影响,保证机组能够连续、高效、稳定地运行,降低了能耗。

1实验简介空气源热泵空调结霜化霜实验平台如图1所示,系统由过滤网、电加热器、并联复合式变频压缩制冷机组、挡水板、引风机、集水装置、保温材料等构成。

空气在引风机作用下依次经过滤网、电加热器、并联复合式1#-4#变频压缩制冷机组和挡水板。

图1实验平台系统图表1为1#-4#换热器的主要参数。

通过控制1#-4#制冷机组和电加热器的工作台数或频率实验平台能够调节空气露点温度,可以将其降至-20℃甚至更低来实现模拟不同温度湿度环境下的结霜化霜工况。

低温环境下空气源热泵的研究现状及展望

低温环境下空气源热泵的研究现状及展望

低温环境下空气源热泵的研究现状及展望空气源热泵作为一种新型的节能减排环保装置,具有十分广泛的应用前景和前途。

但是在低温环境下,空气源热泵的工作性能十分不稳定,而且制热效率比较低,这些弊端都阻碍了空气源热泵的进一步推广。

本文总结了国内外的研究现状,进一步研究了低温环境下空气源热泵的相关改善措施,分析了相关的数据,并根据最新的研究现状,对今后的研究方向做出了新的展望。

标签:低温环境;空气源热泵;现状;展望0 引言空气源热泵通过少量的高位电能做驱动,将空气中的低位热能进一步提升为高位热能,将空气中的能量加以利用。

这一装置具有节能减排、高效无污染的优势,而空气源热泵作为一种新型的产品,在节能减排、降低对化石燃料依赖程度方面将拥有无限的发展潜力。

虽然空气源热泵的运行效能比较好,但是在低温环境中空气源热泵系统并不能高效稳定的运行。

究其原因,主要有以下几点:随着蒸发温度的降低,压缩比增大,致使排气温度过高,严重的时候可能导致压缩机烧毁;低温环境下,蒸发器表面容易结霜,空气流动阻力不断增加,导致制热量减少,从而导致性能下降;低温下,由于润滑油积存于气液分离器中,而粘度不断增加导致启动失油,进而降低了润滑效果。

1 关于低温环境下空气源热泵的国内外研究现状由于在低温环境下,空气源热泵具有很多的弊端,而国内外的学者对其进行了大量的研究,其中包括以下几个方面:补气増焓热泵系统能够有效改善低温环境下的制冷效果,进而降低压缩机的排气温度、提高制冷效果,以达到节能减排的目的。

有相关学者发现在-10℃~-15℃的低温环境下,补气増焓热泵系统具有良好的制热效果和供暖温度,能够满足北方地区的冬季采暖。

但是随着温度的不断升高,补气性能的效果却逐渐变差。

在低温环境下,带闪发器的热泵系统比带过冷器的热泵系统更能够满足寒冷地区的供热需求,但是该系统却仅仅适合小型的空气源热泵系统。

经过大量的研究现状表明,喷液冷却的压缩机引入辅助换热和性能优良的混合工质之后,空气源热泵系统的低温适应性进一步得到提高,但是该系统的可靠性却没有得到改善,因此补气増焓热泵系统的应用仍需要研究。

空气能热泵:抑霜、除霜、控霜

空气能热泵:抑霜、除霜、控霜

空气能热泵:抑霜、除霜、控霜空气源热泵用于供热时,当室外换热器表面温度同时低于0℃和湿空气对应露点温度时,翅片表面很有可能结霜。

为了防止室外换热器传热恶化,并保证空气能够顺利流过换热器翅片,应当及时清除翅片表面的积霜。

因此,研发高效的抑霜除霜技术对于空气源热泵非常重要。

(仅为示意图,不对应文中任何产品)1、抑霜技术湿度是影响霜形成的关键因素,因此,通过固体或液体除湿的抑霜技术得到了充分的发展。

就固体除湿剂而言,主要包括硅胶、硅酸盐和活性炭;而液体除湿剂主要包括氯化锂、溴化锂、氯化钙和乙二醇,液体除湿剂可以直接喷到空气进口或室外换热器表面上。

除湿不仅降低了空气的湿度,由于吸附或吸收过程会释放热量、空气温度还会升高。

然而,固体/液体除湿抑霜技术主要缺点是需要再生。

固体和液体除湿剂都需要再生才能连续运行,这限制了其在空气源热泵中的应用。

其中,相比于固体除湿剂,液体除湿剂的再生温度明显要低。

另一种重要的抑霜技术是改变室外换热器表面特性的表面处理技术。

如下图所示,根据接触角的不同,材料表面可以被分为亲水性、疏水性和超疏水性。

亲水性表面通过干扰冰晶形成和水分子固定来抑制结霜过程。

相比于光滑表面,疏水性表面冷凝液滴分布更为稀疏,可以延迟液滴的冻结并延缓结霜。

而超疏水表面可以通过在霜形成前“弹出”微小的水滴,这样能更为有效的抑制结霜。

表面处理技术高效、廉价且环保,但唯一需要解决的问题就是表面涂层的长期有效性。

亲水、疏水和超疏水表面的接触角此外,相关研究也提出了超声波振动、空气射流、外加交流或直流电场和外加磁场的方法,用于防止或延缓结霜。

然而,由于这些技术都需要昂贵的设备和较大的能耗,因此很大程度上限制了它们在实际工程上的应用。

2、除霜方法相比于抑霜技术,除霜技术主要是尝试及时有效的清除换热器表面的霜层。

通常来讲,有下图所示的五种基础的除霜方式,包括:(1)压缩机停机除霜;(2)电热除霜;(3)热水喷淋除霜;(4)热气旁通除霜以及(5)逆循环除霜。

空气源热泵结霜的原因

空气源热泵结霜的原因

空气源热泵结霜的原因随着人们对节能环保意识的不断提高,空气源热泵作为一种高效节能的供暖设备,越来越受到人们的青睐。

然而,在使用过程中,许多用户会遇到空气源热泵结霜的问题,这不仅会影响设备的使用寿命,还会影响其制热效率。

为什么空气源热泵会出现结霜的问题呢?下面就让我们一起来探讨一下空气源热泵结霜的原因以及如何避免出现这种问题。

一、空气源热泵结霜原因1、室外温度过低空气源热泵制热的原理是通过从室外空气中吸收热量,然后将其送入室内进行加热。

但是当室外温度过低时,空气源热泵就很难从空气中获取足够的热能,因此就会出现结霜的情况。

2、室外气候潮湿在潮湿的环境中,空气源热泵容易出现结霜的情况,因为它会从空气中吸收水分,然后将其转化为霜。

这种情况通常在冬季潮湿的天气中比较常见。

3、空气源热泵自身问题如果空气源热泵本身存在一些问题,例如冷凝管堵塞、吸入口被杂物堵住等,都可能导致其出现结霜的情况。

二、空气源热泵结霜的危害1、降低制热效率当空气源热泵出现结霜的情况时,其吸收热能的表面就会被覆盖上一层薄薄的冰层,这就会导致它的制热效率下降,从而影响室内的温度。

2、增加运行成本如果空气源热泵出现结霜的情况,它就需要增加自身的能耗来进行除霜,这就会增加设备的运行成本。

3、影响设备的寿命当空气源热泵长期出现结霜的情况时,冰层就会不断增加,最终导致设备的损坏,缩短其使用寿命。

三、如何避免空气源热泵结霜1、定期清洗维护要避免空气源热泵出现结霜的情况,需要定期进行清洗维护。

可以对其冷凝管、吸入口等进行定期清洗,确保设备正常运行。

2、增加除霜功能增加除霜功能可以有效避免空气源热泵出现结霜的情况。

在设备中添加除霜装置,或者在安装过程中选择具有除霜功能的设备,都可以提高设备的稳定性。

3、保持室外温度适宜要保持空气源热泵的正常运行,需要确保室外温度适宜。

在气温过低或者潮湿的情况下,可以考虑增加外部保温措施,或者对设备进行适当的调整。

4、定期检查定期检查是避免空气源热泵出现结霜的重要手段之一。

低环境温度空气源热泵热水机组温差法除霜控制研究

低环境温度空气源热泵热水机组温差法除霜控制研究

1 概述低环境温度空气源热泵热水机组简称低温热泵热水机组,是现阶段替代生物质能源,化石能源,制取热水的装置。

低温热泵热水机组要求在不低于-25℃环境温度下能正常工作。

低环境温度下 机组水侧换热器的水温变化范围广,波动大。

从量化的角度出发来分析环境温度变化迭加水温变化对低温热泵热水机组系结霜与除霜控制很有必要。

2 低温热泵机组系统原理本研究对象低温热泵机组系统构成主要由定速喷气增焓制冷压缩机、管翅式换热器、经济器、风机、电子膨胀阀、四通阀及其他传感器器件组成,如图一所示。

该系统的工作原理为制冷压缩机将系统中的制冷剂压缩低环境温度空气源热泵热水机组温差法除霜控制研究童风喜 郑双名 鲁益军 邹金伟(广东热立方热泵系统有限公司 广东中山528429)摘要:低环境温度空气源热泵热水机组利用逆卡诺循环的一种热力工程机械。

在本研究中,通过对一款为名义制热量90KW的低环境温度空气源热泵热水机组水侧换热器进水温度及环境温湿度的变化,分析影响机组制冷系统的压缩机排气温度、机组制热量、空气侧换热器的盘管温度及结霜与除霜情况,提出了蒸发盘管温差法与制热量衰减量相结合的除霜控制法关键词:低环境温度空气源热泵机组 制热量 结霜 除霜Study on defrosting control of temperature Difference Method for Low ambient temperature air source heat pump unitFengxi Tong, Shuangming Zheng, Yijun Lu, Jinwei Zou(Guangdong Amitime Electric Co., Ltd., Zhonghan, Guangdong 528429)ABSTRACT Low ambient temperature air source heat pump water heaters, which belong to thermal engineering unit and use reverse Carnot cycle technology. In this study, we observe the water inlet temperature changesfor water side heat exchanger and ambient temperature changes of a low ambient temperature air source heat pump water heater which nominal heating capacity is 90kW, then further analysis the reasons for influencing the unit compressor discharge air temperature for cooling system, heating capacity, coil temperature for air side heat exchanger and situations of frost and defrost. Base on these analysis, proposing a defrosting control method which combining evaporation coil temperature difference method and heating capacity attenuation.KEY WORDS low ambient temperature air source heat pump water heaters, heating capacity, frost, defrost成高温高压气体,然后进入水侧换热器与水进行换热把水加热,在水侧换热器得到充分冷凝后的制冷剂通过膨胀阀降压节流后进入管翅式换热器与环境空气进行换热,提取空气中的热能,为适应低环境温度下机组能正常工作,系统中制冷压缩机为喷气增焓压缩机,理论制冷循环为准二级压缩的喷气增焓制冷循环[1]。

《低温空气源热泵应用技术研究》范文

《低温空气源热泵应用技术研究》范文

《低温空气源热泵应用技术研究》篇一一、引言随着全球能源危机和环境污染问题的日益严重,节能减排、绿色发展已成为当今社会的重要议题。

低温空气源热泵作为一种新型的节能环保技术,具有高效、稳定、环保等优点,在供暖、制冷、热水供应等领域得到了广泛应用。

本文将就低温空气源热泵的应用技术进行深入研究,以期为相关领域的技术发展和应用提供参考。

二、低温空气源热泵技术概述低温空气源热泵是一种利用空气中的低温热能,通过热泵技术将低品位热能转化为高品位热能的设备。

其工作原理是利用逆卡诺循环原理,通过压缩机、冷凝器、膨胀阀和蒸发器等部件,将低温热能转化为可利用的高温热能。

该技术具有高效、稳定、环保等优点,可广泛应用于供暖、制冷、热水供应等领域。

三、低温空气源热泵应用技术研究1. 供暖领域应用在北方地区,低温空气源热泵可广泛应用于家庭、学校、医院、办公楼等场所的供暖系统。

通过与地暖、散热器等供暖设备相结合,可实现高效、舒适的供暖效果。

同时,该技术可充分利用空气中的低温热能,减少对传统能源的依赖,具有显著的节能减排效果。

2. 制冷领域应用在夏季高温环境下,低温空气源热泵可作为空调系统的辅助设备,实现快速降温和节能降耗的效果。

通过与空调系统相结合,可有效提高空调系统的能效比,降低运行成本。

3. 热水供应领域应用低温空气源热泵还可应用于热水供应领域,如家庭热水器、宾馆热水供应系统等。

通过利用太阳能、空气能等低品位热能,结合热泵技术,可实现高效、稳定的热水供应效果,降低能源消耗和环境污染。

四、技术难题与挑战尽管低温空气源热泵技术在应用中具有诸多优点,但仍面临一些技术难题与挑战。

例如,在极端低温环境下,设备的运行效率和稳定性有待提高;此外,设备的初投资成本较高,需要政策支持和市场推广来降低成本,提高普及率。

针对这些问题,需要进一步加大研发力度,提高设备的性能和降低成本。

五、结论与展望低温空气源热泵作为一种新型的节能环保技术,具有广泛的应用前景和市场需求。

空气源热泵延缓结霜及除霜研究现状与展望

空气源热泵延缓结霜及除霜研究现状与展望

空气源热泵延缓结霜和除霜问题研究摘要:针对空气源热泵延缓结霜及除霜问题,对霜层的形成、延缓结霜技术、除霜技术三个方面的研究现状进行了评述。

总结了现存延缓结霜及除霜方法,指出了其中的不足之处。

可为空气源热泵延缓结霜以及除霜问题提供参考。

关键词:空气源热泵结霜除霜1 引言热泵是一种节能环保的供暖供冷设备,热泵可以分为空气源、水源、土壤源以及太阳能热泵等。

空气源热泵是以空气作为低温热源,从大气中获取热量,比较方便,换热设备和安装较简单。

因此在我国城市发展中得到了广泛的应用。

但是在使用过程中运行状况始终不理想,特别是在低温高湿地区制热运行时。

造成这一现象的主要原因是空气源热泵室外换热器表面的结霜导致机组运行效果差。

一方面,表面形成的霜层增加了空气流动的阻力,导致空气流量的减小,另一方面霜层的存在增大了室外换热器的导热热阻,降低了机组的性能系数。

空气源热泵的结霜问题成为了制约其发展的瓶颈。

因此,如何有效的延缓空气源热泵结霜以及高效除霜成为了空气源热泵发展的重要问题。

2 结霜问题研究霜层可以看成是由冰晶和空气组成的多孔介质,其生长过程分为三个时期,即结晶体生长期、霜层生长期和霜层充分生长期[1]。

大量的实验数据表明在结霜初期,由于霜表面极为粗糙,霜层起到了翅片作用,增加了传热效率,一定时间后尽管霜仍然继续沉积,传热效率变得与时间无关。

从现有的研究结果来看,关于结霜问题主要分为两大类:一是结霜机理的理论和实验研究;二是对结霜过程的数值模拟。

Lee[2]研究了进气温度、进气空气湿度、气流速度和冷却表面温度,研究表明:空气相对湿度和冷却表面温度是霜层形成的主要因素,高湿度低冷却表面温度会形成更厚的霜层。

郭宪民等[3]把室外换热器的结霜过程与系统的工作过程作为一个整体考虑,通过实验研究了进风空气温、湿度对室外换热器结霜的影响。

如图1所示为进口温湿度对结霜量的影响,图2为运行35分钟后不同工况结霜量比较。

从图中可以看出存在一个结霜率最大的进风温度范围。

空气源热枞器化霜方法的研究

空气源热枞器化霜方法的研究
度 也 越 来 越 低 ,此 时换 热 器 表 面 温 度 虽 然 低 于 0 T但 往 往 高

/ l



于 水 蒸 汽 分 压 力 所 对 应 的 凝 华 温 度 , 因 此 换 热 器 结 霜 现 象 不 明显 “。这 也 被 我 们 的实 验 所 验 证 。
于 0 0 ℃ , 因 此 尽 管 有 较 多 的 水 分 析 出 , 但 换 热 器 表 面 不 .1 容 易 结 霜 。 当 空气 含 湿 量 低 于 3 7 g k 干 空 气 时 , 水 只 以 .7 / g 气 态 和 同 态 两 种 形 式 存 在 , 着 空气 含 湿 量 降低 ,其 凝 华 温 随
水 的 目的 。
影 响 蒸 发 器 表 面 结 霜 情 况 的 因 素 主 要 是 蒸 发 器 表 面 温 度 和 空 气 的 含 湿 量 。 当 空 气 含 湿 量 大 于 3 7g k干 空 气 并 .7/g 且 蒸发器表 面温度 t >℃时 ,一部 分水蒸汽 凝结 为水, e 0 附 着 在 换 热 器 表 面 : 当 空 气 含 湿 量 大 于 3 7 g k 干 空 气 并 且 .7/g 蒸 发 器表 面 温 度 t < T 时 ,空 气 中 的 一 部 分 水 蒸 汽 先 凝 结 e 0 为 水 ,然 后 结 为 冰 晶 。通 常 换 热 器 进 口 空 气 干 球 温 度 和 换 热 器 外 表 面 之 间传 热 温 差 一 般 在 1 T 左 右 , 所 以 空 气 含 k 干 空 气 且 温 度 低 于 1 T 时 , 热 器 表 面 温 度 .7/g 0 换 往 往 低 于 水 的 三 相 点 温 度 即 0 0 ℃ , 因 此 换 热 器 表 面 比较 .1

空气源热泵技术的研究进展

空气源热泵技术的研究进展

黑龙江科学HEILONGJIANG SCIENCE第12卷第6期2021年3月Vol. 12Mar. 2021空气源热泵技术的研究进展李庆金,王辉(际华(芜湖)农业科技发展有限责任公司,安徽芜湖241080)摘要:为促进空气源热泵推广应用,解决制约其发展的技术因素,保障空气源热泵稳定高效运行,综述了国内外空气源热泵结除 霜、低温适应性问题的研究现状,总结了防止和延缓结霜的方法及提升空气源热泵低温适用性措施。

关键词:空气源热泵;应用;技术因素;结除霜;低温适应性中图分类号:TU831文献标志码:A 文章编号:1674-8646(2021 )06 -0106 -02Research Progress of Air Source Heat Pump TechnologyLi Qingjin , Wang Hui(Jihua (Wuhu) Agricultural Science and Technology Development Co. Ltd. , Wuhu 241080, China)Abstract : In order to promote the application of air source heat pump, solve the technical factors which restrict itsdevelopment , and guarantee the stable and efficient operation of air source heat pump , the research reviews the researchpresent situation of frosting and defrosting of air source heat pump and adaptability problem of low temperature ; summarizes the methods of frosting prevention and delay , and the measures of improving the low temperature applicability of air source heat pump.Key words : Air source heat pump ; Application ; temperature applicability0引言我国大多数家用空调器是空气源热泵型空调器,它的节能和环保性符合社会经济发展需求,故空气源热泵技术的相关研究也越来越多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018 年 07 月 /Jul.2018 93
技术·创新 / Technology and Innovation
图 1 实验机原理图
冷剂为 R410a,电子膨胀阀产自佛山华鹭自动控制器 有限公司,调节范围为 0 ̄500 B。机组翅片换热器间 距 1.4 mm,3 排,蓝色亲水波纹片。制热低压开关断 开 / 闭合值为 0.1/0.2 MPa。
引言 随着环境温度的降低,空气源热泵制冷剂系统内部 低压侧压力随之降低,制冷剂蒸发温度显著降低,制冷 剂流量减少,空调热源侧翅片换热器能够从环境中吸收 的热量随之减少。当翅片换热器温度低于 0 ℃时,相对 湿度大于 75 % 时,空气中的水蒸气遇到翅片换热器时就 会以霜的形式析出在其表面 [1]。翅片结霜会增加换热热 阻,减少空气流通面积,最终导致机组制热量的下降。 目前多数空调采用四通阀换向将热气导入翅片换热 器进行化霜的方法。该方法融霜速度快,技术成熟,化 霜时会进行制冷运行,从室内吸收一定热量。以变频压 缩机和电子膨胀阀运行调节的空调在控制时,尤其是制 热和化霜时,如何对二者进行调节能够使制热综合性能 最高,目前没有专门的研究报告。其次,某厂商制造的 低温空气源热泵(冷 / 热水机组)在北京雾霾天运行时, 出现结霜太厚甚至出现低压保护、水温达不到机组设计
机组对结霜的控制采用温差 + 时间的方式进行—— 即有 2 个条件共同判断和控制机组的结霜,时间条件为 机组制热持续时间,温差条件为环境温度与翅片温度的 差值,两个条件为且的关系。本机组在 -7 ̄0 ℃环境温度 区间内的化霜控制参数为 : 默认制热持续时间 50 min, 温差 10 ℃。机组在该条件下的初始状态为 : 压缩机最高 频率 80 Hz,电子膨胀阀初始开度 250 B,电子膨胀阀下 限 120 B,化霜频率 55 Hz。
1 实验测试 1.1 实验机原理(如图 1) 1.2 实验机的基本情况 实验采用 1 套制热量为 16 kW 的分体式低温空气源 热泵,外机翅片后方加小风扇吹风,模拟机组在实际安 装条件下的环境状况。 机组压缩机产自凌达压缩机公司的单级双缸转子 变频压缩机,压缩机调节频率范围为 15 ̄120 Hz,制
要求的问题,该类问题导致部分用户售后投诉。为了解 决该问题,对空气源热泵从变频压缩机和电子膨胀阀控 制方面做深入研究,并在空气焓差实验室模拟验证之。 验证时,分别对影响机组化霜的以下控制因素:制热运 行时间、电子膨胀阀下限、电子膨胀阀初始开度、化霜 频率、电子膨胀阀调节速度进行实际测试,得出最佳结 果和问题的解决方案。
1.3 实验方法 1)按照 GB/T 21362-2008《商业或工业用及类似用 途的热泵热水机》附录 B 制热量测试方法测试机组制热 量 [2]; 2)实验数据处理方法:由于实验有化霜,数据分析 时对化霜前、包含化霜 2 种情况分析机组制热量,制热
图 2 实验样机
能效,机组吸气压力随时间的变化,找出对化霜影响最 显著的影响因素,并针对问题提出改善方案。
技术·创新 /
低温空气源热泵化霜控制因素研究
Research on Control Factors of Defrosting of Low Ambient Temperature Air Source Heat Pump
袁占彪 (珠海格力电器股份有限公司
珠海 519070)
摘要:针对变频空气源热泵结霜的控制因素—制热运行时间、化霜频率、电子膨胀阀调节速度、电子膨胀阀 下限、电子膨胀阀初始开度进行实验研究。得出在低温高湿度环境中制热运行时间为影响机组制热的最显著 因素,电子膨胀阀初始开度为次要因素。该结论对低温潮湿环境下空气源热泵的化霜控制具有一定的指导作 用。 关键词:空气源热泵;低温;化霜控制 Abstract:This paper studied on the control factors of defrosting for variable frequency ห้องสมุดไป่ตู้ir source heat pump, such as operational time,defrosting frequency,electronic expansion valve adjust speed,electronic expansion valve lower limit and electronic expansion valve initial opening. The result showed that operational time was the most significant factor affecting the heating effect and the initial opening of the electronic expansion valve was the secondary factor in the environment of low temperature and high humidity. This conclusion has a certain guidance on the control of de- frosting for air source heat pump which is in low temperature and humid environment. Key words:words: air source heat pump; low ambient temperature; control of defrosting
3)实验方案如下: 应用大数据平台和远程监控对北京煤改电现场安装
94 日用电器 /Electrical Appliances
技术·创新 /
的低温空气源热泵进行监测,得出北京市 12 月份的环境 温度和机组出水温度分布如图 3 所示。
从图 3 中可以看出环境温度在(-5 ̄0 ℃之间的运行 时间最长),出水温度在(40 ̄45 ℃之间的工程最多) 考虑空气源热泵容易结霜条件和结霜最严重条件,选取 环境温度 -3 ℃ /RH95 %,机组出水温度 42 ℃,机组水 流量 2.4 m3/h 作为本次试验的工况,如此更贴近机组的 实际运行情况。分别对已经生产检验合格的机组的影响 其结霜的控制因素:制热运行时间、电子膨胀阀下限、 电子膨胀阀初始步数、化霜频率、电子膨胀阀调节速度 进行测试对比,具体实验方案如下:
相关文档
最新文档