高中数学 第二章 推理与证明阶段复习课课件 新人教A版选修1-2

合集下载

高二数学人教A版选修1-2课件:2.2.1《 综合法与分析法》

高二数学人教A版选修1-2课件:2.2.1《 综合法与分析法》

只需证11- +ccssooiinnss2222xxxx=211-+cscsoioinsns2222yyyy,
即证ccooss22xx- +ssiinn22xx=2(ccooss22yy-+ssiinn22yy),
栏 目
即证 cos2x-sin2x=12(cos2y-sin2y),
链 接
∵BB1∩AB=B,∴CB⊥平面AA1B1B.
又∵AB1⊂平面AA1B1B,∴CB⊥AB1.
∵四边形A1ABB1为菱形,
∴AB1⊥A1B.

∵CB∩A1B=B,
目 链
∴AB1⊥平面A1BC.

(2) 若
x,y≠kπ

π 2
(k∈Z)









1-tan2x 1+tan2x

1-tan2y 2(1+tan2y).
证明:(1)∵ sin θ与 cos θ的等差中项是 sin x,等比中项是 sin
y,
∴ sin θ+cos θ=2sin x,①
sin θcos θ=sin2y,②
①2-②×2,可得
栏 目
(sin θ+cos θ)2-2sin θcos θ=4sin2x-2sin2y,

即 4sin2x-2sin2y=1.

∴ 4×1-c2os 2x-2×1-c2os 2y=1,
即 2-2cos 2x-(1-cos 2y)=1.
故证得 2cos 2x=cos 2y.
(2)要证11+ -ttaann22xx=2(11-+ttaann22yy),
只需证 cos 2x=21cos 2y.
由(1)的结论可知,cos 2x=12cos 2y 显然成立.

数学:2[1].1《合情推理与演绎证明--合情推理》PPT课件(新人教A版-选修1-2)

数学:2[1].1《合情推理与演绎证明--合情推理》PPT课件(新人教A版-选修1-2)

2
1
3
解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1 当n=2时,a2= 3 猜想 an= 2n -1 当n=3时,a3= 7 当n=4时,a4= 15
2
1
3
歌德巴赫猜想的提出过程:

这种由某类事物的部分对象具有某些特征, 推出该类事物的全部对象都具有这些特征 的推理,或者由个别事实概栝出一般结论 的推理,称为归纳推理.(简称;归纳) 归纳推理的几个特点;
1.归纳是依据特殊现象推断一般现象,因而,由归纳 所得的结论超越了前提所包容的范围. 2.归纳是依据若干已知的、没有穷尽的现象推断尚 属未知的现象,因而结论具有猜测性. 3.归纳的前提是特殊的情况,因而归纳是立足于观 察、经验和实验的基础之上. 归纳是立足于观察、经验、实验和对有限资料分 析的基础上.提出带有规律性的结论. 需证明
这就是著的哥德巴赫猜想。欧拉在6月30日给他的回信中说, 他相信这个猜想是正确的,但他不能证明。叙述如此简单的问 题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引 起了许多数学家的注意。从提出这个猜想至今,许多数学家都 不断努力想攻克它,但都没有成功。当然曾经有人作了些具体 的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一 一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚 待数学家的努力。从此,这道著名的数学难题引起了世界上成 千上万数学家的注意。200年过去了,没有人证明它。哥德巴 赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了 20世纪20年代,才有人开始向它靠近。

2019-2020学年高中人教A版数学选修1-2课件:第2章 推理与证明 本章整合提升

2019-2020学年高中人教A版数学选修1-2课件:第2章 推理与证明 本章整合提升
32
log34>1,0<2-2<2-3<1, f(x)在(0,+∞)单调递减,
2
3
∴f(log34)<f(2-3)<f(2-2),
∴flog314<f(2-23)<f(2-32),故选 C. 答案:C
4.(2019·浙江卷)已知椭圆x92+y52=1 的左焦点为 F,点 P 在 椭圆上且在 x 轴的上方,若线段 PF 的中点在以原点 O 为圆心, |OF|为半径的圆上,则直线 PF 的斜率是________.
A.flog314>f(2-32)>f(2-23) B.flog314>f(2-23)>f(2-32) C.f(2-32)>f(2-23)>flog314 D.f(2-23)>f(2-32)>flog314
解析:∵f(x)是定义在 R 上的偶函数,
∴f(-x)=f(x),
∴flog314=f(-log34)=f(log34).
【解析】 (1)题目给出了“每条边(包括顶点)有 n(n>1)盆 花”,而三角形有三条边,因此,三条边上的花盆数量总和为 3n,但三个顶点上的花盆多数了一次,必须减去.所以 Sn=3n -3(n∈N+,n>1).
(2)设第 n 个图中小正方形的个数为 Sn,观察图形知, 当 n=1 时,S1=2+1; 当 n=2 时,S2=3+2+1; 当 n=3 时,S3=4+3+2+1; 当 n=4 时,S4=5+4+3+2+1; 当 n=5 时,S5=6+5+4+3+2+1; …,
【思路探索】 若从正面进行证明,需证对边不平行或不 相等,既不易确定目标,又不易比较斜率大小或边的长度.若 把结论的反面作为条件,则等量关系(斜率相等)便很明确,思路 也很清晰.因此,可用反证法证明.

高中数学第二章推理与证明2.1.2演绎推理课件新人教A版选修220721245

高中数学第二章推理与证明2.1.2演绎推理课件新人教A版选修220721245

奇数都不能被2整除 2017是奇数 2017不能被2整除 (zhěngchú)
进一步观察(guānchá)上述例子有几部分组成? 各有什么特点?
第四页,共19页。
2、三段论
“三段论”是演绎推理的一般(yībān)模式,
包括:
(1)大前提——已知的一般(yībān)原理;
(2)小前提——所研究的特殊情源自;ED所以(suǒyǐ)DM=EM.
A
第十三页,共19页。
M
B
例3:证明大(z前hè提ng:mí增ng函)函数数的f定(x义)=(-dxì2n+g2yxì)在;(-∞,1)是增
证明函:数任。取x1 , x2 (,1), 且x1 x2 ,
f ( x1 ) f ( x2 ) ( x12 2 x1 ) ( x22 2 x2 )
f '( x) 2x 2 2( x 1), 又因为x (,1),即x 1, 所以x 1 0, 从而 2( x 1) 0,即f '( x) 0,
小前提所以f ( x) x2 2x在(,1)有f '( x) 0.
由函数的单调性与其导 数的关系知:
结论(jié函lù数n)f(x)=-x2+2x在(-∞,1)是增函数。
由上述(shàngshù)具体
事实能得到怎样的结论

1+3+……+(2n-1)=n2
正确 (zhèngq
第二页,共19页。
在空间中,若
α ⊥γ,β ⊥γ 则α//β。
错误 (可能相交

1、演绎推理:由一般(yībān)到特殊的推理。
所有金属都能导电 铜是金属
铜能导电
太阳系大行星以椭圆 冥王星是太阳 冥王星以椭圆形轨

《反证法》人教版高中数学选修1-2PPT课件(第2.2.2课时)

《反证法》人教版高中数学选修1-2PPT课件(第2.2.2课时)

知识要点
反证法主要适用于以下两种情形: (1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰. (2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很 少的几种情形.
知识要点
用反证法证题时,应注意的事项 : (1)周密考察原命题结论的否定事项, 防止否定不当或有所遗漏; (2)推理过程必须完整,否则不能说明命题的真伪性; (3)在推理过程中,要充分使用已知条 件,否则推不出矛盾,或者不能断定推出的结果是错误的.
矛盾
所以 _假__设__不__成__立 ,即求证的命题正确. 命题成立
l3
P
l1
l2
知识要点
反证法的步骤 一、提出假设 假设待证命题不成立,或是命题的反面成立. 二、推理论证 以假设为条件,结合已知条件推理,得出与已知条件或是正确命题相矛盾的结论. 三、得出矛盾 这与“......”相矛盾. 四、结论成立 所以假设不成立,所求证的命题成立.
∴ ∠ 1 =∠ 2 =∠3(两直线平行,同位角相等) ∴ l 3∥ l2(同位角相等,两直线平行 ) 归纳
l1
l1
l2
P 2
l1
3
请同学们自己比较两种证明方法的各自特点,从中体验反证法的思考过程和特点.
新知探究
结合我们讲过的例子,我们可以得到什么?
思考
由上面的例子可以看出,反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件 矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.
知识要点
宜用反证法证明的题型
(1)以否定性判断作为结论的命题; (2)某些定理的逆命题; (3)以“至多”、“至少”或“不多于”等形式陈述的命题; (4)关于“唯一性”结论的命题; (5)解决整除性问题; (6)一些不等量命题的证明; (7)有些基本定理或某一知识体系的初始阶段; (8)涉及各种“无限”结论的命题等等.

新版高中数学人教A版选修1-2课件:第二章 推理与证明 2.2.1

新版高中数学人教A版选修1-2课件:第二章 推理与证明 2.2.1
证明:(1)在四棱锥P-ABCD中,
∵PA⊥底面ABCD,CD⊂平面ABCD, ∴PA⊥CD. ∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC. 而AE⊂平面PAC,∴CD⊥AE.
题型一
题型二
题型三
题型四
(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.
∵E是PC的中点,∴AE⊥PC.
题型一
题型二
题型三
题型四
【变式训练3】 如图,三角形PDC所在的平面与长方形ABCD所 在的平面垂直,PD=PC=4,AB=6,BC=3.
典例透析
(1)证明:BC∥平面PDA; (2)证明:BC⊥PD; (3)求点C到平面PDA的距离. (1)证明因为四边形ABCD是长方形,所以BC∥AD. 因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA.

1)(������∈N*,n≥2),求证: 1 为等差数列.
������������
分析:(1)类比题目所给等式得到 Sn+1 与 an+1 之间的关系式→两式相减→说明{an}是等比数列
(2)利用(1)中的公比
q
得到
f(m)→化简式子
bn=
3 2
������
(bn-1)→证明
1 ������������
两式相减,得Sn=n·2n-1×20-1×21-…-1×2n-1=n·2n-2n+1=2n(n-1)+1.
典例透析
题型一
题型二
题型三
题型四
利用综合法证明不等式
【例 2】 已知 a,b,c 是正实数,且 a+b+c=1. 求证:(1)a2+b2+c2≥13 ; (2) ������ + ������ + ������ ≤ 3.

数学:第二章《推理与证明复习小结》课件(新人教a版选修1-2)

数学:第二章《推理与证明复习小结》课件(新人教a版选修1-2)
新课标人教版课件系列
《高中数学》
选修1-2
第二章 推理与证 明复习小结
知识结构
合情推理
归纳推理
推理
类比推理

演绎推理


比较法
证 明
直接证明
综合法
证明
分析法
间接证明
反证法
数学归纳法
一.综合法
例 .已 知 a、 b、 c为不 相 等 正 数 , 且 abc=1,
证求: a+ b+ c<1+1+1. abc
作业:
1:平面内有n条直线,其中任何两条不平行,任何三条 不过同一点, 证明这n条直线把平面分成f(n)=(n2+n+2)/2个区域.
; 亚米游戏 ;
是在所难免の,没出什么大事就算不错了丶"这城中の人确实是壹下子多出了许多,街道上,到处都是人,斗嘴打架の也不在少数丶但是最关键の是,以前の四十几亿人当中,有近壹半甚至是壹半以上の人,平常都是在闭关修行の,根本不会上街の丶所以相当于城中,壹下子多出了二十几亿の流 动人口,真要只是地球上の那些普通人类也无所谓,大家の节奏比较慢,这方圆十万里の圣城中,要容纳哪怕是上千亿普通人也完全没问题丶"怎么说呢,咱们城主府の实力相对来说,还不是特别の强,若是能再扩充壹些大魔神以上の强者,或许对咱们城主府の势力会有比较大の帮助只是这些 人并不好招丶"魔石叹道丶而且他也并不想,总是让自己老婆在背后,替自己处理这圣城中の事情让自己老婆置于危险之中丶如今在这南风圣城中,怕是魔仙就不止五六位了吧,若是城主府中连壹位魔仙都没有,那完全没得玩了丶有些强者,隐藏在城中,也不可能让你壹个壹个去做登记之类の 丶过了壹会尔,宏七让魔石先去休息了,他取出了城主令,呼唤起了老城主丶"有什

高中数学人教版选修1-2_模块复习课 第二课 推理与证明 (共50张PPT)精选ppt课件

高中数学人教版选修1-2_模块复习课 第二课 推理与证明 (共50张PPT)精选ppt课件

=2ab(p-q)2. 因为a,b同号,所以2ab(p-q)2≥0. 所以原不等式成立.
【方法技巧】转化与化归思想的内涵与应用 (1)内涵:转化与化归的思想就是在处理问题时,通过某 种转化过程,化归为一类已经解决或比较容易解决的问 题,最终使问题化繁为简、化难为易.
(2)应用:本章内容中转化与化归思想主要应用于以下 几个方面:归纳推理中特殊到一般的转化;演绎推理中 一般到特殊的转化;分析法中结论与条件的转化;反证 法中正难则反的转化;数学归纳法中无限与有限的转化 等.
【方法技巧】 1.归纳推理的特点及一般步骤
2.类比推理的特点及一般步骤
【变式训练】对命题“正三角形的内切圆切于三边的 中点”,可类比猜想出:正四面体的内切球切于四面各 正三角形的位置是 ( ) A.各正三角形内的任一点 B.各正三角形的中心 C.各正三角形边上的任一点 D.各正三角形的某中线的中点
2.反证法的证题思想 否定结论,提出假设 ↓ 逻辑推理,导出矛盾 ↓ 否定假设,肯定结论
【变式训练】已知直线a与b不共面,c∩a=M,b∩c=N,a∩ 面α=A,b∩面α=B,c∩面α=C. 求证:A,B,C三点不共线. 【证明】假设A,B,C三点共线于直线l,
因为A,B,C∈α,所以l⊂α. 因为c∩l=C,所以c与l确定一平面β. 因为c∩a=M,所以M∈β.又A∈l, 所以a⊂β,同理b⊂β, 所以a,b共面,与已知a,b不共面矛盾, 故A,B,C三点不共线.
课 推理与证明
【网络体系】
【核心速填】 1.合情推理 (1)归纳推理:由_____到_____、由_____到_____的推理.
部分 整体 个别 一般 (2)类比推理:由_____到_____的推理. (3)合情推理:归纳特推殊理和特类殊比推理都是根据已有的事 实,经过观察、分析、比较、联想,再进行归纳、类比, 然后提出猜想的推理,我们把它们统称为合情推理.

高中数学第二章推理与证明章末复习同步课件新人教A版选修1_2100

高中数学第二章推理与证明章末复习同步课件新人教A版选修1_2100

12345
答案
5.在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…
+a19-n(n<19,n∈N*)成立,类比上述性质,相应地,在等比数列{bn}
中,若b9=1,则有等b1式b2_…_b_n_=__b_1_b_2_…__b_1_7_-__n_(_n_<_1_7_,__n_∈__N__*_) _成立.
证明
反思与感悟 根据待证不等式的结构特点构造函数,将此问题转化为函 数问题,再利用函数的图象与性质解决问题.
跟踪训练2 设a,b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2. 证明 要证a3+b3>a2b+ab2成立,即需证(a+b)(a2-ab+b2)>ab(a+b) 成立, 即需证a2-ab+b2>ab成立. 只需证a2-2ab+b2>0成立, 即需证(a-b)2>0成立. 而由已知条件可知,a≠b,所以a-b≠0, 所以(a-b)2>0显然成立. 即a3+b3>a2b+ab2.
证明
例3 证明
类型三 反证法 已知 f(x)=ax+xx- +21(a>1),求证:f(x)=0 没有负根. 假设x0是f(x)=0的负根,
则 x0<0 且 x0≠-1 且 a x0 =-xx00-+21, 由 0< a x0 <1,得 0<-xx00- +21<1,
解得21<x0<2,这与 x0<0 矛盾,
D.9(n-1)+(n-1)=10n-10
解析 由已知中的式子,我们视察后分析:
等式左边分别为9与编号减1的积再加上编号,
等式右边是一个等差数列.
根据已知可以推断:

合情推理与演绎证明课件十七 新人教a版选修1-2

合情推理与演绎证明课件十七 新人教a版选修1-2

A
)
0.5
1 a
b
c (A) 1 (B) 2 (C) 3 (D) 4
第二章推理与证明
3、有这样一段演绎推理是这样的“有些有理数是真分 数,整数是有理数,则整数是真分数”结论显然是错 误的,是因为 ( C ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
0 1 2 3 2004 4 10 0 10 0 10 2 10 4、在十进制中 那么在5进制中2004折合成十进制为 ( B ) A.29 B. 254 C. 602 D. 2004
第二章推理 --复习
一、结构设置
推 理
合情推理
(或然性推理)
演绎推理
(必然性推理)
归纳
(部分到整体、 特殊到一般)
类比
(特殊到特殊)
三段论
(一般到特殊)
证 明
直接证明
综合法 分析法
间接证明
反证法
第二章推理与证明
推理
归纳推理 (由特殊到一般) 合情推理 类比推理 (由特殊到特殊)
三段论:大前提 小前提 结论 演绎推理 (由一般到特殊) 综合法 (由因导果) 直接证明 分析法 (执果索因) 证明 反证法 间接证明
应用
比较法
比差法
不等式的证明方法
(法
第二章推理与证明
1 一同学在电脑中打出如下若干个圈: ○●○○●○○○●○○○○●○○○○○● … 若将此若干个圈依此规律继续下去,得到一系 列的圈,那么在前120个圈中的●有( C )个 (A)12 (B) 13 (C)14 (D)15 2.观察下列数:1,3,2,6,5,15,14,x,y,z,122,… 中x,y,z的值依次是 ( A ) (A)42,41,123; (B) 13,39,123; (C)24,23,123; (D)28,27,123.

高中数学人教A版选修1-2第二章 2.1 2.1.2 演绎推理课件

高中数学人教A版选修1-2第二章 2.1 2.1.2 演绎推理课件
(2)特点:演绎推理是从 一般 到 特殊 的推理.
(3)模式:三段论.
2.三段论 “三段论”是演绎推理的一般模式,包括:
[点睛] 用集合的观点理解三段论 若集合 M 的所有元素都具有性质 P,S 是 M 的一个子 集,那么 S 中所有元素也都具有性质 P.

[小试身手]
1.判断(正确的打“√”,错误的打“×”)
2.1.2 演绎推理
预习课本 P30~33,思考并完成下列问题
(1)什么是演绎推理?它有什么特点? (2)什么是三段论?一般模式是什么? (3)合情推理与演绎推理有什么区别与联系?
[新知初探]
1.演绎推理
(1)概念:从一般性的原理 出发,推出某个特殊情况 下的 结论 ,我们把这种推理称为演绎推理.
演绎推理在几何中的应用
[典例] 如图所示,D,E,F 分别是 BC, CA,AB 边上的点,∠BFD=∠A,DE∥BA,求 证:DE=AF.写出“三段论”形式的演绎推理.
[解] (1)同位角相等,两直线平行,(大前提) ∠BFD 和∠A 是同位角,且∠BFD=∠A,(小前提) 所以 DF∥AE.(结论)
D.大前提:π 是无限不循环小数;小前提:π 是无理数;结论: 无限不循环小数是无理数
解析:选 B 对于 A,小前提与大前提间逻辑错误,不 符合演绎推理三段论形式;对于 B,符合演绎推理三段 论形式且推理正确;对于 C,大小前提颠倒,不符合演 绎推理三段论形式;对于 D,大小前提及结论颠倒,不 符合演绎推理三段论形式.
演绎推理在代数中的应用 [典例] 已知函数 f(x)=ax+xx- +21(a>1),求证:函数 f(x)在 (-1,+∞)上为增函数. [证明] 对于任意 x1,x2∈(-1,+∞),且 x1<x2,若 f(x1) <f(x2),则 y=f(x)在(-1,+∞)上是增函数.(大前提) 设 x1,x2∈(-1,+∞),且 x1<x2,

高中数学新课标人教A版选修1-2课件

高中数学新课标人教A版选修1-2课件
(1) a b a c b c ; (2) a b ac bc ; (3) a b a2 b2;等等.
类比推理的结论不一定成立.
第二十五页,编辑于星期一:点 十三分。
.
.
第二十六页,编辑于星期一:点 十三分。
圆的概念和性质
球的类似概念和性质
圆心与弦(非直径)中点连线垂直于 球心与截面圆(不经过球心的截面圆)
推理与证明
推理
证明
合情推理
演绎推理 直接证明 间接证明
第一页,编辑于星期一:点 十三分。
已知的判断
确定
新的判断
根据一个或几个已知的判断来确定一个新 的判断的思维过程就叫推理.
第二页,编辑于星期一:点 十三分。
第三页,编辑于星期一:点 十三分。
数学皇冠上璀璨的明珠——哥德巴赫猜想
3+7=10 3+17=20 13+17=30
第三十五页,编辑于星期一:点 十三分。
再 见
第三十六页,编辑于星期一:点 十三分。
八面体
三棱柱
四棱锥
尖顶塔
第十页,编辑于星期一:点 十三分。
凸多面体
四棱柱 三棱锥 八面体 三棱柱 四棱锥 尖顶塔
面数(F) 顶点数(V) 棱数(E)
第十一页,编辑于星期一:点 十三分。
四棱柱
凸多面体
四棱柱 三棱锥 八面体 三棱柱 四棱锥 尖顶塔
面数(F) 顶点数(V) 棱数(E)
6
8
12
第十二页,编辑于星期一:点 十三分。
n =1时,a1=1 第1个圆环从1到3. n=2时,a2=3 前1个圆环从1到2;
第2个圆环从1到3; 第1个圆环从2到3.
2
1
3
第三十三页,编辑于星期一:点 十三分。

人教A版高中数学高二选修1-2配套课件 第二章 推理与证明

人教A版高中数学高二选修1-2配套课件 第二章 推理与证明

B.至少有一个大于 2
C.至少有一个不小于 2
D.至少有一个不大于 2
[解析] 假设都小于 2,则(a+1b)+(b+1c)+(c+1a)<6,而 a+1b+b+1c+c
+1a=a+1a+b+1b+c+1c≥2+2+2=6.矛盾.
3.实数a、b、c不全为D0等价于( ) A.a、b、c均不为0 B.a、b、c中至多有一个为0 C.a、b、c中至少有一个为0 D.a、b、c中至少有一个不为0 [解析] “不全为0”的含义是至少有一个不为0,其否 定应为“全为0”.
1.反证法的定义
矛盾
错一误般地,假设原命题成不立成立,经过正确的推理,最后得 出______,因此说明假设______,从而证明了原命题 ______,这样的证明方法叫做反证法.反证法是间接证明 的一种基本方法.
2.反证法证题的原理
(1)反证法的原理是“否定之否定等于肯定”.
3.反证法常见的矛盾类型
又因为(1-a)·a<(1-a2+a)2=14,(1-b)·b<14,(1-c)·c<14, 所以(1-a)a·(1-b)b·(1-c)c<614. 这与假设矛盾,因此假设不成立. 所以(1-a)b·(1-b)c·(1-c)a 不可能同时大于14.
命题方向3 ⇨用反证法证明存在性、唯一性命题
典例 2 求证:方程 2x=3 有且只有一个根. [思路分析] 本题中“有且只有”含有两层含义:一层为“有”即存在; 另一层为“只有”即唯一性,证明唯一性常用反证法.
准确写出反设
典例 4
已知a+b+c>0,ab+bc+ca>0,abc>0,求
证:a>0,b>0,c>0.
[错解] 假设a≤0,b≤0,c≤0,则a+b+c≤0,

高中数学 《合情推理与演绎证明》课件28 新人教A版选修1-2

高中数学 《合情推理与演绎证明》课件28 新人教A版选修1-2
又如,为了回答"火星上是否有性命"这个问题, 科学家们把火星与地作 球类比,发现火星具有 一些与地球类似的特,征如火星也是围绕太阳 运行、绕轴自转的行,星也有大气层,在一年中 也有季节的变更,而且火星上大部分时的 间温 度适合地球上某些已生 知物的生存,等等.由此, 科学家猜想: 火星上也可能有性命在 存.
开普勒
( Ke
pler , 1571
1630 ) 说 :
" 我珍惜类
比胜过任何
别的东西
,它
是我最可信
赖的老师
,它
能揭示自然
界的秘密
."
根 据 同 样 的 思 路, 我 们 还 可 以 定 义 并 且 研 究4维 球、5维 球 直 至n维 球.研 究n维 球 时,总 可 以
类比n 1维球的情形,从中获
为归纳推理 简称归纳 .简言之 ,归纳推理是由
部分到整体、由个一别般到的推. 理
例 如 ,由 铜 、 铁 、 铝 、 金 、 银等 金 属 能 导 电, 归 纳 出" 一 切 金 属 都 能 导 电" ;由 直 角 三 角 形 、 等 腰 三 角 形 、 等 边 三 角形 的 内 角 和 都 是180 0, 归 纳 出" 所 有 三 角 形 的 内 角 和 都是180 0 " 这 些 都 是 归 纳 推 理.在 统 计 学 中,我 们 总 是 从 所 研 究 的 对 象 全 体 中 抽取 一 部 分 进 行 观 测 或 试 验 以 取 得 信 息,从 而 对 整 体 作 出 推 断,这 也 是 归 纳 推 理.
思考科学家做出上述 推猜 理想 过的 程是怎 ? 样
在提出上述猜想,过 科程 学中 家对比了火球 星与 之间的某些相似 ,然特后征从地球的一特 个征 已知 (有性命存)出在发 ,猜测火星也可能个 具特 有征 .这

2019_2020学年高中数学第二章推理与证明课件新人教A版选修1_2

2019_2020学年高中数学第二章推理与证明课件新人教A版选修1_2

(2)在等差数列{an}中,设公差为 d, 则aamm++nn==aamn++mndd==ab++nmdd,,所以 am+n=bnn--amm. 在等比数列{bn}中,设公比为 q, 则bbmm++nn==bbmn··qqmn==ab··qqnm,,
n-m 所以 bm+n=
bn am.
1.观察下列各等式:2-2 4+6-6 4=2,5-5 4+3-3 4=2,7-7 4+ 1-1 4=2,101-0 4+--2-2 4=2,依照以上各式成立的规律,得到 一般性的等式为( ) A.n-n 4+(8-8-n)n -4=2 B.(n+n+1)1 -4+((nn++11))+-54=2 C.n-n 4+(n+n+4)4 -4=2 D.(n+n+1)1 -4+(n+n+5)5 -4=2
主题 2 直接证明(综合法与分析法)
试用分析法和综合法分别推证下列命题:已知
α∈(0,π),求证:2sin 2α≤1-sincoαs α.
【证明】 法一:(分析法)
要证
2sin
2α≤1-sincoαs
成立, α
只需证 4sin αcos α≤1-sincoαs α.
因为 α∈(0,π),所以 sin α>0.
1.设 x,y 为正实数且 x+y=1,求证: (1+1x)(1+1y)≥9. 证明:左边=(1+x+x y)(1+x+y y)=(2+xy)(2+xy)= 4+2(xy+xy)+1≥5+4=9.所以原不等式成立.
2.当 a≥2 时,求证: a+1- a< a-1- a-2. 证明:要证 a+1- a< a-1- a-2, 只需证 a+1+ a-2< a+ a-1, 只需证( a+1+ a-2)2<( a+ a-1)2, 只 需 证 a + 1 + a - 2 + 2 (a+1)(a-2) <a + a - 1 + 2 a(a-1),只需证 (a+1)(a-2)< a(a-1), 只需证 a2-a-2<a2-a,只需证-2<0. 因为-2<0 显然成立, 所以 a+1- a< a-1- a-2成立.

高中数学 第二章 推理与证明本章整合课件 新人教A版选修1-2

高中数学 第二章 推理与证明本章整合课件 新人教A版选修1-2

网络构建 专题 一 专题 二
专题归纳
解 :(1)∵f(x)=ax3+bx+c, ∴f'(x)=3ax2+b. 由已知 f(x)在点 x=2 处取得极值 c-16, ������'(2) = 0, 得 ������(2) = ������-16, 12������ + ������ = 0, 即 8������ + 2������ + ������ = ������-16, 12������ + ������ = 0, ������ = 1, 即 解得 4������ + ������ = -8. ������ = -12.
网络构建 专题 一 专题 二
专题归纳
证法一:(分析法)①当 ac+bd ≤0 时 ,显然成立. ②当 ac+bd>0 时,欲证原不等式成立,只需证(ac+bd )2≤(a 2+b2)(c2+d2). 即证 a 2c2+2abcd+b2d2≤a2c2+a 2d2+b2c2+b 2d2. 即证 2abcd≤b2c2+a2d2. 即证 0≤(bc-ad )2. ∵a ,b ,c,d ∈R,∴上式恒成立, 故原不等式成立.综合①②知,命题得证. 证法二:(综合法)∵(a2+b2)(c2+d2)=a2c2+a 2d2+b2c2+b2d 2 =(a 2c2+2abcd+b2d2)+(b 2c2-2bcad+a 2d2) =(ac+bd )2+(bc-ad )2≥(ac+bd)2, ∴ (������ 2 + ������ 2)(������ 2 + ������ 2)≥|ac+bd|≥ac+bd.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档