人教A版高中数学必修3第一章1.3 算法案例课件_5
合集下载
高中数学 1.3 第1课时 辗转相除法与更相减损术、秦九韶算法课件 新人教A版必修3
回 第______步. 0
二
②程序框图如图所示.
③程序:
INPUT m,n
DO
r=m MOD n
m=n
n=r
LOOP UNTIL _______
PRINT _______ r=0
END
m
(2)更相减损术.
算法步骤:
第一步,任意给定两个正整数,判断它们是否都是 ________.若是,用______约简;若不是,执行第二步.
[答案] 用2约简
[解析] 由于294和84都是偶数,先用2约简.
3.设计程序框图,用秦九韶算法求多项式的值,所选用的结 构是( )
A.顺序结构
B.条件结构
C.循环结构
D.以上都有
[答案] D
4.(2013~2014·云南省景洪一中月考)用秦九韶算法计算多 项式f(x)=3x6+2x5+4x4+5x3+7x2+8x+1在x=0.5时的值, 需做乘法和加法的次数分别是________.
序如下:
S=0 i=1 WHILE S<=10^6
i=i+1 S=S+1/i^2 WEND PRINT i END
新知导学 1.辗转相除法与更相减损术 (1)辗转相除法. ①算法步骤: 第一步,给定两个正整数m,n. 第二步,计算m除以n所得的余数r. 第三步,m=n,n=r. 第四步,若r=______,则m,n的最大公约数等于m;否则返
求值比较先进的算法,其实质是转化为求n个________多项
式的值,共进行________次乘法运算和____一__次_次加法运 算.其过程是:
n
nHale Waihona Puke 改写多项式为:f(x)=anxn+an-1xn-1+…+a1x+a0 =(anxn-1+an-1xn-2+…+a1)x+a0 =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0=… =(…((anx+an-1)x+an-2)x+…+a1)x+a0. 设v1=__________, v2=v1x+ana-nx2+,an-1 v3=v2x+an-3, …,
二
②程序框图如图所示.
③程序:
INPUT m,n
DO
r=m MOD n
m=n
n=r
LOOP UNTIL _______
PRINT _______ r=0
END
m
(2)更相减损术.
算法步骤:
第一步,任意给定两个正整数,判断它们是否都是 ________.若是,用______约简;若不是,执行第二步.
[答案] 用2约简
[解析] 由于294和84都是偶数,先用2约简.
3.设计程序框图,用秦九韶算法求多项式的值,所选用的结 构是( )
A.顺序结构
B.条件结构
C.循环结构
D.以上都有
[答案] D
4.(2013~2014·云南省景洪一中月考)用秦九韶算法计算多 项式f(x)=3x6+2x5+4x4+5x3+7x2+8x+1在x=0.5时的值, 需做乘法和加法的次数分别是________.
序如下:
S=0 i=1 WHILE S<=10^6
i=i+1 S=S+1/i^2 WEND PRINT i END
新知导学 1.辗转相除法与更相减损术 (1)辗转相除法. ①算法步骤: 第一步,给定两个正整数m,n. 第二步,计算m除以n所得的余数r. 第三步,m=n,n=r. 第四步,若r=______,则m,n的最大公约数等于m;否则返
求值比较先进的算法,其实质是转化为求n个________多项
式的值,共进行________次乘法运算和____一__次_次加法运 算.其过程是:
n
nHale Waihona Puke 改写多项式为:f(x)=anxn+an-1xn-1+…+a1x+a0 =(anxn-1+an-1xn-2+…+a1)x+a0 =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0=… =(…((anx+an-1)x+an-2)x+…+a1)x+a0. 设v1=__________, v2=v1x+ana-nx2+,an-1 v3=v2x+an-3, …,
人教版高中数学 A版 必修三 第一章 《1.3算法案例》教学课件
D.8
解析 f(x)=(((((6x+5)x+4)x+3)x+2)x+1)x+7,
∴加法6次,乘法6次,
∴6+6=12次,故选C.
解析答案
规律与方法
1.辗转相除法,就是对于给定的两个正整数,用较大的数除以较小的数, 若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除 法,直到大数被小数除尽为止,这时的较小的数即为原来两个数的最 大公约数. 2.更相减损术,就是对于给定的两个正整数,用较大的数减去较小的数, 然后将差和较小的数构成新的一对数,继续上面的减法,直到差和较 小的数相等,此时相等的两数即为原来两个数的最大公约数.
1 2345
答案
4.把89化成五进制的末尾数是( D )
A.1
B.2
C.3
1 2345
D.4
答案
5.下列各数中最小的数是 ( D )
A.85(9) C.1 000(4)
B.210(6) D.111 111(2)
1 2345
答案
ቤተ መጻሕፍቲ ባይዱ 规律与方法
1.要把k进制数化为十进制数,首先把k进制数表示成不同位上数字与k的 幂的乘积之和,其次按照十进制的运算规则计算和. 2.十进制数化为k进制数(除k取余法)的步骤:
答案
2.更相减损术的运算步骤 第一步,任意给定两个正整数,判断它们是否都是偶数 .若是,用 2 约简; 若不是,执行 第二步 . 第二步,以较大 的数减去 较小的数,接着把所得的差与 较小 的数比较, 并以大数减小数,继续这个操作,直到所得的数 相等 为止,则这个数(等 数)或这个数与约简的数的乘积就是所求的最大公约数.
解析答案
返回
达标检测
1.7不可能是( A ) A.七进制数 C.十进制数
高中数学第一章算法初步1.3.2进位制课件3新人教A版必修3
解:(1)算法步骤:
第一步,输入a,k和n的值. 第二步,令b=0,i=1. 第三步,b=b+ai·ki-1,i=i+1. 第四步,判断i>n 是否成立.若是,则执行第五步;否
则,返回第三步.
第五步,输出b的值.
开始
(2)程序框图
输入a,k,n b=0 i=1 把a的右数第i位数字赋给t b=b+t· ki- 1 i=i+1 i>n? 是 输出b 结束 否
具体计算方法如下: 因为 89=2×44+1, 44=2×22+0, 22=2×11+0, 11=2×5+1, 5=2×2+1, 2=2×1+0, 1=2×0+1,
所以 89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1 =2×(2×(2×(2×(22+1)+1)+0)+0)+1 =… =1×26+0×25+1×24+1×23+0×22+0×21+1×20 =1011001(2)
1.通过阅读进位制的算法案例,体会进位制的算法思想. 2.学习各种进位制转换成十进制的计算方法, 研究十进制转换为各种进位制的除k去余法, 并理解其中的数学规律.(重点) 3.能运用几种进位制之间的转换,解决一些有关的问题. (难点)
【课堂探究1】进位制的概念 思考1:什么是进位制? 进位制是为了计数和运算方便而约定的记数系统, 如逢十进一,就是十进制;每七天为一周,就是七 进制;每十二个月为一年,就是十二进制;每六十 秒为一分钟,每六十分钟为一个小时,就是六十进 制等等.也就是说,“满几进一”就是几进制,几进 制的基数就是几.
人教版高中数学必修三课件:1.3 算法案例(共55张PPT)
解:用辗转相除法求最大公约数:612=468×1+144,468=144×3+36,144=36×4,即612
和468的最大公约数是36. 用更相减损术检验:612和468均为偶数,两次用2约简得153和117,153-117=36,11736=81,81-36=45,45-36=9,36-9=27,27-9=18,18-9=9,所以612和468的最大公约数为
转化为求n个一次多项式的值.
预习探究
知识点二 进位制
1.进位制:进位制是为了计数和运算方便而约定的记数系统,约定“满k进一”就 是 k进制 ,k进制的基数(大于1的整数)就是 k . 2.将k进制数化为十进制数的方法:先把k进制数写成各位上的数字与k的幂的乘积之和 的形式,再按照十进制数的运算规则计算出结果. 3.将十进制数化为k进制数的方法是 除k取余法 .即用k连续去除十进制数所得 的 商 ,直到商为零为止,然后把各步得到的余数 倒序 写出.所得到的就是相应的k 进制数. 4.k进制数之间的转化:首先转化为十进制数,再转化为 k进制数.
第一章 算法初步
1.3 算法案例 第2课时 秦九韶算法与进位制
预习探究
知识点一 秦九韶算法
1.秦九韶算法是我国南宋数学家秦九韶在他的著作《数书九章》中提出的一 个用于计算多项式值的方法. 2.秦九韶算法的方法: 把一个n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0 改写成下列的形式: f(x)=(anxn-1+an-1xn-2+…+a1)x+a0= ((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =…=
人教A版高中数学必修三课件:1.3《算法案例--辗转相除法与更相减损术》
小结
比较辗转相除法与更相减损术的区别
(1)都是求最大公约数的方法,计算上辗转相除
法以除法为主,更相减损术以减法为主,计算次数
上辗转相除法计算次数相对较少,特别当两个数字
大小区别较大时计算次数的区别较明显。 (2)从结果体现形式来看,辗转相除法体现结果 是以相除余数为0则得到,而更相减损术则以减数与 差相等而得到
( 1) 5
25
5
35
7
所以,25和35的最大公约数为5
思考:计算8256和6105的最大公约数.
辗转相除法(欧几里得算法)
观察用辗转相除法求8251和6105的最大公约数的过程
第一步 用两数中较大的数除以较小的数,求得商和余数 8251=6105×1+2146
结论: 8251和6105的公约数就是6105和2146的公约数,求8251和 6105的最大公约数,只要求出6105和2146的公约数就可以了。
开始 输入m,n
r=m MOD n
m=n n=r
LOOP UNTIL r=0
PRINቤተ መጻሕፍቲ ባይዱ m END
r=0?
是 输出m 结束
否
练习:课本p45
1、(1)(4)
ks5u精品课件
二、《九章算术》——更相减损术 算理:可半者半之,不可半者,副置分母、子 之数,以少减多,更相减损,求其等也,以等 数约之。
第二步 对6105和2146重复第一步的做法 6105=2146×2+1813 同理6105和2146的最大公约数也是2146和1813的最大公约数。
完整的过程
8251=6105×1+2146 6105=2146×2+1813 2146=1813×1+333
高中数学人教A版必修3课件:1.3 算法案例
1.3 算法案例
题型1 辗转相除法与更相减损术
4.分别用辗转相除法和更相减损术求36和80的最大公约数.
解
辗转相除法:
80=36×2+8,36=8×4+4,8=4×2.
故36和80的最大公约数是4.
更相减损术:
80-36=44,44-36=8,36-8=28,28-8=20,
20-8=12,12-8=4,8-4=4.
解析
111÷2=55……1,55÷2=27……1,27÷2=13……1,13÷2=6……1, 6÷2=3……0,3÷2=1……1,1÷2=0……1, 故111(10)=1101111(2).故选C.
1.3 算法案例
题型3 进位制
11.把十进制数189化为四进制数,则末位数字是( B )
A.0
B.1
1.3 算法案例
刷基础
题型3 进位制
13.十六进制数与十进制数的对应如下表:
十 六 进 1 2 3 4 5 6 7 8 9 10 A B C D E F 制 数 十 进 制 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 数
例如:A+B=11+12=16+7=F+7=17(16),所以A+B的值用十六进制表示就等于17(16).
f(x)=anxn+an-1xn-1+…+a1x+a0的具体函数值,运用常规方法计算出结果最多需要n次加法和
n(n 2
1)
次乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法.对于计
算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算的
A.2
B.3
C.4
D.5
高中数学必修三1.3算法案例-辗转相除法
解:1)先求1734与816的最大公约数
1734=816×2+102
816=102×8
2)再求102与1343的最大公约数
1343=102×13+17
102=17×6
所以17为102与1343的最大公约数
所以17为1734、816、1343这三个数的最大公约数
板
书
设
计
第1.3节算法案例-----辗转相除法
............................... ................................... ...............
课后作业
P45练习:1.
P48习题1.3A组:1.
课
后
反
思
1.辗转相除法的思想2.辗转相除法算法框图3.例题讲解
................................ ................................... ...............
............................... ................................... ...............
2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。
(b)过程与方法
在辗转相除法求最大公约数的学习过程中体会我们常见的约分求公因式的方法,,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。
(c)情态与价值
1.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
PRINT m
END
课堂练习:1.求两数4081与20723的最大公约数.
1734=816×2+102
816=102×8
2)再求102与1343的最大公约数
1343=102×13+17
102=17×6
所以17为102与1343的最大公约数
所以17为1734、816、1343这三个数的最大公约数
板
书
设
计
第1.3节算法案例-----辗转相除法
............................... ................................... ...............
课后作业
P45练习:1.
P48习题1.3A组:1.
课
后
反
思
1.辗转相除法的思想2.辗转相除法算法框图3.例题讲解
................................ ................................... ...............
............................... ................................... ...............
2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。
(b)过程与方法
在辗转相除法求最大公约数的学习过程中体会我们常见的约分求公因式的方法,,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。
(c)情态与价值
1.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
PRINT m
END
课堂练习:1.求两数4081与20723的最大公约数.
高中数学人教A版必修3第一章1.3算法案例课件
去
9- 3= 6
6 - 3 = 3 减数与差相等
3×2=6
78与36的最大公约数为6.
更相减损术
问题6.根据更相减损术的过程,设计求两个正整数m,n最 大公约数的算法,需要用到什么逻辑结构?为什么?
第一步:任意给定两个正整 算法分析:
数,判断它们是否都是偶数。第一步,给定两个正整数m,n(m>n).
更相减损术
例2. 用更相减损术求78与36的最大公约数.
解: 78与36都是偶数
“可半”
78 ÷ 2 = 39 36 ÷ 2 = 18
“可半者半之”
除 完
39 - 18 = 21 大减小 21 - 18 = 3
再
18 - 3 = 15
乘
15 - 3 = 12
“更相减损”(辗转相减)
回
12 - 3 = 9
2 18 30 3 9 15 35
18与30的最大公约数为2 3 6 .
问题1. 求8251与6105的最大公约数. 可以使用短除法吗?
困难:两数比较大、公约数不易视察。 (辗转相除法、更相减损术)
知问
思考1:辗转相除法与更相减损术可以用来解 决什么问题? 可以解决求两个正整数最大公约数的任何问题。
《九章算术》——更相减损术
“可半者半之,不可半者,副置分母、子之数,以少 减多,更相减损,求其等也,以等数约之。”
《九章算术》
刘徽
《九章算术》其作者已不可 考,现今流传的大多是在三 国时期刘徽为《九章》所作 的注本。它是中国古代第一 部数学专著,系统总结了战 国、秦、汉时期的数学成绩, 收录了246个数学问题及其 解法,是当时世界上最简练 有效的应用数学,它的出现 标志中国古代数学形成了完 整的体系。
人教a版必修三:《1.3算法案例(1)》ppt课件(322页)
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
§1.3(一)
探究点二:更相减损术
思考 2 (1)用更相减损术可以求两个正整数 m,n 的最大公约数,那么用什么逻辑结 构来构造算法?其算法步骤如何设计?
答 (1)用循环结构设计算法,算法如下:
第一步,任意给定两个正整数m,n(m>n). 第二步,计算 m-n 所得的差 k. 第三步,比较n与k的大小,其中大者用m表示,小者用n表示. 第四步,若m=n,则m,n的最大公约数等于m;否则,返回第二步.
第一章 算法初步
§1.3 算法案例(一)
本节知识目录
§1.3(一)
明目标、知重点
算法 案例 (一)
填要点、记疑点
探究点一 探究点二 探究点三
辗转相除法 更相减损术 秦九韶算法的基本思想
探要点、究所然
当堂测、查疑缺
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
明目标、知重点
§1.3(一)
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
§1.3(一)
探究点二:更相减损术
(2)该算法的程序框图如何表示?该程序框图对应的程序如何表述?
答 程序框图: 程序:
INPUT m,n WHILE m< >n k=m-n IF n>k THEN m=n n=k ELSE m=k END IF WEND PRINT m END
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
算法案例 辗转相除法与更相减损术秦九韶算法与进位制第一课时课件-数学高一必修3第一章算法初步1.3人教A版
【问题导思】 1.如何求18与54的最大公约数? 【提示】 短除法.
2.要求6 750与3 492的最大公约数,上述法还好用吗?
【提示】
数值太大,短除法不方便用.
(1)更相减损之术(等值算法)
用两个数中较大的数减去较小的数,再用 差数 较小的数 大 数 到产生 减 和
构成新的一对数,对这一对数再用 小数 ,以同样的操作一直做下去,直 ,这个数就是最大公约数.
v0=an 则递推公式为 其中 vk= vk-1x+an-k
k=1,2,„,n.
(2)计算P(x0)的方法 先计算 最内层括号 ,然后 由内向外 常数项 直到 最外层括号 ,然后加上 逐层计算, .
知识3
进位制
进位制是一种记数方式,用有限的数字在不同的位置表示
不同的数值.使用数字符号的个数称为基数,基数为 n,即称为
1.用更相减损之术可求得78与36的最大公约数是( A.24 【解析】 B.18 C.12 D. 6
)
78-36=42,42-36=6,36-6=30,30-
6=24,24-6=18,18-6=12,12-6=6,∴6为78与36的
最大公约数.
【答案】 D
2.用秦九韶算法计算f(x)=6x5-4x4+x3-2x2+x3-2x2 -9x,需要加法(或减法)与乘法运算的次数分别为( A.5,4 【解析】 B.5,5 C.4,4 )
【解析】 (1)101 111 011(2)=1×28+0×27+1×26+1×25
+1×24+1×23+0×22+1×21+1×20=379(10).
(2)1231(5)=1×53+2×52+3×5+1=191(10),
∴1231(5)=362(7).
高一数学(人教A版)必修3课件:第一章 算法初步
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
Байду номын сангаас
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
1.3.1《算法案例-辗转相除法与更相减损术》课件(1)(新人教A版必修3)
利用辗转相除法求最大公约数的步骤如下: 第一步:用较大的数m除以较小的数n得到 一个商q0和一个余数r0;(m=n×q0+r0) 第二步:若r0=0,则n为m,n的最大公约 数;若r0≠0,则用除数n除以余数r0得到一个 商q1和一个余数r1;(n=r0×q1+r1) 第三步:若r1=0,则r0为m,n的最大公约 数;若r1≠0,则用除数r0除以余数r1得到一个 商q2和一个余数r2;(r0=r1×q2+r2) …… 依次计算直至rn=0,此时所得到的rn-1 即为所求的最大公约数。
〖研探新知〗
1.辗转相除法: 例1 求两个正数8251和6105的最大公约数。 解:8251=6105×1+2146; 6105=2146×2+1813; 2146=1813×1+333; 1813=333×5+148; 333=148×2+37; 148=37×4+0. 则37为8251与6105的最大公约数。 以上我们求最大公约数的方法就是辗转相 除法。也叫欧几里德算法,它是由欧几里德在 公元前300年左右首先提出的。
〖研探新知〗
1.辗转相除法: 例1 求两个正数8251和6105的最大公约数。 分析:8251与6105两数都比较大,而且没 有明显的公约数,如能把它们都变小一点,根 据已有的知识即可求出最大公约数. 解:8251=6105×1+2146 显然8251与6105的最大公约数也必是2146 的约数,同样6105与2146的公约数也必是8251 的约数,所以8251与6105的最大公约数也是 6105与2146的最大公约数。
4081=318×12+265;
318=265×1+53; 265=53×5+0.
练习
• 45页第一题
高中数学人教A版必修三第一章1.3.3进位制-算法案例课件
把89化为五进制的数.
5 89 5 17 53
0
余数
4 2 3
∴ 89=324(5)
练习:把3282化为16进制的数.
10
11
12
13
14
15
A
B
C
D
E
F
思考 你会把三进制数10221(3)化为二进制数吗?
解:第一步:先把三进制数化为十进制数: 10221(3)=1×34+0×33+2×32+2×31+1×30
51
把89化为二进制的数.
2 89
2 44 2 22 2 11 25
22 21
0
余数
1 0 0 1 1 0 1
把算式中各步所得的余 数从下到上排列,得到
89=1011001(2) 可以用2连续去除89或所得 商(一直到商为0为止),然后 取余数---除2取余法.
这种方法也可以推广为把 十进制数化为k进制数的 算法,称为除k取余法.
=81+18+6+1=106. 第二步:再把十进制数化为二进制数:
106=1101010(2). ∴10221(3)=106=110就是几,基数都是大于1的数.
按照十进制数的运算规则计算出结果, 结果就是十进制下该数的大小了.
1.3算法案例
进位制
十进制数3721中的3表示3个千,7表示7个百,2表示2个 十,1表示1个一,从而它可以写成下面的形式:
3721=3×103+7×102+2×101+1×100.
同理: 3421(5)= 3×53+4×52+2×51+1×50.
每一位上的数都是整数.
1.3算法案例 课件-高一数学人教A版必修3
f (x) 4x5 2x4 3.5x3 2.6x2 1.7x 0.8
用秦九韶算法求这个多项式当x=5时的值。
解:根据秦九韶算法,把多项式改写成如下 形式:
f (x) ((((4x 2)x 3.5)x 2.6)x 1.7)x 0.8
按照从内到外的顺序,依次计算一次多项式当 x=5时的值:
WHILE d<>n
IF d>n THEN m=d
ELSE m=n
n=d
END IF d=m-n WEND d=2^k*d
PRINT d
END
问题2:怎样求多项式 f (x) x5 x4 x3 x2 x 1当x=5 的值呢?
方法1:把5代入多项式,计算各项的值,然后把它们加 起来。这时共做了1+2+3+4=10次乘法运算,5 次加法运算。
例1:用更相减损术求98与63的最大公约数。
解:由于63不是偶数,把98和63以大数减小数, 并辗转相减得,如图所示:
98-63=35 63-35=28 35-28=7 28-7=21 21-7=14 14-7=7
所以,98和63的最大公约数等于7。
思考:把更相减损术与辗转相除法比较,你有什么
发现?你能根据更相减损术设计程序,求两个正数的 最大公约数吗?
v1 an x an1
然后由内向外逐层计算一次多项式的值,即
v2 v1 x an2 ,
v3 v2 x an3 ,
vn vn1 x a0 ,
这样,求n次多项式f(x)的值就转化为求n个一次多项 式的值。
上述方法称为秦九韶算法。直到今天, 这种算法仍是 多项式求值比较先进的算法。
例2、已知一个5次多项式为
⑤十进制化k进制
用秦九韶算法求这个多项式当x=5时的值。
解:根据秦九韶算法,把多项式改写成如下 形式:
f (x) ((((4x 2)x 3.5)x 2.6)x 1.7)x 0.8
按照从内到外的顺序,依次计算一次多项式当 x=5时的值:
WHILE d<>n
IF d>n THEN m=d
ELSE m=n
n=d
END IF d=m-n WEND d=2^k*d
PRINT d
END
问题2:怎样求多项式 f (x) x5 x4 x3 x2 x 1当x=5 的值呢?
方法1:把5代入多项式,计算各项的值,然后把它们加 起来。这时共做了1+2+3+4=10次乘法运算,5 次加法运算。
例1:用更相减损术求98与63的最大公约数。
解:由于63不是偶数,把98和63以大数减小数, 并辗转相减得,如图所示:
98-63=35 63-35=28 35-28=7 28-7=21 21-7=14 14-7=7
所以,98和63的最大公约数等于7。
思考:把更相减损术与辗转相除法比较,你有什么
发现?你能根据更相减损术设计程序,求两个正数的 最大公约数吗?
v1 an x an1
然后由内向外逐层计算一次多项式的值,即
v2 v1 x an2 ,
v3 v2 x an3 ,
vn vn1 x a0 ,
这样,求n次多项式f(x)的值就转化为求n个一次多项 式的值。
上述方法称为秦九韶算法。直到今天, 这种算法仍是 多项式求值比较先进的算法。
例2、已知一个5次多项式为
⑤十进制化k进制
2014年人教A版必修三课件 1.3 算法案例
开始
输入正数m,n
m>n? 是 m=m-n 否 m=n? 是 输出m 结束
否 n=n-m
案例2 秦九韶算法 问题2. 下面是求多项式 f(x)=x5+x4+x3+x2+x+1 的 值的两种算法, 你认为哪种算法要快一些? 为什么? 算法 1: 直接将 x 的值代入多项式计算; 算法 2: 将多项式变形成 f(x)=((((x+1)x+1)x+1)x+1)x+1. 算法 1 要做 10 次乘法和 5 次加法. 算法 2 只做 4 次乘法和 5 次加法. 计算机做一次乘法用的时间比做一次加法所用 的时间长得多. 对于 n 次多项式的求值运算, 我国南宋时期的 秦九韶有如下的算法:
5. 什么是秦九韶算法? 它的特点是什么? 6. 你能写出秦九韶算法的程序吗?
Hale Waihona Puke 案例1 辗转相除法与更相减损术 问题1. 你能求两个数的最大公约数吗? 看下面 一列等式, 请问: 37 是 2146 与 1813 的公约数吗? 2146 1813 余 333, 2146 = 1813 1 +333, 有37的约数, 1813 333 余 148, 1813 = 333 5 +148, 有37的约数, 333 148 余 37, 333 = 148 2 +37, 有37的约数, 148 37 余 0. 有37的约数, 148 = 37 4. 求两个数的最大公约数的算法步骤: (1) 大数除以小数取余数; (2) 较小的数与余数又进行大数除以小数取余数; 如此重复进行, 直到余数为 0. 余数为 0 时的除数就是最大公约数. 这叫辗转相除法, 又叫欧几里得算法.
否则, 返回第二步进入循环.
输入正数m,n
m>n? 是 m=m-n 否 m=n? 是 输出m 结束
否 n=n-m
案例2 秦九韶算法 问题2. 下面是求多项式 f(x)=x5+x4+x3+x2+x+1 的 值的两种算法, 你认为哪种算法要快一些? 为什么? 算法 1: 直接将 x 的值代入多项式计算; 算法 2: 将多项式变形成 f(x)=((((x+1)x+1)x+1)x+1)x+1. 算法 1 要做 10 次乘法和 5 次加法. 算法 2 只做 4 次乘法和 5 次加法. 计算机做一次乘法用的时间比做一次加法所用 的时间长得多. 对于 n 次多项式的求值运算, 我国南宋时期的 秦九韶有如下的算法:
5. 什么是秦九韶算法? 它的特点是什么? 6. 你能写出秦九韶算法的程序吗?
Hale Waihona Puke 案例1 辗转相除法与更相减损术 问题1. 你能求两个数的最大公约数吗? 看下面 一列等式, 请问: 37 是 2146 与 1813 的公约数吗? 2146 1813 余 333, 2146 = 1813 1 +333, 有37的约数, 1813 333 余 148, 1813 = 333 5 +148, 有37的约数, 333 148 余 37, 333 = 148 2 +37, 有37的约数, 148 37 余 0. 有37的约数, 148 = 37 4. 求两个数的最大公约数的算法步骤: (1) 大数除以小数取余数; (2) 较小的数与余数又进行大数除以小数取余数; 如此重复进行, 直到余数为 0. 余数为 0 时的除数就是最大公约数. 这叫辗转相除法, 又叫欧几里得算法.
否则, 返回第二步进入循环.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习2:用更相减损术求两个正数84与72的最大
公约数。 (12)
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
练习
• 用更相减损术法求下列两个正整数的最大 公约数
• ①225 135 ②98 196 ③72 168 ④153 119
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
求18与30的最大公约数
• 解∵30=18×1+12
• 18=12×1+6
•
12=6×2
• ∴18与30的最大公约数是6
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
否则返回第二步
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
程序框图
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
开始
输入两个正数m,n
r=m MOD n
m=n
n=r
否
r=0?
是
输出m
结束
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
辗转相除法求最大公约数算法步骤: • 第一步,给定两个正整数m,n(m>n) • 第二步,计算m除以n所得到余数r • 第三步,m=n,n=r • 第四步,若r=0,则m,n的最大公约数等于m;
总结辗转相除法方法
• 用大数除以小数得到商和余数,接着用除 数除以余数得到商和余数,依次计算下去, 直到余数为零,最后式子的除数是所求的 最大公约数。
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
2.更相减损术: 人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】 我国早期也有解决求最大公约数问题的算
小结
• 1、辗转相除法方法
• 2、更相减损术的步骤:
• 第一步 任意给定两个正整数,判断它们是不是偶 数,若是用2约简,若不是执行第二步,
• 第二步 以较大的数减去较小的数,接着把所得差 与较小的数比较,并以大数减小数,继续这个操 作,直到所得数相等为止,则这个数或者这个数 与约简的数的乘积就是所求的最大公约数。
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
例2 用更相减损术求98与63的最大公约数. 解:由于63不是偶数,把98和63以大数
减小数,并辗转相减,
即:98-63=35; 63-35=28; 35-28=7; 28-7=21; 21-7=14; 14-7=7.
所以,98与63的最大公约数是7。
解:8251=6105×1+2146; 6105=2146×2+1813; 2146=1813×1+333; 1813=333×5+148; 333=148×2+37; 148=37×4+0.
则37为8251与6105的最大公约数。
以上我们求最大公约数的方法就是辗转相 除法。也叫欧几里德算法,它是由欧几里德在 公元前300年左右首先提出的。
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
例题
• 用更相减损术求两个正整数的最大公约数
• 18与30
• 解 ∵18÷2=9 30÷2=15
•
15-9=6
•
9-6=3
•
6-3=3
• ∴18与30的最大公约数是3×2=6
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
练习
• 用辗转相除法求下列两个正整数的最大公 约数
• ①225 135 ②98 196 ③72 168 ④153 119
• 答案:45 98 24 17
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
法,就是更相减损术。 更相减损术求最大公约数的步骤如下:可
半者半之,不可半者,副置分母、子之数,以 少减多,更相减损,求其等也,以等数约之。
翻译出来为:第一步:任意给出两个正数; 判断它们是否都是偶数。若是,用2约简;若不是, 执行第二步。
第二步:以较大的数减去较小的数,接着把 较小的数与所得的差比较,并以大数减小数。继 续这个操作,直到所得的数相等为止Байду номын сангаас则这个数 (等数)就是所求的最大公约数。
第一章 算法初步 1.3 算法案例
〖创设情景,揭示课题〗
案例1 辗转相除法与更相减损术
[问题1]:在小学,我们已经学过求最大公约数 的知识,你能求出18与30的最大公约数吗?
2 18 30 3 9 15 35
∴18和30的最大公约数是2×3=6.
先用两个数公有的质因数连续去除,一直除到所 得的商是互质数为止,然后把所有的除数连乘起 来.
〖创设情景,揭示课题〗
[问题2]:我们都是利用找公约数的方法来求 最大公约数,如果两个数比较大而且根据我 们的观察又不能得到一些公约数,我们又应 该怎样求它们的最大公约数?比如求8251与 6105的最大公约数?
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
1.辗转相除法:
例1 求两个正数8251和6105的最大公约数。
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
公约数。 (12)
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
练习
• 用更相减损术法求下列两个正整数的最大 公约数
• ①225 135 ②98 196 ③72 168 ④153 119
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
求18与30的最大公约数
• 解∵30=18×1+12
• 18=12×1+6
•
12=6×2
• ∴18与30的最大公约数是6
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
否则返回第二步
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
程序框图
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
开始
输入两个正数m,n
r=m MOD n
m=n
n=r
否
r=0?
是
输出m
结束
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
辗转相除法求最大公约数算法步骤: • 第一步,给定两个正整数m,n(m>n) • 第二步,计算m除以n所得到余数r • 第三步,m=n,n=r • 第四步,若r=0,则m,n的最大公约数等于m;
总结辗转相除法方法
• 用大数除以小数得到商和余数,接着用除 数除以余数得到商和余数,依次计算下去, 直到余数为零,最后式子的除数是所求的 最大公约数。
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
2.更相减损术: 人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】 我国早期也有解决求最大公约数问题的算
小结
• 1、辗转相除法方法
• 2、更相减损术的步骤:
• 第一步 任意给定两个正整数,判断它们是不是偶 数,若是用2约简,若不是执行第二步,
• 第二步 以较大的数减去较小的数,接着把所得差 与较小的数比较,并以大数减小数,继续这个操 作,直到所得数相等为止,则这个数或者这个数 与约简的数的乘积就是所求的最大公约数。
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
例2 用更相减损术求98与63的最大公约数. 解:由于63不是偶数,把98和63以大数
减小数,并辗转相减,
即:98-63=35; 63-35=28; 35-28=7; 28-7=21; 21-7=14; 14-7=7.
所以,98与63的最大公约数是7。
解:8251=6105×1+2146; 6105=2146×2+1813; 2146=1813×1+333; 1813=333×5+148; 333=148×2+37; 148=37×4+0.
则37为8251与6105的最大公约数。
以上我们求最大公约数的方法就是辗转相 除法。也叫欧几里德算法,它是由欧几里德在 公元前300年左右首先提出的。
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
例题
• 用更相减损术求两个正整数的最大公约数
• 18与30
• 解 ∵18÷2=9 30÷2=15
•
15-9=6
•
9-6=3
•
6-3=3
• ∴18与30的最大公约数是3×2=6
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
练习
• 用辗转相除法求下列两个正整数的最大公 约数
• ①225 135 ②98 196 ③72 168 ④153 119
• 答案:45 98 24 17
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
法,就是更相减损术。 更相减损术求最大公约数的步骤如下:可
半者半之,不可半者,副置分母、子之数,以 少减多,更相减损,求其等也,以等数约之。
翻译出来为:第一步:任意给出两个正数; 判断它们是否都是偶数。若是,用2约简;若不是, 执行第二步。
第二步:以较大的数减去较小的数,接着把 较小的数与所得的差比较,并以大数减小数。继 续这个操作,直到所得的数相等为止Байду номын сангаас则这个数 (等数)就是所求的最大公约数。
第一章 算法初步 1.3 算法案例
〖创设情景,揭示课题〗
案例1 辗转相除法与更相减损术
[问题1]:在小学,我们已经学过求最大公约数 的知识,你能求出18与30的最大公约数吗?
2 18 30 3 9 15 35
∴18和30的最大公约数是2×3=6.
先用两个数公有的质因数连续去除,一直除到所 得的商是互质数为止,然后把所有的除数连乘起 来.
〖创设情景,揭示课题〗
[问题2]:我们都是利用找公约数的方法来求 最大公约数,如果两个数比较大而且根据我 们的观察又不能得到一些公约数,我们又应 该怎样求它们的最大公约数?比如求8251与 6105的最大公约数?
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】
1.辗转相除法:
例1 求两个正数8251和6105的最大公约数。
人教A版高中数学必修3第一章1.3 算法案例课件_5【精品】