2020—2021学年湘教版 七年级数学上册第1章《有理数》培优试题

合集下载

湘教版数学七年级上册第一章有理数测试题.docx

湘教版数学七年级上册第一章有理数测试题.docx

初中数学试卷七年级上数学第一章有理数测试题一、选择题(本题共10小题,每小题3分,共30分)1.在数-(-2),0,-|-2|,-22中,最小的是( )A. –(-2)B. -|-2|C. -22D.02. 下列说法正确的是( )A. 一个数不是正数,就是负数B.带负号的数是负数C. 0℃表示没有温度D.若a 是正数,则-a 一定是负数3、 -(-4)的相反数是( )A. 4B. -4C. 41D.41-4. 太阳的半径大约是696 000千米,用科学记数法可表示为( )A .696×103千米B .6.96×105千米C .6.96×106千米D .0.696×106千米5. 下列各式中结果为负数的是( )A .(4)--B .2(4)-C .4--D .()34--6.绝对值小于3的非负整数的个数为 ( )A .7B .4C .3D .27、一个数的绝对值的相反数是-5,这个数是( )A.5B.-5C.5或-5 D 。

不能确定8 若有理数a 、b 满足ab >0,且a + b <0,则下列说法正确的是( ) A .a 、b 可能一正一负 B .a 、b 都是正数C .a 、b 都是负数D . a 、b 中可能有一个为09.若23(2)0m n -++=,则2m n A. -1 B. 1 C. 4 D. 7 10. 已知a 、b 为两个不相等的有理数, 根据流程图中的程序,若输入的a 值是10,输出的c 值为20,则输入的b 值是( )A . 15B .C . 0D .20二、填空题(本题共10小题,每小题3分,共30分)11、12-的倒数是____,5的相反数是____. 12、 数轴上a 所表示的点A 到原点的距离是2,则a 等于___13、 )31(21-+= . 14、比-3小-5的数是____,比-3 ℃高5 ℃的温度是____.15、 若a 可取任意有理数,则+3的最小值是 .16、已知a 、b 互为相反数,则5-2a -2b 的值是 。

(必考题)七年级数学上册第一单元《有理数》-解答题专项测试卷(培优练)

(必考题)七年级数学上册第一单元《有理数》-解答题专项测试卷(培优练)

一、解答题1.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.2.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.3.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键. 4.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 解析:(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45 +3×|1﹣(﹣2)2| =﹣12﹣(﹣8)×54+3×|1﹣4| =﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.5.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.6.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.7.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭;63解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 8.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】329753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.9.计算:()22216232⎫⎛-⨯--⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.10.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.11.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.12.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.13.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<< 【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:1531.502.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.14.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】 先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 15.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.18.计算:-32+2×(-1)3-(-9)÷213⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.19.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 20.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.21.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.23.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58)解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.24.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x ,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24,∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6,∴点M 所对应的数为x-6-x=-6;综上,点M 所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.25.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】 (1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.27.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c+++++的值. 解析:(1)2或2-或0;(2)-1.【分析】 (1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b +的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.28.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?解析:(1)见解析;(2)4.5km ;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.29.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解: 1.20.7010.30.20.30.50.18-++--+++=-(秒) 140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.30.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+---=1118-- =18-;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭ =115118236⎛⎫--+⨯ ⎪⎝⎭=115118+1818236-⨯⨯-⨯ =1-9+6-15 =-17.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.。

湘教版七年级数学上册 第一章《有理数》整章水平测试题(5)(含答案)-

湘教版七年级数学上册 第一章《有理数》整章水平测试题(5)(含答案)-

第一章《有理数》整章水平测试题(5)[时间:90分钟;满分:120分]一、小试牛刀,仔细填,本章知识显眼前!(每小题3分,共30分)1、同学们,我们现在的生活,已经离不开数学了,比如大家要订做校服,那就要知道你的身高,那么你的身高是个准确数还是个近似数? .你知道你的身高吗?请写出来(单位:m ,保留三个有效数字)你的身高 .2、有一个数,它既不是正数,也不是负数,那么它是 ,你能不能利用学过的有理数的知识,也编个填空题,让同学们知道你编的题目也是这个数呢?你编的题目是 .3、-2的相反数是 .-2的绝对值是 .你能用-2表示现实生活中的问题吗?答: .4、请写出不小于-6而小于6的所有整数的和是 .并用“>”表示出它们的大小 .所有不小于-2006而小于2006的所有整数的和 .所有这些整数的积是 .5、利用计算器可进行多种复杂的运算,如112=121,1112= ,11112= ,请你将它们的结果填上.你发现有什么规律吗?如果不用计算器,是不是也可以很快的将下面这个题目的结果写出来啊?11111112 ,学习数学很有意思吧.6、把1到100这100个数按下面的规律填加符号:1,2,3添加“+”4,5,6添加“-”7,8,9添加“+”10,11.12,添加“-”依次类推.最后一个数是100.应添加什么符号? 答: , 你能不能将这100个带符号的数的和求出来哪?只写结果. 8、-43与-54的大小关系是:-43 -54. 9、某仪表顺时针方向旋转45°记作-45°,则120°的意义 . 10、3247000保留两个有效数字的近似数是 .二、小试牛刀,精心选,本章知识定过关!(每小题3分,共30分) 11、下面两个数互为相反数是( )A 、2.021和B 、 333.031-和C 、 43275.2和- D 、9和-(-9)12、已知一个数的绝对值等于2,那么这个数与2的和为( ) A 、4 B 、4或-4 C 、0 D 、4或0 13、在数轴上表示-12的点与表示-3的点的距离是( ) A 、9 B 、-9 C 、13 D 、-13 14、下列各组数中,互为倒数的是( )A 、0.5和5B 、-1和- 1-C 、717-和 D 、-10和10 15、把5.69540四舍五入精确到百分位,那么所得近似数的有效数字有( ) A 、1个; B 、2个; C 、3个; D 、4个 16、下列各数:-0.8,-231,-(-8.2),+(-2.7),-(+71),-1002,其中负数的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个 17、-26表示( )A 、6个-2相乘;B 、6个2相乘的相反数;C 、2个-6相乘;D 、2个6相乘 18、77+77+77+77+77+77+77=( )A 、497B 、749C 、78D 、87 19、下列说法中错误..的是( ) A 、近似数0.8与0.80表示的意义不同 B 、近似数0.2010有四个有效数字 C 、4.420×104是精确到十位的近似数 D 、49554精确到万位是4.9×104三、大刀阔斧,努力做,下列问题等你来解决!(21题每小题5分;22题每小题6分,共27分)21、学习数学免不了与运算打交道,不要怕,世上无难事,只要肯登攀!你是不是个计算高手啊?下面的问题就看你的了!(1)(+14)+(-4)+(-2)+2; (2)(-8)×(-2)+4÷(-16);(3)-110-(1+0.5)×(31-)÷4-22、下面的(4)、(5)两个题目,运算有点复杂,数字也较多,同学们可得要细心并且充满信心啊.也许你的办法不够简单,但你能算对,说明你的运算能力很强啊;也许你能找到一种比较简单的方法,说明你的头脑很灵活啊,不管用哪种方法,算出来都很了不起啊,试试看,你能行!(4)1993×15-786×(-15)+(-2780)×15;(5)()2332641112515715.0-⨯⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-+-.四、生活中的数学任你来选做!从以下4个小题中任选两个,(每题10分,共20分) 24、由于“连宋”的访问,促使台湾的水果很快运往大陆,现有一批水果包装质量为每筐25千克,现抽取8筐样品进行检测,结果称重记录如下(单位:千克):27,24,23,28,21,26,22,27.为了求得8筐样品的总质量,我们可以选取一个恰当的基准数进行简化计算. (1)请你选择一个恰当的基准数为 . (2)根据你选取的基准数,用正、负数填写下表.(3)这8筐水果的总质量是多少?25、据报载,一位医生研究得出父母身高预测子女身高的公式:若父亲的身高为a米,母亲的身高为b米,则儿子成年的身高=()()米08.12⨯+ba,女儿成年的身高=()米2923.0ba+,七年级学生小明(男)父亲的身高为1.65米,母亲的身高为1.60米,试预测小明成年后的身高是多少米?(保留三个有效数字)?参考答案一、1、近似数;合情合理,符合三个有效数字的特点即可给分(不带单位不给分);2、0,合情合理即可给分;3、2,2如:如果规定收入为正,那么支出2元,就记作-2元(合情合理即可);4、-6,5>4>3>2>1>0>-1>-2>-3>-4>-5>-6,-2006,0;5、12321,1234321,1234567654321;6、-,50;7、161; 8、>; 9、逆时针方向旋转120°10、3.2×106二、11——15CDABC ;16——20DBCDD 三、21(1)10;(2)、1543;(3)-87; 22(4)-15;(5)69.四、23、1006元;24、(1)25;(2)原质量 27 24 23 28 21 26 22 27 与基准数的差距+2-1-2+3-4+1-3+2(3)这8筐水果的总质量是:(+2-1-2+3-4+1-3+2)+25×8=-2+200=198(千克) 25、小明成年的身高=()()()米76.1755.108.1260.165.108.12≈=⨯+=⨯+b a26、解:14-9+18-7+13-6-10-5=28(km),即B 在A 的东方28km 处.需要耗油:a ×(14+9+18+7+13+6+10+5)=82a (L ),82a -29a =53a (L). 答:B 地在A 地正东方28km 处,途中需要补充53a L 油.五、27、(1)3;(2)4;(3)11;(4)11,6.结论;两个连续奇数的平方差能被8整除(或是8的倍数).。

(必考题)七年级数学上册第一单元《有理数》-选择题专项测试题(培优练)

(必考题)七年级数学上册第一单元《有理数》-选择题专项测试题(培优练)

一、选择题1.如果|a |=-a ,下列成立的是( )A .-a 一定是非负数B .-a 一定是负数C .|a |一定是正数D .|a |不能是0A解析:A【分析】根据绝对值的性质确定出a 的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a ,∴a≤0,A 、正确,∵|a|=-a ,∴-a≥0;B 、错误,-a 是非负数;C 、错误,a=0时不成立;D 、错误,a=0时|a|是0.故选A .【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.3.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000C 解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.5.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃B 解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃, 根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.6.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1D解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】 解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】 本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.7.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( )A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米B 解析:B【解析】由已知,当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,则应该记作“海拔-23米”,故选B.8.下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③D 解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.9.计算-3-1的结果是()A.2 B.-2 C.4 D.-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.10.如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A 解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.11.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 3 C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.12.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C 解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.13.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A 解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.14.下列各式计算正确的是()A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4C解析:C【分析】 原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.15.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( )A .28B .34C .45D .75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C 选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.16.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C【分析】根据y的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x2-2y,结果得20,故不选A;当x=3,y=3时,3>0,故代入x2+2y,结果得15,故不选B;当x=2,y=4时,4>0,故代入x2+2y,结果得12,C正确;当x=4,y=0时,00≥,故代入x2+2y,结果得16,故不选D;故选C.【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.17.下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B不合题意;绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C不合题意;既没有最大的数,也没有最小的数,正确,故选项D符合题意.故选:D.【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.18.计算11212312341254 2334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值()A.54 B.27 C.272D.0C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×12 =272. 故选:C .【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.19.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 20.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.21.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是()A.7.26×1010B.7.26×1011C.72.6x109D.726×108A解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】726亿=7.26×1010.故选A.【点睛】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.22.定义一种新运算2x yx yx+*=,如:2212122+⨯*==.则()(42)1**-=()A.1 B.2 C.0 D.-2C 解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯=2, 2*(-1)=()2212+⨯-=0.故(4*2)*(-1)=0.故答案为C.【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 23.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.24.下列计算正确的是()A.|﹣3|=﹣3 B.﹣2﹣2=0C.﹣14=1 D.0.1252×(﹣8)2=1D解析:D【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案.【详解】A、原式=3,故A错误;B、原式=﹣4,故B错误;C、原式=﹣1,故C错误;D、原式=[0.125×(﹣8)]2=1,故D正确.故选:D.【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.25.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④D解析:D【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D .【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.26.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个B 解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个.故选B .【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键. 27.如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A 【分析】 逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.28.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 29.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b 判断出a 和b 异号. 30.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7|D 解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意,故选D.。

湘教版七年级上册数学第1章 有理数含答案(全优)

湘教版七年级上册数学第1章 有理数含答案(全优)

湘教版七年级上册数学第1章有理数含答案一、单选题(共15题,共计45分)1、马鞍山长江大桥是世界同类桥梁中主跨跨度最长的大桥,该桥全长约36200m,用科学记数法表示应为()A. mB. mC. mD.m2、﹣5的相反数是()A. B. C. D.53、若a、b互为倒数,则2ab-5的值为()A.1B.2C.-3D.-54、已知|x|=3,|y|=7,且xy>0,则x+y的值等于()A.10B.4C.±10D.±45、下列计算正确的是()A.﹣2+1=﹣1B.﹣2﹣2=0C.(﹣2)2=﹣4D.﹣2 2=46、下列比较大小正确的是()A.|- |=-B.- >-C.-(-5 )<|-5.5|D.- <-7、一季度,受新冠肺炎疫情影响,云南省外贸进出口总值466.5亿元,较上年同期下降6.3%.一季度,云南省外贸进出口总值达742.1亿元,同比增长59.7%.若下降6.3%,记作,则增长59.7%应记作()A. B. C. D.8、的相反数是()A. B.3 C. D.9、-3的相反数的倒数是A. B. C. D.10、下列说法中错误的是()A.0既不是正数,也不是负数B.0是最小的整数C.0的相反数是0 D.0的绝对值是011、如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是( ).A.0B.1C.2D.312、己知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a>bB.ab<0C.b﹣a>0D.a+b>013、已知,且,则a-b的值是( )A.1或7B.1或-7C.±1D.±714、在平面直角坐标系中,若点P(x,y)在第二象限,且|x|﹣1=0,y2﹣4=0,则点P关于坐标原点对称的点P′的坐标是()A.P′(﹣1,﹣2)B.P′(1,﹣2)C.P′(﹣1,2) D.P′(1,2)15、计算﹣1﹣2×(﹣2)的结果等于()A.3B.-3C.5D.-5二、填空题(共10题,共计30分)16、 1-2+3-4+5-6+7-8+…+2019-2020=________17、已知,且与的积为负数.则的值为________18、若a,b互为倒数,c,d互为相反数,x的绝对值等于2,则ab﹣(c+d)+x2=________.19、用激光测距仪测得两座山峰之间的距离为165000米,将数据165000用科学记数法表示为________.20、在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为________21、写出一个比小的有理数:________.22、在这四个数中,最大数与最小数的和是________.23、如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则BC=________.24、我国现采用国际通用的公历纪年法,如果我们把公元记作+,那么,处于公元前500年的春秋战国时期可表示为________ .25、如果,则的值是________.三、解答题(共5题,共计25分)26、计算:|﹣3|+(π﹣2019)0﹣2sin30°+( )﹣127、已知:m,x,y满足:(1) (x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2是同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.28、已知:有理数m到原点的距离为4个单位,a,b互为相反数,且都不为零,c,d 互为倒数.求:2a+2b+(-3cd)+|m|的值.29、在“ ”“ ”两个运算符号中选一个你喜爱的符号,填入中的内,并计算.30、画出数轴并表示下列有理数:2,﹣,0,﹣3,.参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、C5、A6、D7、A8、D9、D10、B11、D12、A13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

2021年湘教版七年级数学上册第一章有理数复习题含答案

2021年湘教版七年级数学上册第一章有理数复习题含答案

七年级数学(上册)第一章《有理数》复习卷(含答案)知识点1:正数和负数、有理数1、下列四个数中,与其它三个数性质不同的一个数是( )2,+29.15,-3000,0.000001A. 2,B. +29.15,C. -3000,D. 0.0000012、如果+3吨表示运入仓库的大米数,那么运出5吨大米表示为( )A. -5吨,B. +5吨,C. -3吨,D.+3吨3、在一次数学测验中,七(2)班平均分为85分,把高于平均分的部分记着正,某小组美美、多多、甜甜、乐乐四位同学的成绩记为:+7,-4,-11,+3,这四位同学成绩最好的是( )A. 美美、B. 多多、C. 甜甜、D. 乐乐知识点2:数轴、相反数和绝对值4、-15的相反数是( )A. 15B. -15C.151, D. 151- 5、下列个组数互为相反数的是( )A. 2与-3,B. 21与-2,C. 2009与-209,D. 41与-0.25 6、一个数的绝对值是3,则这个数是( )A. 3B. -3C. ±3,D. ±31 7、若一个数的绝对值的相反数是71-,则这个数是( ) A. 71- B. 71 C. ±7, D. ±71 8、数轴上的原点和原点左边的点表示的数是( )A. 负数B. 正数C. 非正数D. 非负数 9、图中数轴上的点M 表示( )A. 2.5B. -1.5C. -2.5D. 1.5 知识点3:有理数的大小比较10、下列说法正确的是( )A.0是最小的有理数B. 若有理数m >n,则数轴上表示m 的点一定在表示n 点的左边。

C. 一个有理数在数轴上表示的点离原点越远,这个有理数就越大。

D. 既没有最小的正数,也没有最大的负数。

11、大于-2.6而又不大于3的整数有( )A. 7个B. 6个C. 5个D. 4个···10A 12、如图,若A 是数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是( ) A. a <1<-a B. a <-a <1C. 1<-a <aD. -a <a <113、用“>”或“<”填空:(1) -1000 0;(2) 0.2 -0.3(3) -5 -4; (4) -π -3.1414、绝对值小于3.14的所有整数是 。

2021年湘教版全解七年级数学上第1章有理数检测题及答案解析

2021年湘教版全解七年级数学上第1章有理数检测题及答案解析

第1章 有理数检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共24分)1.如果+20%表示增加20%,那么-6%表示( )A.增加14%B.增加6%C.减少6%D.减少26%2.下列说法中错误的是( )A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5 t 记作+5 t ,那么运出货物5 t 记作-5 tD.一个有理数不是正数,那它一定是负数3.(2015·重庆中考)在-4,0,-1,3这四个数中,最大的数是( )A.-4B.0C.-1D.34.(2015·山东泰安中考)若( )-(-2)=3,则括号内的数是( )A. -1B.1C.5D.-55.有理数,a b 在数轴上对应的位置如图所示,则( )A.0a b +<B.0a b +>C.0a b -=D.0a b ->第5题图 第6题图6.(山东菏泽中考)如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c , 其中AB BC =,如果a c b >>,那么该数轴的原点O 的位置应该在( ) A.点A 的左边 B.点A 与点B 之间 C.点B 与点C 之间 D.点C 的右边7.(2015·成都中考)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为( )A.126× B.1.26× C.1.26× D.1.26×8.(南京中考)计算12-7×(-4)+8÷(-2)的值是( )A.-24B.-20 C.6 D.36二、填空题(每小题3分,共24分)9.(2015·四川乐山中考)的倒数是________.10.若x 的相反数是3,y =5,则x y +的值为_________.11.甲、乙两同学进行数字猜谜游戏:甲说:一个数a 的相反数就是它本身,乙说:一个 数b 的倒数也等于它本身,请你猜一猜b a +=_______.12.( 2015·江苏连云港中考)数轴上表示-2的点与原点的距离是 .13.计算 2 015 2 016(0.25)(4)-⨯-=______.14.计算(-2.5)×0.37×1.25×(-4)×(-8)=_________.15.计算(-72)÷(-9)=_______.16.观察下列各式:12345633,39,327,381,3243,3729,,======你能从中发现底数为3的幂的个位数字有什么规律吗?根据你发现的规律回答: 2 0123的个位数字是________.三、解答题(共52分)17.(4分)把下列各数填在相应的大括号内:5,-2,1.4,23-,0,-3.141 59. 正数:{ ,…};非负整数:{ ,…};整数:{ ,…};负分数:{ ,…}.18.(9分)计算下列各题:(1)(+4.3)-(-4)+(-2.3)-(+4);(2)-4-2×32+(-2×32);(3)(-48)÷3(2)--(-25)×(-4)+2(2)-.19.(5分)已知:3,2,a b ==且a b <,求3()a b +的值.20.(5分)在数轴上标出下列各数:0.5,-4,-2.5,2,-0.5,并把它们用“>”连接起来.21.(9分)比较下列各对数的大小.18.解:(1)(+4.3)-(-4)+(-2.3)-(+4)=4.3+4-2.3-4=2.(2)-4-2×32+(-2×32)=-4-64-64=-132.(3)(-48)÷32-﹙﹚-(-25)×(-4)+22-﹙﹚=6-100+4=-90. 19.解:因为a =3,所以a =±3.因为b =2,所以b =±2.又因为a b <,所以a =-3,b =±2.所以333()(32)1a b +=-+==-(-1)或333()(32)5125a b +=--=-=-(). 20.解:如图.第20题图把它们用“>”连接起来为:2>0.5>-0.5>-2.5>-4.21.解:(1)因为|-4+5|=1,|-4|+|5|=9,所以|-4+5|<|-4|+|5|.(2)因为25525,232==,所以2552<.(3)因为22318⨯=,2(23)36⨯=,所以2223(23)⨯<⨯.22.解:因为-6+(-3)+(-1)+(-2)+(+7)+(+3)+(+4)+(-3)+(-2)+(+1) =-2,所以与标准质量相比较,这10袋小麦总计少了2 kg. 10袋小麦的总质量是1 500-2=1 498(kg).每袋小麦的平均质量是1 498÷10=149.8(kg).23.解:因为a的相反数为-2,b的倒数为12-,c的绝对值为2,所以a=2,b=-2,c=±2,所以2a b c++=2+(-2)+(±2)2=2-2+4=4.24.解:(1)因为(+8)+(+4)+(-10)+(-3)+(+6)+(-5)=0,所以将第6名乘客送到目的地时,老王刚好回到上午出发点.(2)因为(+8)+(+4)+(-10)+(-3)+(+6)+(-5)+(-2)+(-7)+(+4)+(+6)+(-9)+(-11)=-19,X|k | B| 1 . c |O |所以将最后一名乘客送到目的地时,老王距上午出发点19 km.(3)因为|+8|+|+4|+|-10|+|-3|+|+6|+|-5|+|-2|+|-7|+|+4|+|+6|+|-9|+|-11|=75(km),75×0.4=30(L),所以这天上午老王耗油30 L.。

七年级数学上册第一章《有理数》测试(专题培优)

七年级数学上册第一章《有理数》测试(专题培优)

七年级数学上册第一章《有理数》测试(专题培优)一、选择题1.(0分)若b<0,刚a ,a+b ,a-b 的大小关系是( ) A .a<a <+b -b a B .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D解析:D 【分析】根据有理数减法法则,两两做差即可求解. 【详解】 ∵b<0∴()0a a b b -+=->,()0a b a b --=-> ∴()a a b >+,()a b a -> ∴()()a b a a b ->>+ 故选D . 【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数. 2.(0分)一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12B .扩大到原来的10倍C .缩小到原来的110D .扩大到原来的2倍A解析:A 【分析】根据题意列出乘法算式,计算即可. 【详解】设一个因数为a ,另一个因数为b ∴两数乘积为ab 根据题意,得1110202a b ab = 故选A . 【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.3.(0分)据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是( ) A .7.26×1010 B .7.26×1011C .72.6x109D .726×108A解析:A 【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】726亿=7.26×1010.故选A.【点睛】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.4.(0分)下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为5⨯3.1810C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为5⨯,所以B选项正确;3.1810C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.5.(0分)-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.1006D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.6.(0分)下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断. 【详解】A 、(﹣3)2=9,﹣32=﹣9,互为相反数;B 、(﹣3)2=32=9,不互为相反数;C 、(﹣2)3=﹣23=﹣8,不互为相反数;D 、|﹣2|3=|﹣23|=8,不互为相反数, 故选:A . 【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键. 7.(0分)一个数的绝对值是3,则这个数可以是( ) A .3 B .3-C .3或者3-D .13C 解析:C 【解析】 试题∵一个数的绝对值是3,可设这个数位a , ∴|a|=3, ∴a=±3 故选C .8.(0分)当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( ) A .海拔23米 B .海拔﹣23米C .海拔175米D .海拔129米B解析:B 【解析】由已知,当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,则应该记作“海拔-23米”, 故选B.9.(0分)据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011, 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 10.(0分)在数3,﹣13,0,﹣3中,与﹣3的差为0的数是( ) A .3 B .﹣13C .0D .﹣3D解析:D 【分析】与-3的差为0的数就是0+(-3),据此即可求解. 【详解】解:根据题意得:0+(﹣3)=﹣3, 则与﹣3的差为0的数是﹣3, 故选:D . 【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.二、填空题11.(0分)对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=__.【分析】根据新定义把新运算转化为常规运算进行解答便可【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7故答案为:7【点睛】本题主要考查了有理数的混合运算读懂新定义运算是解题的关键解析:【分析】根据新定义把新运算转化为常规运算进行解答便可. 【详解】 解:3☆(﹣2) =32﹣|﹣2| =9﹣2 =7, 故答案为:7. 【点睛】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.12.(0分)全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值大于10时n 是正数;当原数的绝对 解析:71.610⨯科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610.13.(0分)已知a是7的相反数,b比a的相反数大3,则b比a大____.17【分析】先根据相反数的定义求出a和b再根据有理数的减法法则即可求得结果【详解】由题意得a=-7b=7+3=10∴b-a=10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a和b,再根据有理数的减法法则即可求得结果.【详解】由题意,得a=-7,b=7+3=10.∴b-a=10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.14.(0分)若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a(a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a (a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.15.(0分)一个班有45个人,其中45是_____数;大门约高1.90 m,其中1.90是_____数.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似根据准确数和近似数的定义对数据进行判断. 【详解】一个班有45个人,其中45是准确数;大门约高1.90 m ,其中1.90是近似数. 故答案为:准确;近似. 【点睛】本题考查了近似数. 近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.16.(0分)点A 表示数轴上的一个点,将点A 向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A 到原点的距离为______.2【分析】设点A 表示的数为x 然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A 表示的数是x 依题意可得:x+10-8=0解得:x=-2则点A 到原点的距离为2故答案为:2【点睛】本题主解析:2 【分析】设点A 表示的数为x ,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案. 【详解】设A 表示的数是x , 依题意可得:x+10-8=0, 解得:x=-2,则点A 到原点的距离为2. 故答案为:2. 【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减. 17.(0分)分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0 【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解. 【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=; 当输入2-时,输出的结果为24(3)524350-+---=-++-=. 故答案为:①1;②0本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键.18.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.(0分)点A,B表示数轴上互为相反数的两个数,且点A向左平移8个单位长度到达点B,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.20.(0分)在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2【分析】由绝对值的定义可知:|x|=2,所以x=±2.【详解】设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2.故答案为±2.本题考查了绝对值的性质,属于基础题型.三、解答题21.(0分)计算:2334[28(2)]--⨯-÷- 解析:21-. 【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得. 【详解】解:原式[]9428(8)=--⨯-÷-,[]942(1)=--⨯--,943=--⨯, 912=--, 21=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.22.(0分)已知: b 是最小的正整数,且a 、b 满足(c -5)2+|a + b |= 0请回答问题: (1)请直接写出a 、b 、c 的值: a = ,b = ,c = ,(2)数轴上a , b , c 所对应的点分别为A ,B ,C ,则 B ,C 两点间的距离为 ; (3)在(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t 秒,①此时A 表示的数为 ;此时B 表示的数为 ;此时C 表示的数为 ;②若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC - AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.解析:(1)-1;1;5;(2)4;(3)①-1-t ;1+2t ;5+5t ;②BC -AB 的值为2,不随着时间t 的变化而改变. 【分析】(1)先根据b 是最小的正整数,求出b ,再根据c 2+|a +b |=0,即可求出a 、c ; (2)由(1)得B 和C 的值,通过数轴可得出B 、C 的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A 、B 、C ; ②先求出BC =3t +4,AB =3t +2,从而得出BC -AB =2. 【详解】解:(1)∵b 是最小的正整数, ∴b =1.∵(c -5)2+|a +b |=0,∴a=-1,c=5;故答案为:-1;1;5;(2)由(1)知,b=1,c=5,b、c在数轴上所对应的点分别为B、C,B、C两点间的距离为4;(3)①点A以每秒1个单位长度的速度向左运动,运动了t秒,此时A表示的数为-1-t;点B以每秒2个单位长度向右运动,运动了t秒,此时B表示的数为1+2t;点C以5个单位长度的速度向右运动,运动了t秒,此时C表示的数为5+5t.②BC-AB的值不随着时间t的变化而改变,其值是2,理由如下:∵点A都以每秒1个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC=5+5t–(1+2t)=3t+4,AB=1+2t–(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.23.(0分)某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.解析:(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A站人数为:16+15-3=28(人)B站人数为:28+12-4=36(人)C站人数为:36+7-10=33(人)D站人数为:33+8-11=30(人)易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.24.(0分)计算下列各题: (1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]. 解析:(1)13;(2)-38 【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题. 【详解】 解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12 =13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6] =(﹣8)+(﹣3)×(16﹣6) =(﹣8)+(﹣3)×10 =(﹣8)+(﹣30) =﹣38. 【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键. 25.(0分)计算(1))()()(2108243-+÷---⨯-; (2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-.【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 26.(0分)已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解;(3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+, ∵2BD AC =,∴①2020t -≥时,()2022202t t +=-,解得:4t =;②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.27.(0分)如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.28.(0分)321032(2)(3)5-÷---⨯解析:﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.。

七年级数学上册第一单元《有理数》-解答题专项经典测试题(培优提高)(2)

七年级数学上册第一单元《有理数》-解答题专项经典测试题(培优提高)(2)

一、解答题 1.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法; (2)先计算乘方和绝对值,再计算乘除法,最后计算加减法. 【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+ =23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11. 【点睛】此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 2.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书? (2)上星期四比上星期三多借出几册? (3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册 【分析】(1)由题意可知,周五借出的册数少于200册,即可解答. (2)根据正负数的定义分别求出周三、周四的册数,再解答即可. (3)将5天的册数分别求出,再求平均数即可. 【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册. 答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册. 【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 3.计算: (1)231+-+; (2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12- 【分析】(1)先化简绝对值,再算加法即可求解; (2)先算乘方,再算括号里面的,最后算乘除即可. 【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键. 4.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ (2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)10;(2)3 【分析】(1)先算乘方和小括号,再算中括号,后算加减即可; (2)把除法转化为乘法,再用乘法的分配率计算即可. 【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯-182493=-+=. 【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.5.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元. 【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可; (3)该厂一周工资=实际自行车产量×50+超额自行车产量×12. 【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆), 答:该厂本周实际生产自行车1409辆; (2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆; (3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.6.某超市对2020年下半年每月的利润用下表作了记录:(2)计算该商场下半年6个月的总利润额. 解析:(1)填表见解析;(2)40万元. 【分析】(1)根据“盈利记为正,则亏损就记为负”直接写出答案即可; (2)把该商场下半年6个月的利润相加即可. 【详解】解:(1)盈利记为正,亏损就记为负,填表如下:=36-10+14 =40(万元)∴该商场下半年6个月的总利润额为40万元. 【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.同时 还考查了有理数的加法运算.7.321032(2)(3)5-÷---⨯解析:﹣31. 【分析】根据有理数的混合运算法则计算即可. 【详解】解:321032(2)(3)5-÷---⨯ =10-32÷(﹣8)-9×5 =10-(﹣4)-45 =10+4-45=﹣31. 【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则. 8.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可. 【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.9.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ; (2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁. 【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长; (2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可. 【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22; (3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键. 10.计算:(1)()()30122021π--+---; (2)()41151123618⎛⎫---+÷⎪⎝⎭. 解析:(1)18-;(2)-17. 【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案; (2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案. 【详解】解:(1)()()3122021π--+--- =1118-- =18-; (2)()41151123618⎛⎫---+÷ ⎪⎝⎭ =115118236⎛⎫--+⨯ ⎪⎝⎭ =115118+1818236-⨯⨯-⨯ =1-9+6-15 =-17. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 11.计算:(1)()()674-+--;(2)()3232--⨯.解析:(1)17-;(2)14(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值; 【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 解析:(1)22分钟;(2)24千米. 【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可. 【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟. (2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米. 【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.13.计算:()22131********⎛⎫-+--⨯--⎪⎝⎭. 解析:13 【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算. 【详解】解:原式()19692=-+---()85=--13=本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键. 14.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 解析:(1)2-;(2)7. 【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得. 【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15 =12+8﹣7﹣15 =(12+8)+(﹣7﹣15) =20﹣22 =﹣2(2)﹣12﹣(﹣2)3÷45+3×|1﹣(﹣2)2| =﹣12﹣(﹣8)×54+3×|1﹣4| =﹣12+10+3×|﹣3| =﹣12+10+9=7 【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则. 15.计算 (1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯ 解析:(1)47;(2)4925【分析】(1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值. 【详解】 解: ()375244128⎛⎫---⨯- ⎪⎝⎭=18+14+15=47(2)()212|38|2455-+--÷-⨯=11452455⎛⎫-+-⨯-⨯ ⎪⎝⎭=24125+4925=【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 16.计算: (1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11. 【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可. 【详解】 解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-, =13-7, =6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++- =11. 【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序. 17.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 解析:(1)36-;(2)26. 【分析】(1)利用乘法分配律进行简便运算即可; (2)先算乘方,再算乘除,最后计算加减即可. 【详解】 解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯16828=-+- 36=-;(2)20213281(2)(3)3---÷⨯-31(89)8=---⨯⨯127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.18.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算; 1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0. 【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m 的方程,解方程即可; (3)根据“运算平衡”数组的定义可以得到n 个数的规律. 【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0; (2)要使数组1,4,6,m 是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况, 经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0. 【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键. 19.计算:(1)()()34287⨯-+-÷; (2)()223232-+---. 解析:(1)16-;(2)6. 【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值. 【详解】(1)原式12416=--=- (2)原式34926=-+-= 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.计算 (1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号. 【详解】 解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可. 21.计算: (1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷(3)1125100466()46311-⨯-⨯-⨯ 解析:(1)21;(2)-35;(3)-392 【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减; (3)有理数的混合运算,可以使用乘法分配律使得计算简便. 【详解】 解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+-=183+ =21(2)31(2)93--÷=893--⨯ =827-- =35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.计算:|﹣2|﹣32+(﹣4)×(12 -)3解析:1 62 -【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12 -)3=2﹣9+(﹣4)×(﹣18)=2+(﹣9)+1 2=162 -.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.计算下列各题:(1)(14﹣13﹣1)×(﹣12);(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12)=14×(﹣12)﹣13×(﹣12)﹣1×(﹣12)=(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.24.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.25.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点A B C D终点上车人数161512780下车人数0-3-4-10-11)到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.解析:(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A站人数为:16+15-3=28(人)B站人数为:28+12-4=36(人)C站人数为:36+7-10=33(人)D站人数为:33+8-11=30(人)易知B和C之间人数最多.故答案为:B;C;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.26.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.27.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭.解析:(1)-2;(2)-19 【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可; (2)利用乘法的分配率进行计算. 【详解】(1)4222(37)2(1)-+--⨯-=16162-+- =-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21 =-19 【点睛】考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.28.(1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案. 【详解】解:(1)()()()()413597--++---+ =-4-13-5+9+7 =-22+9+7 =-13+7 =-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭=174 435⨯⨯=7 15.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.29.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2 ++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.30.计算:-32+2×(-1)3-(-9)÷2 1 3⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.。

新湘教版七年级数学上册第一章《有理数》测试卷(附答案)

新湘教版七年级数学上册第一章《有理数》测试卷(附答案)

新湘教版七年级数学上册第一章《有理数》测试卷(附答案)新湘教版七年级数学上册第一章《有理数》测试卷一、选择题:(30分)1、2的相反数是()A.11B.C.-2 D。

22、下列各数是正数的有()①-(-2);②-︳-2︳;③-(-3)2;④[-(-3)]2D.4个3、计算(-3)+(-9)的结果是()A.-124、___家冰箱冷冻室的温度为-5℃,调高4℃后的温度为()B.9℃5、下列说法中,不正确的个数有()①符号相反的数叫相反数;②四个有理数相乘,若有两个负因数,则积为正;③倒数等于本身的数只有1;④相反数等于本身的数只有;C.2个6、在。

1,-2这四个数中,最小的是()D.-27、若︳a-1︳=a-1,则a的取值范围是()A.a≥18、在数轴上表示数-1和2014的点A、B间的距离是()C.20159、下列运算正确的是()B.b a10、据统计长沙地铁2号线每天承运能力为人次,则数据用科学计数法表示为()A.1.85×105二、填空题:(24分)11、若火箭发射点火前5秒记作-5秒,则火箭发射点火后10秒应记作-10秒。

12、比较大小:①(5)7;②3(5)①>②13、在-1.-2这三个数中,最小的数是-2.14、在数轴上点A表示-3,则与点A相距4个单位长度的点表示的数是1.15、若m1(n2)20,则m+2n=-2.16、如果将在-2008到+2009范围内的整数进行下列计算:从-2008加到+2009,结果为1.从-2008乘到+2009,结果为0.17、(4)2的底数是4,指数是2,结果是16.18、计算(-2)2014+(-2)2015的结果是-2的2014次方乘以(1-2)=-2的2014次方。

三、解答题:(27分)19、(4分)把下列各数填入相应的集合内:2.5:有理数、负数10:有理数、正数、整数3.14:有理数、正数2:无理数、负数20:有理数、负数、整数9.78:有理数、正数58:有理数、正数、整数1:有理数、负数、整数22、将a、b、c的值代入原式进行计算,得到结果为5.23、根据给定条件,将m代入原式进行计算,得到当m=4时,原式等于-13;当m=-4时,原式等于11.24、(1)经过一番旅程后,又回到了出发点。

湘教版2020七年级数学第一章有理数自主学习培优测试卷A卷(附答案详解)

湘教版2020七年级数学第一章有理数自主学习培优测试卷A卷(附答案详解)

湘教版2020七年级数学第一章有理数自主学习培优测试卷A 卷(附答案详解)1.数轴上到-3的点的距离是3的点表示的数是( )A .-6B .0C .3D .0或-62.下列等式成立的是( )A .100÷17×(—7)=100÷1(7)7⎡⎤⨯-⎢⎥⎣⎦B .100÷17×(—7)=100×7×(—7)C .100÷17×(—7)=100×17×7D .100÷17×(—7)=100×7×7 3.已知3m +与2(2)n -互为相反数,则2m 等于( )A .6B .6-C .9D .9-4.把90 120写成10n a ⨯ (110a < ,n 为正整数)的形式,则a 为( )A .9.012B .0.9012C .1D .1.25.下列一组按规律排列的数:-1,2,- 4,8,-16.....第2019个数应是( ) A .20192 B .20182 C .20182- D .20192-6.若|x|=3,|y|=4,xy ﹤0,则x+y 的绝对值是( )A .7B .1C .7或1D .7,﹣7,1,﹣1 7.下列算式中正确的是( )A .B .C .D . 8.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n+1;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是( )A .40B .5C .4D .19.下列计算正确的是( )A .-1+1=0B .-2-2=0C .3÷13=1 D .-2-|2|=010.据统计,2018年安徽省属企业实现营业收入总额8339.4亿元,同比增长12.4%。

七年级数学上册第一章《有理数》经典复习题(专题培优)

七年级数学上册第一章《有理数》经典复习题(专题培优)

1.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 2.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.计算:11322⎛⎫⎛⎫-÷-÷-⎪ ⎪⎝⎭⎝⎭的结果是()A.﹣3 B.3 C.﹣12 D.12C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C.【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.4.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.5.下列各数中,互为相反数的是()A.+(-2)与-2 B.+(+2)与-(-2) C.-(-2)与2 D.-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 6.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0B解析:B【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.7.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样B 解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.8.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3A 解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.用计算器求243,第三个键应按()A.4 B.3 C.y x D.=C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.10.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为()A.312⎛⎫⎪⎝⎭米B.512⎛⎫⎪⎝⎭米C.612⎛⎫⎪⎝⎭米D.1212⎛⎫⎪⎝⎭米C解析:C 【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.11.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.6-的相反数是()A.6 B.-6 C.16D.16- B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.13.下面说法中正确的是()A.两数之和为正,则两数均为正B.两数之和为负,则两数均为负C.两数之和为0,则这两数互为相反数D.两数之和一定大于每一个加数C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.14.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A 选项:3710--=-,故错误;B 选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C 选项:1122()21333---=-+=-,故错误; D 选项运算正确.故选:D .【点睛】 本题考查有理数的加减运算,按照对应法则仔细计算即可.15.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.1.若a 、b 、c 、d 、e 都是大于1、且是不全相等的五个整数,它们的乘积2000abcde =,则它们的和a b c d e ++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde 都大于1得到使a+b+c+d+e 尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a ,b ,c ,d ,e 都大于1,得到使a+b+c+d+e 尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e 尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键. 2.在数轴上,若点A 与表示3-的点相距6个单位,则点A 表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.3.已知|a|=3,|b|=2,且ab<0,则a﹣b=_____.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.4.数轴上表示 1 的点和表示﹣2 的点的距离是_____.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 6.在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x 为偶数时就有y=x 当输入的x 为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x 的值而得出结论解:由题意得当输入的数x 是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x 为偶数时就有y=12x ,当输入的x为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x的值而得出结论.解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=5时,∴5=12x或5=12(x+1).∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.7.绝对值不大于2.1的所有整数是____,其和是____.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.8.把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.9.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键. 10.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解:解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 11.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万 【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可; (3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可. 【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位. 故答案为: (1)千分; (2)百; (3)3.14、十万. 【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.1.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1. 【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解. 【详解】(1)()()()923126--⨯-+÷- =962-- =1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11891632-+-÷ =1893216-+-⨯=-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.2.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<<【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:153 1.50 2.542--<-<-<<<.【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.3.某超市对2020年下半年每月的利润用下表作了记录:月份7月8月9月10月11月12月盈亏(万元)盈12盈16盈8亏6亏4盈14正、负数表示(2)计算该商场下半年6个月的总利润额.解析:(1)填表见解析;(2)40万元.【分析】(1)根据“盈利记为正,则亏损就记为负”直接写出答案即可;(2)把该商场下半年6个月的利润相加即可.解:(1)盈利记为正,亏损就记为负,填表如下:=36-10+14=40(万元)∴该商场下半年6个月的总利润额为40万元.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.同时还考查了有理数的加法运算.4.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规+,定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km):86-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.。

湘教版数学七年级上册第1章 有理数检测题

湘教版数学七年级上册第1章 有理数检测题

2020年~2021年最新第1章 有理数检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共24分)1.如果+20%表示增加20%,那么-6%表示( )A.增加14%B.增加6%C.减少6%D.减少26%2.下列说法中错误的是( )A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5 t 记作+5 t ,那么运出货物5 t 记作-5 tD.一个有理数不是正数,那它一定是负数3.(2013·山东菏泽中考)如果a 的倒数是-1,那么 2 013a 等于( )A.1B.-1C.2 013D.-2 0134.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的就是负的;④一个分数不是正的就是负的.A.1B.2C.3D.4 5.有理数,a b 在数轴上对应的位置如图所示,则( )A.0a b +<B.0a b +>C.0a b -=D.0a b ->第5题图 第6题图6.(2013·山东菏泽中考)如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c , 其中AB BC =,如果a c b >>,那么该数轴的原点O 的位置应该在( )A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点C 的右边7.(2013·山东烟台中考)“厉行勤俭节约,反对铺张浪费”势在必行.最新统计数据显示, 中国每年浪费食物总量折合为粮食大约是210 000 000人一年的口粮,将210 000 000 用科学记数法表示为( )A .2.1×109B .0.21×109C .2.1×108D .21×1078.(2013·南京中考)计算12-7×(-4)+8÷(-2)的值是( )A.-24B.-20 C.6 D.36二、填空题(每小题3分,共24分)9.计算:(-5)+|-3|=______.10.若x 的相反数是3,y =5,则x y +的值为_________.11.甲、乙两同学进行数字猜谜游戏:甲说:一个数a 的相反数就是它本身,乙说:一个数b 的倒数也等于它本身,请你猜一猜b a +=_______. 12.(2013·南京中考)-3的相反数是 ;-3的倒数是________.13.计算 2 013 2 014(0.25)(4)-⨯-=______.14.计算(-2.5)×0.37×1.25×(-4)×(-8)=_________.15.计算(-72)÷(-9)=_______.16.观察下列各式:12345633,39,327,381,3243,3729,,======你能从中发现底数为3的幂的个位数字有什么规律吗?根据你发现的规律回答: 2 0123的个位数字是________.三、解答题(共52分)17.(4分)把下列各数填在相应的大括号内:5,-2,1.4,23-,0,-3.141 59. 正数:{ ,…};非负整数:{ ,…};整数:{ ,…};负分数:{ ,…}.18.(9分)计算下列各题:(1)(+4.3)-(-4)+(-2.3)-(+4);(2)-4-2×32+(-2×32);(3)(-48)÷3(2)--(-25)×(-4)+2(2)-.19.(5分)已知:3,2,a b ==且a b <,求3()a b +的值.20.(9分)在数轴上标出下列各数:0.5,-4,-2.5,2,-0.5,并把它们用“>”连接起来.21.(9分)比较下列各对数的大小.(1)45-+与45-+;(2)25与52;(3)223⨯与2(23)⨯.22.(6分)10袋小麦以每袋150 kg 为标准,超过的千克数记为正数,不足的千克数记为负数,分别记为:-6,-3,-1,-2,+7,+3,+4,-3,-2,+1,与标准质量相比较, 这10袋小麦总计超过或不足多少千克?10袋小麦的总质量是多少千克?每袋小麦的平 均质量是多少千克?23.(5分)已知a 的相反数为-2,b 的倒数为12-,c 的绝对值为2,求2a b c ++的值. 24.(9分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km )如下:+8,+4,-10,-3,+6,-5,-2,-7,+4,+6,-9,-11.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4 L /km ,这天上午老王耗油多少升?第1章 有理数检测题参考答案1.C 解析:在一对具有相反意义的量中,把其中的一种量规定为“正”的,那么与它意义相反的量就是“负”的.“正”和“负”相对,所以如果+20%表示增加20%, 那么-6%表示减少6%.2.D 解析:有理数包括正有理数、负有理数和0,故D 不正确.3.B 解析:a 的倒数是1a ,由题意得1a=-1,解得a =-1,所以 2 013a = 2 0131-()=-1. 4.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正有理数、负有理数和 0,所以②不正确;整数包括正整数、负整数和0,所以③不正确;分数包括正分数和 负分数,所以④正确.故选B.5.A 解析:由题图,知a 是负数,b 是正数,a 离原点的距离比b 离原点的距离大,所 以0a b +<,故选A.6.C 解析:若数轴的原点O 在点A 的左边,则c b a >>,与已知a c b >>不符,故选项A 错误;若数轴的原点O 在点A 与点B 之间,则c 最大,也与已知不符,所以选项 B 错误;若数轴的原点O 在点B 与点C 之间,则有a c b >>的可能,因此选项C 正确; 若数轴的原点O 在点C 的右边,则a b c >>,与已知也不相符,所以选项D 错误.7.C 解析:本题考查了科学记数法,用科学记数法把一个较大的数表示成10n a ⨯的形式, 其中1≤a <10,n 为正整数.n 的值等于原数的整数位数减1,故8210 000 000 2.110=⨯. 8.D 解析:原式=12+28-4=36.9.-2 解析:(-5)+|-3|=-5+3=-(5-3)=-2.10.2或-8 解析:因为x 的相反数是3,所以3x =-.因为5y =,所以5y =±.所以x y +的值为2或-8.11.1 解析:因为相反数等于它本身的数是0,倒数等于它本身的数是±1,所以0,1a b ==±,所以1b a +=. 12.3 13- 13.-4 解析: 2 013 2 014 2 013 2 013(0.25)(4)(0.25)(4)(4)4-⨯-=-⨯-⨯-=-.14.-37 解析:原式=[(-2.5)×(-4)]×[1.25×(-8)]×0.37=10×(-10)×0.37=-37.15.8 解析:(-72)÷(-9)=72÷9=8.16.1 解析:因为2 012÷4=503,所以 2 0123的个位数字是1.17.解:正数:﹛5,1.4,…﹜;非负整数:﹛5,0,…﹜;整数:﹛5,-2,0,…﹜;负分数:2, 3.141 59,3⎧⎫--⎨⎬⎩⎭. 18.解:(1)(+4.3)-(-4)+(-2.3)-(+4)=4.3+4-2.3-4=2.(2)-4-2×32+(-2×32)=-4-64-64=-132.(3)(-48)÷32-﹙﹚-(-25)×(-4)+22-﹙﹚=6-100+4=-90. 19.解:因为a =3,所以a =±3.因为b =2,所以b =±2.又因为a b <,所以a =-3,b =±2.所以33()(32)1a b +=-+=-或333()(32)5125a b +=--=-=-.20.解:如图.第20题图把它们用“>”连接起来为:2>0.5>-0.5>-2.5>-4.21.解:(1)因为|-4+5|=1,|-4|+|5|=9,所以|-4+5|<|-4|+|5|.(2)因为25525,232==,所以2552<.(3)因为22318⨯=,2(23)36⨯=,所以2223(23)⨯<⨯.22.解:因为-6+(-3)+(-1)+(-2)+(+7)+(+3)+(+4)+(-3)+(-2)+(+1)=-2,所以与标准质量相比较,这10袋小麦总计少了2 kg.10袋小麦的总质量是1 500-2=1 498(kg).每袋小麦的平均质量是1 498÷10=149.8(kg).23.解:因为a 的相反数为-2,b 的倒数为12-,c 的绝对值为2, 所以a =2,b =-2,c =±2,所以2a b c ++=2+(-2)+(±2)2=2-2+4=4.24.解:(1)因为(+8)+(+4)+(-10)+(-3)+(+6)+(-5)=0,所以将第6名乘客送到目的地时,老王刚好回到上午出发点.(2)因为(+8)+(+4)+(-10)+(-3)+(+6)+(-5)+(-2)+(-7)+(+4)+(+6)+(-9)+(-11)=-19,所以将最后一名乘客送到目的地时,老王距上午出发点19 km .(3)因为|+8|+|+4|+|-10|+|-3|+|+6|+|-5|+|-2|+|-7|+|+4|+|+6|+|-9|+|-11|=75(km),75×0.4=30(L),所以这天上午老王耗油30 L .。

2020-2021学年七年级数学上册 第1章 有理数测试题湘教版

2020-2021学年七年级数学上册 第1章 有理数测试题湘教版

第一章有理数一、选择题1.下列各组数中互为相反数的是()A. 5和B. -|-5|和-(-5) C. -5和D. -5和2.81×27可记为( )A. 93B.37 C. 36D. 3123.计算1+2﹣3﹣4+5+6﹣7﹣8+…+xx+xx﹣xx﹣xx=()A. 0B. ﹣1 C. xxD. ﹣xx4.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A. 0.51×109B. 5.1×108C. 5.1×109D. 51×1075.下列各式中,计算结果为正数的是()A. 1﹣710×5B. (1﹣710)×5 C. 1﹣(7×5)10 D. (1﹣7)10×56.如果a,b互为相反数,x,y互为倒数,则4(a+b)+3xy的值是()A. 1B. 2C. 3D. 57.若|a﹣4|+(b+1)2=0,那么a+b=()A. 5 B . -5 C . ﹣3 D. 38.因为,所以()A.和都是倒数B.是倒数C.和互为倒数9.下列计算不正确的是()A. =﹣9B. ﹣1﹣5=﹣6 C. (﹣3)÷3× =﹣3 D. =10.下列各数:,,,,,,,,其中是负数的有()A. 个B.个 C.个 D. 个11.如图是一个简单的运算程序:,如果输入的x值为﹣2,则输出的结果为()A. 6B.﹣6 C. 14D. ﹣1412.若,则a2+b3的值是()A. B. -C.D.二、填空题13. 计算:23﹣(﹣2)=________ .14.若 x 的相反数是2,,则的值为________.15.数轴上表示数-5和表示-14的两点之间的距离是________.16.一天早晨的气温是﹣5℃,中午上升了10℃,半夜又下降了7℃,则半夜的气温是________℃.17.在不久前刚刚结束的“双十一”里,拥有天猫和淘宝的阿里全天交易额达到万元,则数据用科学记数法表示为________.18.计算(﹣2.5)×0.37×1.25×(﹣4)×(﹣8)的值为________.19.8和它倒数的积是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D.2019
D. 6.88 106
水价 (元 / 立方米)
5.00 7.00
1/9
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第三阶梯
260 以上
9.00
若某户 2019 年共用水 230 立方米,则应交水费为 ( )
A.1150 元
B.1250 元
C.1610 元
D.2070 元
二.填空题(共 8 小题,每小题 3 分,满分 24 分)
2020
2020
C.2020, − 1 2020
7.计算 (−2)2020 (−2)2019 所得的结果是 (
)
D. a b 0 D.1 D. x = −3 D. −2 − 5 + 7 − 9 D.2020, 1
2020
A. 22019
B. −22019
8.若 | x + 1| +( y − 2019)2 = 0 ,则 x y = (
非负数: −(−3) ,0, (−2)2 ;
整数: −(−3) , −1 ,0, (−2)2 ;
负分数: − 22 , −20% ; 7
20.有理数 a 、 b 、 c 在数轴上的位置如图:
(1)判断正负,用“ ”或“ ”填空: b − c (2)化简: | b − c | + | a + b | − | c − a | .
A . a − 2 B . a + 2 C.2 − a D . −a − 2
(4)合理的方法计算:|1− 1 | + | 1 − 1 | + | 1 − 1 | ++ | 1 − 1 |
2 23 34
2019 2020
24.从有关方面获悉,在我市农村已经实行了农民新型合作医疗保险制度.享受医保的农民可在规 定的医院就医并按规定标准报销部分医疗费用,如表是医疗费用报销的标准:
① | 7 − 21|=

② | 7 − 7 |=

17 18
(2)当 a b 时, | ቤተ መጻሕፍቲ ባይዱ 一 b |=
;当 a b 时,| a 一 b |=

(3)有理数 a 在数轴上的位置如图,则化简| a 一 2 | 的结果为
A . a − 2 B . a + 2 C.2 − a D . −a − 2
(4)合理的方法计算:|1− 1 | + | 1 − 1 | + | 1 − 1 | ++ | 1 − 1 |
= (10 + 15 + 16) − (25 + 18 + 21) + (10 −10) = 41− 64 = −23 即 B 地在 A 地的西方,距 A 地 23 千米.
(2)因为 (25 + 10 + 15 + 10 + 16 + 18 + 10 + 21) 0.2
= 125 0.2 = 25(L) . 25 −10 = 15(L) .
更优惠.(填“ A ”
或“ B ” )
套餐项目
月租
通话
A
12 元
0.2 元 /min
B
0元
0.25 元 /min
三.解答题(共 6 大题,满分 46 分,其中 19 题 4 分,20 题 6 分,21 题 16 分,22 题 6 分,23、24
每大题 7 分)
19.把下列各数填在相应的大括号内: −(−3) , −1 , | −11 | ,0, − 22 , (−2)2 ,3.14, −20%
(4) (−56) (−1 5 ) (−1 3) 4 .
16
47
【解】:(1)16 (−2)3 − (− 1) (−4) + (−1)2020 8
= 16 (−8) − 1 +1 2
= −2 − 1 + 1 2
=−3; 2
(2) −14 − (1 − 0.5) 1 [2 − (−3)2 ] 3
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
21.计算:
(1)16 (−2)3 − (− 1) (−4) + (−1)2020 ; 8
(2) −14 − (1 − 0.5) 1 [2 − (−3)2 ] . 3
(3) −42 | 1 −1| −(−5) + 2 ; 2
(4) (−56) (−1 5 ) (−1 3) 4 .
16
47
22.某市交警大队一辆警车每天在一段东西方向的公路上巡逻执法.一天上午从 A 地出发,中午到
达 B 地,规定向东行驶的里程为正,向西行驶的里程为负,这天行驶的里程数记录如下(单位:km) ;
−25 , +10 , +15 , −10 , +16 , −18 , +10 , −21.
(1)问 B 地在 A 地的东面还是西面? A , B 两地相距多少千米?
C. −2 )
D.1
A.0
B.1
9.688000 用科学记数法表示为 ( )
C. −1
A. 68.8 104
B. 0.688 106
C. 6.88 105
10.北京市居民用水实行阶梯水价,实施细则如下表:
分档水量
年用水量
(立方米)
第一阶梯
0 − 180 (含180)
第二阶梯
180 − 260 (含 260)
律,解决相关问题:
(1)把下列各式写成去掉绝对值符号的形式(不能写出计算结果) :
① | 7 − 21|=

② | 7 − 7 |=

17 18
(2)当 a b 时, | a 一 b |=
;当 a b 时, | a 一 b |=

(3)有理数 a 在数轴上的位置如图,则化简| a 一 2 | 的结果为
2.已知数 a , b 在数轴上表示的点的位置如图所示,则下列结论正确的是 ( )
A. a + b 0
B. a − b 0
C. −a −b a
3.在 22 , ,1.62,0 四个数中,有理数的个数为 (
)
73
A.4
B.3
C.2
4.已知| 2x −1|= 7 ,则 x 的值为 ( )
A. x = 4 或 x = −3 B. x = 4
11.最大的负整数是

12.在数轴上,若点 P 表示 −2 ,则距 P 点 3 个单位长的点表示的数是

13.如果1 x 2 ,化简| x − 1| + | x − 2 |=

14.平方等于 36 的数与立方等于 −64 的数的和是

15.若 (a − 3)2 + | b + 2 |= 0 ,则 −ba =
4/9
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
湘教版 2020—2021 学年七年级数学上册第 1 章《有理数》培优试题参 考简答
一.选择题(共 10 小题) 1. B . 2. C . 3. B . 4. A . 5. D . 6. B . 7. C . 8. C . 9. C . 10. B . 二.填空题(共 8 小题) 11. −1 . 12. −5 或 1 . 13. 1 . 14. 2 或 −10 . 15. 8 .
= −1 − 1 1 (2 − 9) 23
= −1 − 1 (−7) 6
=1. 6
(3) −42 | 1 −1| −(−5) + 2 2
= −16 1 + 5 + 2 2
= −8 + 5 + 2
= −1;
(4) (−56) (−1 5 ) (−1 3) 4
16
47
= (−56) (− 21) (− 4) 4 16 7 7

16.用科学记数法写出的数 −3.96 104 原数是

17.若 a 与 b 互为相反数, x 与 y 互为倒数,| m |= 2 ,则式子| mxy | − a + b + m2 的值为

x xy
18.手机已成现代入生活的一个重要组成部分,它给人们生活带来了许多方便.假如你家刚刚添置
了一部手机,手机资费宣传单如下表:当通话时间为 200min 时,选套餐
(2)若该警车每千米耗油 0.2 升,警车出发时,油箱中有油 10 升,请问中途有没有给警车加过油?
若有,至少加了多少升油?请说明理由.
23.观察下列各式的特征: | 7 − 6 |= 7 − 6 ; | 6 − 7 |= 7 − 6 ; | 1 − 1 |= 1 − 1 ; | 1 − 1 |= 1 − 1 .根据规 25 25 52 25
3
7
正数:{
};
非负整数:{
};
整数:{
};
负分数:{
}.
20.有理数 a 、 b 、 c 在数轴上的位置如图: (1)判断正负,用“ ”或“ ”填空: b − c 0, a + b 0, c − a 0. (2)化简: | b − c | + | a + b | − | c − a | .
2/9
16. −39600 . 17. 6 . 18. B .
三.解答题(共 6 小题)
19.把下列各数填在相应的大括号内: −(−3) , −1 , | −11 | ,0, − 22 , (−2)2 ,3.14, −20%
3
7
正数:{
};
非负整数:{
};
整数:{
};
负分数:{
}.
【解】:
正数: −(−3) , | −11 | , (−2)2 ,3.14; 3
相关文档
最新文档