数字图像处理文献综述
基于数字图象处理测量几何尺寸文献综述
基于数字图象处理测量几何尺寸文献综述一:前言1.写作目的通过文献综述的写作针对毕业设计的题目学会搜集和整理材料,能提出问题、分析问题并解决问题,并将其结果以文字的形式表示出来。
对利用数字图像处理进行几何尺寸的测量方法进行归纳、总结和研究。
对所阅读文献理解分析,并介绍相关概念,加深对所学知识的理解与掌握。
2.相关概念(1)数字图像处理:又称计算机图像处理,是利用计算机对图像信息进行各种处理的一门技术和方法。
(2) CCD:是Charge Coupled Device的缩写,称为电荷耦合器件,它是用一种高感光度的半导体材料制成,能把光线转变成电荷。
当CCD表面受光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。
(3)图像噪声:所谓噪声就是妨碍人的视觉器官或系统传感器对所接收的图像信息进行理解或分析的各种因素。
一些常见的噪声有椒盐噪声、脉冲噪声、高斯噪声等。
(4)灰度直方图:是灰度级的函数,它表示图象中具有每种灰度级的象素的个数,反映图象中每种灰度出现的频率。
灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频率,是图象的最基本的统计特征。
(5)边缘:是指周围像素灰度有阶跃变化或屋顶变化的那些像素的集合。
边缘反映的是图像灰度的不连续性。
(6)二值化:图像的二值化是指将灰度图像(灰度有255阶)转化为只包含黑、白两个灰度的二值图像,即0和1两个值。
一般采用阈值法,关键是阈值的选取技术。
(7) 曲线拟合:用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。
3.综述范围几何尺寸的测量方法主要有传统的接触式测量与非接触式测量两类。
传统的接触式测量存在误差大、易受人为因素影响等缺点,本文主要探讨利用数字图像处理技术进行几何尺寸测量的方法,为产品的尺寸测量提供实时、快速、有效、经济的测量途径,它主要包括图像的预处理、二值化、图像分割、轮廓线条的提取与拟合、尺寸的计算等,并从理论和实践上证明该方法的可行性和正确性。
数字图像处理技术的应用综述--课程论文
《数字图像处理》课程论文题目:数字图像处理技术的应用综述1 绪论1.1数字图像处理简介数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。
到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。
1.2数字图像处理技术的基本特点1)处理信息量很大。
数字图像处理的信息大多是二维信息,处理信息量很大。
如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。
因此对计算机的计算速度、存储容量等要求较高。
2)占用频带较宽。
数字图像处理占用的频带较宽。
与语言信息相比,占用的频带要大几个数量级。
如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。
所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要。
3)各像素相关性大。
数字图像中各个像素是不独立的,其相关性大。
在图像画面上,经常有很多像素有相同或接近的灰度。
就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。
因此,图像处理中信息压缩的潜力很大。
4)无法复现三维景物的全部几何信息。
由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。
因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。
在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。
数字图像处理综述
数字图像处理起源与应用1.什么是数字图像处理数字图像处理(Digital Image Processing)是将图像信号转换成数字信号并利用计算机对其进行处理;教科书中将数字图像处理定义于其输入与输出都是图像的处理(包含从图像中提取特征的处理、对各个目标的识别等),起源于20世纪20年代,20世纪60年—70年随着计算机技术与数字电视技术的普及和发展而迅速发展。
在80年代——90年代才形成独立的科学体系。
2.早期数字图像处理数字图像处理最早的应用之一是在报纸业,当时,图像第一次通过海底电缆从伦敦。
早在20世纪20年代曾引入Bartlane电缆图片传输系统,把横跨大西洋传送一幅图片所需的时间从一个多星期减少到3小时。
早期的Bartlane系统可以用5个灰度等级对图像编码,到1929年已增加到15个等级。
在这一时期,由于引入了一种用编码图像纸带去调制光束而使底片感光的系统,明显地改善了复原过程。
不过这种传输方式没有考虑数字图像处理的结果,主要是因为没有涉及到计算机,数字图像处理要求非常大的存储和计算能力,因此必须依靠数字计算机及数据存储、显示和传输等相关技术的发展。
3.数字图像处理的发展与应用数字图像要求非常大的存储和计算能力,因此数字图像处理领域的发展必须依靠数字计算机及数据存储、显示和传输等相关技术的发展计算机的概念可追溯到5000多年前中国算盘的发明。
近两个世纪以来的一些发展也奠定了计算机的基础。
然而,现代计算机的基础还要回溯到20世纪40年代由约翰.冯.诺依曼提出的两个重要概念:(1)保存程序和数据的存储器;(2)条件分支。
这两个概念是中央处理单元(CPU)的基础。
今天,它是计算机的心脏。
从冯·诺依曼开始,引发了一系列重要技术进步,使得计算机以强大的功能用于数字图像处理领域。
简单说,这些进步可归纳为如下几点:(1)1948年贝尔实验室发明了晶体三极管;(2)20世纪50年代到20世纪60年代高级编程语言(如COBOL和FORTRAN)的开发;(3)1958年得州仪器公司发明了集成电路(IC);(4)21世纪60年代早期操作系统的发展;(5)21世纪70年代Intel公司开发了微处理器(由中央处理单元、存储器和输入输出控制组成的单一芯片);(6)1981年IBM公司推出了个人计算机;(7)20世纪70年代出现的大规模集成电路(LI)所引发的元件微小化革命,20世纪80代出现了VLSI(超大规模集成电路),现在已出现了ULSI。
数字图像处理论文
数字图像处理论文数字图像处理论文篇一:数字图像增强技术摘要:数字图像处理是指利用计算机技术对图像进行各种操作和处理的过程。
图像增强是数字图像处理中的一项重要技术,旨在改善图像的质量和视觉效果。
本文针对数字图像增强技术进行了综述,包括直方图均衡化、滤波和锐化等常用方法。
此外,还介绍了一些新近提出的图像增强算法,如基于深度学习的方法。
最后,对数字图像增强技术的发展趋势进行了展望。
关键词:数字图像处理;图像增强;直方图均衡化;滤波;锐化;深度学习1.引言数字图像处理是计算机科学和图像处理领域的重要研究方向。
随着数字图像在各个领域的广泛应用,对图像质量和视觉效果的要求也越来越高。
图像增强是数字图像处理的一项基础技术,通过改善图像的对比度、亮度和细节等特征,提高图像的可视化效果。
图像增强技术已被广泛应用于医学影像、无人驾驶、图像识别等领域。
2.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素值分布,提高图像的对比度和显示效果。
其基本思想是将原始图像的像素值映射到一个新的像素值域,使得新图像具有均匀分布的像素值。
直方图均衡化可以有效地增强图像的细节和纹理特征,但在一些情况下会导致图像过度增强或噪声增加。
3.滤波技术滤波是图像处理中常用的一种方法,通过对图像进行平滑或者锐化处理,改善图像的质量和视觉效果。
常用的滤波方法有均值滤波、中值滤波和高斯滤波等。
均值滤波通过计算像素点周围邻域像素的平均值来更新像素的值,可用于图像的平滑处理。
中值滤波通过计算像素点周围邻域像素的中值来更新像素的值,可有效地去除图像中的椒盐噪声。
高斯滤波通过对图像进行加权平均处理,对图像进行平滑和去噪。
4.锐化技术锐化是图像处理中常用的一种技术,通过增加图像中的高频成分,提高图像的边缘和细节等特征。
常用的锐化方法有拉普拉斯算子、Sobel算子和Canny算子等。
拉普拉斯算子通过计算图像的二阶导数来增强图像的边缘和细节。
Sobel算子通过计算图像的一阶导数来提取图像的边缘特征。
数字图像处理技术在文献叙述中的应用
数字图像处理技术在文献叙述中的应用随着数字时代的到来,数字图像处理技术也得到了广泛的应用。
数字图像处理技术是指利用计算机技术对数字图像进行处理和分析的过程。
这样的处理和分析可以帮助我们更好地理解和利用数字图像。
在文献叙述中,数字图像处理技术也得到了广泛的应用。
下面就让我们具体了解数字图像处理技术在文献叙述中的应用吧。
一、数字图像处理的基础数字图像处理是一门交叉学科,它融合了图像处理、数字信号处理、计算机科学、数学等多个领域的知识。
数字图像处理的基础可以分为三个方面:数字图像的获取、数字图像的表示和数字图像处理的方法。
数字图像的获取是指采用各种图像获取设备(如数码相机、扫描仪等)对图像进行获取和捕捉,得到一定格式的数字化图像。
数字图像的表示主要是从几何、颜色和亮度等几个方面对数字图像进行描述和表示。
数字图像处理的方法可以分为线性和非线性两种,其中线性方法常常用于图像预处理和滤波,非线性方法则更适用于图像缩放、边缘检测和形态学等处理。
二、数字图像处理技术在文献叙述中有很多应用,包括以下几个方面:1.文化遗产保护数字图像处理技术可以用于文化遗产的保护和修复。
通过采用光学图像、红外图像和超声波图像等多种技术对文化遗产进行非接触式的测量和分析,可以更好地了解文化遗产的结构、质地和表面形态等信息,并利用数字重构技术进行保护和修复。
2.医学图像处理数字图像处理技术在医学图像处理中也得到了广泛的应用。
利用数字图像处理技术,可以对人体进行各种医学图像的获取和处理,如X光照片、MRI图像和CT图像等。
通过这些数字图像的处理和分析,可以帮助医生对病人的疾病进行更好的诊断和治疗。
3.农业和环境监测数字图像处理技术在农业和环境监测中也发挥了重要的作用。
通过各种数字化的图像和视频监测技术,可以对农业生产和环境变化进行实时的监测和分析。
这样可以更好地预测和避免植物病害、病毒感染和环境污染等问题。
4.图像识别和分析数字图像处理技术在图像识别和分析领域有着广泛的应用。
数字图像处理文献综述
数字图像处理技术综述摘要:随着计算机的普及,数字图像处理技术也获得了迅速发展,逐渐走进社会生产生活的各个方面。
本文是对数字图像处理技术的一个总体概述,包括其内涵、优势、主要方法及应用,最后对其发展做了简单的总结。
关键词:数字图像、图像处理技术、处理方法、应用领域Overview of digital image processing technologyAbstract: With the popularization of computer, digital image processing technology also won the rapid development, and gradually go into all aspects of social life and production. This paper is a general overview of the digital image processing technology, including its connotation, advantage, main method and its application. And finally, I do a simple summary of the development.Keywords: digital image, image processing technology, processing method, application field前言:图像处理技术被分为模拟图像处理和数字图像处理两大类。
数字图像处理技术一般都用计算机处理或实时的硬件处理,因此也称之为计算机图像处理[1]。
而时至今日,随着计算机的迅速普及,数字图像处理技术也飞速发展着,因为其用途的多样性,可以被广泛运用于医学、交通、化学等各个领域。
一、数字图像处理技术的概念内涵数字图像处理技术是指将一种图像信号转变为二进制数字信号,经过计算机对而其进行的图像变换、编码压缩、增强和复原以及分割、特征提取等处理,而高精准的还原到显示器的过程[2]。
数字图像处理综述
视频图像处理技术在实时交通信息采集中的应用交通信息是现代交通管理与控制的基础。
采集交通信息有多种技术,目前国内采用较多的是地埋式线圈检测器。
这种方法在技术上比较成熟,但从覆盖范围、检测参数、可维护性和安装简易性等角度来看,该方法有诸多缺陷。
其他自动化检测方法还包括微波雷达、激光雷达、超声波、视频检测技术等。
和其他技术相比,视频检查具有以下优点:(1)多道性。
能一次探测多条车道的交通参数,如车辆类型、道路占用率、流量和平均速度等。
(2)安装维修方便。
不会造成路面损坏,并能在不中断交通的情况下完成安装维修工作。
(3 )检测参数多。
常规检测器受采集方法的限制,理论上无法准确计算出排队长度和交通流密度等参数而只能估算道路占有率,视频检测器由于其视野广的特点而使之成为可能。
(4 )可重现场景。
视频检测图象记录在硬盘或磁带上,可以事后重现交通场景。
这为研究交通行为、改进交通管理方法和处理交通事故提供了大量信息。
视频检测是前瞻性好且能代表发展趋势的自动化检测技术之一。
目前实践上已经有不少视频检测产品, 按工作原理可分为两类: 虚拟线圈法和车辆跟踪法, 介绍其工作原理如下:虚拟线圈法: 早期大部分视频检测技术是采用是虚拟线圈法,其工作原理类似于地埋式线圈检测器。
用户在图象上定义检测线位置, 系统通过计算检测线变化强度来判断车辆的经过, 从而计算交通参数。
该方法的优点是大大减少了数据处理时间, 在满足实时要求的前提下完成流量、速度的检测。
由于交通场景象素值与路面象素值作差分比较仅仅可得到有无车辆通过采样线位置这一唯一的特征值, 而丢失了包括车辆长度、宽度和运动轨迹等特征, 所以降低了系统的可靠性, 同时也未能充分利用图象信息。
车辆跟踪法: 通过识别出交通场景图象中符合车辆特征的象素, 进行图象分割, 并依据提取出的特征来匹配前后帧中车辆, 从而计算交通参数。
理论上, 车辆跟踪法比虚拟线圈法更为严谨, 所以更能代表发展的趋势。
数字图像处理发展综述
数字图像处理发展综述数字图像处理技术综述摘要:本文主要阐述了数字图像处理技术的产生,主要方法技术及其特点。
并对其发展做状况做了简述。
关键词:数字图像处理、图像编码、小波变换,视频压缩引言数字图像处处理(Digital Image Processing)是将图像信号转换成数字信号并利用计算机对其进行处理。
起源于20世纪20年代,20世纪60年—70年随着计算机技术与数字电视技术的普及和发展而迅速发展。
在80年代——90年代才形成独立的科学体系。
早期数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
目前该技术已广泛用于科学研究、工农业生产、生物医学工程、航空航天、军事、工业、机器人产业、政府职能机关文化文艺等多领域。
并在其中发挥着越来越大的作用,已成为一门引人注目、前景广阔的新型学科。
一、数字图像处理的起源数字图像处理技术最早出项于20世纪50年代,当时的电子计算机已经发展到一定的水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量。
它以人为对象,以改善人的视觉效果为目的。
图像处理中输入的是质量低的图像,输出的是改善质量后的图像。
首次获得实际成功应用的是美国喷气推进实验室(JPL)。
他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了数字图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳的位置和月球的环境影响,由计算机成功的绘制出了月球表面地图,获取了巨大的成功。
随后又对探测飞船发回的近万张图片进行了更为复杂的图像处理,由此获得了月球的地形图、彩色图以及全景镶嵌图、获得了非凡的成果为人类登月活动奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。
二、数字图像处理过程1)图像的数字化通过取样和量化将一个以自然形态存在的图像变换为适于计算机处理的数字形式。
用矩阵的形式来表示图像的各种信息。
图像处理文献综述
文献综述近年来,随着计算机视觉技术的日益发展,图像处理作为该领域的关键方向受到越来越多研究人员的关注与思考。
在现在的日常生活中,由于通信设备低廉的价格和便捷的操作,人们越来越喜欢用图像和视频来进行交流和分享,消费性的电子产品在消费者中已经非常普遍,例如移动手机和数码相机等等。
在这个纷繁多变的世界,每天都有数以万计的图像产生,同时信息冗余问题也随之而来。
尽管在一定的程度上,内存技术的增加和网络带宽的提高解决了图像的压缩和传输问题,但是智能的图像检索和有效的数据存储,以及图像内容的提取依然没有能很好的解决。
视觉注意机制可以被看做是人类对视觉信息的一个筛选过程,也就是说只有一小部分重要的信息能够被大脑进行处理。
人类在观察一个场景时,他们往往会将他们的注意力集中在他们感兴趣的区域,例如拥有鲜艳的颜色,光滑的亮度,特殊的形状以及有趣的方位的区域。
传统的图像处理方法是将整幅图像统一的处理,均匀的分配计算机资源;然而许多的视觉任务仅仅只关系图像中的一个或几个区域,统一的处理整幅图像很明显会浪费过多的计算机资源,减少处理的效率[1,2]。
因此,在计算机视觉领域,建立具有人类视觉系统独特数据筛选能力的数学模型显得至关重要。
受高效的视觉信息处理机制的启发,计算机视觉领域的显著性检测应运而生。
图像显著性检测是通过建立一定的数学模型,让计算机来模拟人类的视觉系统,使得计算机能够准确高效的定位到感兴趣的区域。
一般来说,一个信号的显著性可以表示为其和周围环境的差异性。
正是因为这个信号和周围的其他信号的迥异性,使得视觉系统不需要对环境中的所有感兴趣的区域进行逐个的扫描,显著的目标会自动从环境中凸显出来。
另外,一些心理学研究表明人类的视觉机制不仅仅是由低级的视觉信号来驱动的,基于记忆、经验等的先验知识同样能够决定场景中的不同信号的显著性,而这些先验知识往往是和一些高层次的事件以及视觉任务联系在一起的。
基于当前场景的视觉显著性机制是低级的,慢速的。
数字图像处理文献综述
医学图像增强处理与分析【摘要】医学图像处理技术作为医学成像技术的发展基础,带动着现代医学诊断产生着深刻的变革。
图像增强技术在医学数字图像的定量、定性分析中扮演着重要的角色,它直接影响到后续的处理与分析工作。
本文以医学图像(主要为X光、CT、B超等医用透视图像)为主要的研究对象,研究图像增强技术在医学图像处理领域中的应用。
本文通过对多种图像增强方法的图像处理效果进行了比较和验证,最后总结出了针对医学图像的各项特点最有效的图像增强处理方法。
关键词:医学图像处理;图像增强;有效方法;Medical Image has been an important supplementary measure of the doctor's diagnosis and treatment. As the developmental foundation of these imaging technology, Medical Image Processing leads to profoundly changes of modern medical diagnosis. Image enhancement technology plays an important role in quantitative and qualitative analysis of medical imaging .It has affected the following treatment and analysis directly. The thesis chooses medical images (including X-ray, CT, B ultrasonic image) as the main research object, studies the application of image enhancement technology in the field of medical images processing. and then we sum up the most effective processing method for image enhancement according to the characteristics of image.Key words:Medical Image ;Medical image enhancement ;effective method11 引言近年来,随着信息时代特别是数字时代的来临数字医学影像成为医生诊断和治疗的重要辅助手段。
数字图像处理论文文献综述
数字图像处理论文文献综述文献综述图像处理技术发展到今天,已经被应用到工程学、计算机科学、信息科学、统计学、物理学、化学、生物学、医学甚至社会科学等多个学科,并成为这些学科获取信息的重要来源及利用信息的重要手段,所以图像处理科学己经成为与国计民生紧密相连的一门应用科学。
图像处理技术研究的重点在于图像处理算法和系统结构,随着计算机、集成电路等技术的飞跃发展,图像处理技术在这两方面都取得了长足的发展。
但随着图像信息数据量的增大,图像处理算法复杂度的提高,图像处理技术依然面临着许多挑战性的问题,具体可概括为图像处理的网络化、复杂问题的求解与处理速度的高速化,可以通过选择合适的图像处理平台以及恰当的图像处理算法来解决这些挑战性的问题。
图像处理技术最初是在采用高级语言编程在计算机上实现的,后来还在计算机中加入了图像处理器(GPU),协同计算机的CPU工作,以提高计算机的图形化处理能力。
在大批量、小型化和低功耗的要求提出后,图像处理平台依次出现了基于VLSI技术的专用集成电路芯片((ASIC)和数字信号处理器((DSP),近年来,随着EDA技术的发展以及FPGA(Field-Programmable Gate Array,现场可编程门阵列)技术的提高,越来越多的厂家和科研机构将FPGA作为图像处理技术实现的主要平台,以提高图像处理系统的性能。
FPGA是在PAL, GAL, CPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
FPGA采用了逻辑单元阵列LCA( Logic Cell Array)这样一个新概念,内部包括可配置逻辑模块CLB( Configurable LogicBlock、输出输入模块IOB ( Input Output Block)和内部连线(Interconnect)三个部分。
图像处理文献综述【范本模板】
信息工程学院毕业设计文献综述姓名:学号:专业:班级:此栏为论文题目作者姓名:(塔里木大学信息工程学院**系**班,电话号码)摘要:在图像处理中,图像滤波起着重要作用。
它可以有效地抑制(平滑)各种噪声、保持边缘信息,从而改善后续处理工作的质量(如提高图像分割精度等)。
图像滤波的方法有很多,比如说中值滤波、均值滤波、高斯滤波、维纳滤波等,中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,均值滤波是把每个像素都用周围的8个像素来做均值操作,高斯滤波实质上是一种信号的滤波器,其用途是信号的平滑处理,本文着重对中值滤波、均值滤波和高斯滤波进行分析,进一步了解它们的原理、特点、改进的算法及其应用.关键词:图像;滤波;中值滤波;均值滤波;高斯滤波一、引言图像滤波就是采用一定的算法对数字图像进行处理,以获得人眼视觉或者某种接受系统所需要的图像处理过程。
[1]对图像滤波的要求是,既能滤除图像中的噪声又能保持图像的细节。
[2]由于噪声和图像细节的混叠,所以在图像滤波中,图像的去噪与细节的保留往往是一对矛盾。
数字图像滤波技术是20世纪60年代发展起来的一门新兴学科,随着图像滤波理论和方法的进一步完善,[3]使得数字图像滤波技术在各个领域得到了广泛应用,并显示出广阔的应用前景。
面对数字化时代的来临,图像滤波知识显得越来越重要,实际上图像滤波已经渗透到计算机、电子、地质、气象、医学等诸多领域.二、正文1、**的发展状况图像滤波的发展大致经历了初创期、发展期、普及期和实用化期4个阶段.初创期开始于20世纪60年代,当时的图像采用像素型光栅进行少秒显示,大多采用中、大型机对其处理.[5]在这一时期,由于图像存储成本高、处理设备昂贵,其应用面很窄。
进入20世纪70年代的发展期,开始大量采用中、小型机进行处理,图像处理也逐渐改用光栅扫描方式,特别是CT和卫星遥感图像的出现,对图像处理技术的发展起到了很好的推动作用。
数字图像处理论文文献综述
数字图像处理论文文献综述文献综述图像处理技术发展到今天,已经被应用到工程学、计算机科学、信息科学、统计学、物理学、化学、生物学、医学甚至社会科学等多个学科,并成为这些学科获取信息的重要来源及利用信息的重要手段,所以图像处理科学己经成为与国计民生紧密相连的一门应用科学。
图像处理技术研究的重点在于图像处理算法和系统结构,随着计算机、集成电路等技术的飞跃发展,图像处理技术在这两方面都取得了长足的发展。
但随着图像信息数据量的增大,图像处理算法复杂度的提高,图像处理技术依然面临着许多挑战性的问题,具体可概括为图像处理的网络化、复杂问题的求解与处理速度的高速化,可以通过选择合适的图像处理平台以及恰当的图像处理算法来解决这些挑战性的问题。
图像处理技术最初是在采用高级语言编程在计算机上实现的,后来还在计算机中加入了图像处理器(GPU),协同计算机的CPU工作,以提高计算机的图形化处理能力。
在大批量、小型化和低功耗的要求提出后,图像处理平台依次出现了基于VLSI技术的专用集成电路芯片((ASIC)和数字信号处理器((DSP),近年来,随着EDA技术的发展以及FPGA(Field-Programmable Gate Array,现场可编程门阵列)技术的提高,越来越多的厂家和科研机构将FPGA作为图像处理技术实现的主要平台,以提高图像处理系统的性能。
FPGA是在PAL, GAL, CPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
FPGA采用了逻辑单元阵列LCA( Logic Cell Array)这样一个新概念,内部包括可配置逻辑模块CLB( Configurable LogicBlock、输出输入模块IOB ( Input Output Block)和内部连线(Interconnect)三个部分。
图像处理文献综述
文献综述理论背景数字图像中(de)边缘检测是图像分割、目标区域(de)识别、区域形状提取等图像分析领域(de)重要基础,图像处理和分析(de)第一步往往就是边缘检测.物体(de)边缘是以图像(de)局部特征不连续(de)形式出现(de),也就是指图像局部亮度变化最显着(de)部分,例如灰度值(de)突变、颜色(de)突变、纹理结构(de)突变等,同时物体(de)边缘也是不同区域(de)分界处.图像边缘有方向和幅度两个特性,通常沿边缘(de)走向灰度变化平缓,垂直于边缘走向(de)像素灰度变化剧烈.根据灰度变化(de)特点,图像边缘可分为阶跃型、房顶型和凸缘型.、图像边缘检测技术研究(de)目(de)和意义数字图像边缘检测是伴随着计算机发展起来(de)一门新兴学科,随着计算机硬件、软件(de)高度发展,数字图像边缘检测也在生活中(de)各个领域得到了广泛(de)应用.边缘检测技术是图像边缘检测和计算机视觉等领域最基本(de)技术,如何快速、精确(de)提取图像边缘信息一直是国内外研究(de)热点,然而边缘检测也是图像处理中(de)一个难题.首先要研究图像边缘检测,就要先研究图像去噪和图像锐化.前者是为了得到飞更真实(de)图像,排除外界(de)干扰,后者则是为我们(de)边缘检测提供图像特征更加明显(de)图片,即加大图像特征.两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测(de)研究,我们最终所要达到(de)目(de)是为了处理速度更快,图像特征识别更准确. 早期(de)经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等.早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期(de)系统研究,从此有关边缘检测(de)理论方法不断涌现并推陈出新.边缘检测最开始都是使用一些经验性(de)方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显(de)缺陷,导致其检测结果并不尽如人意.20世纪80年代,Marr和Canny相继提出了一些更为系统(de)理论和方法,逐渐使人们认识到边缘检测(de)重要研究意义.随着研究(de)深入,人们开始注意到边缘具有多分辨性,即在不同(de)分辨率下需要提取(de)信息也是不同(de).通常情况下,小尺度检测能得到更多(de)边缘细节,但对噪声更为敏感,而大尺度检测则与之相反.1983年Witkin首次提出尺度空间(de)思想,为边缘检测开辟了更为宽广(de)空间,繁衍出了很多可贵(de)成果.随着小波理论(de)发展,它在边缘检测技术中也开始得到重要(de)应用.MALLAT造性地将多尺度思想与小波理论相结合,并与LoG, Canny算子相统一,有效地应用在图像分解与重构等许多领域中.这些算子现在依然应用于计算几何各个现实领域中,如遥感技术、生物医学工程、机器人与生产自动化中(de)视觉检验、零部件选取及过程控制等流程、军事及通信等.在图像边缘检测(de)过程中老算法也出现了许多(de)问题.经过多年(de)发展,现在已经出现了一批新(de)图像边缘检测算法.如小波变换和小波包(de)边缘检测、基于形态学、模糊理论和神经网络(de)边缘检测等,这些算法扩展了图像边缘检测技术在原有领域中(de)运用空间,同时也使它能够适应更多(de)运用需要.国内外研究现状分析数字图像边缘检测技术在二十世纪六十年代因客观需要而兴起,到二十一世纪初期,它已经处于发展(de)全盛时期.图像边缘检测技术进一步发展(de)另一个原因是计算机硬件(de)开发与软件系统(de)进一步完善,导致数字图像技术(de)精度更高、成本更低、速度更快及灵活性更好.由于数字图像边缘检测包括很多方面,所以该文主要针对图像边缘检测进行研究和分析. 图像(de)边缘检测是图像最基本(de)特征,精度(de)提取出图像边缘可以对图像进行更多方面(de)研究.早期(de)经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等.经典(de)边缘检测算法是对原始图像中像素(de)某小领域来构造边缘检测算子,常用(de)边缘检测算子有Roberts算子、Sobel算子、Prewitt算子Kirsch算子、Laplacian 算子、LOG算子、Canny算子等.虽然这些算法已经提出并应用了很多年,不过任然有其发展空间.近年来随着数学理论以及人工智能(de)发展,又涌现出了许多新(de)边缘检测(de)方法,如小波变换和小波包(de)边缘检测、基于数学形态学、模糊理论和神经网络(de)边缘检测法.小波变换和小波包(de)边缘检测方法:在数字图像边缘检测中,需要分析(de)图像往往结构复杂、形态各异,提取(de)图像边缘不仅要反应目标(de)整体轮廓,目标(de)局部细节也不能忽视,这就需要更多尺度(de)边缘检测,而小波变换具有天然(de)多尺度特征,通过伸缩平移运算对信号进行细化分析,达到高频处时间细分,低频出频率细分.所以,小波变换非常适合复杂图像(de)边缘检测.在Coifman、Meyer、Wickhauser引入小波理论后,小波包分解则更是为精细(de)一种图像分解方法,可以满足不同分辨率下对局部细节进行边缘检测提取(de)需要,尤其是含噪图像,提取图像边缘对抑制图像噪声更好.基于数学形态学(de)边缘检测方法:数学形态学是图像边缘检测和模式识别领域中一门新兴(de)学科,具有严格(de)数学理论基础,现已在图像工程中得到广泛(de)运用.基本思想是用具有一定形态学(de)结构元素去度量和提取图像中(de)对应形状已达到对图像分析和识别(de)目(de).获得(de)图像结构信息与结构元素(de)尺寸和形状都有关系,构造不同(de)结构元素,便可完成不同(de)图像分析.数学形态学包括二值形态学、灰度形态学和彩色形态学,基本变换包括膨胀、腐蚀、开启、闭合四种运算,并由这四种运算演化出开、闭、薄化、厚化等,从而完成复杂(de)形态变换.目前随着二值形态学(de)运用越来越成熟,灰度和彩色形态学在边缘检测中(de)运用也越来越引起人们(de)关注并逐渐走向成熟.由于边缘本身检测本身所具有(de)难度,使研究没有多大(de)突破性(de)进展.仍然存在(de)问题主要有两个:其一是没有一种普遍使用(de)检测算法;其二没有一个好(de)通用(de)检测评价标准.从边缘检测研究(de)历史来看,可以看到对边缘检测(de)研究有几个明显对策趋势:一是对原有算法(de)不断改进;二是新方法、新概念(de)引入和多种方法(de)有效综合利用.人们逐渐认识到现有(de)任何一种单独(de)边缘检测算法都难以从一般图像中检测到令人满意(de)边缘图像,因而很多人在把新方法和新概念不断(de)引入边缘检测领域(de)同时也更加重视把各种方法总和起来运用.在新出现(de)边缘检测算法中,基于小波变换(de)边缘检测算法是一种很好(de)方法.三是交互式检测研究(de)深入.由于很多场合需要对目标图像进行边缘检测分析,例如对医学图像(de)分析,因此需要进行交互式检测研究.事实证明交互式检测技术有着广泛(de)应用.四是对特殊图像边缘检测(de)研究越来越得到重视.目前有很多针对立体图像、彩色图像、多光谱图像以及多视场图像分割(de)研究,也有对运动图像及视频图像中目标分割(de)研究,还有对深度图像、纹理(Texture)图像、计算机断层扫描(CT)、磁共振图、共聚焦激光扫描显微镜图像、合成孔径雷达图像等特殊图像(de)边缘检测技术(de)研究.五是对图像边缘检测评价(de)研究和对评价系数(de)研究越来越得到关注.相信随着研究(de)不断深入,存在(de)问题会很快得到圆满(de)解决.。
数字图像处理文献综述
基于数学形态学的医学图像差值方法(文献综述)数理学院 2006级0602班20064390206 袁琼玲指导老师:刘艳琪1、研究背景人类对人体自身信息的了解,约有四分之三是从医学图像中获得的,所以人们常常采用图像的形式表达人体内部的组织结构。
随着数字时代的发展,将这些医学图像输入到计算机并在计算机中存储、处理和传输。
随着计算机的发展,数字图像技术近年来得到极大的重视和长足的进展。
在很多情况下,我们需要将医学图像放大,以求得到更加精确的信息。
通过对硬件的改进来提高分辨率需要付出昂贵的代价,因而从软件方面改进,采用插值技术实现数字图像的分辨率变换很有意义。
目前的图像数字化输入设备如扫描仪,数码照相机等等都是通过采样图像上的微小区域,产生对应的相素点,从而相成一个点阵化的图像数据,而把图像放大首先意味着记录这个图像的数据量的增加,那么首当其冲的问题是如何从原始数据中得到需要的数据。
我们将图像放大的起点定为输入后的数字化图像,也是将它作为原始图像,显然原始图像是点阵化的,为了得到放大的图像实质是如何得到放大后图像的数据,即一个数据补充的问题,例如图像中只有一个点时若要将此图像放大为原来的两倍,只要复制4个相素点即可,若图像有个4*4点,要将其放大两倍时,则对应的点阵矩阵为多少呢,如图1.1所示1 2 3 ! ! ! ! ! !4 5 6 ! ! ! ! ! !7 8 9 ! ! ! ! ! !! ! ! ! ! !! ! ! ! ! !! ! ! ! ! !图1.1图像放大的数据补充怎样来建立左边这个矩阵到右边这个矩阵的映射?图1.1中右边的矩阵的值是多少呢?在设计和实现数字化图像处理的运算方案时有两种观点:离散的观点和连续的观点。
一方面,人们可以把数字图像看成离散采样点的集合,每个点具有其各自的属性。
这样,处理运算就是对这些离散单元的操作,对每个像素进行处理。
另一方面,人们感兴趣的图像通常源自物理世界,所以它们可用连续函数很好的描述。
数字图像处理综述.doc
数字图像处理综述1.数字图像处理简介1.1数字图像处理的概念一幅图像可定义为一个二维函数f(x, y),这里x和y是空间坐标,而在任何一对空间坐标f(x, y)上的幅值f称为该点图像的强度或灰度。
当x,y和幅值f为有限的、离散的数值时,称该点是由有限的元素组成的,没一个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或象素。
象素是广泛用于表示数字图像元素的词汇。
在第二章,将用更正式的术语研究这些定义。
视觉是人类最高级的感知器官,所以,毫无疑问图像在人类感知中扮演着最重要的角色。
然而,人类感知只限于电磁波谱的视觉波段,成像机器则可覆盖几乎全部电磁波谱,从伽马射线到无线电波。
它们可以对非人类习惯的那些图像源进行加工,这些图像源包括超声波、电子显微镜及计算机产生的图像。
因此,数字图像处理涉及各种各样的应用领域。
图像处理涉及的范畴或其他相关领域(例如,图像分析和计算机视觉)的界定在初创人之间并没有一致的看法。
有时用处理的输人和输出内容都是图像这一特点来界定图像处理的范围。
我们认为这一定义仅是人为界定和限制。
例如,在这个定义下,甚至最普通的计算一幅图像灰度平均值的工作都不能算做是图像处理。
另一方面,有些领域(如计算机视觉)研究的最高目标是用计算机去模拟人类视觉,包括理解和推理并根据视觉输人采取行动等。
这一领域本身是人工智能的分支,其目的是模仿人类智能。
人工智能领域处在其发展过程中的初期阶段,它的发展比预期的要慢得多,图像分析(也称为图像理解)领域则处在图像处理和计算机视觉两个学科之间。
从图像处理到计算机视觉这个连续的统一体内并没有明确的界线。
然而,在这个连续的统一体中可以考虑三种典型的计算处理(即低级、中级和高级处理)来区分其中的各个学科。
低级处理涉及初级操作,如降低噪声的图像预处理,对比度增强和图像尖锐化。
低级处理是以输人、输出都是图像为特点的处理。
中级处理涉及分割〔把图像分为不同区域或目标物)以及缩减对目标物的描述,以使其更适合计算机处理及对不同日标的分类(识别)。
数字图像处理文献综述
数字图像处理文献综述摘要数字图像处理是指将数字图像与计算机进行交互,将图像进行数字化处理以获得更好的视觉效果或用于其他应用领域。
本文对数字图像处理近期的研究文献进行综述,探讨数字图像处理的基本理论和在实际应用中的应用情况。
数字图像处理基本理论数字图像通常以灰度或彩色的方式呈现。
在数字图像处理中,基本的操作包括滤波,变换和复原等。
其中,滤波是最常用的操作之一,它用于去除图像中的噪声和其它干扰项。
变换用于将图像从一种形式转换为另一种形式,包括傅里叶变换、小波变换和Hough变换等。
复原则用于恢复由噪声和失真所造成的信息丢失。
数字图像处理的另外一个重要问题是图像分割。
图像分割是将图像分成不同的区域,这些区域可以是同质的,也可以是具有不同特征的。
在数字图像中,图像分割可以用于物体识别、边缘检测和目标跟踪等应用。
数字图像处理的应用场景数字图像处理可以应用于多个领域,如医学、机器人、安全监控、虚拟现实和自动驾驶。
在医学领域,数字图像处理可以用于医学图像的增强、识别和分析。
例如,数字图像处理可以用于诊断肿瘤、分析眼底图像和检查CT扫描图像等。
在机器人领域,数字图像处理可以用于机器人感知和导航。
例如,在自主驾驶汽车中,数字图像处理可以用于识别道路标记和行人,帮助汽车进行自主导航。
在安全监控领域,数字图像处理可以用于识别和跟踪可疑人员或物品。
例如,在机场或车站,数字图像处理可以用于识别和跟踪行李和车站内的人员。
在虚拟现实领域,数字图像处理可以用于增强虚拟世界的真实感和交互性。
例如,数字图像处理可以用于识别用户手势,帮助用户进行更加自然的交互。
数字图像处理的未来发展数字图像处理的未来发展将越来越多地涉及到深度学习和人工智能的技术,这些技术将用于图像识别和分析。
随着机器学习技术的增强,数字图像处理将可以更加准确地识别和分析图像,为实际应用带来更多的价值。
除此之外,数字图像处理的实际应用将与物联网、大数据和云计算等新技术结合在一起,从而开创出更多的可能和机会。
数字图像处理技术简述论文
数字图像处理技术简述论文在计算机多媒体技术与通信技术迅猛发展的今天,含有大量数据信息的数字图像处理技术应运而生,同时获得了突飞猛进的发展。
下面是店铺给大家推荐的数字图像处理技术简述论文,希望大家喜欢! 数字图像处理技术简述论文篇一《数字图像处理技术简述》摘要:在多媒体技术与通信技术迅猛发展的今天,含有大量数据信息的数字图像处理技术应运而生,同时获得了突飞猛进的发展。
接下来,文章针对数字图像处理技术开展相关浅述,望能够有一定的参考价值。
关键词:数字图像处理技术电子信息伴随着先进的网络技术与多媒体技术的迅猛发展,在人们的日常生活当中,数字图像处理技术获得了较为广泛的运用。
譬如,医学、通信、工业检测、智能机械人等方面,但是不管是哪个方面,数字图像处理技术的运用使得各事物间的逻辑关系都得到了很好的体现,使得数字图像处理技术的作用得到了最大限度上的发挥。
1 数字图像处理技术概述计算机的显著特征在于,能够对各类数据信息进行科学的处理,数字图像在经过采样-量化处理后转变为数字存储在计算机当中,在经过数字图像处理之后,数据信息便会被分割、增强、复原,这一过程就是我们所说的数字图像处理过程。
由此可见,数字图像处理是计算机软硬件有效结合的一种技术,伴随着先进计算机的快速发展及其各行业中广泛运用。
在先进计算机科学技术的推动下,数字图像处理技术在获得大程度发展的同时,展现出以下几方面的特点:1.1 图像处理的多样性数字图像编写算法及程序上存在一定差异,会造成最终的图像处理结果也是有所不同的。
1.2 图像处理精准度较高随着数字图像处理精准度的不断升高,图像再现性质量也得到了相应的提升,数字图像处理实则是利用多种计算方法对图像数据进行的相关编写与计算,伴随着先进计算机技术的进步,促使计算结果的精准度得到了有效的保障,除此之外,多种计算方法的融合会获得相近的计算结果,具有良好的再现性。
1.3 各学科技术的相互融合数学与物理是数字图像处理的基本性因素,除此之外,数字图像处理技术是与计算机技术、通信技术、电视技术等紧密的联系在一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理技术综述摘要:随着计算机的普及,数字图像处理技术也获得了迅速发展,逐渐走进社会生产生活的各个方面。
本文是对数字图像处理技术的一个总体概述,包括其内涵、优势、主要方法及应用,最后对其发展做了简单的总结。
关键词:数字图像、图像处理技术、处理方法、应用领域Overview of digital image processing technologyAbstract: With the popularization of computer, digital image processing technology also won the rapid development, and gradually go into all aspects of social life and production. This paper is a general overview of the digital image processing technology, including its connotation, advantage, main method and its application. And finally, I do a simple summary of the development.Keywords: digital image, image processing technology, processing method, application field前言:图像处理技术被分为模拟图像处理和数字图像处理两大类。
数字图像处理技术一般都用计算机处理或实时的硬件处理,因此也称之为计算机图像处理[1]。
而时至今日,随着计算机的迅速普及,数字图像处理技术也飞速发展着,因为其用途的多样性,可以被广泛运用于医学、交通、化学等各个领域。
一、数字图像处理技术的概念内涵数字图像处理技术是指将一种图像信号转变为二进制数字信号,经过计算机对而其进行的图像变换、编码压缩、增强和复原以及分割、特征提取等处理,而高精准的还原到显示器的过程[2]。
在数字图像处理中,图像被分割成像素(每英寸的像素的数目取决于图像的分辨率) [7].可以说图像处理是对图像数据的一种操作或者运算,一般是由计算机或者专用图像处理硬件来实现的。
我国常用的数字图像处理技术主要有两种,一种是光学处理法,一种是数字(电子)处理法。
当前,数字图像处理技术已经逐步完善。
数字图像处理技术与人们的生活紧密相关,如常用的数字电视、数码照相机、数码摄像机等所输出的图像都是数字图像,即数字像处理技术的成果。
目前数字图像处理已发展成为信息处理技术的一个综合性边缘学科,成为了信息处理的一个重要的学科分支,并与相关学科相互联系、相互交叉。
如计算机图形学、模式识别、计算机视觉等学科的研究内容均与图像电信号转变、图像数据描述、图像信息输出等有关,所以,它们之间各有侧重而又相互补充,并在各项新理论、新技术的支持下得到了长足发展[3]。
数字图像处理最早出现于20世纪70年代,当时是以人为对象的,为了改善图像的视觉效果。
到目前为止,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,使图像处理成为一门引人注目、前景远大的新型学科[4]。
而它发展至今,在原有的基础上又有了新的技术支持,已经逐渐覆盖至方方面面,在各个学科都有着难以忽视的作用。
二、数字图像处理技术的优势数字图像处理技术之所以发展如此迅速,是因为它具有许多的优点,可以带来极大便利,而这些优点也使得数字图像处理的应用越来越广泛。
第一,再现性好。
数字图像处理技术不会因对图像进行的变换操作而导致图像质量退化,数字图像能始终保持图像的再现[3];第二,处理精度高。
数字图像处理的是由计算机进行的,因而可以处理极高精度的数据,而且精度可以随着计算机计算能力的增强而增加。
可以快速准确地拍摄照片,可以精确测量数百万像素的强度[8];第三,适用面广。
数字图像处理可以适用于卫星图像,遥感图像,医学摄像等多方面的图像,其应用程度广泛,不像其他图像处理技术只能用在小范围内;第四,灵活性强。
既能对线性图像进行处理,又能对复杂的非线性图像进行处理,只要通过数学的公式进行逻辑运算,数字图像处理技术就可以处理复杂多变的图像,所以其灵活变通性很高。
三、数字图像处理技术的主要方法1.图像增强与复原对图像进行增强和复原的操作,主要是为了提高图像的质量,使其清晰度更高。
首先,图像增强主要是突出图像中需要突出的部分,例如,采用强化图像高频分量,使其图像中物体轮廓更清晰,起突出强调作用。
然而在图像增强的操作中,容易导致图像降质,因而图像复原操作可以恢复原有的图像,但操作前要求了解图像降质的原因与过程,建立“降质模型”,采用滤波方法恢复图像[2]。
2.图像编码图像编码是通过一定的编码规律对图像进行编码压缩,减少图像的数据量,以便于数据传输、减少处理时间以及节省存储空间。
当然同时要注意保证图像质量,不能让图像出现失真,目前该技术已较为成熟。
3.图像识别图像识别属于模式识别的范畴,其主要内容是图像经过某些预处理后,进行图像分割和特征的提取,从而进行判决分类统计模式分类和结构模式分类是常用的模式识别方法[4]。
4.图像分割图像分割是图像处理中最关键的技术之一。
常用的分割方法分别是基于区域的分割方法和基于边缘的分割方法。
基于区域的分割方法顾名恩义就是将图像分割成若干不重叠的区域。
各区域内存在着某种相似性,使得各区域内的相似性大于区域间特征的相似性。
基于边缘的分割方法则是首先检验出图像的局部存在间断。
然后将间断的部分连成一个边界,而这些边界又把图像分为不同的区域[4]。
5.图像描述与分析图像分析是对于预处理过的图像进行特征提取,从中抽取出有用的信息,再进行分类并展开分析。
根据图像上不同区域的不同特征进行不同的描述,可以粗略描述,也可以有详细描述。
6.图像数字化通过取样和量化进行模数转换,将一个以自然形式存在的图像变换为适合计算机处理的数字图像。
图像在计算机内部被表示为一个数字矩阵,矩阵中每一元素称为像素。
四、数字图像处理技术的应用数字图像处理技术已经进入到了社会生活的各方面,例如我们随处可见的二维码,扫一扫付款。
采用基于数字图像处理的条形码识别算法,对用摄像头采集到的条形码图像进行处理和识别,比利用激光扫描器降低了成本[5]。
数字图像处理技术在各领域的核心内容是不变的,但具体的实现方法却因地制宜,在不同的领域展现着不同的功能。
从遥远的航天技术到身边的交通系统,到处都有它的身影,可以说我们的生活已经离不开它了。
以下为几个主要应用:(一)在生物医学中的应用在医学中,随着数字图像处理技术的渗透.数字图像将相关的病症呈现出来,井通过处理技术对画面上相关数据进行处理。
这种医疗手段.可大幅提升相关病症的治愈率,实现更加精准治疗的疗效。
在医学中医学影像广泛用于以下几方面之中,其中包括CT(计算机X线断层扫描)、PET(正电子发射断层成像)、MRI(核磁共振影像)以及UI(超声波影像)。
数字图像处理技术在技术发展基础上,其应用的范围将会在逐渐得到扩展,应用成效将会进一步得到提升[6]。
(二)在航空航天技术中的应用数字图像处理技术在航空航天中的应用非常广泛,如多光谱卫星图像分析,地形、地图普查,天文探测及分析、卫星遥感图像处理、飞机遥感图像处理及校正等。
这些应用推动了灾害检测、农业规划、城市规划、交通规划、气象预报等的快速进步。
如使用遥感技术为森林火险等级预报、及时跟踪火灾发展情况等都提供了有效手段。
可以预见,数字图像处理技术在航空、卫星等方面的应用,将随着相关技术的发展而发挥越来越大的作用[3]。
(三)在通信工程中的应用现在随着QQ微信的普及,越来越多的人会选择使用视频通话。
通信不再局限于文字或声音,而是融合了图像和视频。
而图像通信不仅仅是视频通话,还包括远程教学,高清电视,视频会议,可视电话等等。
这些如今在生活中都已经是常见事物。
随着数据传输技术,编码技术的进一步提高,数字图像处理技术在通信工程的地位会更加重要,也会推动着通信的事业的蓬勃发展。
(四)在工业中的应用数字图像处理技术在工业工程领域中图像处理技术有着广泛的应用。
如模具、零件制造,零件、产品无损检测,流场分析、应力分析,电路板、纺织品质量检查等。
在工业自动化方面,可以使用机器视觉系统对生产过程进行监视和控制。
此外,交通管制、机场监控、火车车皮识别等均有数字图像处理技术的应用。
在工业发展中,具备视觉、听觉和触觉功能的智能机器人已经应用于焊接、装配、喷漆等工序,并将是一个重要发展领域,必将给工业生产带来新的面貌,大大提高工作效率与工作质量,并不断降低人们的工作强度,进一步解放生产力[3]。
五、总结和前景展望在数字图像处理技术已经到达一定程度,融入日常生活为我们提供着方便的同时,我们也不能忘记我国目前的水平较西方发达国家还是有所不如的。
前段时间人工智能大战人类围棋大师大获全胜的事实也在向我们展示着西方的先进水平,我们需要进行科学创新研究,投入更多的精力到数字图像技术的发展中,让它在未来小康社会的建设中起更大的作用,更好的服务于人类。
文献综述参考文献:[1]景敏.数字图像处理技术的应用与发展[N].科技信息,2010(28)[2]孙玉兰.数字图像处理技术的应用现状与发展研究[J]. 电脑知识与技术,2014(26):6228-6230[3]王嫱.数字图像处理技术的应用及前景展望[J].现代交际,2015(9):114[4]张薇,于硕.数字图像综述[J].通讯世界,2015(18):258-259[5]陈超,杨柳.基于数字图像处理的条形码识别预处理算法研究[J].河南工程学院学报(自然科学版),2015(3):69-73[6]李越.数字图像处理技术在医学影像中的研究与应用[J].通讯世界,2015(15):253[7]Jasonl Silverman, Gail L.Rosen, Steve Essinger. Applications in Digital ImageProcessing[J]. Mathematics Teacher,2013(1):46-53[8]Klaudius Henke, Robert Pawlowski, Peter Schregle.etc. Use of digital imageprocessing in the monitoring of deformations in building structures[J]. Journal of Civil Structural Health Monitoring,2015(2):141-152。