《线面垂直判定定理》教学设计

合集下载

《线面垂直判定定理》教学设计

《线面垂直判定定理》教学设计

《直线与平面垂直的判定》教学设计一、学习内容分析本节课内容选自《普通高中课程标准实验教科书·数学必修2(人教A版)》第二章2.3.1节。

本节课主要学习直线与平面垂直的定义、判定定理及其初步运用。

本节课中的线面垂直定义是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带。

学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。

二、学习者分析本节课的学生是高一的学生,在学习本节课之前,学生已经学习了掌握了线线垂直的证明,并且学习了空间内直线与平面位置关系以及直线与平面平行的知识,因此学生对于线面垂直的判定定理的学习有良好的认知基础。

但是学生对于理解线面垂直的定义有一定的困难,受线面平行的影响,很容易由一直线垂直于一平面内一直线得出线面垂直,由于平面内看不到直线,要让学生去体会“与平面内所有直线垂直”就有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。

三、教学重点、难点重点:直线与平面垂直的判定定理。

难点:探究得出出直线与平面垂直的判定定理及初步运用.四、教学目标(1)知识与技能目标:1.描述直线与平面垂直的定义;2.运用直线与平面垂直的判定定理证明简单的的空间位置关系问题.(2)过程与方法目标:1.通过对实例、图片的观察,概括定义,正确理解定义,增强观察能力;2.在探索直线与平面垂直判定定理的过程中感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.(3)情感态度与价值观目标:1.通过对空间中直线与平面垂直定义的归纳,感受生活中的数学美;2.通过经历直线与平面垂直判定定理的探究,体验探索的乐趣五、教学过程1.复习回顾,引入新课问题:同学们,我们已经学习了空间中直线与平面的位置关系,有哪些位置关系?【师生活动】学生集体可能回答:直线在平面内,直线与平面平行,直线与平面相交【追问】有些位置关系是比较特殊的,一种是线面平行,还有一种呢?【师生活动】教师引导学生回答线面垂直这种位置关系是一种特殊的线面位置关系并揭示课题2.逐步探索,得出定义问题:在日常生活中你见到的线面垂直的现象有哪些?【师生活动】学生列举生活中的线面垂直现象,然后教师也展示生活中的一些线面垂直现象,例如篮球架和地面垂直,旗杆和地面垂直。

6.2直线与平面垂直的判定定理 一等奖创新教案

6.2直线与平面垂直的判定定理 一等奖创新教案

6.2直线与平面垂直的判定定理一等奖创新教案《直线与平面垂直的判定》教学设计【设计思想】《数学课程标准》指出:学生的数学活动不应只限于接受、记忆、模仿、练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。

本节课一方面将通过身边的生活实例引导学生感知直线与平面垂直的概念及判定定理;另一方面通过动手操作体验知识的发生发展过程;第三方面通过引导探究、合作交流、练习巩固等途径使学生深化理解本节课所涉及的知识与方法,体会隐含的数学思想,进而优化学生的思维品质,提升学生的数学核心素养。

【教材分析】必修二第三章内容是立体几何初步,本章内容是培养学生直观想象、逻辑推理等核心素养的重要载体。

教材在本节之前编写的是《平行关系》,本节是《垂直关系的判定》第一节,这两部分内容的研究方法是非常相似的,所以在本节课教学中可引导学生进行类比学习。

教材中本节内容之后是《平面与平面垂直的判定》、《垂直关系的性质》,这两部分内容又是对本节课学习内容的应用。

从这个角度来说,本节内容起到一个承上启下的作用。

空间点线面的位置关系在生活中随处可见,适宜于学生通过实验操作亲身体验。

【学情分析】学生开始接触立体几何,空间想象能力、逻辑推理能力还比较弱。

因此,在本节课教学中,应注重依托对实物的观察,对身边实例的的分析,以及利用简单教具的操作演示,促使学生通过亲身体验理解“直线与平面垂直的概念、直线与平面垂直的判定定理”,逐步发展学生的空间想象能力,逻辑推理能力。

定理的证明对学生而言难度较大可作为学生课外探究的素材,让一部分学有余力的学生得到提高。

【教学目标】1、通过实例分析初步感知直线与平面垂直的概念,通过类比推理,实验操作概括直线与平面垂直的判定定理;2、体会通过空间模型、实践操作、逻辑推理等方式研究立体几何的基本方法;3、发展学生“数学抽象、直观想象、逻辑推理”等数学核心素养,激发学生动手实践、自主探究的热情。

《直线与平面垂直的判定》教学设计

《直线与平面垂直的判定》教学设计

《直线与平面垂直的判定》教学设计一、教材分析本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后,直线与平面的又一种特殊的位置关系,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其应用,这个内容具有承上启下的地位.通过教与学的活动,使学生了解、感受直线和平面垂直的定义过程,探究判定直线与平面垂直的方法,完善学生对线面结构的理解.本节内容蕴含深刻的数学思想——转化思想,如“空间问题转化为平面问题”、“无限转化为有限”、“线面垂直与线线垂直互相转化”等.二、教学目标1.知识与技能:理解直线与平面垂直的定义与判定定理;能用直线与平面垂直的判定定理论证、解决一些简单问题.2.过程与方法:通过对实例、几何模型的观察,抽象概括出直线与平面垂直的定义,并经过操作、辨析,归纳出直线与平面垂直的判定定理.在探索、发现新知的过程中,体悟数学思想方法,发展学生的合情推理水平,提升学生观察水平、空间想象水平和推理论证水平.3.情感、态度与价值观:让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验探索的乐趣,增强学习兴趣和自信心.三、重点与难点直线与平面垂直的定义与判定定理的概括.四、教学方法“问题链+学生核心活动”.五、知识建构(一)复习旧知,提炼要点问题1:我们已经研究过空间中直线与平面的哪些位置关系?直线与平面平行是怎么研究的?设计意图:通过回顾已学过的线面关系,一方面巩固学生知识基础;另一方面,让学生进一步领悟研究线面关系的思路方法.明确以下两点:(1)线面平行的研究内容:定义——判定——性质——应用;(2)线面平行的研究方法:情境——抽象——概括——论证.(二)从情景出发,发现问题问题2:你认为,空间中直线与平面的关系中,还有什么关系较为重要?请大家举出生活中或空间几何体中的一些“直线与平面垂直”的例子.设计意图:通过直观感知、辨析,确定新的研究内容,并引导学生通过观察学校广场上旗杆与地面之间的关系、课室中柱子与地面的关系等,并让学生直观感知直线与平面垂直的普遍存有,形成直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的欲望.(三)辨析探究,生成新知问题3:怎样画直线与平面垂直的直观图?设计意图:这里,将画图问题前置,一方面是因为学生已具备作此图的水平,另一方面是便于深入研究线面垂直的内涵.随后,教师拿一根教杆与桌面摆成垂直以及斜交等情形,让学生观察、体会、领悟线面垂直的内涵.问题4:直线与平面垂直的涵义是什么?请大家尝试给出“直线与平面垂直”的定义?设计意图:根据实际例子对直线于平面垂直的初步形象,尝试文字叙述直线与平面垂直的定义.定义:如果直线l 与平面α内的_______________ ,我们说直线l 与平面α互相垂直,记作______.直线l 叫做平面α的______,平面α叫做直线l 的_____.直线与平面垂直时,它们惟一的公共点P 叫做_________.由线面垂直的定义可得:若直线l 垂直于平面α,则直线l 垂直于____________简记:线面垂直,线线垂直.符号:________________⇒⎪⎭⎪⎬⎫设计意图:学生填写定义,建立文字、图形、符号这三种语言的相互转化. 这个定义揭示了线面垂直的本质,也就是直线与平面内的任一条直线都垂直.这正是不能将后续的判定定理作为线面垂直定义的原因.问题5:怎样才能简便判断直线与平面垂直?直线l 垂直平面α内的一条直线,那么直线l 和平面α垂直吗? 直线l 垂直平面α内的两条直线,那么直线和平面α垂直吗?学生核心活动:请同学们拿出一块三角形纸片,做一个试验:过三角形的顶点A 翻折纸片,得到折痕AD (如图1),将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触)折痕AD 与桌面垂直吗?设计意图:用定义来判断线面垂直,难度太大.因而,寻找简便的判断方法就成为下一步要研究的内容,这里正是思维冲突最为激烈的部分,故而,设计了一个学生核心活动. 通过折纸让学生发现当且仅当折痕AD 是BC 边上的高时,且B 、D 、C 不在同一直线上的翻折之后竖起的折痕AD 才不偏不倚地站立着,即AD 与桌面垂直(如图),其它位置都不能使AD 与桌面垂直.根据上面的试验,结合两条相交直线确定一个平面的事实,感知将与平面内所有直线垂直逐步归结到与平面内两条相交直线垂直.学生经过操作,充分观察、思考与讨论后回答:问题6:当折痕AD 与BD 、CD 具有怎样关系时, 折痕AD 与桌面所在的平面垂直?此时BD 与CD 所在直线是什么关系?与定义相符吗?直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.设计意图:建立定义与判定定理之间的联系,有助于学生理解判定定理的本质,也有助于学生深化对定义的理解.简记:_____________________________特别注意:1.定理中的“两条相交直线”这一条件不可忽视;2.定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.(四)应用新知,巩固强化1.判断下列命题的真假.(1)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直;(2)如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直.2.一条直线和三角形的两边垂直,则这条直线和三角形的第三边的位置关系是A.平行B.垂直C.相交但不垂直D.不确定设计意图:通过题组1深化直线与平面垂直的定义和应用.(五)拓展深化,发现新知问题7 斜线在变化过程中,与平面的位置关系给我们以怎样的形象.那么,怎 样定义直线与平面所成的角呢?直线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.(六)经典题例,解析讲评例1 若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.例2 有一根旗杆AB 高8m ,它的顶端A 挂有一条长10m 的绳子,另外还有一把卷尺.请你根据这一条件,设计一个检验旗杆与地面是否垂直的方案.操作:拉紧绳子并把它的下端放在地面上的两点(和旗杆脚不在同一条直线上)C 、D,如果这两点都和旗杆脚B 的距离是6m ,那么旗杆就和地面垂直.设计意图:通过实际问题的解决,让学生更深刻的理解直线与平面垂直的判定定理,加强定理的应用.ααα⊥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⊂⊂l n m _____________________符号表示:α A B C D例3 如图,在三棱锥P-ABC 中,已知PA ⊥平面ABC ,BC ⊥AC ,求证:BC ⊥平面PAC. 追问:BC ⊥PC 吗?怎么得到的? 设计意图:通过提供思路,让学生自主完成线面垂直的证明,让刚接触线面垂直的学生不至于不知如何入手,提高学生的兴趣,并且模型选取三棱锥,是最常见的,也是最基础的.例4 在长方体1AC中,11,2AB BC AA ===,对角线1AC 与底面ABCD 所成的角.设计意图:此题是在上题的基础上做 的一点变式应用,目地在于让学生更熟练 和踏实地掌握线面角的求解.(六)回顾小结,提炼升华(1)线面垂直的定义;(线面垂直,则线线垂直)(2)线面垂直的判定定理;(线线垂直,线面垂直)(3)证明空间垂直问题的关键是线面垂直与线线垂直的相互转化;(4)重要思想方法:化归的数学思想.(七)作业见《直线与平面垂直的判定》(学生用案)PB A D CB A D D B AC A 1 C 1D 1 B 1。

直线与平面垂直的判定教学设计

直线与平面垂直的判定教学设计

直线与平面垂直的判定教学设计【教学目标】知识与技能1、明白得直线与平面垂直的相关概念。

2、把握直线与平面垂直的判定定理。

过程与方法1、通过定理的探究过程,培养和提高学生的探究能力和动手能力。

2、通过对直线与平面垂直的感性认识进一步培养学生的空间想象能力。

情感态度价值观通过探究过程进一步培养学生学习空间几何的爱好。

【重点难点】重点1、直线与平面垂直的相关概念。

2、直线与平面垂直的判定定理。

难点直线与平面垂直的判定定理的应用。

【教学过程】一、新课引入与讲授I 直线与平面垂直的定义教学1、举现实生活中直线与平面垂直的实例,并结合课件中图片在课堂展现,给学生直线与平面垂直的感性认识。

进而提出问题:一条直线与一个平面垂直的数学定义是什么?2、课件展现课本P67图2.3-2,并进行相关的分析说明,从而引出直线与平面垂直的定义。

3、引出定义后介绍相关名词,如垂足等。

4、叫几个学生上台在黑板上表示一条直线与一平面垂直,这时学生可能会画出多种表示形式,再依照学生的画法,纠正错误的,确信正确的(要是有正确画法的话),再引导学生给出正确的表示方法。

II 直线与平面垂直的判定定理教学1、学习过定义后,提出问题:定义尽管能够判定一条直线与一个平面垂直,然而比较困难,那么除此之外还有什么方法呢?2、带领学生带着上述问题做课本P68的探究试验(该试验已于上次课布置学生作了必要的预备,如三角形纸片等)。

3、在试验中引导学生发觉当折痕AD是BC边上的高时,AD所在直线与桌面所在平面垂直;引导学生这时AD的特点:与BD、CD垂直,顺势引出判定定理。

4、结合图形,让学生上台写出定理的符号形式,并加以更正讲解。

5、点评定理的地位:表达线面垂直与线线垂直互相转化的数学思想;及注意点:两条直线要相交。

6、讲解例1及例2,其中讲解例2时补充一个证明方法(利用定理直截了当证明)并点评。

7、让给一定时刻让学生做课堂练习并讲解。

二、小结1、回忆直线与平面垂直的定义。

直线与平面垂直的判定(教学设计)

直线与平面垂直的判定(教学设计)

教学设计直线与平面垂直的判定一.教材分析直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中直线与直线垂直位置关系的拓展,又是平面与平面垂直的根底,是空间中垂直关系转化的重心,同时它又是直线和平面所成的角、直线与平面、平面与平面距离等内容的根底,因而它是空间点、直线、平面间位置关系中的核心概念之一。

二.学情分析学生已经学习了直线、平面平行的判定及性质,学习了两直线〔共面或异面〕互相垂直的位置关系,有了“通过观察、操作并抽象概括等活动获得数学结论〞的体会,有了一定的空间想象能力、几何直观能力和推理论证能力。

三.教学目标根据新课标要求和和教学内容的构造特征,学生获得知识、技能、方法及情感、态度、价值观等方面的要求,结合学生的实际水平,制定本节课的教学目标如下:〔1〕使学生掌握直线和平面垂直的定义及判定定理;〔2〕使学生掌握判定直线和平面垂直的方法;〔3〕引导学生学会观察、发现问题、提炼结论,使他们在直观感知,操作确认的根底上学会归纳、概括结论。

〔1〕通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;〔2〕通过学生动手实践,亲身经历数学知识的形成过程,体验探究的乐趣,增强学习数学的兴趣。

培养学生学会从“感性认识〞到“理性认识〞过程中获取新知。

培养学生认真参与积极交流的主观意识;勇于探索新知的精神。

渗透由具体到抽象的思想及事物间相互转化和理论联系实际的辩证唯物主义观点。

四.教学重点、难点依据新课标要求及本节课在高中数学中的地位和作用确定以下重点和难点教学重点:直线与平面垂直的定义和判定定理。

教学难点:直线与平面垂直定义的正确理解;判定定理的探究和线线垂直与线面垂直关系的灵活相互转化。

五.教法和学法教法:讲授法;探究法;多媒体辅助教学法。

学法:本节课注重让学生认真观察分析、积极思考、主动探索、合作交流,尽可能增加学生参与课堂的时间;通过练习使学生稳固知识,熟练应用知识解决简单问题。

六.教学环境和教学用具教学环境:多媒体教室;教学用具:利用计算机多媒体课件辅助教学,黑板、三角板,自制三角形纸片,正方体模型,课本〔表示平面、书脊表示直线〕。

直线与平面垂直的判定—教学设计【教学参考】

直线与平面垂直的判定—教学设计【教学参考】

直线与平面垂直的判定 (1)—教学设计【教学参考】
2.3.1直线与平面垂直的判定
教学目标
1. 知识目标
(1)掌握直线与平面垂直的定义
(2)理解并掌握直线与平面垂直的判定定理
(3)会判断一条直线与一个平面是否垂直
2.能力目标
(1)培养学生的空间想象能力和对新知识的探索能力
(2)加强学生空间与平面之间的转化意识,训练学生的思维灵活性
3.情感目标
(1)培养学生的探索精神
(2)加强学生对数学的学习兴趣
二、重点难点
1.教学重点:直线与平面垂直的定义及其判定定理
2.教学难点:直线与平面垂直判定定理的理解
三、。

线面垂直判定定理说课稿

线面垂直判定定理说课稿

2.3.1 直线与平面的判定说课稿各位老师好!我说课的内容是直线与平面的判定;现就教材分析、学情分析、教学目标、教学方法手段、教学过程等方面展开说课,恳请各位专家、老师批评指正。

一、教材分析(一)说教材1、本节内容让学生学会使用数学语言表述线、面的垂直关系,培养学生的逻辑思维能力;2、由“直线与直线垂直”类比,得出“直线与平面垂直”这一内容,同时也为后面学习“平面与平面垂直”做好铺垫。

3、本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”、“无限转化为有限”、“线线垂直与线面垂直相互转化”等数学思想。

(二)说学情1、学生整体基础较弱,部分学生没有形成自主探究的学习习惯,对本节内容的学习有一定影响;2、班级有较成型的学习小组,可通过交流讨论、合作探究,激发学生的主动求知欲望。

充分利用小组评价机制,可促进探究学习的积极性;3、学生已有的认知基础是日常生活中的具体直线与平面垂直的直观形象,但还没有形成成熟的空间观念。

1、直线与平面垂直的定义;2、对直线与平面垂直判定定理的探究。

(四)教学难点1、理解直线与平面垂直的定义;2、直线与平面垂直判定定理的应用。

二、教学目标1、知识与技能通过图片观察和折纸实验,使学生理解直线与平面垂直的定义,归纳和确认直线与平面垂直的判定定理,并能简单应用定义和判定定理。

2、过程与方法通过学生合作探究及学生的实际操作得出结论,培养学生的几何直观能力,使他们在直观感知、操作确认的基础上学会归纳,概括结论。

3、情感态度与价值观在体验数学几何美的过程中激发学生的学习兴趣,从而培养学生勤于思考、勤于动手的良好品质,培养学生学会从“感性认识”到“理性认识”过程中获得新知。

三、教学方法手段教学方法:互动式讨论、探索式研究、启发式小结;教学手段:借助多媒体、用折纸进行实物展示;学习方法:自主学习、合作探究。

四、教学过程本节内容教学设计的思路是:遵循“直观感知——操作确认——思维论证——实践应用”的认知过程;以自主学习为出发点,通过合作探究等方法,由感性思维到理性思维,掌握本节内容;通过练习巩固,使理论在实践中得到升华。

线面垂直判定定理教案

线面垂直判定定理教案

线面垂直判定定理教案简介本教案旨在教授学生如何判定两个几何图形中的线段和面是否垂直。

学生将研究使用线面垂直判定定理来解决此类问题。

本教案适用于中学数学教育。

目标- 理解线面垂直判定定理的概念和原理- 能够应用线面垂直判定定理来判断线段和面的垂直关系- 解决实际问题时能够运用线面垂直判定定理教学内容1. 线面垂直判定定理的定义和表述- 线面垂直判定定理指出,如果一条线段与一个平面垂直相交,那么这条线段上的任意一条线都与这个平面垂直相交。

2. 线面垂直判定定理的证明- 通过几何图形和推理,证明线面垂直判定定理的正确性。

3. 判断线面垂直的方法- 学生将研究如何判断给定的线段和平面是否垂直相交。

教师将提供一些示例问题,引导学生运用线面垂直判定定理来解决。

4. 实际问题的应用- 学生将解决一些实际问题,例如判断建筑物的柱子是否与地面垂直相交等,以应用线面垂直判定定理。

教学步骤1. 引入线面垂直判定定理的概念- 教师将简要介绍线面垂直判定定理的概念,并提出一个简单的问题,引发学生思考。

2. 讲解线面垂直判定定理的定义和原理- 教师将详细讲解线面垂直判定定理的定义和原理,帮助学生理解其中的关键概念和推理过程。

3. 展示线面垂直判定定理的证明- 教师将通过几何图形和推理,展示线面垂直判定定理的证明过程,加深学生对该定理的理解和信任。

4. 指导学生判断线面垂直的方法- 教师将提供一些示例问题,引导学生应用线面垂直判定定理来判断线段和平面的垂直关系。

教师将指导学生分析问题,找出关键信息,并运用定理进行判断。

5. 解决实际问题- 教师将提供一些实际问题,让学生运用线面垂直判定定理来解决。

学生将应用所学的知识和技巧,分析问题并给出合理的判断。

6. 总结和讨论- 教师将对本节课的内容进行总结,并与学生讨论他们对线面垂直判定定理的理解和应用。

教学评估1. 练题- 学生将完成一些练题,以评估他们对线面垂直判定定理的理解和应用能力。

直线与平面垂直的判定—教学设计【教学参考】

直线与平面垂直的判定—教学设计【教学参考】
2.不利因素
学生的抽象概括能力还有待提高。线面垂直的定义比较抽象,平面内看不到直线,要让学生去体会“与平面内所有直线垂直”有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。
教学目标
1.通过对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。
2.通过直观感知,操作确认,体会知识产生的过程,发展合情推理能力和空间想象能力,进一步培养学生的空间观念。
授课题目
2.3.1 直线与平面垂直的判定
教材分析
本节课选自人教A版普通高中课程标准实验教科书-必修2第二章2.3.1直线与平面垂直的判定(第一课时)。
本节课主要学习直线与平面垂直的定义、判定定理及其初步运用。其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。
⑵教师引导学生观察实例:要求学生将书打开直立于桌面,观察书脊与桌面的位置关系,老师利用班级优化大师随机点名连麦。
线面垂直定义比较抽象。通过课前收集的大量图片,由特殊到一般,由具体到抽象,让学生增加线面垂直的感性认识。
环节二:
新课讲授
2.归纳概念,剖析夯实
用希沃白板的在线授课模式出示问题:
⑴思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?
希沃白板演示:旗杆与它在地面上影子的位置变化.
老师利用班级优化大师随机点名连麦。
⑵归纳出直线与平面垂直的定义
定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α.

《直线,平面垂直的判定及其性质》教案(新人教必修)

《直线,平面垂直的判定及其性质》教案(新人教必修)

§2.3.1直线与平面垂直的判定一、教案目标1、知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握判定直线和平面垂直的方法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。

2、过程与方法(1)通过教案活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法。

3、情态与价值培养学生学会从“感性认识”到“理性认识”过程中获取新知。

二、教案重点、难点直线与平面垂直的定义和判定定理的探究。

三、教案设计(一)创设情景,揭示课题1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价。

2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容。

(二)研探新知1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模型让学生感知直线与平面的垂直关系。

然后教师引导学生用“平面化”的思想来思考问题:从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流讨论,概括其定义。

如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

如图2.3-1,直线与平面垂直时,它们唯一公共点P叫做垂足。

并对画示表示进行说明。

Lpα图2-3-12、老师提出问题,让学生思考:(1)问题:虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施。

有没有比较方便可行的方法来判断直线和平面垂直呢?(2)师生活动:请同学们准备一块三角形的纸片,我们一起来做如图2.3-2实验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问如何翻折才能保证折痕AD与桌面所在平面垂直?AB D C图2.3-2(3)归纳结论:引导学生根据直观感知及已有经验(两条相交直线确定一个平面),进行合情推理,获得判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

直线与平面垂直的判定定理

直线与平面垂直的判定定理

直线与平面垂直的判定(一)教学设计一、目标和目标解析:1、借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;2、通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;3、在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想。

二、教学重点:直线与平面垂直的概念与判定定理。

三、教学难点:归纳发现直线与平面垂直的判定定理。

四、教学准备:三角板、三角形硬纸片。

五、教学过程设计:1、从实际背景中感知直线与平面垂直的形象问题1:空间一条直线和一个平面有哪几种位置关系?问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明。

2、提炼直线与平面垂直的定义问题3:你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?问题4:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB 与它在地面上的影子BC 所成的角度是多少?(2)随着太阳的移动,影子BC 的位置也会移动,而旗杆AB 与影子BC 所成的角度是否会发生改变?(3)旗杆AB 与地面上任意一条不过点B 的直线B1C1的位置关系如何?依据是什么?(学生叙写定义,教师板书,并建立文字、图形、符号这三种语言的相互转化) 思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:(若ααα⊥⊂⊥l a l 则,,)通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验。

线面垂直的判定定理

线面垂直的判定定理

课题:直线与平面垂直的判定(一)【教学目标】知识与技能目标:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;过程与方法目标:通过对定义的总结和对判定定理的探究,不断提高学生的抽象概括和逻辑思维能力;【教学重点】直线与平面垂直的定义、判定定理以及它们的初步应用.【教学难点】对直线与平面垂直的定义的理解和对判定定理的探究.【教学过程】一、直线与平面垂直定义的构建1、联系生活、创设情境复习了直线与平面的三种位置关系后,思考其中旗杆与地面、竖直的墙角线与地面、大桥的桥柱与水面之间的位置关系、大漠孤烟直属于这三种情况中的那一种,它们还给我们留下了什么印象?从而提出问题:什么是直线与平面垂直?引导学生观察旗杆和它在地面上影子的位置关系,使其发现:旗杆所在直线l与地面所在平面α内经过点B的直线都是垂直的.进而提出问题:那么直线l与平面α内不经过点B的直线垂直吗?3、总结定义——形成概念由学生总结出直线与平面垂直的定义,即如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直.引导学生用符号语言将它表示出来.然后提出问题:如果将定义中的“任意一条直线”改成“无数条直线”,结论还成立吗?设计意图:在具体的情境中,通过思考和操作,体会和感知直线与平面垂直的定义,进而提炼出线面垂直的定义。

二、直线与平面垂直判定定理的构建1、类比猜想——提出问题根据线面平行的判定定理进行类比,通过不断的猜想和分析,最终提出问题:如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直吗?设计意图:不少老师都在本环节中进行了一些有益的尝试,但考虑到学生的认知水平,我仍然决定采用类比猜想的方法,从学生已有的知识出发,进行分析.2、动手试验——验证猜想12 问题一、给你一本书,通过适当的摆放,你能得到与桌面垂直的直线吗设计意图:归纳线面垂直的必要条件问题二:过△ABC 的顶点A 翻折纸片,得到折痕AD ,再将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触).同学们看,此时的折痕AD 与桌面垂直吗?又问:为什么说此时的折痕AD 与桌面不垂直?设计意图:归纳只要直线与平面内有一条直线不垂直,那么直线l就与平面α不垂直. 问题三:通过试验,你能得到什么结论?在回答此问题时大部分学生都会直接给出结论:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.此时注意引导学生观察,直线AD 还经过BD 、CD 的交点.请他们思考在增加了这个条件后,试验的结论更准确的说应该是什么?又问:如果直线l 与平面α内的两条相交直线m 、n 都垂直,但不经过它们的交点, 那么直线l 还与平面α垂直吗?设计意图:提高学生抽象概括的能力,同时也培养他们严谨细致的作风.3、提炼定理——形成概念 给出线面垂直的判定定理,请学生用符号语言把这个定理表示出来,并由此向学生指明,判定定理的实质就是通过线线垂直来证明线面垂直,它体现了降维这种重要的数学思想. B A D C AB DC α A BD C α判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 符号语言: m l ⊥,n l ⊥,α⊂m ,α⊂n ,A n m = ⇒l α⊥.三、初步应用——深化认识 1、例题剖析: 例1 已知:b a //,α⊥a .求证:α⊥b .设计意图:不仅让学生学会使用判定定理,而且要让他们掌握分析此类问题的方法和步骤.本题也可以使用直线与平面垂直的定义来证明,这可以让学生在课下完成.另外,例1向我们透露了一个非常重要的信息,这里可以请学生用文字语言将例1表示出来——如果两条平行线中的一条直线与一个平面垂直,那么另外一条直线也与此平面垂直.例2、在正方体ABCD-A 1B 1C 1D 1 中(1) 求证:BC 1⊥面A 1B 1CD(2) 求证:A C 1⊥面A 1BD练习1 求证在正三棱锥中,对棱互相垂直。

线面垂直的判定教学设计

线面垂直的判定教学设计

本节课的学生是高一的学生,在学习本节课之前,学生已经学习了掌握了线线垂直的证明,并且学习空间内直线与平面位置关系以及直线与平面平行的知识,因此学生对于线面垂直的判定定理的学习有良好的认知基础。

但是学生对于理解线面垂直的定义有一定的困难,受线面平行的影响,很容易由一直线垂直于一平面内一直线得出线面垂直,由于平面内看不到直线,要让学生去体会“与平面内所有直线垂直” 就有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。

四、教学过程1复习回顾,引入新课问题:同学们,我们已经学习了空间中直线与平面的位置关系,有哪些位置关系?【师生活动】学生集体可能回答:直线在平面内,直线与平面平行,直线与平面相交【追问】有些位置关系是比较特殊的,一种是线面平行,还有一种呢?【师生活动】教师引导学生回答线面垂直这种位置关系是一种特殊的线面位置关系并揭示课题2 •逐步探索,得出定义问题:在日常生活中你见到的线面垂直的现象有哪些?【师生活动】学生列举生活中的线面垂直现象,然后教师也展示生活中的一些线面垂直现象,例如篮球架和地面垂直,旗杆和地面垂直。

对于旗杆与地面垂直的现象进行抽象化,让学生对下列问题进行思考。

思考:(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB 与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线BC1的位置关系如何?依据是什么?3.创设情境,猜想定理【师生活动】教师引导学生认识到由于利用直线与平面垂直的定义直接判定直线与平面垂直是非常困难的,需要寻找简捷、可行的方法来判定直线与平面垂直。

【实验】过厶ABC的顶点A翻折三角形纸片得到折痕AD,将翻折后的纸片竖起放置在桌面上,1)折痕AD是否与桌面垂直2 )如何翻折才能使折痕AD与桌面所在的平面垂直通过观察,我们容易发现,当且仅当AD 丄EC, AD所在的直线与桌面所在的平面垂直,而翻折之后垂直关系不变,即AD 丄CD,AD 丄ED.【师生活动】教师引导学生分别根据这两个示意图进行实验,并思考:一、折痕与桌面一定垂直吗?二、为什么图2中折痕不一定与桌面垂直?对于思考2教师引导学生根据定义进行回答。

2.3.2《线面垂直、面面垂直的性质定理》教学设计(人教A版必修2)

2.3.2《线面垂直、面面垂直的性质定理》教学设计(人教A版必修2)

2.3.2 《线面垂直、面面垂直的性质定理》教学设计【教学目标】(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。

【导入新课】问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂直呢? 新授课阶段1. 线面垂直的性质定理观察长方体模型中四条侧棱与同一个底面的位置关系。

如图,在长方体ABCD —A 1B 1C 1D 1中,棱AA 1、BB 1、CC 1、DD 1所在直线都垂直于平面ABCD ,它们之间是有什么位置关系?(显然互相平行)然后进一步迁移活动:已知直线a ⊥α 、b ⊥α、那么直线a 、b 一定平行吗?(一定)我们能否证明这一事实的正确性呢?观察得到:线面垂直的性质定理:垂直于同一个平面的两条直线平行。

例1如图1,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2。

(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

图1(1)证明:由AB =AC ,D 是BC 的中点,得AD ⊥BC 。

又PO ⊥平面ABC ,得PO ⊥BC 。

因为PO ∩AD =O ,所以BC ⊥平面PAD 。

故BC ⊥PA 。

(2)如图,在平面PAB 内作BM ⊥PA 于M ,连接CM ,由(1)中知AP ⊥BC ,得AP ⊥平面BMC 。

又AP ⊂平面APC ,所以平面BMC ⊥平面APC 。

在Rt △ADB 中,AB 2=AD 2+BD 2=41,得AB =41.在Rt △POD 中,PD 2=PO 2+OD 2,在Rt △PDB 中,PB 2=PD 2+BD 2,所以PB 2=PO 2+OD 2+DB 2=36,得PB =6,在Rt △POA 中,PA 2=AO 2+OP 2=25,得PA =5,又cos ∠BPA =PA 2+PB 2-AB 22PA·PB =13, 从而PM =PBcos ∠BPA =2,所以AM =PA -PM =3。

线面垂直的判定定理

线面垂直的判定定理

2.3.1直线与平面垂直的判定教学目标:知识与技能:了解、感受直线与平面垂直的定义;理解线面垂直判定定理。

过程与方法:亲身经历直观感知,操作,探究归纳的数学活动过程,学习“空间问题转化为平面问题”、“无限转化为有限”的化归思想方法,发展合情推理能力。

情感态度与价值观:体会从现实生活的经历与体验出发来学习数学,感受学习数学的乐趣,形成主动学习的态度。

教学重点:线面垂直的定义和判定定理的理解教学难点:线面垂直的判定定理的探究过程教学方法:采用“引导一探究式”教学方法教学工具:几何画板、PPT三角纸片教学过程:一、创设情境,启发定义1•通过复习空间直线与平面的位置关系和举生活实例及多媒体展示,让学生举感知直线与平面相交中线面垂直的位置关系,从而引出课题.2•让学生从与生活有关的直线与平面垂直现象的实例中抽象归纳出直线与平面垂直的定义,并展示随着太阳的东升西落国旗与其投影的关系,引导他们观察国旗与地面所有直线的位置关系,引出直线与平面垂直的定义.二、知识构建(一)直线与平面垂直的定义1•定义:如果直线1与平面〉内的任意一条直线都垂直,我们就说直线1与平面〉互相垂直.记作:1丄° .直线1叫做平面°的垂线,平面°叫做直线1的垂面.直线与平面垂直时, 它们唯一的公共点P叫做垂足。

2.图形语言:3.符号语言:m是平面 '内任a _ m4.重点强调:(“任意一条”,“所有的” “全部的”,“每一条”),并说明“无5.定义的两面性:口是平面'内任一直线1 - m线面垂直U>线线垂直(二)线面垂直的判定定理1.思考:通过定义我们可以进行线面垂直的判定方便吗?(需要验证平面内的任意一条直线(所有直线)与已知直线垂直,工程浩大不可能而为之•)2.问题:平面〉内有一条直线与平面外的直线1垂直,那么平面是否与直线有两条呢?3.通过试验,探究直线与平面垂直的判定定理准备一个三角形纸片,三个顶点分别记作A, B , C .如图,过△ ABC的顶点叠纸片,得到折痕AD,将折叠后的纸片打开竖起放置在桌面上. (使BD、DC边与桌面接1:折痕AD与桌面一定垂直吗?2:如何翻折才能使折痕AD与桌面所在的平面:垂直?3:为什么这样折折痕与桌面是垂直的?4:如果改变纸片打开的角度,折痕能与桌面保持垂直吗?5:我们就可以固定由此,你能总结出什么样的结论?让学生在操作过程中,通过不断的追问,最终确认并理解判定定理的条件.最后,引导学生从文字语言、符号语言、图形语言三个方面归纳直线和平面垂直的判定定理. 4.线面垂直的判定定理:文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 图形语言:符号语言.丨丄a ,丨丄b ,a ua ,b ua ,aQb = A=)l丄a强调:线不在多,相交就行(三)例题讲解•那么利用定义来得到直线与平面的垂直,.1垂直?问题问题问题问题问题产面ABD,另一个平面绕AD旋转,例 1.已知:a//b , a \ f.求证:b _ .(由教师在黑板板演并分析求证过程)证明:在平面:内作两条相交直线m , n.*** a 丄",则根据直线与平面垂直的定义知a _ m, a _ n .二b 丄m, bin .又、」m二:A, n二:二,m , n是两条相交直线,(请学生用文字语言将例1表示出来一一如果两条平行线中的一条直线与一个平面垂直,那么另外一条直线也与此平面垂直.然后教师板书其作为线面垂直判定定理的推论)练习1:如图,点P是平行四边形ABCD所在平面外一点,对角线AC与BD的交点,且PA =PC ,PB =PD . 求证:PQL平面ABCD证明:;PA二PC,点o是AC的中点POAC同理可知,PO_BD又叮AC门BD = O ,且AC, BD u平面ABCD.得证PO _平面ABCD练习2:如图,三菱锥P-ABC ,且PA— AC,PA - AB, AC _ BC求证:(1) PA—平面ABC(2) BC—平面PAC(四)总结问题1:通过本节课的学习,你学会了哪些判断直线与平面垂直的方法问题2:在证明直线与平面垂直时应注意哪些问题?问题3:本节课涉及到哪些数学思想和方法?问题4:本节课你还有哪些疑问?(五)布置作业分层作业(六)板书设计(七)教学反思PC。

人教版高中数学《直线与平面垂直的判定》教学设计(全国一等奖)

人教版高中数学《直线与平面垂直的判定》教学设计(全国一等奖)

高中数学《直线与平面垂直的判定》教学设计(全国一等奖)《普通高中课程标准实验教科书—数学必修(二)》人教A版直线与平面垂直的判定姓名:单位:《直线与平面垂直的判定(第一课时)》教学设计一、内容和内容解析:本节内容选自人教A版《普通高中课程标准实验教科书——数学必修(二)》第二章第三节:2.3.1直线与平面垂直的判定(第一课时),属于新授概念课.本节课的内容包括直线与平面垂直的定义和判定定理两部分.直线与平面垂直的研究是直线与直线垂直研究的继续,也为平面与平面垂直的研究做了准备;判定定理的教学,尽管新课标在必修课程中不要求证明,但通过定理的探索过程,培养和发展学生的几何直觉以及运用图形语言进行交流的能力,是本节课的重要任务.线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例.在线面平行中,我们研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式.线面垂直是线线垂直的拓展,又是面面垂直的基础,后续内容如空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用.通过本节课的学习与研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象及推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法.因此学习这部分知识有着非常重要的意义.二、目标和目标解析:《数学课程标准》中与本节课相关的要求是:① 在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面垂直位置关系的定义;② 通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的判定定理;③ 能运用已获得的结论证明一些空间位置关系的简单命题.本节课的课程标准分解如下:(1)从认知角度进行分解:(2)从能力角度进行分解:根据《课程标准》,依据教材内容和学生情况,确定本课时的学习目标为:(1)在直观认识和理解空间点、线、面的位置关系的基础上,抽象出直线与平面垂直的定义;(2)通过直观感知、操作确认,归纳出直线与平面垂直的判定定理;(3)能运用直线与平面垂直的定义和判定定理证明一些空间位置关系的简单命题.针对本节课的学习目标,我设计了如下的评价任务:评价任务一:能否从生活现象中直观感受到直线与平面垂直的形象,并将其抽象出直线与平面垂直的概念;评价任务二:学生积极参与,通过影子实验,在动手操作、思考、归纳等一系列活动中完成探索.评价任务三:能够从正反例中,通过对比归纳出直线与平面垂直的定义,并用自己的语言描述定义内容.评价任务四:能够根据定义得到直线与平面垂直时,直线与平面内任意一条直线垂直的结论,并写出符号语言,了解定义的双向叙述功能.评价任务五:能够利用将无限转化为有限的思想,寻找判定直线与平面垂直的可能性假设. 评价任务六:能在实验操作中,确认直线与平面垂直的判定定理,能用自己的语言叙述出定理内容并写出相应的符号语言.评价任务七:能够用定义和判定定理解决空间位置关系的简单命题.三、教学问题诊断分析:1、学生已有基础:学生已经学习了两条直线互相垂直的位置关系,学习了直线、平面平行的判定及性质,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的几何直观能力、推理论证能力等,具备学习本节课所需的知识.2、学生面临的问题:高一学生仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维.认识到这点,教学中要控制要求的拔高,关注学习过程.因此我确定本节课的难点为:直线与平面垂直的定义的生成,操作确认直线与平面垂直的判定定理.因此,在教学过程中我抓住学生好奇心强,学习积极性较高的特点,我让学生以小组为单位进行合作,通过动手操作,观察、思考、归纳总结,发现直线与平面垂直时,直线与平面内的直线有怎样的位置关系;再通过操作,反向验证,当直线与平面内的直线具有上述位置关系时,能否得到直线与平面垂直,让学生在实验中自然生成直线与平面垂直的定义.在探究直线与平面垂直的判定定理时,让学生从寻找合理假设出发,通过操作验证假设的正确性,从而获得直线与平面垂直的判定定理.由于学生对这种用“有限”代替“无限”的过程,在形成理解上的可能会有思维障碍,所以强调关于定理的证明,会在后续学习中获得.四、教学策略分析:新课程标准明确指出:数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维.因此本节课在“目标导引教学”这一理念的指引下,主要采用的是引导发现教学法.教学中,我利用学生感兴趣的图片引出直线与平面垂直的形象,抽象出直线与平面垂直的概念.让学生在分析操作过程发现规律特点,从而自发地生成定义;接着让学生在实际应用中自觉提出判定直线与平面垂直是否有更简洁方便的方法,通过折纸活动,让学生在游戏中学习,在活动中获得知识.我设计了分组探究等实践活动,通过活动引导学生进行观察、思考、操作、归纳、应用,使学生始终处于积极、主动、有趣的学习状态中,深刻体会到了“做数学、学数学”的乐趣,最终达成了本节课的学习目标.五、课前准备:多媒体课件、三角形纸片(多种形状)、三角板、手电筒、彩色手环、笔(表直线)、纸(表平面)等.六、教学过程:验证跨栏的支架与地面是否垂直,七、教学设计说明:兴趣是最好的老师,它是学生主动学习、积极思考、勇于探索的强大内驱力.因此,本节课我在“目标导引教学”理念及“数学源于生活、又应用于生活”的理念的指引下,以激发学生的学习兴趣为出发点,设置了一系列的动手操作、自主探索的活动,引导学生通过感受、思考、交流、总结,真正对所学内容有所感悟,进而内化为己有.课堂上加入了多种探究实验与动手操作活动,增加了学生学习的兴趣;加入了影子实验、折纸环节,使学生体会到了学数学的乐趣,达到了让教学生活化、让教学活动化、让教学趣味化的目的.符合新课标中“数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维,要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法”的要求.此外,在整个教学过程中,“学生是学习的主体”这一理念,“让不同的人在数学上得到不同的发展”的理念都得到了充分的体现.总之,本节课的设计使学生的情感和能力都得到了一定的发展,成长过程和长期发展也得到了一定的关注,体现了新课程的要求.八、教学反思:本节课的设计从理解数学、理解学生、理解教学三个维度出发,对高中数学课程结构体系及本节课教学重点的知识进行了较为系统的分析;对学生学习本节课的难点进行了深入思考,并精心设计了重点、难点知识的教学解释;评估了学生的知识理解水平等方面,以达到教学设计的科学、完整和精细,具有一定的可操作性和调控性.本节课树立理解数学、理解学生、理解教学的观念来设计课堂教学,本质与核心是“以学生的发展为本”,这是时代发展的要求.这就要求教师在教学设计中,不仅要看到所教的学科知识,而且要看到相应的知识在学生发展中起什么作用;不仅要研究学生的发展规律,思考学习与发展的关系,而且要研究学生是如何学习的;不仅要以适合学生认知特点的方式传《直线与平面垂直(第一课时)》教学设计授数学知识,而且要在教学过程中时刻体现思想性,从而在提高学生在知识水平的同时,提高他们的素质,丰富他们的精神世界.点评这堂课给人的感觉是充满青春的朝气,一气呵成,如沐春风。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线与平面垂直的判定》教学设计
一、学习内容分析
本节课内容选自《普通高中课程标准实验教科书·数学必修2(人教A版)》第二章节。

本节课主要学习直线与平面垂直的定义、判定定理及其初步运用。

本节课中的线面垂直定义是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带。

学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。

二、学习者分析
本节课的学生是高一的学生,在学习本节课之前,学生已经学习了掌握了线线垂直的证明,并且学习了空间内直线与平面位置关系以及直线与平面平行的知识,因此学生对于线面垂直的判定定理的学习有良好的认知基础。

但是学生对于理解线面垂直的定义有一定的困难,受线面平行的影响,很容易由一直线垂直于一平面内一直线得出线面垂直,由于平面内看不到直线,要让学生去体会“与平面内所有直线垂直”就有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。

三、教学重点、难点
重点:直线与平面垂直的判定定理。


难点:探究得出出直线与平面垂直的判定定理及初步运用.
四、教学目标
(1)知识与技能目标:
1.描述直线与平面垂直的定义;
2.运用直线与平面垂直的判定定理证明简单的的空间位置关系问题.
(2)过程与方法目标:
1.通过对实例、图片的观察,概括定义,正确理解定义,增强观察能力;
2.在探索直线与平面垂直判定定理的过程中感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.
'
(3)情感态度与价值观目标:
1.通过对空间中直线与平面垂直定义的归纳,感受生活中的数学美;
2.通过经历直线与平面垂直判定定理的探究,体验探索的乐趣
五、教学过程
1.复习回顾,引入新课
问题:同学们,我们已经学习了空间中直线与平面的位置关系,有哪些位置关系 【师生活动】学生集体可能回答:直线在平面内,直线与平面平行,直线与平面相交
【追问】有些位置关系是比较特殊的,一种是线面平行,还有一种呢
`
【师生活动】教师引导学生回答线面垂直这种位置关系是一种特殊的线面位置关系并揭示课题 2.逐步探索,得出定义
问题:在日常生活中你见到的线面垂直的现象有哪些
【师生活动】学生列举生活中的线面垂直现象,然后教师也展示生活中的一些线面垂直现象,例如篮球架和地面垂直,旗杆和地面垂直。

对于旗杆与地面垂直的现象进行抽象化,让学生对下列问题进行思考。

思考:
(1)阳光下,旗杆AB 与它在地面上的影子BC 所成的角度是
多少
(2)随着太阳的移动,影子BC 的位置也会移动, 而旗杆AB 与
影子BC 所成的角度是否会发生改变
(3)旗杆AB 与地面上任意一条不过点B 的直线11C B 的位置关系如何依据是什么
*
【设计意图】:第(1)与(2)两问是为了让学生发现旗杆AB 所在直线始终与地面上任意一条过点B 的直线垂直,第(3)问是为了进一步让学生发现旗杆AB 所在直线始终与地面上任意一条不过点B 的直线也垂直,那么学生就可以得到直线AB 与地面内任意一条直线垂直。

在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念.
【师生活动】师生一起给出线面垂直的定义:如果直线l 与平面内α的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作:α⊥l .直线l 叫做平面α的垂线,平面α叫做直线l 的垂面.直线与平面垂直时,它们唯一的公共点p 叫做垂足。

3. 创设情境,猜想定理
【师生活动】教师引导学生认识到由于利用直线与平面垂直的定义直接判定直线与平面垂直是非常困难的,需要寻找简捷、可行的方法来判定直线与平面垂直。

【实验】准备一个三角形纸片,三个顶点分别记作
,,.如图,过△的顶点折叠纸片,得到折痕,将折叠后的纸片打开竖起放置在桌面上.(使、边与桌面接触)
【师生活动】教师引导学生分别根据这两个示意图进行实验,并思考:
1.·
2.折痕与桌面一定垂直吗
3.为什么图2中折痕不一定与桌面垂直
对于思考2教师引导学生根据定义进行回答。

【设计意图】:从另一个角度理解定义:如果想说明一条直线与平面不垂直,只需要在平面内找到一条直线与它不垂直就够了,实际上就是举反例.
【师生活动】教师引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内。

问:直线AD现在还垂直于桌面所在平面吗
【设计意图】:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线。

问题:如果我们把折痕抽象为直线,把BD、CD抽象为直线,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么
#
问题:如果将图3中的两条相交直线、的位置改变一下,仍保证,你认为直线还垂直于
平面吗
【设计意图】:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的。

【师生活动】教师引导学生根据试验给出直线与平面垂直的判定方法。

引导学生从文字语言、符号语言、图形语言三个方面表述直线和平面垂直的判定定理.
文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.
强调:两条相交直线,必须满足,不可忽略.

图形语言:
符号语言:a l n l m l B n m n m ⊥⇒⎭
⎬⎫⊥⊥=⋂⊂⊂,,,αα 【教师归纳】“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.
4.运用定理,证明问题
练习:1.如图5,在长方体ABCD-A 1B 1C 1D 1中,请列举与平面ABCD 垂直的直线.并说明这些直线有怎样的位置关系
2.如图6,已知,则吗请说明理由.
【师生活动】引导学生分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明,并用文字语言概括:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.

【教师归纳】:这个问题给出了判断直线和平面垂直的又一个方法,间接判定直线与平面垂直.这个命题体现了平行关系与垂直关系之间的联系.
练习:3如图7,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点.
证:AC⊥平面VKB
思考:
(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;
(2)在⑴中,若E、F分别是AB、BC 的中点,试判断EF与平面VKB的位置关系;
(请学生判定后,追问:EF与VB的位置关系如何)
5.回顾总结,作业布置
【师生活动】教师引导学生从知识和方法两个方面进行总结.
知识方面:线面垂直的定义、线面垂直的判定定理.
方法方面:转化思想.。

相关文档
最新文档