二次函数知识点总结详细

合集下载

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数知识点总结一、函数定义与表达式1.一般式:y = ax^2 + bx + c(a、b、c为常数,a≠0);2.顶点式:y = a(x - h)^2 + k(a、h、k为常数,a≠0);3.交点式:y = a(x - x1)(x - x2)(a≠0,x1、x2是抛物线与x轴两交点的横坐标)。

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b^2 - 4ac≥0时,抛物线的解析式才可以用交点式表示。

二次函数解析式的这三种形式可以互相转化。

二、函数图像的性质——抛物线1)开口方向——二次项系数a二次函数y = ax^2 + bx + c中,a作为二次项系数,显然a≠0.当a>0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;当a<0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大。

顶点坐标:(h,k)一般式:(-b/2a,-Δ/4a)总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小。

|a|越大开口就越小,|a|越小开口就越大。

y = 2x^2y = x^2y = (1/2)x^2y = -(1/2)x^2y = -x^2y = -2x^22)抛物线是轴对称图形,对称轴为直线x = -b/2a。

对称轴顶点式:x = h两根式:x = x1、x = x23)对称轴位置一次项系数b和二次项系数a共同决定对称轴的位置。

(“左同右异”)a与b同号(即ab>0)对称轴在y轴左侧a与b异号(即ab<0)对称轴在y轴右侧4)增减性,最大或最小值当a>0时,在对称轴左侧(当x。

-b/2a时),y随着x的增大而增大;当a -b/2a时),y随着x的增大而增大;当a>0时,函数有最小值,并且当x = -b/2a时,ymin = -Δ/4a;当a<0时,函数有最大值,并且当x = -b/2a时,ymax = -Δ/4a;5)常数项c常数项c决定抛物线与y轴交点。

(完整版)二次函数知识点汇总(全)

(完整版)二次函数知识点汇总(全)

二次函数知识点(第一讲)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结一、二次函数的定义二次函数是指一个形如 $y = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是常数,且 $a \neq 0$。

在这个表达式中,$x$ 是自变量,$y$ 是因变量,$a$、$b$ 和 $c$ 是系数,其中 $a$ 称为二次项系数,$b$ 称为一次项系数,$c$ 称为常数项。

二、二次函数的性质1. 抛物线形状:二次函数的图像是一个向上或向下开口的抛物线。

2. 开口方向:当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。

3. 对称轴:二次函数图像关于直线 $x = -\frac{b}{2a}$ 对称,这条直线称为抛物线的对称轴。

4. 顶点:抛物线的顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$。

5. 与 X 轴的交点:二次函数与 X 轴的交点称为根,可以通过解方程$ax^2 + bx + c = 0$ 来找到。

三、二次函数的图像1. 顶点式:$y = a(x - h)^2 + k$,其中 $(h, k)$ 是顶点坐标。

2. 交点式:$y = a(x - x_1)(x - x_2)$,其中 $x_1$ 和 $x_2$ 是与 X 轴的交点坐标。

3. 标准式:$y = ax^2 + bx + c$。

四、求解二次方程1. 因式分解法:当能够找到两个数,它们的和等于 $b$,积等于$c$ 时,可以使用因式分解法。

2. 完全平方法:通过配方将二次方程转化为完全平方的形式。

3. 公式法:使用二次公式 $x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$ 来求解。

五、二次函数的应用1. 物理运动:描述物体在重力作用下的自由落体运动和抛体运动。

2. 优化问题:在商业和工程中,用于寻找最大利润或最小成本。

3. 数据拟合:在统计学中,用于拟合数据点,找到最佳曲线。

初中二次函数知识点汇总(史上最全)

初中二次函数知识点汇总(史上最全)

二次函数知识点一、基本概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做二次函数。

,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。

2. 2y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.口诀--- ---- Y 反对X ,X 反对Y ,都反对原点十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:=。

二次函数知识点总结3篇

二次函数知识点总结3篇

二次函数知识点总结第一篇:二次函数的基本定义及图像二次函数是指一个多项式中最高次为二次的函数,通常写成 $f(x)=ax^2+bx+c$ 的形式,其中 a,b,c 为常数,a 不为零。

二次函数是数学中一类重要的函数类型,其图像为对称的抛物线。

一、基本定义对于二次函数 $f(x)=ax^2+bx+c$,其中 a,b,c 为常数,a 不为零:1. a 是二次函数的开口方向和开口程度的决定因素,当a>0 时,抛物线开口向上;当 a<0 时,抛物线开口向下。

2. x=-b/2a 是二次函数的对称轴。

3. (x, y) = (-b/2a, c-b^2/4a) 是二次函数的顶点,也是对称轴上的最高点或最低点。

4. 当 a>0 时,对于任何 x,有$f(x)≥y_{min}$;当a<0 时,对于任何 x,有$f(x)≤y_{max}$,其中$y_{min}$ 和 $y_{max}$ 分别为二次函数的最小值和最大值。

二、图像特征二次函数的图像是一条对称的抛物线,其最高点或最低点位于对称轴上,最大值或最小值发生在相应顶点处。

抛物线与 x 轴的交点称为根,由于对称性,常见情况下二次函数最多有两个根。

三、常用的二次函数图像变换1. 上下移动。

将二次函数整体向上或向下平移 k 个单位,得到一种新的二次函数 $y=f(x)+k$。

2. 左右移动。

将二次函数整体向左或向右平移 k 个单位,得到一种新的二次函数 $y=f(x-k)$ 或 $y=f(x+k)$。

3. 垂直方向压缩或拉伸。

将二次函数沿 y 轴缩短或拉长至原来的 s 倍,得到一种新的二次函数 $y=sf(x)$。

4. 水平方向压缩或拉伸。

将二次函数沿 x 轴缩短或拉长至原来的 s 倍,得到一种新的二次函数 $y=f(sx)$。

总之,二次函数的图像特征以及常用的变换方式是掌握二次函数知识的重要基础。

在实际应用中,这些基础概念和操作将为我们处理二次函数相关问题提供宝贵的帮助和指导。

二次函数的关系知识点总结

二次函数的关系知识点总结

二次函数的关系知识点总结一、基本概念1. 二次函数的定义:二次函数是指数为2的多项式函数,形如y=ax^2+bx+c的函数,其中a、b、c是常数,且a不等于0。

2. 二次函数的一般形式:y=ax^2+bx+c,其中a、b、c分别表示二次项系数、一次项系数和常数项。

3. 二次函数的定义域:二次函数的定义域是实数集R,即自变量x的取值范围是整个实数集。

4. 二次函数的值域:二次函数的值域取决于二次项系数a的正负性,当a>0时,值域为[0,+∞),当a<0时,值域为(-∞,0]。

5. 二次函数的最值:二次函数的最值与二次项系数a的正负性有关,当a>0时,最小值为c,无最大值;当a<0时,最大值为c,无最小值。

6. 二次函数的零点:二次函数的零点是指二次函数与x轴相交的点,是方程ax^2+bx+c=0的根,可以通过求根公式或配方法求得。

二、图像特征1. 二次函数的图像特征:二次函数的图像是一个抛物线,抛物线开口的方向取决于二次项系数a的正负性,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 二次函数的对称轴:二次函数的对称轴是垂直于x轴的一条直线,x=-b/2a即为二次函数的对称轴,对称轴上的点为抛物线的对称中心。

3. 二次函数的顶点:二次函数的顶点是抛物线的最低点或最高点,即抛物线的最值点,顶点的横坐标为对称轴的横坐标,纵坐标为函数的最值。

4. 二次函数的焦点:二次函数的焦点是指抛物线的对称轴与抛物线的顶点之间的中点。

5. 二次函数的平移变换:二次函数的图像可以通过平移变换实现平移,平移的一般形式为y=ax^2+b(x-h)+k,其中h、k分别表示横坐标和纵坐标的平移量。

三、性质1. 二次函数的奇偶性:二次函数的奇偶性与一次项系数b有关,当b为偶数时,二次函数为偶函数;当b为奇数时,二次函数为奇函数。

2. 二次函数的导数:二次函数的导数是一次函数,由导数的定义可知,二次函数的导数等于二次项系数与一次项系数的和。

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。

其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。

二、二次函数的图像二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

抛物线的对称轴是直线 x = b / 2a 。

抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。

三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。

函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。

2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。

函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。

五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。

向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。

向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。

六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。

二次函数的相关知识点总结

二次函数的相关知识点总结

二次函数的相关知识点总结一、二次函数的概念。

1. 定义。

- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。

- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。

二、二次函数的图象。

1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。

2. 抛物线的顶点坐标。

- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。

根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。

3. 抛物线的对称轴。

- 对称轴方程为x =-(b)/(2a)。

4. 抛物线的开口方向。

- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。

三、二次函数的性质。

1. 增减性。

- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。

- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。

2. 最值。

- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。

二次函数的知识总结

二次函数的知识总结

二次函数的知识总结二次函数是高中数学中的重要内容之一,它是一种特殊的二次方程。

在学习二次函数的过程中,我们需要掌握二次函数的基本概念、性质以及相关的解题方法。

本文将从这几个方面对二次函数进行总结。

一、基本概念二次函数是指含有二次项的一元二次方程所表示的函数。

一般地,二次函数的一般形式可以写作f(x) = ax^2 + bx + c,其中a、b、c为实数且a不等于0。

其中,a决定了二次函数的开口方向,b决定了二次函数的对称轴位置,c则是二次函数的纵坐标截距。

二、性质1. 对称性:二次函数的图像关于其对称轴对称。

对称轴的方程可以通过x = -b/2a求得。

2. 开口方向:当a大于0时,二次函数的图像开口向上;当a小于0时,二次函数的图像开口向下。

3. 顶点坐标:对称轴与二次函数的图像的交点称为顶点,其坐标可以通过求解二次函数的导数为0的x值来确定。

4. 零点:二次函数的零点即为其方程的解,可以通过求解二次方程ax^2 + bx + c = 0来得到。

三、解题方法1. 求顶点坐标:可以通过求解二次函数的导数为0的x值来得到顶点的横坐标,再带入二次函数的表达式中求得纵坐标。

2. 求零点:可以通过因式分解、配方法、求根公式等方法来求解二次方程的解。

3. 判断开口方向:观察二次函数的系数a的正负来判断开口方向,a大于0则开口向上,a小于0则开口向下。

4. 判断图像位置:可以通过求解二次方程ax^2 + bx + c与y = k 的交点来判断二次函数的图像位置,其中k为常数。

四、常见问题1. 如何判断一个函数是否为二次函数?答:一个函数是否为二次函数,需要满足函数的表达式为f(x) = ax^2 + bx + c,且a不等于0。

2. 二次函数的图像有哪些特点?答:二次函数的图像是一条平滑的曲线,其形状可以为开口向上或开口向下的抛物线。

3. 如何求二次函数的顶点坐标?答:求二次函数的顶点坐标,可以通过求解二次函数的导数为0的x值,再带入函数表达式中求得纵坐标。

二次函数知识点总结(详细)

二次函数知识点总结(详细)

2.已知二次函数 的图象如图所示, 有以下结论: ① ;② ;③ ;④ ;⑤ 其中所有正确结论的序号是( ) A. ①②B. ①③④C. ①②③⑤D. ①②③④⑤3.二次函数 的图象如图所示, 则下列关系式中错误的是( ) A. a <0 B. c >0 C. >0 4、D. >0图12为二次函数 的图象, 给出下列说法:① ;②方程 的根为 ;③ ;④当 时, y 随x 值的增大而增大;⑤当 时, . 其中, 正确的说法有 .(请写出所有正确说法的序号)5.已知=次函数y =ax +bx+c 的图象如图. 则下列5个代数式: ac, a+b+c, 4a -2b+c, 2a+b, 2a -b 中, 其值大于0的个数为( ) A. 2B 3C 、4D 、5四、二次函数解析式的确定 例4.求二次函数解析式:(1)抛物线过(0, 2), (1, 1), (3, 5);(2)顶点M (-1, 2), 且过N (2, 1);(3)已知抛物线过A (1, 0)和B (4, 0)两点, 交y 轴于C 点且BC =5, 求该二次函数的解析式。

(1) 练习: 根据下列条件求关于x 的二次函数的解析式 当x=3时, y 最小值=-1, 且图象过(0, 7)图象过点(0, -2)(1, 2)且对称轴为直线x=图象经过(0, 1)(1, 0)(3, 0)五、二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系)11 1 Oxy已知抛物线y=x2-2x-8,(1)求证: 该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B, 且它的顶点为P, 求△ABP的面积。

2、1.二次函数y=x2-2x-3图象与x轴交点之间的距离为如图所示, 二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C,则△ABC的面积为( )A.6B.4C.3D.13.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方, 则m 的取值范围是六、直线与二次函数的问题例6 已知: 二次函数为y=x2-x+m, (1)写出它的图像的开口方向, 对称轴及顶点坐标;(2)m为何值时, 顶点在x轴上方, (3)若抛物线与y轴交于A, 过A作AB∥x轴交抛物线于另一点B, 当S△AOB=4时, 求此二次函数的解析式.1.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。

二次函数知识点归纳总结

二次函数知识点归纳总结

二次函数知识点归纳总结二次函数是高中数学中的一个重要内容,也是数学建模和解几何问题的重要工具。

下面是关于二次函数的知识点的归纳总结。

一、基本概念1. 二次函数的定义:二次函数是形如f(x) = ax^2 + bx + c (a ≠ 0) 的函数,其中 a、b、c 是常数。

2.二次函数的图象:二次函数的图象是一个抛物线,开口方向取决于a的正负性,顶点坐标为(-b/2a,f(-b/2a))。

3.对称轴:二次函数的对称轴是与图象关于x轴对称的直线,其方程为x=-b/2a。

4. 零点:二次函数的零点是函数图象与 x 轴的交点,可以通过求解二次方程 ax^2 + bx + c =0 来得到。

5.最值:二次函数的最值取决于a的正负性,当a>0时,函数取最小值;当a<0时,函数取最大值。

二、二次函数的变形与性质1.平移变换:二次函数可以通过平移变换来改变其图象的位置。

平移变换的一般形式是f(x)→f(x-h)+k,其中h和k是任意实数。

2.缩放变换:二次函数可以通过缩放变换来改变其图象的形状。

缩放变换的一般形式是f(x)→af(x),其中a是非零实数。

3.纵坐标平移:二次函数可以通过纵坐标平移来改变其图象的位置。

纵坐标平移的一般形式是f(x)→f(x)+k,其中k是任意实数。

4.二次函数的奇偶性:如果a是偶数,则二次函数是偶函数;如果a是奇数,则二次函数是奇函数。

5.顶点坐标的性质:顶点坐标(-b/2a,f(-b/2a))是二次函数的最值点,当a>0时是最小值,当a<0时是最大值。

三、二次函数的方程与不等式1. 二次方程的解:二次方程 ax^2 + bx + c =0 的解可以通过求根公式 x = (-b ± √(b^2 - 4ac))/(2a) 来得到。

2. 解的判别式:二次方程 ax^2 + bx + c =0 的解的判别式是 D =b^2 - 4ac,根据判别式的值可以判断方程有几个实数解。

二次函数知识点梳理

二次函数知识点梳理

二次函数知识点梳理二次函数是数学中的一种重要函数,其具有许多特殊性质和应用。

下面将对二次函数的知识点进行梳理,包括定义、性质、图像、最值、根、变换和应用等方面。

1. 定义:二次函数是一个一元二次方程所确定的函数,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c是实数且a不等于0。

2.基本性质:(1)对称性:二次函数的图像关于抛物线的对称轴对称。

(2)开口方向:二次函数的开口方向由系数a的正负确定。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

(3)零点:二次函数的零点即为方程f(x)=0的解,也就是抛物线与x 轴的交点。

(4)极值:当二次函数的系数a大于0时,该函数有一个最小值;当系数a小于0时,函数有一个最大值。

3.图像:(1)抛物线的顶点:二次函数的顶点即为抛物线的最高或最低点,其x坐标为-b/(2a),y坐标为f(-b/(2a))。

(2)开口:抛物线的开口程度由系数a的绝对值大小决定。

绝对值较大时,开口较窄,反之开口较宽。

(3)过原点:当且仅当c=0时,二次函数通过原点。

4.最值:(1)最值的存在性:二次函数的最值存在性由系数a的正负决定。

当a大于0时,函数有最小值;当a小于0时,函数有最大值。

(2)最值的求解:对于凸(a>0)的二次函数,最小值为抛物线的顶点;对于凹(a<0)的二次函数,最大值为抛物线的顶点。

5.零点:(1)方程f(x)=0的解:二次函数的零点即为方程f(x)=0的解,可以通过求解一元二次方程来得到。

一元二次方程的求解可以使用因式分解、配方法、求根公式等方法。

(2) 零点的个数与判别式:一元二次方程的判别式Δ = b^2 - 4ac反映了方程解的情况。

当Δ大于0时,方程有两个不相等的实数解;当Δ等于0时,方程有两个相等的实数解;当Δ小于0时,方程无实数解。

6.变换:二次函数可以通过平移、伸缩、翻转等线性变换得到新的函数,以下是二次函数的基本变换形式:(1)左右平移:f(x-h)表示将函数向右平移h个单位;f(x+h)表示将函数向左平移h个单位。

二次函数的性质知识点总结

二次函数的性质知识点总结

二次函数的性质知识点总结二次函数是高中数学中重要的概念之一,它在各个领域都有广泛的应用。

了解二次函数的性质是理解和解决相关问题的关键。

本文将对二次函数的性质进行详细总结,包括定义、图像特征、导数、极值点、零点和符号规律等方面的知识点。

一、二次函数的定义二次函数是指以自变量的平方作为最高次幂的一类函数。

通常的形式为:f(x) = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。

二、二次函数的图像特征1. 开口方向:二次函数的图像是一个拱形,其开口方向取决于二次系数a的正负性。

如果a > 0,则图像开口向上;如果a < 0,则图像开口向下。

2. 对称轴:二次函数的图像关于对称轴对称。

对称轴的方程为x = -b / (2a)。

3. 零点:二次函数的零点是函数对应的方程f(x) = 0的解。

二次函数的零点可能有0个、1个或2个。

4. 极值点:如果二次函数的开口向上,那么它的最低点为最小值点;如果二次函数的开口向下,那么它的最高点为最大值点。

5. 单调性:二次函数在对称轴两侧有不同的单调性。

三、二次函数的导数对于二次函数f(x) = ax² + bx + c,其导数函数为f'(x) = 2ax + b。

导数函数的图像表示了原二次函数的斜率变化情况。

四、二次函数的极值点1. 极值点的存在性:二次函数存在极值点,当且仅当a ≠ 0。

当a > 0时,函数的最小值位于极值点上;当a < 0时,函数的最大值位于极值点上。

2. 极值点的横坐标:极值点的横坐标可以通过对称轴的方程得到,即x = -b / (2a)。

3. 极值点的纵坐标:将极值点的横坐标带入原函数得到对应的纵坐标。

五、二次函数的零点1. 零点的判定:二次函数的零点即为使函数值为零的自变量取值。

可以通过解二次方程ax² + bx + c = 0来求得零点。

2. 零点的个数:二次函数的零点个数可能为0个、1个或2个,取决于二次方程的判别式Δ = b² - 4ac的正负性。

二次函数必备知识点

二次函数必备知识点

二次函数必备知识点
二次函数是一个非常重要的数学概念,其定义是形如y=ax²+bx+c(其中a, b, c为常数,且a≠0)的函数。

以下是二次函数的一些必备知识点:
1. 顶点和对称轴:二次函数的顶点可以通过公式法或配方法找到。

公式法是将二次函数的一般式化为顶点式,从而得到顶点的坐标和对称轴的方程。

配方法是先将二次函数的一般式化为完全平方的形式,从而得到顶点的坐标和对称轴的方程。

2. 开口方向和开口大小:二次函数的开口方向由系数a决定,a>0时,开口方向向上;a<0时,开口方向向下。

而a的绝对值决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

3. 最值:对于开口向上的二次函数,其最小值出现在顶点处;对于开口向下的二次函数,其最大值出现在顶点处。

4. 二次函数与一元二次方程的关系:一元二次方程的根是使二次函数值为0的x的值。

因此,一元二次方程的解与二次函数的零点有关。

5. 应用题:在实际问题中,经常会涉及到求最值、判断规则、建立模型等问题,这些问题都可以通过二次函数来解决。

例如,在物理中,加速度、速度和位移之间的关系可以用二次函数表示;在经济中,成本、收入和利润之间的关系也可以用二次函数表示。

以上是二次函数的一些必备知识点,掌握这些知识点可以帮助我们更好地理解和应用二次函数。

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数知识点总结:1.二次函数的概念:一般地,形如 y = ax^2 + bx + c(a,b,c 是常数,a ≠ 0)的函数,叫做二次函数。

需要强调的是,和一元二次方程类似,二次项系数a ≠ 0,而 b,c 可以为零。

二次函数的定义域是全体实数。

2.二次函数 y = ax^2 + bx + c 的结构特征:⑴等号左边是函数,右边是关于自变量 x 的二次式,x 的最高次数是 2.⑵ a,b,c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项。

二次函数基本形式:1.二次函数基本形式:y = ax^2 的性质:结论:a 的绝对值越大,抛物线的开口越小。

总结:a 的符号开口方向顶点坐标对称轴向上 a。

0 (0.0) y 轴x。

0 时,y 随 x 的增大而增大;x < 0 时,y 随 x 的增大而减小;x = 0 时,y 有最小值。

向下 a < 0 (0.0) y 轴x。

0 时,y 随 x 的增大而减小;x < 0 时,y 随 x 的增大而增大;x = 0 时,y 有最大值。

2.y = ax^2 + c 的性质:结论:上加下减。

总结:a 的符号开口方向顶点坐标对称轴向上 a。

0 (0.c) y 轴x。

0 时,y 随 x 的增大而增大;x < 0 时,y 随 x 的增大而减小;x = 0 时,y 有最小值 c。

向下 a < 0 (0.c) y 轴x。

0 时,y 随 x 的增大而减小;x < 0 时,y 随 x 的增大而增大;x = 0 时,y 有最大值 c。

3.y = a(x - h)^2 的性质:结论:左加右减。

总结:a 的符号开口方向顶点坐标对称轴向上 a。

0 (h。

0) x = hx。

h 时,y 随 x 的增大而增大;x < h 时,y 随 x 的增大而减小;x = h 时,y 有最小值。

向下 a < 0 (h。

0) x = hx。

(完整版)二次函数图象和性质知识点总结

(完整版)二次函数图象和性质知识点总结

二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。

③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。

2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。

②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。

③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。

然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。

a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。

(完整版)初中二次函数知识点详解最新助记口诀

(完整版)初中二次函数知识点详解最新助记口诀
知识点四、二次函数的性质
1、二次函数的性质
函数
二次函数
图像
a>0
a<0
y
0 x
y
0 x
性质
(1)抛物线开口向上,并向上无限延伸;
(2)对称轴是xΒιβλιοθήκη ,顶点坐标是( , );(3)在对称轴的左侧,即当x< 时,y随x的增大而减小;在对称轴的右侧,即当x> 时,y随x的增大而增大,简记左减右增;
(4)抛物线有最低点,当x= 时,y有最小值,
知识点一、二次函数的概念和图像
1、二次函数的概念
一般地,如果特 ,特别注意a不为零
那么y叫做x的二次函数。
叫做二次函数的一般式。
2、二次函数的图像
二次函数的图像是一条关于 对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法
五点法:
(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线
(2)求抛物线 与坐标轴的交点:
当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 一次项系数
在二次项系数 确定的前提下, 决定了抛物线的对称轴.
⑴ 在 的前提下,
当 时, ,即抛物线的对称轴在 轴左侧;
当 时, ,即抛物线的对称轴就是 轴;
当 时, ,即抛物线对称轴在 轴的右侧.
⑵ 在 的前提下,结论刚好与上述相反,即
当 时, ,即抛物线的对称轴在 轴右侧;
当 时, ,即抛物线的对称轴就是 轴;
画草图时应抓住以下几点:开口方向,对称轴,顶点,与 轴的交点,与 轴的交点.
六、二次函数 的性质
1. 当 时,抛物线开口向上,对称轴为 ,顶点坐标为 .
当 时, 随 的增大而减小;当 时, 随 的增大而增大;当 时, 有最小值 .
2. 当 时,抛物线开口向下,对称轴为 ,顶点坐标为 .当 时, 随 的增大而增大;当 时, 随 的增大而减小;当 时, 有最大值 .
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
X=h
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
4. 的性质:
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
一元二次方程 是二次函数 当函数值 时的特殊情况.
图象与 轴的交点个数:
① 当 时,图象与 轴交于两点 ,其中的 是一元二次方程 的两根.这两点间的距离 .
② 当 时,图象与 轴只有一个交点;
③ 当 时,图象与 轴没有交点.
当 时,图象落在 轴的上方,无论 为任何实数,都有 ;
当 时,图象落在 轴的下方,无论 为任何实数,都有 .
七、二次函数解析式的表示方法
1. 一般式: ( , , 为常数, );
2. 顶点式: ( , , 为常数, );
3. 两根式: ( , , 是抛物线与 轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
教师姓名
学生姓名
年 级
初三
上课日期
2015/11
学 科
数学
课题名称
二次函数知识点总结
计划时长
2h
教学目标
教学重难点
一、二次函数概念:
1.二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函ห้องสมุดไป่ตู้。
这里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数.
2. 二次函数 的结构特征:
2. 抛物线 的图象与 轴一定相交,交点坐标为 , ;
3. 二次函数常用解题方法总结:
⑴ 求二次函数的图象与 轴的交点坐标,需转化为一元二次方程;
⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是2.
⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项.
二、二次函数的基本形式
1. 二次函数基本形式: 的性质:
a 的绝对值越大,抛物线的开口越小。
的符号
开口方向
顶点坐标
对称轴
性质
向上

时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
当 时, ,即抛物线对称轴在 轴的左侧.
总结起来,在 确定的前提下, 决定了抛物线对称轴的位置.
的符号的判定:对称轴 在 轴左边则 ,在 轴的右侧则 ,概括的说就是“左同右异”
总结:
3. 常数项
⑴ 当 时,抛物线与 轴的交点在 轴上方,即抛物线与 轴交点的纵坐标为正;
⑵ 当 时,抛物线与 轴的交点为坐标原点,即抛物线与 轴交点的纵坐标为 ;
向下

时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
2. 的性质:
上加下减。
的符号
开口方向
顶点坐标
对称轴
性质
向上

时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下

时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
3. 的性质:
左加右减。
概括成八个字“左加右减,上加下减”.
方法二:
⑴ 沿 轴平移:向上(下)平移 个单位, 变成
(或 )
⑵ 沿轴平移:向左(右)平移 个单位, 变成 (或 )
四、二次函数 与 的比较
从解析式上看, 与 是两种不同的表达形式,后者通过配方可以得到前者,即 ,其中 .
五、二次函数 图象的画法
五点绘图法:利用配方法将二次函数 化为顶点式 ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与 轴的交点 、以及 关于对称轴对称的点 、与 轴的交点 , (若与 轴没有交点,则取两组关于对称轴对称的点).
向下
X=h
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
三、二次函数图象的平移
1. 平移步骤:
方法一:⑴ 将抛物线解析式转化成顶点式 ,确定其顶点坐标 ;
⑵ 保持抛物线 的形状不变,将其顶点平移到 处,具体平移方法如下:
2. 平移规律
在原有函数的基础上“ 值正右移,负左移; 值正上移,负下移”.
八、二次函数的图象与各项系数之间的关系
1. 二次项系数
二次函数 中, 作为二次项系数,显然 .
⑴ 当 时,抛物线开口向上, 的值越大,开口越小,反之 的值越小,开口越大;
⑵ 当 时,抛物线开口向下, 的值越小,开口越小,反之 的值越大,开口越大.
总结起来, 决定了抛物线开口的大小和方向, 的正负决定开口方向, 的大小决定开口的大小.
⑶ 当 时,抛物线与 轴的交点在 轴下方,即抛物线与 轴交点的纵坐标为负.
总结起来, 决定了抛物线与 轴交点的位置.
总之,只要 都确定,那么这条抛物线就是唯一确定的.
二次函数解析式的确定:
根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:
1. 已知抛物线上三点的坐标,一般选用一般式;
2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
3. 已知抛物线与 轴的两个交点的横坐标,一般选用两根式;
4. 已知抛物线上纵坐标相同的两点,常选用顶点式.
九、二次函数与一元二次方程:
1. 二次函数与一元二次方程的关系(二次函数与 轴交点情况):
相关文档
最新文档