一元二次方程的解法复习课教案

合集下载

(完整版)公开课-一元二次方程复习教案

(完整版)公开课-一元二次方程复习教案

课题教课课时教课准备实现目标教学要点目难点标学情剖析导入目标导入方式指引高效导入精讲目标精讲方式高效独立试试导学引领精练思想碰撞合作学习一元二次方程复习课1课时课型复习课常考题型1.理解并掌握一元二次方程的有关观点;2.能采用适合的方法解一元二次方程;3.掌握一元二次方程的根与系数的关系;4.能用一元二次方程解决生活中的实质问题.解法与应用灵巧运用各知识点解决实质问题在学习完第二单元,在月考试卷以及后边出的有关练习题,出现了好多留空,不知道怎么做,不知道哪道题用哪个知识点去解决。

答题格式不规范等存在多种问题,因此针对这一现象,进行一次对本章内容及中考常考典型种类的题目进行一节复习课。

系统归纳本章的主要内容。

导入内容1、一元二次方程的定义:知足方程一般式ax 2bx c 0 (a 0) 这类形式的方程(一个一般式)2、一元二次方程根与系数的关系:__X1+X2=-??????, X1X2= ___ (两个等式 )??3、一元二次方程根的鉴别式:△=b2-4ac(三种状况 )_△ =b2-4ac _>0,___方程有两个不相等的实数根;_△ =b2-4ac _= 0,__方程有两个相等的实数根;_△ =b2-4ac _< 0,__方程没有实数根。

4、一元二次方程的解法:(四种方法): __配方法 _ 、公式法、因式分解法、十字相乘法5、一元二次方程的应用:(五种基本种类)1、小道宽度2、鸡场边长3、勾股定理4、两次增加5、销售收益设计企图:让同学们理清思路,本单元学习的可用到的知识点有哪些。

中考常考题的训练精讲内容1、一元二次方程的一般形式:链接中考:当m____时,1) x m 21 5 x40( m是对于x的一元二次方程.2、一元二次方程的根与系数的关系:假如一元二次方程 ax2bx c0(a0)的两个根是 x1、 x2,那么????X1+X2=- ?? ,X1X2=??链接中考:已知实数a、 b 是方程x2x 1 0的两根,求b aa+ b的值。

《一元二次方程的解法》教案

《一元二次方程的解法》教案

2课 题教 学目 标教 学设 想2.2 一元二次方程(1)1、掌握因式分解法解一元二次方程的基本步骤.2、会用因式分解法解一元二次方程.【教学重点】用因式分解法解一元二次方程.【教学难点】例 3 方程中含有无理系数,需将常数项 2 看成( 2 ) ,才能分解因式,是本节教学的难点.教 学 程 序 与 策 略一、复习引入1、将下列各式分解因式:(1)y 2 - 3 y (2)4 x 2 - 9(3)(3x - 4)2 - (4 x - 3)2 (4) x 2 - 2 2 x + 2教师指出:把一个多项式化成几个整式的积的形式叫做因式分解.2、你能利用因式分解解下列方程吗?(例 1)(1)x 2 - 3x = 0(2)25 x 2 = 16请中等学生上来板演,其余学生写在练习本上,教师巡视.之后教师指出:像上面这种利用因式分解解一元二次方程的方法叫做因式分解法.(板书课题)二、新课学习1、归纳因式分解法解一元二次方程的步骤:教师首先指出:当方程的一边为 0,另一边容易分解成两个一次因式的积时,用因式分解法求解方程比较方便.然后归纳步骤:(板书)① 若方程的右边不是零,则先移项,使方程的右边为零;② 将方程的左边分解因式;③ 根据若 M·N=0,则 M=0 或 N=0,将解一元二次方程转化为解两个一元一次方程.2、讲解例 2.(1)解下列一元二次方程:(1)(x - 5)(3x - 2) = 10(2) x - 2 = x ( x - 2) (3)(3x - 4)2 = (4 x - 3)2教师在讲解中不仅要突出整体的思想:把 x-2 及 3x-4 和 4x-3 看成整体,还要突出化归的思想:通过因式分解把一元二次方程转化为一元一次方程来求解.并且教师要认真板演,示范表述格式,强调两个一元一次方程之间的连结词要1 2用“或”,而不能用“且.(2)想一想:将第( ),(2),(3)题的解分别代人原方程的左、右两边,等式成立吗?教 学 程 序 与 策 略(3)归纳用因式分解法解的一元二次方程的基本类型:①先变形成\一般形式,再因式分解:②移项后直接因式分解.在选择方法时通常可先考虑移项后能否直接分解因式,然后再考虑化简后能否分解因式.讲解例 3. 解方程 x 2 = 2 2 x - 2在本例中出现无理系数,要注意引导学生将将常数项 2 看成 ( 2 ),另外对于方程中出现两个相等的根,教师要做好板书示范.3、补充例 4 若一个数的平方等于这个数本身,你能求出这个数吗?首先让学生设出未知数,列出方程( x 2 = x ),再让学生求解.根据学生的求解情况强调:对于此类方程不能两边同时约去 x ,因为这里的 x 可以是 0.三、巩固练习课本第 31 页课内练习.四、体会和分享能说出你这节课的收获和体验让大家与你分享吗?先由学生自由发言,教师再投影演示:1、能用分解因式法来解一元二次方程的结构特点:方程的一边是 0,另一边可以分解成两个一次因式的积;2、用分解因式法解一元二次方程的一般步骤:(1)将方程的右边化为零;(2)将方程的左边分解为两个一次因式的乘积;(3)令每一个因式为零,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.3、用分解因式法解一元二次方程的理论依据:两个因式的积为 0,那么这两个因式中至少有一个等于0.4、用分解因式法解一元二次方程的注意点:①必须将方程的右边化为零;②方程两边不能同时除以含有未知数的代数式.5、数学思想:整体思想和化归思想.五、课后作业1、书本作业题2、作业本教后反思课题教学目标教学设想2.2一元二次方程的解法(2)(1)理解直接开平方法解一元二次方程的依据是平方根的意义。

一元二次方程复习课教案

一元二次方程复习课教案

一元二次方程复习课教案教学目标:1.知识与技能:(1)梳理全章知识,理解并掌握一元二次方程的概念及一般形式,熟练掌握方程的解法;(2)理解一元二次方程根的判别式并能运用,会用一元二次方程解决简单的实际问题。

2.过程与方法:(1)经历运用知识、技能解决问题的过程,在解题过程中培养学生的独立思考能力和创新精神;(2)经历观察、操作、想象、推理、交流等活动,发展学生发现问题、提出问题的能力。

3.情感态度与价值观:(1)鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流、合作,体会数学知识的应用价值,提高学生学习兴趣;(2)在合作交流的过程中,渗透数学解题中的方程思想、转化思想、建模思想。

教学重点:一元二次方程的解法及应用及掌握知识过程中的分析问题、解决问题的能力的培养。

教学难点:从实际问题中找等量关系,列出一元二次方程。

课前准备:学生完成课前预习作业,梳理全章知识结构;教师准备教案及课件。

教学过程:第一环节:复习引入,直击问题活动内容:学生分组交流本章知识系统图,教师巡视指导,待学生充分交流后,教师展示PPT上做好的“知识系统图”,及时评价与鼓励,从而进入本课学习。

问题1:一元二次方程的最根本特征是什么?你认为识别它的关键点又是什么?此问题的提出让学生的思维从浅层的“感知”走进深层的“凝思”,思维度增高了。

问题2:前面我们系统学习了一元二次方程的几种解法?分别是哪几种?学生根据前置的讨论易于回答,在此基础上,教师进一步提出下面问题。

问题3:这几种方法中,你认为哪一种是最基础的方法?你能说出这几种解法之间的逻辑关系吗?提出此问题的目的是让学生不仅知道表层上的“是什么?”还要让学生知道深层面上的“为什么?”,从而着力发展学生的思维能力。

问题4:你最喜欢运用上述四种方法中的哪一种去解方程?教师提出这样的问题表面看来“似乎简单”,其实质通过这个问题可引发学生两个思考:其一,适合于自己的最熟练的学得最好的;其二,适合于方程本身结构特点的。

一元二次方程复习课教案

一元二次方程复习课教案

九年级一元二次方程复习课教案一、教学目标:1.通过知识结构图,完成对一元二次方程的知识点的梳理,建构知识体系;2.通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法;3.通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决问题中的作用。

二、教学重点:理解并掌握一元二次方程的概念及解法,会运用方程解决实际问题。

三、教学难点:灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法。

四、教学过程:(一)导入:本章知识结构图1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,未知数的最高次数是22.一元二次方程的解法:(1)直接开平方法(2 )因式分解法(3 )配方法(4 )求根公式法3.一元二次方程的应用(二)基础训练1.判断下列方程是不是一元二次方程,若不是一元二次方程,请说明理由。

x 1 1) (x -1)2=4 2)x ²-2x=8 3)x ²+ =1 4)x ²=y+1 5) x 3-2x ²=1 6)ax ² + bx + c =12.把下列方程化为一元二次方程式,指出二次项系数,一次项系数和常数项 3x ²=1 2y(y-3)= -43.填一填1)若()()02222=-+++x m x m 是关于x 的一元二次方程则m 。

2)若方程02)1()2(22=--++-x m x m m 是关于x 的一元二次方程,则m 的值为 。

3)若x=2是方程x ²+ax-8=0的解,则a= 。

4.选一选1)已知一元二次方程(x+1)(2x -1)=0的解是( )(A )-1 (B )21 (C )-1或-2 (D )-1或212)已知一元二次方程x ²=2x 的解是( )(A )0 (B )2 (C )0或-2 (D )0或25.用适当的方法解下列方程()2130x x -=()22(21)90x --=()2341x x -=()24310x x -+= 6.反败为胜选一选(略)7.一元二次方程应用(略)8.中考链接(2018、2017年广东中考试题)(三)课堂小结:通过今天的学习你有什么收获?(四)课后作业:练习册相应习题。

一元二次方程复习课集体备课教案

一元二次方程复习课集体备课教案
西桥学校教师教学设计
教者姓名
科目
数学
年级
9
复习课第1课时
课题
复习《一元二次方程》
课型
复习
备课时间
教学目标
①掌握一元二次方程的概念、一般形式和解法




ax2+bx+c=0 (a≠0)
根的判别式
②一元二次方程的求根公式和根的判别式
③转化思想、分类讨论思想
重点目标
1、2
难点目标
2、3
教具、学具
多媒体、导学案
当b2-4ac=0时,方程有实数根.
当b2-4ac<0时,方程实数根.
【思想方法】
1.常用解题方法——换元法
2.常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想
【例题精讲】
例1.选用合适的方法解下列方程:
(1)(x-15)2-225=0;(2) 3x2-4)x2+ x=0
例2.已知一元二次方程 有一个根为零,求 的值.
例3.用22cm长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?
例4.已知关于x的方程x2―(2k+1)x+4(k-0.5)=0
(1)求证:不论k取什么实数值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长为a=4,另两边的长b.c恰好是这个方程的两个根,求△ABC的周长.
6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是__________.
7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是.
二、选择题:
8.对于任意的实数x,代数式x2-5x+10的值是一个( )

一元二次方程复习课教案

一元二次方程复习课教案

一元二次方程复习课教案(二)目标:1、让学生进一步掌握解一元二次方程的四种方法;并能灵活选择方法;2、通过典型例子让学生感受到选择适当方法的重要性。

3、进一步探索实际问题中的数量关系及其变化规律,体会数学建模思想,体会数学在应用中的价值4、会根据具体问题中数量关系列出一元二次方程并求解,能根据问题的实际意义检验所得结果是否合理。

教学重难点:重点:掌握解一元二次方程的四种方法。

难点:灵活选择方法解一元二次方程、根据具体问题中数量关系列出一元二次方程并求解是难点。

教学过程:一、典型例题讲解:(一)、一元二次方程的概念1、已知关于x的方程(m²-1)x²+(m-1)x-2m+1=0,当m 时是一元二次方程,当m=时是一元一次方程,当m= 时,x=0。

2、若(m+2)x2 +(m-2)x -2=0是关于x的一元二次方程则m 。

(二)、一元二次方程的解法你还记得吗?请你选择最恰当的方法解下列一元二次方程1、3x² -1=02、x (2x +3)=5(2x +3)3、x² - 3 x +2=04、2 x ² -5x+1=0点评:1、形如(x-k )²=h 的方程可以用直接开平方法求解2、千万记住:方程的两边有相同的含有未知数的因式的时候不能两边都除以这个因式,因为这样能把方程的一个根丢失了,要利用因式分解法求解。

3、当我们不能利用上边的方法求解的时候就就可以用公式法求解,公式法是万能的。

(三)、巩固提高:1、用配方法解方程2x² +4x +1 =0,配方后得到的方程是 。

2、一元二次方程ax² +bx +c =0,若x=1是它的一个根,则a+b+c= ,若a -b+c=0,则方程必有一根为 。

3、 4.已知方程:5x 2+kx-6=0的一个根是2,则k=_____它的另一个根______.5、方程2 x ²-mx-m² =0有一个根为 – 1,则m= ,另一个根为 。

一元二次方程复习课教案

一元二次方程复习课教案

第三章一元二次方程枳沟初中本章知识结构考点考法说明:课标对于一元二次方程的要求主要包括一元二次方程的概念,会用配方法、公式法、因式分解法解一元二次方程,以及用一元二次方程的知识解决实际问题。

一元二次方程应用广泛,在日常生活、科学技术、环境保护、经济发展等领域均有涉及,解题关键是分析题中的等量关系,列方程解应用题以及方程与不等式、函数等结合的综合性题目将是今后中考的趋势。

中考中对这章的考查形式多样,注重对学生方程思想、转化思想等思想方法的考查,对于学生分析问题和解决问题的能力要求也比较高。

【考点一】考查概念问题通常是考查一元二次方程的定义,此时要注意二次项系数不为0,在讨论含字母系数的一元二次方程问题时,命题者常利用a≠0设计陷阱。

例1.(1)方程(m+1)x m2-2m-1 +7x-m=0是一元二次方程,则m= .思路分析:首先根据一元二次方程的定义得,m2-2m-1=2;再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得m+1≠0来求m的值.解:m=3.(2)若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.0思路分析:首先得出m2-3m+2=0;再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得m-1≠0来求m的值.解:m=2.【考点二】一元二次方程的解法要根据方程的特点,灵活选用具体方法。

对于特殊的方程要通过适当的变换,使之转化为常规的一元二次方程,如用换元法。

例2.用适当的方法解一元二次方程(1)x2=3x (2)(x-1)2=3(3)x2-2x-99=0(4)2x2+5x-3=0思路分析:方程(1)选用因式分解法;方程(2)选用直接开平方法;方程(3)选用配方法;方程(4)选用公式法例3.若(x2+y2)2-4(x2+y2)-5=0,则x2+y2=_________。

思路分析:用换元法设x2+y2=m得m2-4m-5=0,解得m1 =5,m2=-1对所求结果,还要结合“x2+y2”进行取舍,从而得到最后结果.解:x2+y2=5【考点三】一元二次方程的根的判别式可以用来:(1)不解方程,判断根的情况;(2)利用方程有无实数根,确定取值范围,解题时,务必分清“有实数根”、“有两个实数根”,“有两个相等实数根”,“有两个不相等实数根”等关键性的字眼。

《第1章 一元二次方程》word教案 (公开课获奖)2022苏教版 (3)

《第1章 一元二次方程》word教案 (公开课获奖)2022苏教版 (3)

一元二次方程的解法合作交流课堂小结0,则 m的值是() A、 2 B、—2 C、2或者—2 D、12 12、要使代数式22231x xx---的值等于0,则x等于()A、1B、-1C、3D、3或-113、解方程:(1) 2x2+5x-3=0。

(2)(3—x)2+x2 = 9。

14、x为何值时,代数式x2-13x+12的值与代数式-4x2+18的值相等?15、已知1—3是方程x2—2x+c=0的一个根,求方程的另一个根及c 的值。

16、三角形两边长分别是6和8,第三边长是x2-16x+60=0的一个实数根,求该三角形的第三条边长。

本节课主要学习了什么知识?你有什么收获,与同学交流。

教学反思领导查阅意见9.1 单项式乘单项式力.教学重点:理解单项式相乘的法则,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法则解决实际问题. 【情景创设】用6个边长为a 的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么? (1)体积的表示方法;(2)面对你的侧面积的表示方法. 探索新知让学生在交流的基础上思考下列问题:(1)体积的表示方法:①3a ·2a ·a =________________=6a 3,②3a ·2a ·b =________________=6a 2b .侧面积的表示方法:3a ·2a =________________=6a 2. (2)从不同的表示中你发现了什么? (3)通过下面两个计算我们来进一步的探讨:(2a 2b )(3ab 2)=[2 ×3]•(a 2•a )(b •b 2)=6a 3b3系数相乘 相同字母 相同字母(4ab 2)(5b )=[4×5]•(b 2• b )•a =20ab 3系数相乘 相同字母 只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢? 通过探索得到单项式乘单项式的计算法则: (1)将它们的系数相乘; (2)相同字母的幂相乘;(3)只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ).注:教师强调格式规范,板书过程.(通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.) 练习1:判断正误:(1)3x 3·(-2x 2)=5x 3; (2)3a 2·4a 2=12a 2; (3)3b 3·8b 3=24b 9; (4)-3x ·2xy =6x 2y ; (5)3ab +3ab =9a 2b 2. 练习2:课本练一练 第1、2题.例 2 计算:(1)(2x )3·(-3xy 2); (2)(-2a 2b )·(-a 2)·14bc .注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算. 练习3:计算:(1)(a 2)2·(-2ab ); (2)-8a 2b ·(-a 3b 2) ·14b 2 ;(3)(-5an +1b ) ·(-2a )2;(4)[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】 补充习题和同步练习。

北师大版数学九年级上册第二章《一元二次方程》复习教案

北师大版数学九年级上册第二章《一元二次方程》复习教案
北师大版数学九年级上册第二章《一元二次方程》复习教案
一、教学内容
北师大:
1.一元二次方程的定义与一般形式;
2.一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法;
3.一元二次方程根的判别式及其应用;
4.一元二次方程的根与系数的关系;
5.实际问题中的一元二次方程及其应用。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量物体的高度,通过一元二次方程来计算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数关系的问题?”(如面积和边长关系等)这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾一元二次方程的奥秘。
此外,小组讨论环节中,学生们能够积极参与,相互交流,分享自己的观点。但在讨论过程中,我也观察到有些学生过于依赖他人,缺乏独立思考。为了培养学生的独立思考能力,我将在今后的教学中,多设置一些开放性问题,引导学生自主探究,提高他们的问题解决能力。
在实践活动方面,学生们对实验操作表现出浓厚兴趣,能够积极参与。但在操作过程中,部分学生还显得有些手忙脚乱,对实验原理的理解不够深入。针对这一问题,我将在后续的教学中,加强对实验原理的讲解,让学生们在操作前能够充分理解实验的目的和步骤。
(二)新课讲授(用时10分钟)

第2 一元二次方程复习》公开课教案 (省一等奖)2022年人教版

第2    一元二次方程复习》公开课教案 (省一等奖)2022年人教版

第21章 一元二次方程教学目标知识与技能 通过引导学生对全章知识进行梳理,使学生了解一元二次方程的相关概念,掌握其解法;理解一元二次方程根的判别式,并能利用其解决相关问题;会运用一元二次方程解决简单的实际问题过程与方法 经历运用知识、技能解决问题的过程,在解题过程中开展学生的独立思考能力和创新精神.渗透数学解题中的方程思想、转化思想、建模思想情感态度与价值观培养学生将已有的知识建立联系的思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流、合作重点 一元二次方程的解法及应用难点 从实际问题中找到等量关系,列出一元二次方程 教法、学法 引导、启发 自主学习、合作交流 课型新授课教学准备 小黑板 教学流程教师活动学生活动 二次备课 一、自主学习 1、知识回忆回忆2、出示学习目标 对全章知识进行梳理,使学生了解一元二次方程的相关概念,掌握其解法;理解一元二次方程根的判别式,并能利用其解决相关问题;会运用一元二次方程解决简单的实际问题 明确目标出示自学提纲⑴一元二次方程的相关概念 ⑵一元二次方程的解法⑶一元二次方程根的判别式 ⑷一元二次方程根与系数的关系⑸用一元二次方程解决简单的实际问题 阅读提纲, 〔1〕~〔5〕4、组织学生自学指导学生阅读课本P2---26课文,并答复以下问题。

学生自学得出结论组内交流,互助互教。

二、自学反响 汇报或检测答复老师提出的问题三、质疑精讲 1、学生质疑,师生共同解疑提出质疑,师生共同解决2、教师横向拓展和纵向挖掘聆听、思考、答复 四、总结提高 1、出示精选习题1.方程043)2(=-+-mx x m m是关于x 的一元二次方程,那么 〔 〕 .2A m =± .2B m =.2C m =-.2D m ≠±2. 用直接开平方法: 9)2(2=+x根据所学内容解答习题4)2(2=-x 24)23(2=+x3. 用配方法:039922=-+x x2410x x -+=4.用公式法解:x x 4132=-2310x x -+=5. 用分解因式法:022=-x x 2(3)2(3)0x x x -+-=)12(3)12(2+=+x x6. 请用适宜方法:(2)(3)20x x ++=;2(1)3(1)100x x ----=.7. 、关于x 的方程2310x x -+= 实根.〔注:填写“有〞或“没有〞〕8. 关于x 的方程0232=+-m x x 的一个根为-1,那么方程的另一个根为______,=m ______。

《一元二次方程解法复习课》课件(新人教版)

《一元二次方程解法复习课》课件(新人教版)

一元二次方程的解法复习课教案一.教学目标:掌握了解一元二次方程的四种方法以及各种解法的特点,会根据不同方程的特点选用恰当的方法,从而准确、快速地解一元二次方程。

二.教学重点:会根据不同方程的特点选用恰当的方法,准确、快速地解一元二次方程。

三.教学难点:通过揭示各种解法的本质联系,渗透降次化归的数学思想。

四. 教学过程:(一)、介绍本节课的重要性,出示教学目标。

同学们,我们本节课一起来复习一元二次方程的解法。

一元二次方程在中考中占有比较重要的地位,通过本节课的复习,我们要掌握解一元二次方程的四种方法以及各种解法的特点,会根据不同方程的特点,选用恰当的方法,从而准确、快速地解一元二次方程。

(二)、检查课前练习完成情况,并讨论,讲解课前练习题让五名同学分别回答课前练习题1――5小题的答案。

若有错误,让学生进行指正。

(三)、讲解四种解法的特点(1)提问一名学生是如何来完成课前练习第2题的。

易化为方程X2=a(a≥0)(其中X代表未知数或含有未知数的一次代数式,a代表常数)适合用直接开平方法来解。

用此法解方程时,一边整理成未知数的平方X2=a(a≥0)或含有未知数的一次代数式的平方的形式(mx+n)2=p(p≥0),另一边为常数,常数不能小于0,然后利用开平方根的定义进行开方,开方时,应注意 X=±a,不要丢掉正负号。

为了方便学生记忆,总结了一个顺口溜:直接开方不万能,条件符合也能行,一边开方一边常,然后开方就能行,开方时,要注意,正负符号要弄清。

(2)提问学生如何来完成课前练习第3题,在学生回答的基础上,指出配方法是直接开方法的“升级版”, 1、先把二次项系数化为1,再把常数项移到等号的另一端。

2、接着在方程的两边同时加上一次项系数一半的平方进行配方。

3、最后进行开方。

(3)提问学生如何完成课前练习第4题、在学生回答的基础上,回顾推导求根公式的过程,让“公式法”:请填写出求根公式公式法是“盗”用了配方法的结果,在应用公式法来解一元二次方程的过程中: 1、应先把一元二次方程化为一般式, 2、再求出判别式的值,判别式的值大于或等于零时才有实数解,要强调熟记公式。

一元二次方程的解法(复习课)

一元二次方程的解法(复习课)

一元二次方程的解法(复习课)教案一、复习目标:1、进一步熟练掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法求解方程。

2、在方程求解过程中注重方式、方法的引导,注重特殊到一般、整体代入等数学思想方法的渗透。

3、培养学生概括、归纳总结能力。

二、重点、难点:1、重点:会根据不同的方程特点选用恰当的方法,使解题过程简单合理。

2 、难点:通过揭示各种解法的本质联系,渗透降次化归的思想。

三、教学过程:1、引例:给下列方程选择较简便的方法⑴5x2-3x=0 运用因式分解法⑵3x2-2=0 运用直接开平方法⑶x2-4x=6 运用配方法⑷2x2+7x-7=0 运用公式法(二)复习提问:我们学了一元二次方程的哪些解法?练习一:按括号中的要求解下列一元二次方程:(1)4(1+x)2=9(直接开平方法);(2)x2+4x+2=0(配方法);(3)3x2+2x-1=0(公式法)(4)(2x+1)2= -3 (2x+1) (因式分解法)概括四种解法的特点及步骤:1.直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法,这是最基础的方法,与此前解一元一次方程类似。

(在降次时注意正负两个值)2.配方法:配方法就是把方程配成一个完全平方式,再用直接开平法求解,配方时,方程左右两边同时【加上一次项系数一半的平方】。

(方法:先移项,再化二次项系数为一,然后配方,最后利用直接开平法求解。

)3.公式法:用公式法解一元二次方程时首先要将方程化成一般形式,也就是ax2+bx+c=0的形式,然后才能做。

在用公式法解一元二次方程中,先算b2-4ac的值。

4.因式分解法:因式分解法就是利用所学过的分解因式的知识来求解。

一般步骤:①将方程右边化为零;②将方程左边分解为两个一次因式乘积;③令每个因式分别等于零,得到两个一元一次方程;④解这两个一元一次方程练习二:选用适当的方法解下列方程(1)2(1-x)2-6=0 (3)3(1-x)2=2-2x (2)(2x-1)2+3(2x-1)+2=0;(4)(x+2)(x+3)=6交流讨论:1 与同桌或邻桌同学比较,看谁的解法更简单。

第21章 一元二次方程——一元二次方程的解法(复习课) 2022—2023学年人教版数学九年级上册

第21章 一元二次方程——一元二次方程的解法(复习课)  2022—2023学年人教版数学九年级上册

课题:《一元二次方程的解法》复习教案一、教材分析:解一元二次方程是人教版九年级上册第21章第二节的内容,本节的主要内容是一元二次方程的解法(直接开方法、因式分解法、配方法、公式法)。

解一元二次方程在课标中的要求是:理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。

一元二次方程的解法是中学方程教学的重要环节,又是后续内容学习解决实际问题的基础和工具。

一元二次方程是对一元一次方程知识的延续和深化,同时为二次函数的学习作好准备。

学好这部分内容,对增强学生学习代数的信心具有十分重要的意义。

二、学情分析:学生已经学习了一元二次方程的解法:直接开方法、配方法、公式法、因式分解法后的一节复习课,已经掌握了学生的薄弱点:1.易错点:直接开平方法中,学生容易只取正的这一个根;2.配方法中,学生容易把一次项系数不除以2直接平方,个别学生会忘记平方,方程左边加了常数项,右边忘记加;公式法中,学生容易把公式中的-b记错成b,个别学生再代入系数的时候会忘记前面的负号;等等。

2.不能灵活选择解法,由于不会根据方程系数的特征找到最优解法,造成错误率提高,用时过长的弊端,从而影响到了少数学生对数学的自信心。

三、教学目标:(一)知识与技能:1.掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法解方程。

2.避免易错点,提高解方程的正确率。

(二)过程与方法通过观察方程的特征选择不同解法,培养学生的观察猜想、归纳总结、分析问题、解决问题等能力,同时还培养学生化归的思想。

(三)情感态度价值观通过对一元二次方程解法的复习,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

通过小组合作的形式,培养合作的习惯,提高分析的能力。

四、教学重点:掌握解一元二次方程的四种方法。

五、教学难点:会根据方程的特征灵活选用适当的方法解方程。

六、教学过程:(一)全班纠错,激发热情:教材P17习题21.2 6(3)3(1)2(1)x x x -=-作业完成中的不同解法展示:A :解:32x =∴ 23x = ∴原方程的解是:23x = B :解:23322x x x -=- C :解: 23322x x x -=-235+2=0x x - 235+2=0x x -252=33x x -- 252=33x x -- 22552+()=363x x -- 2225525+()=+()3636x x -- 252()=63x -- 251()=636x - ∴原方程无解 51=66x -∴=1x∴原方程的解为:=1xD :解:23322x x x -=-235+2=0x x -3,5,2a b c ==-=224(5)4321b ac ∆=-=--⨯⨯=21,2451223b b ac x a ±--±==⨯ ∴12213x x =-=-, ∴原方程的解是:12213x x =-=-,E :解:3(1)2(1)0x x x ---= (1)(32)0x x --=12213x x ==, ∴原方程的解是:12213x x ==, 提出问题,小组讨论:1.以上几位同学的解法是否正确,如果不正确请指出并改正,并小组内总结出哪些地方是易错点。

《一元二次方程解法》复习课教案设计

《一元二次方程解法》复习课教案设计

《一元二次方程解法》复习教案设计复习目标:、能说出一元二次方程及其相关概念。

2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

复习重难点:一元二次方程的解法教学过程一、情景导入前面我们复习了一元一次方程与二元一次方程组的解法,大家掌握得很不错,请同学解方程x=1,(学生略作思考后,示意不会做)忘了吧?看来好多学生都已经忘了如何解一元二次方程呢?那么这节我们就一起来复习一元二次方程的解法(板书题)二、复习指导(学生按照复习提纲解决问题,师做简单的板书准备后,巡视指导,特别要注意帮助有困难的同学,了解学生的情况,为展示归纳做准备。

)复习提纲.-元二次方程的定义:只含有_______叫做一元二次方程。

2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b是_______,叫做_______项。

3.一元二次方程的解法:用直接开平方法解方程(2x+1)2=9形如x2=p的方程的根为________。

用配方法解方程x2+2x=3用配方法解方程步骤:,,,。

用求根公式法解方程x2-3x-=0,x2-3x+=0。

一元二次方程ax2+bx+=0的根的判别式△=________,根x=。

当△&gt;0时,方程有两个_______的实数根。

当△=0时,方程有两个_______的实数根。

当△&lt;0时,_______。

三、展示归纳、教师抽有困难的学生逐题汇报复习结果,学生说教师板书。

2、教师发动全班学生进行评价,补充,完善。

3、教师画龙点睛的强调。

四、变式练习(1、2、4题让学生说出理由,3题让学生观察方程的特点可发现:可用直接开平方法;用配方法或公式法;可用公式法;方程都有共同的因式,故可用因式分解法。

)、判断下列哪些方程是一元二次方程?(1)4x2-16x+1=0(2)2x2-3=0(3)ax2+bx+=02、请将方程=1化为一般形式_______。

人教版九年级数学上册《一元二次方程复习课》教学设计

人教版九年级数学上册《一元二次方程复习课》教学设计

《一元二次方程复习课》教案教学环节教学过程师生活动设计意图一知识梳理一、引入1、类比一元一次方程说一说什么是一元二次方程?2、小组思维导图展示并讲解。

师问生答,学生类比一元一次方程来复习一元二次方程,小组间互相补充,最后得出一元二次方程所有的知识点网络图。

在学生已有认知的基础上查漏补缺。

二教材回顾知识点1:一元二次方程的概念出示习题生练小组代表解答,师补充。

把讲解的任务交给学生,学生在表达自己的想法的同时,加深了对重要知识点的印象。

同时培养学生的表达能力。

知识点2:一元二次方程的解法解下列一元二次方程:(1)(2018·柳州)092=-x(2)(2018·梧州)030422=--xx出示习题,生练习,一题一小组通过师生,生生的互动练习,以(3)01322=--xx(4)0)1(2)1(3=---xxx 展示,一题一小组批改。

师总结。

小组为单位,让每个学生都参与课堂,做到题题过关。

二教材回顾知识点3:一元二次方程的应用1.出示习题,生练习,小组代表解答,师补充。

把讲解的任务交给学生,学生在表达自己的想法的同时,加深了对重要知识点的印象。

同时培养学生的表达能力。

三真题体验(2017·北部湾24题10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.求该社区的图书借阅总量从2014年至2016年的年平均增长率.出示习题,生练习,小组代表解答,师补充.把讲解的任务交给学生,学生在表达自己的想法的同时,加深了对重要知识点的印象。

同时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板书
设计
教学
反思
导 学 过 程
二次备课
. .
一元二次方程解法复习课
主备人:付书杰 审核人:王振强
2013 年10月28日
导 学 过 程
二次备课
一、 教学目标:
1、掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法求解方程。
2、方程求解过程中注重方式、方法的引导,特殊到一般、字母表示数、整体代入等数学思想方法的渗透。
3、培养学生概括、归纳总结能力。
2.配方法:配方法就是把方程配成一个完全平方式,再用直接开平法求解,配方时,方程左右两边同时【加上一次项系数一半的平方】。(方法:先移项,再化二次项系数为一,然后配方,最后利用直接开平法求解。)
3.公式法:用公式法解一元二次方程时首先要将方程化成一般形式,也就是ax2+bx+c=0的形式,然后才能做。 在用公式法解一元二次方程中,先算b2-4ac的值。
练习一:按括号中的要求解下列一元Байду номын сангаас次方程:
(1)4(1+x)2=9(直接开平方法);(2)x2+4x+2=0(配方法);
导 学 过 程
二次备课
(3)3x2+2x-1=0(公式法);(4)(2x+1)2= -3 (2x+1) (因式分解法)
概括四种解法的特点及步骤:
1.直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法,这是最基础的方法,与此前解一元一次方程类似。(在降次时注意正负两个值)
(2x-1)[(2x-1)-3]=0 即
2x-1=0或(2x-1)-3=0
X= 或 x=2
第二位同学: =
解:方程两边除以(2x-1):
(2x-1)=3
X=2
针对三位同学的解法谈谈你自己的看法:
(1)他们的解法都正确吗?
(2)哪一位同学的解法较简便呢?
(二)复习提问:我们学了一元二次方程的哪些解法?
(2)求代数式的最小值.
(四)课堂检测:
1、填空:
①x2-3x+1=0②3x2-1=0③-3t2+t=0④x2-4x=2⑤2x2-x=0
⑥5(m+2)2=8⑦3y2-y-1=0⑧2x2+4x-1=0⑨(x-2)2=2(x-2)
适合运用直接开平方法适合运用因式分解法
适合运用公式法适合运用配方法
2、解方程:
4.因式分解法:因式分解法就是利用所学过的分解因式的知识来求解。
一般步骤:①将方程右边化为零;②将方程左边分解为两个一次因式乘积;③令每个因式分别等于零,得到两个一元一次方程;④解这两个一元一次方程
练习二:选用适当的方法解下列方程
(1)2(1-x)2-6=0(3)3(1-x)2=2-2x
(2)(2x-1) +3(2x-1)+2=0;(4)(x+2)(x+3)=6
交流讨论:1与同桌或邻桌同学比较,看谁的解法更简单。
2你如何根据方程的特征选择解法?
概括:1、当给定的一元二次方程通过适当变形可化为 型时,可选用直接开平方法。
2、当一元二次方程 的左边能分解因式时,用因式分解法比较简单。
3、当一元二次方程 中a,b,c不缺项且不易分解因式时,一般采用公式法。
4、配方法也是一种重要的解题方法,但步骤较为繁琐,所以只要没要求时,一般不采用此法。但对于一次项系数较小而常数项较大时 ,可选用此法
5、四种方法中,优先选取顺序为:直接开平方法、因式分解法、公式法、配方法
(三)、延伸拓展:
1、阅读材料,解答问题:
材料:为解方程(x -1) -5(x -1) +4=0,我们可以视(x -1)为一个整体,然后设x -1=y,原方程可化为y -5y+4=0①.解得y =1,y =4当y =1时x -1=1即x =2,x= .当y =4时x -1=4即x =5, x=
二、重点、难点:
1重点:会根据不同的方程特点选用恰当的方法,使解题过程简单合理。
2难点:通过揭示各种解法的本质联系,渗透降次化归的思想。
三、教学过程:
(一)情景引入:三位同学在作业中对方程(2x-1)2=3(2x-1)采用的不同解法如下:
第一位同学: 第三位同学:
解:移项:(2x-1)2-3(2x-1) =0 解:整理:
(1)14(x-2) —(3x-1) =0 (2) +ax-2 =0;(x是未知数)
3.已知代数式 -5x+7,先用配方法说明,不论x取何值,这个代数式的值总是正数;再求出当x取何值时,这个代数式的值最小,最小值是多少?
(五)课堂小结:
(1)说说你对解一元二次方程的感受:
(2)四种方法(直接开平方法、配方法、公式法、因式分解法)的联系与区别:
导 学 过 程
二次备课
。原方程的解为x =1,x =-1,x =√5,x =-√5
解答问题:(1)填空:在由原方程得到①的过程中利用_______法,达到了降次的目的,体现_______数学思想。
(2)解方程x4—x2—6=0.
2、配方法应用举例:
已知代数式x2– 6x+10,(1)试说明无论x取何实数时,代数式的值都大于0.
相关文档
最新文档